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Snapshot imaging of ultrashort electron bunches
Andreas Döpp 1,2✉

Abstract
New measurements combine spatial and temporal information from optical transition radiation to estimate the three-
dimensional structure of electron bunches from a laser wakefield accelerator.

Laser-plasma accelerators (LPAs) driven by high-power
lasers can generate electron bunches with femtosecond
durations and kilo-ampere currents in just a few milli-
meters, rivaling state-of-the-art conventional accelerators
in a much more compact setup1,2. While research into the
physics of laser wakefield accelerators continues to
advance3–5, future high-impact applications—such as
ultrafast electron diffraction and X-ray generation—
demand exceptional quality from the generated electron
beams6. Knowledge about the spatiotemporal structure of
the accelerated electrons is therefore crucial. However,
measuring such ultra-short bunches is highly challenging
and has been mostly limited to either the transverse or
longitudinal profiles7–12.
Now, writing in Light: Science & Applications, Kai

Huang and co-workers from the Kansai Institute for
Photon Science, Osaka University, and RIKEN in Japan
have succeeded in measuring the three-dimensional (3D)
density distribution of a laser-wakefield accelerated elec-
tron pulse with femtosecond temporal resolution and
micrometer spatial resolution13. This single-shot mea-
surement was enabled by combining imaging of optical
transition radiation (OTR) - which encodes the transverse
profile—with electro-optic (EO) sampling of the OTR—
which provides information about the temporal structure
(Fig. 1).
To perform the measurement, a stainless-steel foil

was placed 7 cm behind the exit of the LPA to generate
optical transition radiation. The OTR signal was then
imaged both onto a camera for transverse profiling and

onto a thin gallium phosphide (GaP) crystal for EO
sampling14. Within the GaP crystal, the temporal
information of the electron bunch is imprinted onto the
transverse profile of a probe laser beam. Assuming the
electron distribution within the bunch as a multi-
Gaussian distribution, the 3D structure was constrained
down to the few-micrometer and few-femtosecond level
using a genetic algorithm in conjunction with a detailed
numerical model of the diagnostic15. The authors esti-
mate that the electron bunches had a duration of just a
few femtoseconds with a peak current exceeding 1 kA.
The transverse size was measured to be less than 30 µm
(root mean square) with an estimated peak 3D density
of 9 × 1021 m−3. Knowledge of this density is crucial for
many applications and, in the case of the authors’
research, is motivated by the goal to build a compact,
laser-plasma driven free-electron laser (FEL). Knowl-
edge of the electron density and the related Pierce
parameter is essential to estimate the gain length of
the FEL.
The approach used by Huang et al. serves as a com-

pelling example in a greater trend towards novel diag-
nostics that capture the spatiotemporal structure of
intense beams—particles and photons alike. Due to the
inherent limitations of 2D detectors to capture 3D
structures, snapshot approaches inherently rely on
data-driven techniques16. Measurements resemble
tomographic reconstruction as they capture the beam
under scrutiny at different “angles”; by combining
multiple diagnostics that each provide a partial con-
straint, the properties of the beam can be inferred. The
study by Huang et al. serves as an encouraging proof-of-
principle and cross-fertilization with concepts
employed in computed tomography or laser diagnostics
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may give room for rapid future progress, e.g., by bor-
rowing techniques from compressed sensing17,18.
The development of improved diagnostics goes hand-

in-hand with advances in the fundamental understanding
and control of laser-plasma accelerators. For instance,
femtosecond electron microscopy as recently introduced
to study relativistic electron bunches19 can also serve as
formidable diagnostic laser-plasma wakefield dynamics20.
Similarly, combining OTR imaging and electro-optic
sampling with spectroscopic measurements of coherent
transition radiation in the THz regime may help better
understand the complex physics of beam-driven wakefield
accelerators3,4 or to diagnose “exotic” electron beams21.
Machine learning techniques in particular may provide a
powerful framework for integrating these diverse mea-
surements and extracting meaningful correlations. The
complexity of laser-plasma accelerators, with their many
coupled parameters, makes them well-suited to such data-
driven analysis approaches. The multi-modal recon-
struction put forward by Huang and colleagues not only
demonstrates a new capability for capturing 3D electron
bunch structure, but also points the way towards future
innovations in data-driven discovery and optimization for
laser-plasma accelerators.
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Fig. 1 Schematic view of the snapshot retrieval method by Huang and colleagues. The method relies on the simultaneous measurement of
optical transition radiation (OTR) through imaging and electro-optic sampling. Combined, these two diagnostics constrain the temporal and spatial
structure of the electron bunch that generated the OTR. The 3D structure is then estimated by optimizing a multi-Gaussian distribution through an
evolutionary search algorithm that matches the prediction from the model to the experimental data. Images adapted from [ref. 13]
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