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We present the mean field solution of the quantum and classical Heisenberg spin glasses, using the
combination of a high precision numerical solution of the Parisi full replica symmetry breaking equations
and a continuous time quantum Monte Carlo algorithm. We characterize the spin glass order and its
low-energy excitations down to zero temperature. The Heisenberg spin glass has a rougher energy
landscape than its Ising analog, and exhibits a very slow temperature evolution of its dynamical properties.
We extend our analysis to the doped, metallic Heisenberg spin glass, which displays unexpectedly slow
spin dynamics, reflecting the proximity to the melting quantum critical point and its associated Sachdev-
Ye-Kitaev Planckian dynamics.
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While the physics of classical and quantum Ising spin
glasses has been rather thoroughly understood, glasses of
Heisenberg (vector) spins have remained a difficult and
largely unsolved problem, including especially its quantum
version, which governs the local moments in randomly
doped, strongly correlated materials.
The approach of Sachdev and Ye [1] (SY), which takes

a double limit of a fully connected exchange model with
SU(2) spins promoted to SUðM ≫ 1Þ, has attracted a lot
of attention, as it exhibits very interesting features in the
M ¼ ∞ limit. In a fermionic representation of the
SUðM → ∞Þ generators, the spins do not freeze, but
remain in a spin liquid state [1] similar to the related
Sachdev-Ye-Kitaev model of randomly coupled Majorana
fermions [2]. When expanding around M ¼ ∞, it was
conjectured that a transition into a glassy phase occurs at an
exponentially small critical temperature logðTgÞ ∝ −

ffiffiffiffiffi
M

p
[3], and a recent study has established that this phase
displays full replica symmetry breaking (RSB) [4]. A glass
phase with similar features was found to occur in the

transverse field Ising model [5,6] and the related multi-
component quantum rotor models [7–9]. In contrast, for
bosonic SUðMÞ representations, a spin glass phase occurs
even for M ¼ ∞, albeit with one-step RSB [3,10].
There is a fundamental difference between glasses

displaying full RSB and one-step RSB. The energy land-
scape of the former features marginally stable local minima
with a gapless spectrum of excitations, while the latter
display a fully stable, gapped ground state, lying far below
the manifold of marginally stable excited states that trap the
dynamics. Marginal stability is key to the dynamics and the
physics of avalanches in full RSB systems [11]. Which of
these two scenarios applies to the physically relevant
Heisenberg SU(2), S ¼ 1=2 spin glass is an open question.
Exact diagonalization of small fully connected systems is
limited by finite size effects [12,13]. Surprisingly, not
much is known about the classical (large S) limit of the
Heisenberg mean-field spin glass either, apart from the
replica-symmetric analysis of Refs. [14,15].
The equilibrium quantum spin dynamics of the SY spin-

liquid [1] is similar to that of a marginal Fermi liquid [16].
It was realized early on [17] that this opens a new
perspective on “strange” metals, culminating in recent
models in which disorder and strong interactions conspire
to prevent the emergence of quasiparticles and lead to
T-linear resistivity down to the lowest temperatures [2,18].
It has recently been shown that such a behavior is found in
the quantum critical region around the melting point of a
metallic SU(2) Heisenberg spin glass [19,20]. However,
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it is not known how the quantum dynamics change within
the metallic spin glass phase itself.
In this Letter, we answer these open questions and present

a solution of the fully connected spin-1=2 Heisenberg spin
glass throughout its ordered phase. In the quantum case, the
model reduces to an impurity problem for the spin dynamics
coupled to Parisi’s equations for the spin glass order. The
Heisenberg glass has a full RSB solution, whose structure,
however, differs crucially from an Ising glass. The insulating
quantum glass displays the universal spin dynamics found in
all solvable mean-field quantum glasses with full RSB in the
limit T → 0, but deviations from it persist to surprisingly low
temperatures. Upon doping, we find a metallic spin glass
with unexpectedly slow spin dynamics, close to the SY
dynamics that dominate the quantum critical melting point of
the spin glass.
Model and method.—We consider N spins Si with all-to-

all interactions, described by the Hamiltonian

H ¼ −
X
i<j

JijSi · Sj: ð1Þ

The Si are either classical Heisenberg spins—vectors
constrained to the three-dimensional sphere of radius S ¼
1=2—or quantum SU(2) spins S [with S2 ¼ SðSþ 1Þ]. We
use ℏ ¼ kB ¼ 1 and denote by l ¼ 3 the number of spin
components. Jij are Gaussian random couplings with zero
mean and variance J2=N. We obtain the equilibrium
solution of this model using the replica method and
Parisi’s full RSB ansatz [21–26], as detailed in the
Supplemental Material [27].
In brief, the mean field model is reduced to an effective

single spin problem in a random frozen field h with
distribution PðhÞ. In the classical case, it is governed by
the Hamiltonian HlocðhÞ ¼ −h · S. In the quantum case,
the dynamics of this spin also depend on the self-averaging
spin autocorrelation function χðτÞ ¼ hSð0ÞSðτÞi − hSi2,
via the action

SlocðhÞ ¼
J2

2

Z Z
β

0

dτdτ0χðτ − τ0ÞSðτÞ · Sðτ0Þ

− h
Z

β

0

dτ SðτÞ; ð2Þ

where τ is Matsubara imaginary time and β ¼ 1=T the
inverse temperature. The glass phase is described by an
order parameter qðxÞ (x∈ ½0; 1�). qðxÞ characterizes the
distribution of phase space distances between local minima
of the free energy landscape [25]. It determines the local
field distribution PðhÞ≡ Pðx ¼ 1;hÞ, which is found by
solving Parisi’s equations for the magnetization sðx;hÞ and
frozen fields distribution Pðx;hÞ

∂s
∂x

¼ −
J2

2

dq
dx

�
∇2sþ 2βxðs · ∇Þs�; ð3aÞ

∂P
∂x

¼ J2

2

dq
dx

�
∇2P − 2βx∇ðs · PÞ�; ð3bÞ

sð1;hÞ ¼ hSiHlocðhÞjSlocðhÞ; ð3cÞ

Pð0;hÞ ¼ δðhÞ: ð3dÞ

These equations are solved self-consistently, with

qðxÞ ¼ 1

l

Z
dhPðx;hÞsðx;hÞ2; ð4Þ

and, in the quantum case,

χðτÞ ¼ 1

l

Z
dhPðhÞhSð0ÞSðτÞiSlocðhÞ − qð1Þ: ð5Þ

Such self-consistency conditions are an example of exten-
ded dynamical mean-field theory (EDMFT) [5,28–30]. The
iterative procedure to solve them is summarized in Fig. 1.
A similar procedure has recently been implemented for
mean field versions of transverse field Ising and quantum
Coulomb glasses [6,31]. In contrast to the classical case, the
single site quantum problem (2) cannot be solved analy-
tically. Its solution is obtained with a “CTSEG” continuous-
time quantum Monte Carlo (CTQMC) algorithm [27,32],
without fermionic sign problem. The Parisi equations are
solved with a high precision numerical method [error bars on

FIG. 1. Illustration of the algorithm to solve (2)–(5). In the
classical case, the local problem is solved only once, and qðxÞ is
obtained solving Parisi’s partial differential equations. In the
quantum case, it is solved iteratively with CTQMC.
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qðxÞ being of order 10−5], using their integral form [33]
and filtering methods to suppress numerical instabilities at
low T [27].
Glass phase.—A spin glass phase appears below a

critical temperature Tg, where the Edwards-Anderson order
parameter qEA ≡ qðx ¼ 1Þ turns on, as illustrated on
Fig. 2(a). Our results for Tg are consistent with previous
analytical work: Tg ¼ JS2=3 (≈0.08J for S2 ¼ 1=4) in the

classical case [34] and Tg ≈ JhS2i=3 ffiffiffi
3

p
≈ 0.15J in the

quantum case [22], with qEAðTÞ following the prediction
of [34] close to Tg [Fig. 2(a), inset]. Note that Tg is higher
in the quantum case, since the quantum spins are larger
[SðSþ 1Þ > S2].
For T ≪ Tg, the overlap function qðxÞ obeys an approxi-

mate scaling form qðx; TÞ ¼ qEAðTÞfðx=TÞ þOðT=JÞ
[Figs. 2(a) and S13]. The function f is determined by
solving the Parisi equations (3a) and (3b) directly at T ¼ 0,
upon changing to the natural variable u ¼ βx. In the
quantum case, they require as a boundary condition the
zero temperature magnetizatio, hSðτÞiSlocðhÞ, which we
approximate by our lowest temperature QMC results
(see [27] Figs. S5–S6). The results for qðxÞ are shown
in Figs. 2(a) and 2(b). The maximal possible overlap is
qmax ¼ hS2i=l, corresponding to a product state without
fluctuations. As expected, the classical glass approaches
this value at T ¼ 0, while quantum fluctuations weakly
reduce the order parameter to qEA ≈ 0.81qmax (consistent
with exact diagonalization in Ref. [12], while the fit of spin
correlations in Ref. [13] likely underestimated the order).
Unlike in the Ising case, local stability does not require

a pseudogap in the distribution of local fields. Instead
Pðh¼0Þ remains finite andPðhÞ≈Pð0Þþah [cf. Fig. 2(b)],
since the probability of dangerously small fields is already

suppressed by the phase space factor ∼hl−1 [14,35]. This in
turn is related to the tail of the overlap function qðxÞ.
Indeed, (4) suggests that for x close to 1, qEA − qðxÞ counts
the number of spins that see frozen fields of order T=x,

for which one may expect qEA − qðxÞ ∼ R T=x
0 dh h2PðhÞ∼

ðT=xÞ3 þOðT=xÞ4, consistent with an apparent power law:
∼ðT=xÞα. Numerically, we indeed find an apparent power-
law approach: 1 − qðxÞ=qEA ∼ 1=ðβxÞα as T → 0, with α
slightly larger than 3. This contrasts with the Ising case
[5,25,35], where the linear pseudogap in PðhÞ leads to
α ¼ 2. The lower density of small fields in the Heisenberg
case suggests that low-lying metastable states have higher
energies. This is consistent with the smaller value of the
so-called break point xc, above which qðxÞ reaches a
plateau ([27], Fig. S12). T=xcðTÞ can be interpreted as
the typical free energy difference between the lowest
metastable states [36]. While in the Ising case that energy
scales linearly with T as xcðT → 0Þ ≈ 0.5 [35], in the
Heisenberg glasses it decreases much more slowly as
T=xcðTÞ ∼ 1= logð1=TÞ, corroborating the picture of a
rougher energy landscape. These differences will further
show in the response to an increasing external field,
under which the ground state magnetization increases in
random discontinuous steps called “shocks.” Their size
distribution ρðΔmÞ was numerically found to be very
similar to that of field-triggered out-of-equilibrium ava-
lanches in the classical SK model [37,38], a phenomenon
attributed to the marginal stability of the full RSB land-
scape. The equilibrium ρðΔmÞ is governed by the asymp-
totic approach of qðxÞ to qEA. If it scales as ðT=xÞα, then
ρðΔmÞ ∼ 1=ðΔmÞ2=α for N−1=2 ≪ Δm ≪ 1 [38]. For the
classical Ising glass with α ¼ 2, ρðΔmÞ ∝ 1=ðΔmÞ exhibits
a broad spectrum of avalanches. The larger α ≈ 3 of the

(a) (b) (c)

FIG. 2. Characteristics of the glass phase. (a) Overlap function qðxÞ=qEAðβÞ, normalized by qEAðT ¼ 0Þ=qmax, for a range of
temperature values, from βJ ¼ 25 to β ¼ ∞. At low enough temperature, qðxÞ=qEAðβÞ depends only on βx. Inset: qEA vs T. The dashed
line is the result of [34], valid for T ≈ Tg. (b) 1 − qðxÞ=qEAðT ¼ 0Þ at T ¼ 0, showing the power law approach to qEA at large βx. Inset:
local field distribution PðhÞ at zero temperature. (c) Internal energy as a function of temperature, with a fit for the classical case
UðTÞ − Uð0Þ ¼ cT (c ¼ 1� 0.1), and for the quantum case UðTÞ − Uð0Þ ¼ cT4.
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Heisenberg glasses leads to ρðΔmÞ ∝ 1=ðΔmÞ2=3, with
predominant large scale rearrangements—as numerically
observed in avalanches of XY (l ¼ 2) spins [39].
Specific heat.—Let us now consider the internal energy

per spin. In the classical case, it is given by [27]

UCl ¼ −
βJ2S4

2l

�
1 −

l2

S4

Z
1

0

dx qðxÞ2
�
: ð6Þ

In the quantum case, denoting QðτÞ ¼ χðτÞ þ qEA and
τ̄ ¼ τ=β, it reads

UQ ¼ −
lβJ2

2

�Z
1

0

dτ̄Qðτ̄Þ2 −
Z

1

0

dx qðxÞ2
�
: ð7Þ

As shown in Fig. 2(c), the classical and quantum internal
energies behave very differently as a function of temper-
ature. For classical vector spins, one expects a constant
intrastate heat capacity c ¼ ðl − 1Þ=2 as T → 0, each
degree of freedom contributing 1=2 by the equipartition
theorem. A linear fit to our data yields c ≈ 1.0� 0.1,
excluding sizable interstate contributions, consistently with
finite-size simulations [40]. Quantum effects gap out the
soft degrees of freedom and yield a much weaker temper-
ature dependence of the internal energy [Fig. 2(c)]. A heat
capacity proportional to T3 was predicted for the SUðNÞ
quantum spin glass in the large N limit, provided that
marginally stable rather than equilibrium states are ana-
lyzed [41]. Our data are compatible with UðTÞ ∝ T4, but
only at the lowest temperatures T=J ≲ 0.02, as finite
temperature corrections are substantial.
Spin susceptibility.—The spin-spin correlator χðτÞ is

shown in Fig. 3(a). For large τ it is well described by
the conformal scaling form χðτÞ ≈ χðβ=2Þ=½sinðπτ=βÞ�θ
[17], implying that for ω≳ T, the dissipative part of the
susceptibility at real frequencies χ00ðωÞ scales as ωθ−1. The
exponent θ has significant, slow T dependence [Fig. 3(b)].
Using a Landau expansion, Ref. [8] predicted that
θðT ¼ 0Þ ¼ 2, [χ00ðωÞ ∝ ω]. This value was also found
in a 1=M expansion of the SUðMÞ quantum spin glass [4]
and actually holds for all solvable cases of marginally
stable states found so far [42]. From the limited numerically
accessible temperature range, it is hard to unambiguously
conclude whether limT→0 θðTÞ ¼ 2. However, Fig. 3(b)
suggests that this limit is indeed approached, albeit very
slowly, as we can fit our data by θðTÞ ≈ 2–5.2 ×

ffiffiffiffiffiffiffiffi
T=J

p
.

Interestingly, a similar behavior was found recently in the
transverse-field Ising spin glass [6].
As discussed in Refs. [5,42], the low-T behavior c ∝ T3,

χ00ðωÞ ∝ ω (θ ¼ 2) can be rationalized by approximating
the eigenmodes of the Hessian describing the local curva-
ture of the energy landscape as independent oscillators
with spring constants λ distributed as the eigenvalues of a
random matrix ρðλÞ ∼ ffiffiffi

λ
p

. For undamped oscillators of

massM, one hasMω2 ∼ λ with zero-point amplitudes given
by λhx2iω ∼ ℏω, leading to χ00ðωÞ ∼ ρðωÞhx2iω ∼

ffiffiffiffiffi
M

p
ω. In

this picture, an effective exponent θ < 2 at finite T may
result from a T-dependent friction among modes. Assuming
limT→0 θðTÞ ¼ 2, we have A ≡ limω→0χ

00ðωÞ=ω≈
limβ→∞β

2χðβ=2Þ=π. We find A ≈ 3.5J2 and thus a signifi-
cantly larger density of soft excitations than in the transverse
field Ising spin glass, where A ∼ 0.5J2 (independent of the
transverse field) was reported [5,6].
Metallic quantum spin glass.—In order to study the

interplay between electrons and frozen spins arising from
doping the spin glass, we use the Hamiltonian

H ¼ −
X

ij;σ¼↑;↓

tijc
†
iσcjσ þ U

X
i

ni↑ni↓ −
X
i<j

JijSi · Sj; ð8Þ

FIG. 3. Spin susceptibility. (a) Rescaled spin autocorrelation
function in imaginary time, χðτÞ=χðβ=2Þ, for a range of temper-
atures (from βJ ¼ 8 to βJ ¼ 200). At low temperature, it is well
described by the conformal scaling form χðτÞ=χðβ=2Þ ≈
½1= sinðπτ=βÞ�θ, as shown by the linear behavior in the loga-
rithmic plot. (b) Exponent θ, obtained by fitting QðτÞ with the
conformal scaling form, as a function of temperature. Inset: θ as a
function of

ffiffiffiffiffiffiffiffi
T=J

p
. The data are well described by θðTÞ ¼

2–5.2 ×
ffiffiffiffiffiffiffiffi
T=J

p
(black dashed line).
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where ciσ and c†iσ are the electronic annihilation and
creation operators, niσ ¼ c†iσciσ, S

a
i ¼ c†iσσ

a
σσ0ciσ0 , and U

is the on-site electron-electron interaction. The hopping
amplitudes tij are randomly distributed with variance t2=N.
We denote the doping by p ¼ hn↑ þ n↓i − 1. This model
has previously been solved in the paramagnetic phase [20].
Here, we solve the spin glass phase; as in [20], we use
U ¼ 4t and J ¼ 0.5t.
Below a critical doping pc, a metallic spin glass appears,

i.e., a phase with both a nonzero spin glass order parameter
qEA and a nonzero density of states at zero frequency, as
illustrated in Fig. 4. This is compatible with the spin glass
instability of the paramagnetic solution found in [20].
Previous studies of metallic quantum spin glasses have
found a local spin susceptibility χ00ðωÞ ∝ ffiffiffiffi

ω
p

correspond-
ing to an exponent θ ¼ 3=2 at T ¼ 0 [28,42,43]. This
can be interpreted as originating from Ohmic damping
of the oscillators in the physical picture discussed
above. Intriguingly, we find that θ is smaller than unity
for the whole range of (low) temperatures investigated.
Our data do not appear consistent with θ reaching 3=2
at T ¼ 0 (possibly due to non-Ohmic damping by the
non-Fermi-liquid metal) but may be consistent with θ
reaching 1. The latter corresponds to the quantum critical
dynamics found at the critical point p ¼ pc, which

might extend through a large part of the metallic spin-
glass phase.
In conclusion, we have solved the Heisenberg quantum

spin glass for SU(2) spins. We found that the energy
landscape of vector spins differs significantly from the
Ising counterpart, resulting in different long time dynamics.
Upon decreasing T, the short time quantum dynamics
slowly approach the super-universal behavior of marginal
mean field glasses, although featuring significantly softer
collective modes and a lower freezing temperature than
comparable Ising glasses. The marginal Fermi liquid-type
quantum dynamics anticipated from the SUðM ≫ 1Þ
approach is essentially absent in the undoped insulating
limit of SU(2) spins, but appears to be present in a wide
window influenced by the doping-induced quantum critical
point in a metallic regime, that may be relevant for strongly
correlated doped materials.

The data and code associated with the Letter are publicly
available [44,45].

We thank Philipp Dumitrescu, Subir Sachdev, and Nils
Wentzell for fruitful discussions. The Flatiron Institute is a
division of the Simons Foundation. N. K. acknowledges
support from a Humboldt fellowship. M.M. acknowledges
support from SNSF Grant No. 200558.

*Contact author: nkavokine@flatironinstitute.org
[1] S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993).
[2] D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev,

Rev. Mod. Phys. 94, 035004 (2022).
[3] A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63,

134406 (2001).
[4] M. Christos, F. M. Haehl, and S. Sachdev, Phys. Rev. 105B,

085120 (2022).
[5] A. Andreanov and M. Müller, Phys. Rev. Lett. 109, 177201

(2012).
[6] A. Kiss, G. Zaránd, and I. Lovas, arXiv:2306.07337.
[7] J. Ye, S. Sachdev, and N. Read, Phys. Rev. Lett. 70, 4011

(1993).
[8] N. Read, S. Sachdev, and J. Ye, Phys. Rev. B 52, 384 (1995).
[9] M. Tikhanovskaya, S. Sachdev, and R. Samajdar, PRX

Quantum 5, 020313 (2024).
[10] A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. Lett.

85, 840 (2000).
[11] M. Müller and M.Wyart, Annu. Rev. Condens. Matter Phys.

6, 177 (2015).
[12] L. Arrachea and M. J. Rozenberg, Phys. Rev. Lett. 86, 5172

(2001).
[13] H. Shackleton, A. Wietek, A. Georges, and S. Sachdev,

Phys. Rev. Lett. 126, 136602 (2021).
[14] A. J. Bray and M. A. Moore, J. Phys. C 14, 2629 (1981).
[15] S. Franz, F. Nicoletti, G. Parisi, and F. Ricci-Tersenghi,

SciPost Phys. 12, 016 (2022).
[16] C.M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams,

and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).

FIG. 4. Doped case. Glass order parameter qEA, density of
states at the Fermi level, and scaling exponent θ of the spin-spin
correlation function, as a function of doping p at βJ ¼ 50.
Dashed lines are guides to the eye. Upper inset: sketch of phase
diagram. The spin glass (SG) melts at the quantum critical point
(QCP). Lower inset: θ at fixed doping p ¼ 0.1, as a function of
temperature.

PHYSICAL REVIEW LETTERS 133, 016501 (2024)

016501-5

https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/RevModPhys.94.035004
https://doi.org/10.1103/PhysRevB.63.134406
https://doi.org/10.1103/PhysRevB.63.134406
https://doi.org/10.1103/PhysRevB.105.085120
https://doi.org/10.1103/PhysRevB.105.085120
https://doi.org/10.1103/PhysRevLett.109.177201
https://doi.org/10.1103/PhysRevLett.109.177201
https://arXiv.org/abs/2306.07337
https://doi.org/10.1103/PhysRevLett.70.4011
https://doi.org/10.1103/PhysRevLett.70.4011
https://doi.org/10.1103/PhysRevB.52.384
https://doi.org/10.1103/PRXQuantum.5.020313
https://doi.org/10.1103/PRXQuantum.5.020313
https://doi.org/10.1103/PhysRevLett.85.840
https://doi.org/10.1103/PhysRevLett.85.840
https://doi.org/10.1146/annurev-conmatphys-031214-014614
https://doi.org/10.1146/annurev-conmatphys-031214-014614
https://doi.org/10.1103/PhysRevLett.86.5172
https://doi.org/10.1103/PhysRevLett.86.5172
https://doi.org/10.1103/PhysRevLett.126.136602
https://doi.org/10.1088/0022-3719/14/19/013
https://doi.org/10.21468/SciPostPhys.12.1.016
https://doi.org/10.1103/PhysRevLett.63.1996


[17] O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 (1999).
[18] A. A. Patel, H. Guo, I. Esterlis, and S. Sachdev, Science 381,

790 (2023).
[19] P. Cha, N. Wentzell, O. Parcollet, A. Georges, and E. A.

Kim, Proc. Natl. Acad. Sci. U.S.A. 117, 18341 (2020).
[20] P. T. Dumitrescu, N. Wentzell, A. Georges, and O. Parcollet,

Phys. Rev. B 105, L180404 (2022).
[21] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792

(1975).
[22] A. J. Bray and M. A. Moore, J. Phys. C 13, L655 (1980).
[23] G. Parisi, J. Phys. A 13, L115 (1980).
[24] B. Duplantier, J. Phys. A 14, 283 (1981).
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