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Abstract
The impact of the spring climate on the Northern Hemisphere’s summer vegetation activity and
extremes has been extensively researched, but less attention has been devoted to whether and how
the winter climate may additionally influence vegetation extremes in the summer. Here, we provide
insights into the influence of winter temperature and precipitation on summer vegetation extremes
in the Northern Hemisphere. To do this, we identify positive and negative extremes in the summer
leaf area index (LAI, a proxy for vegetation activity) and assess winter effects on those extremes
using logistic regression at the regional scale. Over a quarter of the regions in the Northern
Hemisphere show strong winter climate preconditioning on summer LAI extremes, which is
typically stronger for croplands than forests. In regions with strong winter preconditioning, the
spring LAI mediates the link between winter climate and summer LAI extremes through the
ecological memory in seasonal legacy effects. Our findings suggest that extremely low summer LAI
in both croplands and forests is preconditioned by colder and drier winters, while extremely high
summer LAI in forests is associated with warmer and wetter winters. For low summer LAI in
croplands, warmer winters are associated with an increased likelihood of extremes in mid-latitude
regions and a reduced likelihood in high-latitude regions. Consideration of winter preconditioning
effects may improve our understanding of inter-annual variability of vegetation activity and
support agricultural and land management practitioners in anticipating the detrimental effects of
winter on crop yields and forest conditions.

1. Introduction

Global vegetation activity is strongly influenced by
the variability in climatic conditions on sub-seasonal
to decadal timescales, with the relative importance
of temperature, radiation and water availability vary-
ing regionally (Ding et al 2020, Menzel et al 2020).
Both the interannual climate variability (Nemani et al

2003, Bastos et al 2013, Gonsamo et al 2016, Zhu et al
2017) as well as climatic trends (Peng et al 2011, Piao
et al 2011, 2014, Barichivich et al 2013, Fu et al 2015,
Peñuelas et al 2017, Wang et al 2018a) directly influ-
ence the year-to-year differences in vegetation activity
and carbon uptake. Understanding the seasonal pre-
dictability of future vegetation growth that emerges
from climate variability may also assist agricultural
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practitioners with planning and decision-making
(e.g. Ogallo et al 2000, Bruno Soares 2017, An-Vo et al
2021).

Memory in land-surface properties—so-called
preconditioning or legacy effects—can contribute to
the lagged influence of seasonal climate anomalies.
For example, winter precipitation and snowmelt can
influence vegetation growth over the next growing
season inwater-limited regions (Peng et al 2010, Chen
et al 2018). Vegetation activity itself can also mediate
seasonal legacy effects, which can result in contrasting
impacts throughout the growing season. Vegetation-
mediated legacy effects arise, for example, in response
to warmer spring temperatures than usual, resulting
in increased springtime plant activity (Buermann et al
2018). This earlier onset of the growing season causes
higher water use and faster water depletion until sum-
mer (Wolf et al 2016, Lian et al 2020, Bastos et al
2020a, Li et al 2022), with especially severe impacts
during warm and dry summers (Bastos et al 2020a,
Bevacqua et al 2021). The spring phenology may
also influence autumn senescence timing, although
the mechanisms of this relationship are not yet fully
understood (Liu et al 2016).

While the preconditioning effects of springwarm-
ing have been widely studied, the influence of the
winter climate on spring and summer vegetation
activity is not so well understood. For example,
warmer winter temperatures can lead to increased
vegetation growth by increasing the water supply
from glacial melting (Zhang et al 2016). However,
warm winters can also have negative effects on plant
growth due to the reduction in protective snow cover
(Kreyling 2010) and fewer chilling days (Tominaga
et al 2022). Warm winters that induce an earlier
onset of the growing season may increase the risk of
frost exposure in the leafing, budding and blossom-
ing stages (Marino et al 2011, Bigler and Bugmann
2018), and such events could become more likely
under climate change in some regions (Pfleiderer et al
2019, Vautard et al 2023). Short but extreme warm-
ing events have been shown to severely damage sub-
Arctic landscapes, leading to considerably reduced
summer growth (Bokhorst et al 2009).

There is mounting evidence of the influence
of winter snow on the timing and productivity of
the growing season across the Northern Hemisphere
(Wang et al 2018b, Kelsey et al 2021) and the influence
of winter precipitation on net primary productivity
during the early growing season in forest–grassland
ecosystems (Liu et al 2022). Chen et al (2018) invest-
igated the preconditioning effects of winter temper-
ature and precipitation on spring vegetation activ-
ity across Europe and North America and also found
that reduced winter precipitation limited the spring
vegetation activity overwater-limited regions. In their
study, the inclusion of climate information from the

previous season in regression models improved their
capability to predict (the normalized difference veget-
ation index, a proxy for vegetation greenness). In
Central Europe, winter teleconnections (including
those associated with the North Atlantic Oscillation,
the East Atlantic and the Scandinavian Patterns) sig-
nificantly influence vegetation productivity during
the growing season (Bastos et al 2016, Gonsamo et al
2016, Zhu et al 2017).Winter legacy effects may reach
beyond the spring season, and compensatory effects
across seasons also have to be considered (Buermann
et al 2018, Bastos et al 2020a). To our knowledge, no
studies have yet systematically addressed the impact
of winter climate on vegetation activity extremes in
subsequent summers.

Here, we assess the effect of interannual variab-
ility in the winter climate conditions on the vegeta-
tion activity extremes in the following summer across
the Northern Hemisphere between 1982 and 2020.
We use the leaf area index (LAI) as a proxy for veget-
ation activity and study the effect of winter tem-
perature and precipitation on summer LAI extremes
using logistic regression. Our study focuses on sub-
continental regions and examines crops and forests
separately, given the different controls on phenology,
growth and stress responses between these two land
cover types (Aspinwall et al 2015, Liu et al 2021,
Miguez-Macho and Fan 2021).

2. Data andmethods

2.1. Data
2.1.1. LAI
LAI data for the Northern Hemisphere were
obtained from the GLOBMAP global LAI Version
3 product (Liu et al 2012). The GLOBMAP LAI com-
bines data from the Moderate Resolution Imaging
Spectroradiometer and the Advanced Very High
Resolution Radiometer to provide a long-term LAI
dataset from 1981 to 2020 at an 8 km spatial hori-
zontal resolution. The LAI temporal resolution was
fortnightly from 1981 to 2000 and at eight-day inter-
vals from 2001 onwards. The LAI data were gridded
to a spatial resolution of 0.25◦ × 0.25◦ using area-
weighted averages. In our analysis, we use data from
1982 to 2020.

2.1.2. Climate variables
Climate data were obtained from the European
Centre for Medium-Range Weather Forecasts’ ERA5
reanalysis (Hersbach et al 2020). We use monthly
total precipitation (P), temperature at 2m (T),
total column volumetric soil water content and
snow depth for the period 1982–2020 over the
Northern Hemisphere (25◦–75◦ North). ERA5 data
are provided on a regular lat/lon grid with 0.25◦ ×
0.25◦ spatial resolution.
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2.1.3. Land cover
We use the European Space Agency Land Cover data-
set (Santoro et al 2017) to quantify the fraction of
forest and crop cover for each grid cell. The original
land cover classification data are provided at 300m
spatial resolution for the period 1982–2019, and we
regridded these data to a 0.25◦ lat/lon grid using
the LC-CCI user tool. We use the lookup table from
Poulter et al (2015), reproduced in table A1, to clas-
sify crop and forest grid cells. We aggregate the classes
10, 20 and 30 to represent cropland, and the classes
40–100 to represent forest. To minimise the influence
of land cover changes in our analysis, only locations
that are classified as forest or cropland for the entire
38 years are used for further analysis.

2.1.4. Reference regions
To explore the distinct regional dynamics over the
Northern Hemisphere, we use the Intergovernmental
Panel on Climate Change’s (IPCC) Sixth Assessment
Report Working Group I reference regions (Iturbide
et al 2020). Of the 46 land regions, we only con-
sider regions in the Northern Hemisphere and fur-
ther remove regions if the crop cover or forest cover
amounts to less than 100 grid cells. We analyse the
vegetation activity of 19 regions in the Northern
Hemisphere: 17 regions include both cropland and
forest, the Russian Arctic (RAR) region contains only
forests, and Eastern Central Asia contains only crops
(figure A1). This leads to two different but largely
overlapping sets of 18 regions (table A2).

2.2. Data preprocessing
We are interested in analysing how the climate affects
the interannual variability of the summer LAI. To do
this, we preprocess the data by taking the seasonal
average precipitation, temperature, soil moisture,
snow depth and LAI for boreal winter (December,
January and February), spring (March, April and
May) and summer (June, July and August). The
seasonal averages are linearly detrended to remove
potential long-term trends due to climate change
since our interest is in the interannual variability. The
detrended data are then standardised to unit variance.
We identify high (LAIhigh) and low (LAIlow) summer
LAI extremes using the local (pixel-wise) 90th and
10th percentiles of the detrended and standardised
seasonal LAI averages. To analyse the trends in the
fraction of pixels with extreme LAI for each year, we
use the Mann–Kendall non-parametric test (Mann
1945, Kendall 1975).

We separately consider croplands and forest areas
in our results, referring to low and high summer LAI
extremes for croplands as LAIcroplow and LAIcrophigh , and

respectively for forest areas as LAIforestlow and LAIforesthigh .

2.3. Quantifying winter preconditioning effects
Logistic regression is a suitable method to analyse
drivers of extreme impacts (Vogel et al 2021, Le Grix
et al 2023) and specifically preconditioned compound
events (Zscheischler et al 2020, Bevacqua et al 2021,
Bastos et al 2023). Here, we extend the approach pro-
posed by Bevacqua et al (2021) for the study of pre-
conditioning effects of meteorological conditions on
LAI extremes.

To quantify the importance of winter precon-
ditioning, we train two separate logistic regression
models to predict summer LAI extremes. The first
model uses only spring and summer meteorological
predictors (temperature and precipitation), while the
second model additionally includes winter meteoro-
logical predictors. The first model is represented as

IP(LAIextreme| \w) =
1

1+ exp
(
−X\w

extreme

)
with X\w

extreme = α0 +α1Tsu +α2Psu

+α3Tsp +α4Psp. (1)

Here, Tsu and Tsp correspond to the temperature
in summer and spring, and Psu and Psp correspond
to the precipitation in summer and spring, respect-
ively. Regression coefficients are given by α0, . . .,α4.
Extreme summer LAI is abbreviated as LAIextreme,
where extremes can be low or high. The term \w
indicates that winter climate was not included for this
particular model. The model is used to predict how
likely the occurrence of extreme summer LAI in sum-
mer is without considering the influence of winter cli-
mate, IP(LAIextreme| \w).

The second model additionally includes the
winter temperature (Tw) and winter precipitation
(Pw) as well as their corresponding regression coef-
ficients α5 and α6:

IP(LAIextreme|w) =
1

1+ exp(−Xw
extreme)

with Xw
extreme = α0 +α1Tsu +α2Psu +α3Tsp

+α4Psp +α5Tw +α6Pw. (2)

We train the logistic regression models based on
pooled data for cropland and forest pixels separ-
ately and for each region. This increases the sample
size, allowing us to analyse regional patterns but not
sub-regional variability. We further consider LAIhigh
and LAIlow separately so that we consider 72 pairs
of models for the Northern Hemisphere (two land-
cover types, 18 regions, two types of extremes). The
sample size N varies per region depending on the
number of crop and forest pixels within that region
(N= nyears × npixels, table A2).

Rearranging the logistic regression equation,

Xextreme = ln( IP(LAIextreme)
1−IP(LAIextreme)

), which are the log odds.
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Hence, for interpretation of the fitted model, we
take the exponential raised to the power of the
coefficient of the logistic regression model as they
provide a more direct interpretation with respect
to the odds of experiencing an extreme over no

extreme, IP(LAIextreme)
1−IP(LAIextreme)

; for example, for a unit increase
in Tw or Pw and keeping all the other variables
fixed, the odds of experiencing an extreme relat-

ive to a non-extreme LAI change by eα5 or eα6 ,
respectively.

The model without winter climate (equation (1))
is a nested model with respect to the model with
winter climate (equation (2)), as the latter contains all

the parameters of the former as well as the paramet-
ersα5 andα6.We therefore test whether including the

winter climate significantly improves the prediction
of summer LAI extremes using the likelihood ratio
test with significance level α= 0.05. The likelihood

ratio test assesses the goodness of fit of two competing
nested statistical models and provides a p-value asso-

ciated with the null hypothesis that both models are
equally good. A low p-value therefore means that the

model with more parameters is better than the model
with fewer parameters.

Given the very large sample size for each region

(table A2), the likelihood ratio test might show sig-
nificant differences even when the differences in pre-

dictability between themodels are very small. To rank
model differences across regions, we use the Receiver
Operating Characteristics curve, which is the plot of

the true positive rate against the false positive rate for
different threshold settings of a binary classifier. The
area under the receiver operating characteristics curve
(AUROC) is then a predictive performance metric
ranging between 0 and 1,with a value of 0.5 represent-
ing prediction by random chance and a value of 1 rep-
resenting perfect prediction.We quantify the strength
of winter preconditioning based on the difference
in AUROC between models with winter predictors
(AUROC|w) and models without winter predictors
(AUROC| \w).

For regions with strong winter preconditioning,
we further analyse the standardised seasonal averages
of anomalies in meteorological variables (i.e. com-
posites) in the years with extreme LAI in summer to
complement the interpretation of the results based on
the logistic regression coefficients.We create compos-
ites from the predictors used in the logistic regression
and also consider a few additional variables: winter,
spring and summer precipitation, temperature, soil
moisture, winter and spring snow depth, and spring
LAI. As there is no snow in summer in many of the
regions, we exclude summer snow from our analysis.
We also exclude winter LAI from our analysis because
of the very low vegetation activity in winter in the
Northern Hemisphere.

3. Results

3.1. Occurrence of summer LAI extremes
There is large interannual variability in the spatial
extent of LAI extremes between 1982 and 2020 for
each of the IPCC regions in theNorthernHemisphere
(figure 1). Several regions show high temporal correl-
ation between the cropland and forest extents exper-
iencing LAI extremes (numbers in figure 1). The cor-
relation of LAIlow between crops and forests tends to
reach higher values (seven regions showing correla-
tions above 0.6) than for LAIhigh (four regions). The
Mediterranean (MED) region shows the highest tem-
poral correlation of all regions for both LAIlow and
LAIhigh.

Five regions show a significantly increasing trend
in the extent of LAIcroplow , and ten regions show sig-
nificantly increasing extents of LAIcrophigh (p< 0.05,
table A3). The only region showing a significantly
increasing trend (p< 0.05) in the extent of LAIforestlow

is the RAR.

3.2. Preconditioning effect of winter climate on LAI
extremes
In general, we find that extremes over cropland
are better predicted compared to forests (tables A4
and A5). In all regions, the winter climate signific-
antly improves the prediction of extreme LAI in sum-
mers, as determined by the likelihood ratio test of the
logistic regression models in equations (1) and (2)
(p< 0.05). However, despite the effect of the winter
climate being significant, in many regions the pre-
conditioning strength is small (overall, AUROC|w
minus AUROC| \w ranges between 0 and 0.08;
tables A4 and A5). For the subsequent analysis, we
consider regions with preconditioning strength lar-
ger than 0.02 as winter ‘preconditioned regions’. This
threshold is fixed for all regions and the subjective
choice is based on visual investigation of the strength
of winter preconditioning for both LAIlow and LAIhigh
for crops and forests (figures 2(a), (c), (e) and (g)).
This results in five preconditioned regions for both
LAIcroplow and LAIcrophigh , eight preconditioned regions for

LAIforestslow , and five for LAIforestshigh (figure 2). East Asia
(EAS) is the only region where winter precondition-
ing effects are found for both LAIcroplow and LAIcrophigh .
Eastern Siberia (ESB) and RAR are the only regions
with high winter preconditioning for both LAIforestslow

and LAIforestshigh .
For LAIlow, the change in odds ratios associ-

ated with Pw (eα6) is predominantly below 1 across
most preconditioned regions for both cropland and
forest (figure 3(a), y-axis). This indicates that posit-
ive Pw anomalies decrease the odds of LAIlow com-
pared to non-extreme summer LAI in these regions.
For instance, the decrease in odds of LAIlow is more
than 40% for Western Central Asia (WCA) for a one
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Figure 1. Fraction of cropland (orange bars) and forest (green bars) grid cells with extremely low (left panel) and high (right
panel) LAI extremes (LAIlow and LAIhigh, respectively) for each year over the 1982–2020 period. For each region, the correlation
between the orange and green bars is shown on the right side.

standard deviation increase in Pw over croplands. A
notable exception is EAS, where no effect (forests) or
the opposite effect (crops) of Pw is observed. In con-
trast, the effects of Tw (eα5) are more variable across
regions (figure 3(a), x-axis) with the odds of LAIlow
changing between−35% and+40% for a one stand-
ard deviation increase inTw. Four regions show posit-
ive effects ofTw onLAIlow, either in croplands (MED),
forests (Central North America (CNA)), or both cro-
plands and forests (EAS, WCA). Two regions show
negative Tw effects (Northeastern North America
(NEN), Western Siberia (WSB)) for both croplands

and forests, and two regions show negative effects of
Tw in forests (Russian Far East (RFE), ESB). These
differences largely correspond to background climate
conditions: warmer regions (below 40◦ N) consist-
ently show that positive Tw anomalies increase the
odds of LAIlow. Conversely, cooler regions (above
40◦ N) consistently show that positive Tw anomalies
decrease the odds of LAIlow.

For LAIhigh, we observe a symmetric effect of Tw,
with positive Tw anomalies increasing the odds of
LAIhigh in the northern regions but decreasing them
in southern regions (figure 3(b), x-axis). Positive Pw
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Figure 2. Regions in which winter climate improves prediction of extreme summer LAI for low (b), (d) or high (f), (h) extremes
in crops (orange) and forests (green). The left panels (a), (c), (e) and (g) show the ranked strength of winter preconditioning
(AUROC|w−AUROC| \w) on summer LAI extremes for different IPCC regions (highlighted in colour are the regions for which
the threshold of 0.02 is exceeded). The right panel (b), (d), (f) and (h) shows these winter preconditioned regions highlighted on
a map of the Northern Hemisphere (25◦ N–75◦ N). The orange and green shades on the right panel indicate the winter
preconditioned regions for crops and forests, respectively.

anomalies increase the odds of LAIhigh in northern
regions and decrease them in southern regions, with
the exception of crops in North Central America
(NCA) that show positive Pw anomalies increase the
odds of LAIhigh (figure 3(b), y-axis). The effect of Tw

on the odds ratios of LAIhigh is stronger than that of
Pw, with changes of −43% to 58% for one standard
deviation change in Tw, compared to −25% to 38%
for Pw.

To understand how relevant the effect of winter
is, compared to spring and summer, we compute
the odds ratios associated with all predictors for all
seasons (tables A6–A9). In many winter precondi-
tioned regions, the effect of a change in Tw is stronger
than the effect of a change in the spring or summer
climate. This holds for two cropland regions (EAS,
NEN) and three forest regions (CNA, WSB, ESB) for
LAIlow. Similarly, in three crop regions (Northwestern
North America (NWN), South Asia (SAS), Tibetan

Plateau (TIB)) and one forest region (ESB), changing
Tw leads to the largest change in the odds of LAIhigh.
Pw is affecting the odds of LAIlow the most in two
regions (MED for croplands and WCA for forests).
Even though in some regions neither Tw nor Pw lead
to the strongest odds ratio, the effects of winter cli-
mate are often stronger than many predictors from
spring or summer. For LAIlow, Pw is particularly rel-
evant in forests, with seven out of eight regions show-
ing a more strongly reduced odds ratio for Pw than
those associated with precipitation in the spring and
summer (CNA, ESB, NEN, RAR, RFE, WCA, WSB).
Such a strong effect of Pw compared to spring or sum-
mer is only found in two out of the five LAIcroplow regions
(MED, NEN). For LAIhigh regions, the effect of Pw can
be stronger than that of spring (TIB for croplands and
Eastern Europe (EEU) for forests), summer (ESB and
Northern Europe (NEU) for forests), or spring and
summer (EAS for croplands, Eastern North America

6
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Figure 3. Importance of winter temperature (Tw) and precipitation (Pw) for predicting (a) extremely low (LAIlow) and (b)
extremely high (LAIhigh) summer LAI. Displayed are the odds ratios of experiencing an LAI extreme relative to no extreme
associated with a one standard deviation increase in Tw (x-axis) and Pw (y-axis), assuming all other variables being fixed, for
crops (orange) and forests (green). The numbers are based on the coefficients of the logistic regression model (α5 and α6,
respectively, from equation (2)). The preconditioned regions are coloured, all other regions are in grey.

(ENA) and RAR for forests) precipitation. Even when
Tw is not the most relevant predictor for LAIhigh (see
above), inmany regions the effect is still stronger than
that of spring (in NCA and EAS croplands and EEU
and NEU forests), and stronger than or comparable
to that of summer (in ENA forests and EAS croplands,
respectively).

3.3. Direct and indirect climate contributions to
summer extremes in winter preconditioned
regions
Our analysis reveals that in many regions, winter
climate conditions have substantial preconditioning
effects on summer LAI extremes. The contribution
of a given climatic driver in each season to sum-
mer LAI extremes depends not only on the sensitiv-
ity of vegetation to the driver but also on the mag-
nitude of the anomalies experienced in those years.
Furthermore, for those regions where winter precon-
ditioning effects are relevant, the effects might be dir-
ect (e.g. with winter frost leading to vegetation dam-
age) or indirect (e.g. through the winter climate’s
influence on spring LAI, which then impacts the sum-
mer LAI). To further understand the link between
winter preconditioning and summer LAI extremes,
we quantify the composites of anomalies in T, P and
soil moisture in winter, spring and summer; snow
depth in winter and spring; and LAI in spring.

Winters corresponding to LAIlow in croplands
and forests (figures 4(a) and (b)) tend to be drier
than average, with predominantly negative anom-
alies in Pw, SMw and SDw. Especially for forests,
they also tend to be colder than average (negative Tw

anomalies). The strongest negative Tw anomalies are
experienced by WSB (−0.44σ for forests and −0.4σ
for croplands), while croplands in WCA, MED and
WSB and forests inWCA andNEN show the strongest
negative Pw anomalies (below −0.4σ). Exceptions
to this pattern are EAS for croplands and forests
and CNA for forests, where LAIlow is associated with
warmer than average winters, and WCA and MED,
where Tw anomalies are close to neutral.

In the spring and summer of LAIlow years, both
croplands and forests show persisting negative anom-
alies in water-related variables in the spring (pre-
cipitation, soil moisture and snow depth), but show
opposite anomalies in the summer: croplands are
associated with drier and forests with wetter than
average conditions for LAIlow years. Temperature
anomalies are strongly positive in the spring and sum-
mer for croplands (except NEN), especially WCA,
MED and WSB (with magnitudes >0.5σ). However,
for forests, a switch from normal or warmer-than-
average spring conditions to cold summers is found.
CNA and WCA are exceptions to this pattern over
forests, showing a pattern more consistent with crop-
lands of persisting warmer and drier conditions over
spring and summer. In some regions, spring is already
associated with lower than average LAI, particularly
WCA andMED over croplands and EAS for both cro-
plands and forests. This indicates a potentially indir-
ect effect of winter preconditioning through spring
LAI for these regions. However, most regions do
not show strongly negative spring LAI anomalies,
and RAR even shows positive spring LAI (0.23σ),
indicating that winter preconditioning effects on the

7
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Figure 4. Climate and vegetation anomalies for regions where winter climate preconditions summer LAI extremes. Values are
composite averages for years with extremely low LAI (LAIlow) in crops (a) and forests (b), as well as years with extremely high LAI
(LAIhigh) for crops (c) and forests (d). Shown are normalised anomalies of precipitation (P), temperature (T) and soil moisture
(SM) for winter (w), spring (sp) and summer (su), winter and spring snow depth (SD) and spring LAI. T values are shown on a
blue-red colour scale, and all other variables are shown on a brown-green colour scale. Dashed black lines separate seasons.

negative summer LAI extremes are unlikely to be only
due to their effects on spring vegetation activity.

Preconditioned regions with LAIhigh extremes
tend to show opposite patterns for precipitation
anomalies in years with LAIlow extremes for croplands
and forests: most regions experience wetter than aver-
age winter and spring conditions, while summer pre-
cipitation is above average for croplands and below
average for forests. The few exceptions, EAS andNCA
for croplands and RAR and ENA for forests, show
below-average anomalies in one water-related vari-
able (e.g. SDw in NCA croplands), but these anom-
alies are compensated by positive anomalies in the
other water-related variables. Tw anomalies are pre-
dominantly strong and negative (−0.50σ to−0.22σ)
across most preconditioned cropland regions. Unlike
croplands, Tw over forest regions is predominantly
positive for LAIhigh extremes (0.21σ–0.25σ) except
ENA (−0.17σ).

The increased water availability during years with
LAIhigh extremes through winter and spring leads to
a strong positive LAI anomaly already in the spring
for all cropland (0.18σ–0.60σ) and, less markedly,
for most forest regions (0.06σ–0.33σ) except NEU
(−0.15σ). In the summer, as for LAIlow, croplands
and forest regions show opposing climate anomaly
patterns: cropland regions are associated with colder
and wetter summers with the exception of TIB, with
a small but negative summer precipitation anom-
aly (−0.08σ); in forest regions LAIhigh extremes are

associated with drier and warmer conditions in all
regions, although the anomalies are small for ENA.

4. Discussion

4.1. Patterns and trends in LAI extremes
Extremes for LAIlow tend to co-occur in croplands
and forests more than LAIhigh extremes, possibly
because the drivers of LAIlow extremes (mostly water
limitation) are more consistent between croplands
and forests than those of LAIhigh extremes (figures 3
and 4). However, this could also be due to the rel-
atively coarse resolution of the LAI data (0.25◦ ×
0.25◦), which does not allow for full separation of cro-
plands and forests where the land cover heterogeneity
is high.

Several regions in theNorthernHemisphere show
significant positive trends in the spatial extent of
extreme summer LAI over croplands (five regions for
LAIcroplow and ten for LAIcrophigh). The positive trends in

LAIcroplow could be associated with an increase in the
spatial extent of compound hot-dry events, e.g. in
China (Yang et al 2023), India (Chen et al 2016,
Sharma and Mujumdar 2017, Mishra et al 2020),
Europe (Manning et al 2019) and in central and west-
ern North America (Alizadeh et al 2020). The pos-
itive trends in the spatial extent of LAIcrophigh might be
explained by the increased availability of nutrients
(through fertilisers and deposition) that contribute
to increased crop productivity and growth, especially
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during favourable years (Zeng et al 2014). For forest
regions, the spatial extent of LAI extremes is roughly
stable over time (with only one region with a signi-
ficant trend for LAIforestlow ). This might be due to the
higher resistance of forests to heat and drought stress
(Flach et al 2018, Xiao et al 2023), their longer devel-
opment times (multi-annual) compared tomany cro-
plands (seasonal) as well as the higher diversity in
traits influencing their stress responses (Martínez-
Vilalta et al 2014, Aspinwall et al 2015, Anderegg et al
2016).

4.2. Winter climate is preconditioning LAI
extremes
We show that the winter climate preconditions
LAIlow and LAIhigh extremes across large parts of
the Northern Hemisphere. In many of the winter
preconditioned regions, both high and low extreme
summer LAI events are more strongly influenced by
winter precipitation and temperature than by spring
and summer conditions (tables A6–A9). Odds ratios
range from 0.54 to 1.58, indicating an up to 58%
change in the odds of occurrence of LAI extremes due
to one standard deviation increase in the winter tem-
perature or precipitation. This underscores the crit-
ical role of the winter climate in determining extreme
summer LAI events, independent of spring and sum-
mer weather conditions. Some regions emerge as
being particularly sensitive to winter climate condi-
tions: EAS for LAIcrophigh , LAI

crop
low and LAIforestlow , WCA,

WSB and NEN for LAIcrophigh and LAIcroplow , and RAR for

LAIforesthigh and LAIforestlow , showing strong winter precon-
ditioning effects.

Similarities between forests and crops are found
for low LAI extremes: drier winter conditions gener-
ally increase the odds of LAIlow (figure 3), and con-
sistently, LAIlow extremes are generally preceded by
dry winters (figure 4). Among the preconditioned
regions,MEDandWCAshow the strongest sensitivity
to winter precipitation and also the strongest negative
anomalies in winter precipitation for extreme years.
In these regions, summers are typically dry and the
growing season starts earlier than in other regions, so
drought extremes are more relevant when occurring
in the winter and early spring (El-Madany et al 2020).
Long droughts that span multiple months, including
months before planting, have been shown to lead to
lower-than-normal yields in various parts of the globe
(Zampieri et al 2017, Webber et al 2018, Santini et al
2022). Droughts also have an adverse effect on forest
productivity (ParkWilliams et al 2013, Anderegg et al
2015, Pohl et al 2023, van der Woude et al 2023).

Consistent with negative winter precipitation
anomalies preceding LAIlow extremes, we observe
negative snow cover anomalies in the winter, which
are still prevalent in the spring in all of the precondi-
tioned regions. Reduced snow cover inwinter can lead

to a reduction of soil temperature due to decreased
bulk thermal insulation (Henry et al 2018, Zhang et al
2018). Such conditions have been shown to signific-
antly reduce winter crop productivity by increasing
the sensitivity to freezing stress (Trnka et al 2014, Zhu
et al 2019, 2022, Beillouin et al 2020). Additionally,
the reduced snowpack coupled with below average
precipitation in winter results in low soil water avail-
ability during the spring (figure 4), inhibiting the
development of vegetation at the onset of the grow-
ing season (Buermann et al 2018, Heino et al 2023).

In contrast to the precipitation effects, the tem-
perature effects are more complex, with large vari-
ability in the odds of LAIlow for both croplands and
forests (figure 3), and opposite patterns for crops and
forests for LAIhigh; in forests, warmer winters tend to
increase the likelihood of LAIhigh, and vice versa for
croplands. Consistently, the years of LAIcrophigh are asso-
ciated with colder than average temperatures, while
LAIforesthigh years show warmer than average temperat-
ures. This is supported by Zscheischler et al (2014),
who found that low productivity extremes are associ-
ated with colder conditions in boreal forests in mul-
tiple vegetation models. Overall, higher winter tem-
peratures reduce the risk of frost days, which impedes
tree growth and regeneration (Girardin et al 2022).

In croplands, the sensitivity of LAIlow to winter
temperature follows a latitudinal gradient: warmer
winters are associated with a higher likelihood of
LAIlow in mid-latitude regions and a reduced likeli-
hood of LAIlow in high-latitude regions. This is sup-
ported by a regional study in Sweden, where increased
temperatures favoured crop yields in the north but
had a negative impact in the south over the period
1965–2020 (Sjulgård et al 2023). The relevance of
warm winter temperatures for extremely low crop
yields has also been highlighted for Europe in previ-
ous studies (Ben-Ari et al 2018, Beillouin et al 2020).

4.3. Winter preconditioning is modulated by
spring LAI
In most preconditioned regions, the winter climate
effect is already visible in the spring LAI, with sim-
ilar directions in spring anomalies to those of sum-
mer (figure 4). This is consistent with the import-
ance of memory effects in ecological processes (Ogle
et al 2015, Cranko Page et al 2021) and seasonal leg-
acy effects between spring and summer (Buermann
et al 2018), including for extremes (Wolf et al 2016,
Bastos et al 2020a, Bevacqua et al 2021). The cli-
mate and spring LAI anomalies in extreme years are
generally stronger for crops than forests, reflecting
the former’s faster response times and also leading
to better predictability of extreme years over crop-
lands (tables A4 and A5). The higher predictability
over cropland areas may thus be explained by the
limited legacy effects of multi-year climate variations
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on crops, which are typically annual plants, whereas
forest growth and functioning aremore likely to show
multi-annual legacy effects (Bastos et al 2021, Yu et al
2022, Cranko Page et al 2023a, Anand et al 2024). For
instance, droughts can have an effect on forest veget-
ation activity even two years after their occurrence
(Yu et al 2022), which by far exceeds the nine-month
time-span studied here, but could contribute to some
variability in the results.

Interestingly, in three snow-dominated regions
over forests, we see a reverse direction in the spring
LAI anomalies compared to summer LAI anomalies.
Specifically, for LAIforestslow in RAR and RFE, higher
than usual spring LAI (>0.1) anomalies are observed,
whichmight appear counter-intuitive. However, both
regions are also associated with low spring snow cover
anomalies, aiding in early greening in these years, but
are followed by strongly negative summer temper-
ature anomalies (<− 0.4) and slightly wetter than
average summer conditions. The cold anomalies in
the summers, especially for those regions with short
growing seasons, might result in damage to the newly
budded leaves, leading to LAIforestslow .

Over NEU for LAIforestshigh , we see a negative anom-
aly for spring LAI (−0.15σ), but these are followed
by warmer and slightly drier summers. As the corres-
ponding spring temperatures are not warmer, vegeta-
tion development may only catch up in summers but
is favoured by the previous seasons’ averagemoisture.
Wang et al (2018b) also analysed the impact of snow
water equivalent (SWE) in the Northern Hemisphere
and found that higher SWE leads to a negative growth
effect on vegetation by delaying the snowmelt and
reducing the vegetative period, explaining the negat-
ive anomalies in the spring LAI. Furthermore, many
of these high-latitude regions are typically energy-
limited in summer, so colder than average and wetter
(i.e.more cloudy) summers tend to be associatedwith
low forest productivity and growth, and the oppos-
ite for warm and dry summers (Walther et al 2019,
Bastos et al 2020b).

4.4. Compounding drivers and possible extensions
Large anomalies occur in different variables and sea-
sons, highlighting the compounding nature of the
drivers of extreme summer LAI events. For instance,
a drier winter followed by a hotter and drier spring
and summer typically leads to LAIcroplow in WCA, MED
and WSB. To fully understand the risks associated
with such compound events, multivariate approaches
are required that take into account the correla-
tion structure across time and between variables
(Ogle et al 2021, Cranko Page et al 2023a). For
instance, Zscheischler et al (2017) found that bivari-
ate return periods of precipitation and temperature
can well explain crop yields in different European
countries. Similarly, using a new index tailored to

bivariate variations in temperature and precipita-
tion, Li et al (2022) found that compound warm-
dry events increase vegetation productivity at high
latitudes, consistent with the fact that these eco-
systems are typically energy-limited in the summer.
In contrast, such events reduce productivity in the
mid-latitudes, and compound warm-dry springs can
cause and amplify summer droughts, thereby redu-
cing summer productivity.

Our study provides a first report on the large-
scale winter preconditioning effects of summer LAI
extremes. However, we note that we do not explore
the effects of ecological and human factors in modu-
lating the impacts on LAI (Bastos et al 2023). Such
modulating factors include regional differences in
phenology, the effects of landscape management,
irrigation, topography, succession, as well as climate-
driven disturbances such as fire or insects (Seidl et al
2017). However, we expect that these processes play
minor roles at the coarse spatial and temporal res-
olution considered here. As such, our study lays the
basis for more detailed, high-resolution regional ana-
lyses. Our approach is anchored in identifying lin-
ear relationships with no interactions, which eases
the interpretation but with limited predictive skill.
Nonlinear approaches based on machine learning
can be combined with interpretation techniques to
identify drivers of impact extremes (Jiang et al 2022,
2024) but require careful model calibration when
working with spatiotemporal data (Sweet et al 2023).
We also do not identify causal relationships between
variables. As our results indicatemultiple relevant cli-
mate anomalies across seasons, chains of weather pat-
terns and their impacts (like droughts and heat waves)
should be further studied to identify causal links and
carry-over effects across seasons. Such causal links
could be investigated using process-basedmodels that
simulate the climatic and non-climatic controls for
vegetation functioning, structure and dynamics.

5. Conclusions

In this study, we analyse the influence of winter cli-
mate on summer LAI extremes for croplands and
forests in theNorthernHemisphere.We define winter
preconditioning strength based on the ability of the
winter climate to improve the prediction of extremes
in the summer LAI in comparison to using only
spring and summer climate information. Winter pre-
conditions the occurrence of summer LAI extremes
for both crops and forests in more than a quarter
of the IPCC Northern Hemisphere regions studied.
We find that winter climate anomalies allow a bet-
ter explanation of summer LAI extremes in many
regions, but with importance differences between
crops and forests and across regions. Low LAI
extremes in summer are typically associated with
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colder and drier winter conditions in most regions.
More diverse responses are identified for high LAI
extremes in summer, with the differences being par-
ticularly large between crops and forests. Generally,
in forests, high summer LAI extremes are associ-
ated with warmer and wetter winters. For crops, we
also find that the effect of winter climate on high
LAI extremes in summer is dependent on latitude.
In many regions, the influence of winter climate is
already visible in the spring LAI, highlighting the
importance of ecological memory in seasonal legacy
effects. Moreover, the observed anomalies in differ-
ent climate and state variables across different sea-
sons illustrate the compound nature of the drivers of
extreme LAI events. In particular, the winter temper-
ature and precipitation precondition the summer LAI
throughmultiple variables (soilmoisture, snowdepth
and LAI) over winter and spring, highlighting the
challenges associated with identifying drivers of sum-
mer LAI extremes and the importance of ecological
memory for impact assessments. Overall, our study
presents evidence for lagged climate and ecological
effects spanning from winter to summer for many
regions in the Northern Hemisphere, and provides a
basis for more in-depth studies at the regional scale.
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Appendix. Additional figures and tables

Figure A1. Crop (top) and forest cover (bottom) for different IPCC regions along with their acronyms. The grey colour
demarcates the regions with no pixels for crops (RAR) or forests (ECA).

Table A1. Crop vs forest definition in this study.

Class Description Type

10 Cropland, rainfed Crop
20 Cropland, irrigated or post-flooding Crop
30 Mosaic cropland (>50 %) nat. veg. (tree, shrub, herb.) (<50 %) Crop
40 Mosaic nat. veg. (tree, shrub, herb.) (>50 %)/cropland (<50 %) Forest
50 Tree cover, broadleaf, evergreen, closed to open (>15 %) Forest
60 Tree cover, broadleaf, deciduous, closed to open (>15 %) Forest
70 Tree cover, needleleaf, evergreen, closed to open (>15 %) Forest
80 Tree cover, needleleaf, deciduous, closed to open (>15 %) Forest
90 Tree cover, mixed leaf type (broadleaf and needleleaf) Forest
100 Mosaic tree and shrub (>50 %)/herbaceous cover (<50 %) Forest

Table A2. Total number of pixels and forest and crop fraction in the IPCC regions.

IPCC region (abbreviation) Crop fraction (%) Forest fraction (%) Total pixels

Central North America (CNA) 33.80 16.95 4944
East Asia (EAS) 20.85 22.98 118 46
Eastern Central Asia (ECA) 3.92 0 4800
Eastern Europe (EEU) 27.92 44.67 6400
Eastern North America (ENA) 9.09 37.27 9638
Eastern Siberia (ESB) 4.60 72.09 128 00
Mediterranean (MED) 16.65 12.35 120 00
North Central America (NCA) 3.55 11.54 2876
Northeastern North America (NEN) 1.25 19.85 192 59
Northern Europe (NEU) 2.58 23.41 142 80
Northwestern North America (NWN) 2.98 32.54 206 72
Russian Arctic (RAR) 0 26.68 235 89
Russian Far East (RFE) 1.13 40.06 121 38
South Asia (SAS) 42.58 19.12 2400
Tibetan Plateau (TIB) 4.58 11.08 3600
Western Central Asia (WCA) 16.28 5.01 9010
Western North America (WNA) 6.63 30.91 5522
Western Siberia (WSB) 16.94 31.13 9600
West & Central Europe (WCE) 52.29 26.26 7720
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Table A3. Levels of statistical significance for temporal trends in fractions of pixels with low and high LAI for crop and forest each year,
indicated by asterisks and dots. Significance levels: p< 0.001 (∗ ∗ ∗), p< 0.01 (∗∗), p< 0.05 (∗), and p< 0.1 (·). If trends are significant,
they are always increasing.

IPCC region (abbreviation) LAIcroplow LAIcrophigh LAIforestlow LAIforesthigh

Central North America (CNA) ∗ ∗
East Asia (EAS) · ∗
Eastern Central Asia (ECA) ∗∗ ∗ NA NA
Eastern Europe (EEU)
Eastern North America (ENA) ∗ ·
Eastern Siberia (ESB) ·
Mediterranean (MED) ∗
North Central America (NCA) ∗ ∗∗
Northeastern North America (NEN)
Northern Europe (NEU)
Northwestern North America (NWN) · ·
Russian Far East (RFE)
Russian Arctic (RAR) NA NA ∗
South Asia (SAS) ∗∗ ∗∗
Tibetan Plateau (TIB) ∗ ∗
Western Central Asia (WCA) ∗
Western North America (WNA)
Western Siberia (WSB)
West & Central Europe (WCE) · ∗

Table A4. AUROC curve for the prediction of LAIlow. Scores are bold for preconditioned regions.

IPCC region (abbreviation) Crop\w Cropw Forest\w Forestw

Central North America (CNA) 0.693 0.694 0.616 0.653
East Asia (EAS) 0.577 0.626 0.610 0.634
Eastern Central Asia (ECA) 0.713 0.721 — —
Eastern Europe (EEU) 0.822 0.824 0.565 0.565
Eastern North America (ENA) 0.636 0.642 0.595 0.597
Eastern Siberia (ESB) 0.703 0.703 0.572 0.608
Mediterranean (MED) 0.793 0.818 0.765 0.773
North Central America (NCA) 0.815 0.816 0.715 0.720
Northeastern North America (NEN) 0.618 0.655 0.726 0.752
Northern Europe (NEU) 0.725 0.729 0.648 0.655
Northwestern North America (NWN) 0.818 0.824 0.704 0.709
Russian Arctic (RAR) — — 0.685 0.730
Russian Far East (RFE) 0.714 0.713 0.625 0.659
South Asia (SAS) 0.676 0.676 0.656 0.665
Tibetan Plateau (TIB) 0.623 0.632 0.653 0.652
Western Central Asia (WCA) 0.806 0.831 0.689 0.722
Western North America (WNA) 0.738 0.739 0.636 0.648
Western Siberia (WSB) 0.791 0.811 0.624 0.659
West & Central Europe (WCE) 0.745 0.746 0.608 0.627
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Table A5. AUROC curves for the prediction of LAIhigh. Scores are bold for preconditioned regions.

IPCC region (abbreviation) Crop\w Cropw Forest\w Forestw

Central North America (CNA) 0.623 0.625 0.583 0.592
East Asia (EAS) 0.587 0.651 0.558 0.567
Eastern Central Asia (ECA) 0.712 0.721 — —
Eastern Europe (EEU) 0.754 0.756 0.615 0.638
Eastern North America (ENA) 0.648 0.666 0.561 0.585
Eastern Siberia (ESB) 0.664 0.677 0.591 0.624
Mediterranean (MED) 0.795 0.799 0.733 0.735
North Central America (NCA) 0.824 0.849 0.730 0.733
Northeastern North America (NEN) 0.595 0.600 0.681 0.683
Northern Europe (NEU) 0.680 0.697 0.669 0.701
Northwestern North America (NWN) 0.637 0.669 0.645 0.661
Russian Arctic (RAR) — — 0.697 0.723
Russian Far East (RFE) 0.566 0.558 0.627 0.638
South Asia (SAS) 0.639 0.660 0.586 0.595
Tibetan Plateau (TIB) 0.596 0.677 0.639 0.655
Western Central Asia (WCA) 0.735 0.754 0.653 0.663
Western North America (WNA) 0.700 0.702 0.633 0.640
Western Siberia (WSB) 0.717 0.734 0.626 0.641
West & Central Europe (WCE) 0.697 0.698 0.585 0.591

Table A6. Odds ratio of different regions for LAIcroplow . Winter preconditioned regions are in bold.

IPCC region (abbreviation) Tw Pw Tsp Psp Tsu Psu

Central North America (CNA) 1.044 1.119 0.894 0.966 1.499 0.71
East Asia (EAS) 1.442 1.11 0.987 0.828 1.392 1.122
Eastern Central Asia (ECA) 1.196 1.095 1.077 0.45 1.124 0.685
Eastern Europe (EEU) 1.001 0.833 1.679 0.512 1.478 0.553
Eastern North America (ENA) 1.22 0.919 1.046 1.164 1.007 0.682
Eastern Siberia (ESB) 0.784 1.043 1.968 0.779 1.313 0.775
Mediterranean (MED) 1.099 0.566 1.721 0.603 1.448 0.644
North Central America (NCA) 1.079 1.013 1.018 0.472 1.292 0.257
Northeastern North America (NEN) 0.631 0.725 0.818 1.197 1.358 0.868
Northern Europe (NEU) 1.15 0.959 1.395 0.815 1.0 0.528
Northwestern North America (NWN) 0.924 0.645 0.723 0.416 0.975 0.45
Russian Far East (RFE) 0.972 1.099 1.87 0.615 1.738 0.76
South Asia (SAS) 1.04 0.957 1.373 1.097 1.891 1.154
Tibetan Plateau (TIB) 1.029 0.845 1.315 1.176 1.605 1.435
Western Central Asia (WCA) 1.076 0.538 1.336 0.474 1.314 0.71
Western North America (WNA) 1.028 0.973 1.203 0.53 0.971 0.643
Western Siberia (WSB) 0.763 0.714 1.697 0.669 1.401 0.532
West & Central Europe (WCE) 1.075 1.041 1.713 0.687 1.14 0.629
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Table A7. Odds ratio of different regions for LAIforestlow . Corresponding winter preconditioned regions are in bold.

IPCC region (abbreviation) Tw Pw Tsp Psp Tsu Psu

Central North America (CNA) 1.292 0.797 1.208 0.939 1.13 0.836
East Asia (EAS) 1.297 1.0 1.307 1.001 1.067 1.276
Eastern Europe (EEU) 0.941 1.108 1.017 0.946 0.813 0.99
Eastern North America (ENA) 0.906 1.061 1.257 0.813 0.86 1.069
Eastern Siberia (ESB) 0.786 0.868 1.107 0.912 0.801 1.078
Mediterranean (MED) 1.038 0.748 1.815 0.717 1.324 0.659
North Central America (NCA) 0.974 0.801 0.858 0.776 1.988 0.821
Northeastern North America (NEN) 0.903 0.615 1.476 0.862 0.434 0.928
Northern Europe (NEU) 1.063 0.82 0.962 0.808 0.625 0.985
Northwestern North America (NWN) 0.943 0.858 1.05 0.755 0.448 0.78
Russian Arctic (RAR) 0.792 0.703 1.073 0.824 0.475 0.897
Russian Far East (RFE) 0.964 0.725 0.975 1.007 0.599 0.911
South Asia (SAS) 0.867 1.108 1.575 1.085 1.186 1.611
Tibetan Plateau (TIB) 0.922 0.946 1.242 0.985 1.084 1.613
Western Central Asia (WCA) 1.14 0.64 1.261 0.705 1.129 0.702
Western North America (WNA) 0.983 0.814 1.006 0.62 0.889 1.069
Western Siberia (WSB) 0.704 0.893 1.146 0.905 0.725 1.08
West & Central Europe (WCE) 1.294 1.062 1.121 0.766 0.955 1.063

Table A8. Odds ratio of different regions for LAIcrophigh . Corresponding winter preconditioned regions are in bold.

IPCC region (abbreviation) Tw Pw Tsp Psp Tsu Psu

Central North America (CNA) 0.916 1.012 1.163 0.977 0.9 1.441
East Asia (EAS) 0.719 0.755 1.125 1.153 0.716 1.077
Eastern Central Asia (ECA) 0.856 1.149 1.053 1.706 0.914 1.557
Eastern Europe (EEU) 0.923 1.087 0.647 1.8 0.614 1.334
Eastern North America (ENA) 0.739 1.147 1.186 0.813 1.155 1.59
Eastern Siberia (ESB) 0.968 0.8 1.002 1.433 0.798 1.493
Mediterranean (MED) 0.973 1.255 0.601 1.704 0.618 1.37
North Central America (NCA) 0.607 1.318 1.293 1.667 0.461 1.707
Northeastern North America (NEN) 0.984 1.194 0.936 1.004 1.307 1.354
Northern Europe (NEU) 1.556 0.82 0.487 1.198 0.733 1.285
Northwestern North America (NWN) 1.584 1.26 0.783 1.283 0.819 1.39
Russian Far East (RFE) 1.049 0.875 1.09 0.961 1.201 0.983
South Asia (SAS) 0.729 0.947 0.938 1.223 0.736 1.071
Tibetan Plateau (TIB) 0.569 0.754 1.001 1.171 0.823 0.753
Western Central Asia (WCA) 0.893 1.478 0.864 1.642 0.784 1.231
Western North America (WNA) 1.042 1.04 0.81 1.545 0.996 1.464
Western Siberia (WSB) 1.548 0.992 0.671 1.05 0.788 1.817
West & Central Europe (WCE) 0.941 1.094 0.651 1.35 0.791 1.34
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Table A9. Odds ratio of different regions for LAIforesthigh . Corresponding winter preconditioned regions are in bold.

IPCC region (abbreviation) Tw Pw Tsp Psp Tsu Psu

Central North America (CNA) 0.858 0.978 0.9 0.966 0.936 1.306
East Asia (EAS) 0.87 0.909 0.924 1.111 1.102 0.933
Eastern Europe (EEU) 1.14 1.269 1.022 1.061 1.269 0.768
Eastern North America (ENA) 0.839 0.89 0.805 1.011 1.115 0.984
Eastern Siberia (ESB) 1.293 1.087 1.117 1.198 1.25 0.962
Mediterranean (MED) 1.073 1.092 0.658 1.412 0.67 1.366
North Central America (NCA) 0.958 0.842 0.845 1.37 0.514 1.247
Northeastern North America (NEN) 0.878 1.028 0.676 1.245 1.95 1.247
Northern Europe (NEU) 1.21 1.311 0.862 1.323 1.782 0.993
Northwestern North America (NWN) 0.933 1.334 0.891 1.309 1.718 1.288
Russian Arctic (RAR) 1.131 1.385 1.307 1.124 2.05 1.058
Russian Far East (RFE) 1.053 1.186 1.215 0.978 1.476 0.95
South Asia (SAS) 1.12 0.957 1.02 1.228 0.888 0.742
Tibetan Plateau (TIB) 1.039 0.777 0.745 1.061 0.731 0.707
Western Central Asia (WCA) 1.046 1.269 0.94 1.175 0.715 1.244
Western North America (WNA) 1.114 1.15 0.81 1.369 0.998 1.111
Western Siberia (WSB) 1.26 1.123 1.091 0.94 1.473 0.962
West & Central Europe (WCE) 0.919 0.999 0.851 1.203 0.931 0.993
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Peñuelas J, Ciais P, Canadell J G, Janssens I A,
Fernández-Martínez M, Carnicer J, Obersteiner M, Piao S,
Vautard R and Sardans J 2017 Shifting from a
fertilization-dominated to a warming-dominated period
Nat. Ecol. Evol. 1 1438

Pfleiderer P, Menke I and Schleussner C-F 2019 Increasing risks of
apple tree frost damage under climate change Clim. Change
157 515–25

17

https://doi.org/10.1029/2018JG004443
https://doi.org/10.1029/2018JG004443
https://doi.org/10.1016/j.eja.2015.10.009
https://doi.org/10.1016/j.eja.2015.10.009
https://doi.org/10.5194/bg-19-1913-2022
https://doi.org/10.5194/bg-19-1913-2022
https://doi.org/10.1029/2022JG007144
https://doi.org/10.1029/2022JG007144
https://doi.org/10.1016/j.jag.2020.102179
https://doi.org/10.1016/j.jag.2020.102179
https://doi.org/10.1098/rstb.2019.0519
https://doi.org/10.1098/rstb.2019.0519
https://doi.org/10.5194/bg-15-6067-2018
https://doi.org/10.5194/bg-15-6067-2018
https://doi.org/10.1038/nature15402
https://doi.org/10.1038/nature15402
https://doi.org/10.1073/pnas.2117464119
https://doi.org/10.1073/pnas.2117464119
https://doi.org/10.1111/gcb.13258
https://doi.org/10.1111/gcb.13258
https://doi.org/10.1038/s41598-023-29378-2
https://doi.org/10.1038/s41598-023-29378-2
https://doi.org/10.1007/s10021-018-0231-7
https://doi.org/10.1007/s10021-018-0231-7
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/essd-12-2959-2020
https://doi.org/10.5194/essd-12-2959-2020
https://doi.org/10.5194/hess-26-6339-2022
https://doi.org/10.5194/hess-26-6339-2022
https://doi.org/10.1126/sciadv.adl4005
https://doi.org/10.1126/sciadv.adl4005
https://doi.org/10.1111/gcb.15505
https://doi.org/10.1111/gcb.15505
https://doi.org/10.1890/09-1160.1
https://doi.org/10.1890/09-1160.1
https://doi.org/10.1111/gcb.16968
https://doi.org/10.1111/gcb.16968
https://doi.org/10.1038/s43247-022-00455-0
https://doi.org/10.1038/s43247-022-00455-0
https://doi.org/10.1126/sciadv.aax0255
https://doi.org/10.1126/sciadv.aax0255
https://doi.org/10.1111/gcb.13311
https://doi.org/10.1111/gcb.13311
https://doi.org/10.3390/f13071024
https://doi.org/10.3390/f13071024
https://doi.org/10.1029/2020GB006758
https://doi.org/10.1029/2020GB006758
https://doi.org/10.1029/2012JG002084
https://doi.org/10.1029/2012JG002084
https://doi.org/10.2307/1907187
https://doi.org/10.2307/1907187
https://doi.org/10.1088/1748-9326/ab23bf
https://doi.org/10.1088/1748-9326/ab23bf
https://doi.org/10.1088/1748-9326/6/2/024015
https://doi.org/10.1088/1748-9326/6/2/024015
https://doi.org/10.1111/nph.12912
https://doi.org/10.1111/nph.12912
https://doi.org/10.1111/gcb.15000
https://doi.org/10.1111/gcb.15000
https://doi.org/10.1038/s41586-021-03958-6
https://doi.org/10.1038/s41586-021-03958-6
https://doi.org/10.1038/s41612-020-0113-5
https://doi.org/10.1038/s41612-020-0113-5
https://doi.org/10.1126/science.1082750
https://doi.org/10.1126/science.1082750
https://doi.org/10.1016/S0168-1923(00)00109-X
https://doi.org/10.1016/S0168-1923(00)00109-X
https://doi.org/10.1111/ele.12399
https://doi.org/10.1111/ele.12399
https://doi.org/10.1111/nph.17562
https://doi.org/10.1111/nph.17562
https://doi.org/10.1038/nclimate1693
https://doi.org/10.1038/nclimate1693
https://doi.org/10.1088/1748-9326/6/4/044027
https://doi.org/10.1088/1748-9326/6/4/044027
https://doi.org/10.1111/j.1365-2486.2010.02210.x
https://doi.org/10.1111/j.1365-2486.2010.02210.x
https://doi.org/10.1038/s41559-017-0274-8
https://doi.org/10.1038/s41559-017-0274-8
https://doi.org/10.1007/s10584-019-02570-y
https://doi.org/10.1007/s10584-019-02570-y


Environ. Res. Lett. 19 (2024) 094045 M Anand et al

Piao S et al 2014 Evidence for a weakening relationship between
interannual temperature variability and northern vegetation
activity Nat. Commun. 5 5018

Piao S, Wang X, Ciais P, Zhu B, Wang T and Liu J 2011 Changes in
satellite-derived vegetation growth trend in temperate and
boreal Eurasia from 1982 to 2006 Glob. Change Biol.
17 3228–39

Pohl F, Werban U, Kumar R, Hildebrandt A and Rebmann C 2023
Observational evidence of legacy effects of the 2018 drought
on a mixed deciduous forest in Germany Sci. Rep. 13 10863

Poulter B et al 2015 Plant functional type classification for earth
system models: results from the European space agency’s
land cover climate change initiative Geosci. Model Dev.
8 2315–28

Santini M, Noce S, Antonelli M and Caporaso L 2022 Complex
drought patterns robustly explain global yield loss for major
crops Sci. Rep. 12 5792

Santoro M, Kirches G, Wevers J, Boettcher M, Brockmann C,
Lamarche C and Defourny P 2017 ESA. Land Cover CCI
Product User Guide Version 2 Tech. Rep. (available at: maps.
elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-
PUGv2_2.0.pdf)

Seidl R et al 2017 Forest disturbances under climate change Nat.
Clim. Change 7 395–402

Sharma S and Mujumdar P 2017 Increasing frequency and spatial
extent of concurrent meteorological droughts and heatwaves
in India Sci. Rep. 7 15582

Sjulgård H, Keller T, Garland G and Colombi T 2023 Relationships
between weather and yield anomalies vary with crop type
and latitude in Sweden Agric. Syst. 211 103757

Sweet L-B, Müller C, Anand M and Zscheischler J 2023
Cross-validation strategy impacts the performance and
interpretation of machine learning models Artif. Intell. Earth
Syst. 2 e230026

Tominaga A, Ito A, Sugiura T and Yamane H 2022 How is global
warming affecting fruit tree blooming? “Flowering
(dormancy) disorder” in Japanese pear (Pyrus pyrifolia) as a
case study Front. Plant Sci. 12 787638

Trnka M, Rötter R P, Ruiz-Ramos M, Kersebaum K C, Olesen J E,
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