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Abstract. In tropical South America there has been substantial progress on atmospheric monitoring capacity, but the region still

has a limited number of continental atmospheric stations relative to its large area, hindering net carbon flux estimates using

atmospheric inversions. In this study, we use dry air CO2 mole fractions measured at the Amazon Tall Tower Observatory

(ATTO) and airborne vertical CO2 profiles in an atmospheric inversion system to estimate the net carbon exchange in tropical

South America. We focus on the biogeographic Amazon, and its neighboring Cerrado and Caatinga biomes. Considering all5

prior ensemble members, we estimate that the biogeographic Amazon was a net carbon sink with the sum of vegetation uptake,

river outgassing and carbon release from fires at a median of -0.33 ± 0.33 PgC year−1. Using only process-based models as

input in the inversion system the uptake is reduced to -0.24 ± 0.33 PgC year−1. The Cerrado and Caatinga biomes together

represent a median carbon source of 0.31 ± 0.24 PgC year−1, with contributions from both vegetation carbon release and

fires. Therefore, we estimate that the net carbon balance for tropical South America is close to neutral, but we note that the10

uncertainties straddle zero net exchange. In addition, we calculate the effect of systematic uncertainties in the inverse estimates

by proposing a water-vapor correction to measured airborne CO2 profiles. Finally, to further reduce the uncertainty in regional

carbon balance estimates in tropical South America, we call for an expansion of the atmospheric monitoring network on the

continent, mainly in the Amazon-Andes foothills.
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1 Introduction15

Land ecosystems constitute approximately half of the atmospheric CO2 sink (Friedlingstein et al., 2022). However, they re-

main the most uncertain (Ballantyne et al., 2012) and variable (Le Quéré et al., 2018) component of the global carbon cycle.

Numerous independent studies confirm that tropical land ecosystems drive most of the interannual variability (IAV) in the net

land carbon flux (Keeling and Revelle, 1985; Keeling et al., 1995; Bousquet et al., 2000; Jung et al., 2011; Peylin et al., 2013;

Jung et al., 2017; Rödenbeck et al., 2018a; Bastos et al., 2020), which is linked to the atmospheric CO2 growth rate (Cox20

et al., 2013; Wang et al., 2013; Piao et al., 2020). Furthermore, tropical ecosystems store substantial carbon reserves, 230 PgC

in aboveground ground living biomass (Brando et al., 2019), that can be released rapidly further amplifying the CO2 growth

rate. In other words, the accumulation of CO2 in the atmosphere heavily relies on the carbon uptake and release dynamics

occurring in tropical ecosystems. In particular, South America plays a pivotal role in both aspects, uptake and release, as it

hosts the Amazon rainforest, which contains 49% of tropical biomass carbon (Saatchi et al., 2011) and encompasses a third of25

the continent landmass (Goulding et al., 2003).

In this context, the emissions of deforestation fires (van der Werf et al., 2010) and degradation (Assis et al., 2020) represent

relevant carbon sources, particularly important for the Amazon region (Aragão et al., 2018; Matricardi et al., 2020; Qin et al.,

2021; Kruid et al., 2021; Lapola et al., 2023). In the years after 2017 to 2022, clear-cut deforestation increased significantly in

Brazil (Alencar et al., 2019; Silva Junior et al., 2021), not only releasing massive amounts of carbon Assis et al. (2020) but also30

exposing larger areas of forest fragments to degradation (Matricardi et al., 2020) and inducing indirect carbon losses by edge

effects (Silva Junior et al., 2020). In 2023, while deforestation decreased by 22% relative to 2022, there was a disproportionate

rise of wildfires in old-growth forests (Mataveli et al., 2024). Such threats to standing forests pose a risk of gradually releasing

the carbon stock of the Amazon, which amounts to 150-200 PgC (Saatchi et al., 2007; Malhi et al., 2009; Marques et al.,

2017; Baccini et al., 2017). Despite the attention to deforestation and degradation in the Amazon, vegetation loss has largely35

been overlooked in the Cerrado biome (da Conceição Bispo et al., 2024), where agricultural expansion is more widespread

(Rodrigues et al., 2022). By 2019, 46% of the original land cover in the Cerrado was converted to pastures and crops (Map-

Biomas, 2020). Fires in the Cerrado occur naturally and are crucial for ecosystem functioning, but agricultural expansion has

brought more frequent and intense fires threatening the aboveground biomass and creating the need for near-real-time monitor-

ing (Pletsch et al., 2022). These findings underline the spatial dependence of fires and the net carbon balance of tropical South40

America, raising the challenge to better understand such gradients using independent methods like top-down inversions.

Changes in atmospheric CO2 mole fractions are linked to the Net Land Flux (NLF), but disentangling individual sources

and sinks is challenging using the atmospheric constraint alone. Top-down atmospheric inversions exploit the information

embedded in measured CO2 gradients of an observational network to constrain the NLF, assuming that sources like fires

and fossil fuels are separately constrained or well known. The balance between total uptake and release of carbon results45

in the Net Land Flux (NLF), which consists of the Net Biome Exchange (NBE) and the release of carbon from Fossil Fuel

combustion. The NBE is composed of vegetation-related fluxes, Gross Primary Productivity (GPP) and Terrestrial Ecosystem

Respiration (TER), disturbance-related emission from biomass burning and degradation (Ffire), and river CO2 outgassing
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(Friver). Estimates of NLFs for tropical regions (Gurney et al., 2002; Rödenbeck et al., 2003; Peylin et al., 2013; Gloor et al.,

2018; Palmer et al., 2019) and specifically for the Amazon region (Molina et al., 2015; Rödenbeck et al., 2018a) have been50

conducted previously using global inversions, but the lack of observations and errors in atmospheric transport led to large

uncertainties (Gurney et al., 2002; Stephens et al., 2007; Peylin et al., 2013; Molina et al., 2015). More recent top-down

studies have shed light on how fire influences the net carbon balance in specific years (2010-2011) (Gatti et al., 2014; van der

Laan-Luijkx et al., 2015), the spatial differences of NBE in areas within the Amazon for 2010 to 2012 (Alden et al., 2016),

the response of the Amazon carbon cycle relative to other tropical regions in the 2015/2016 El Niño event (Gloor et al.,55

2018; Liu et al., 2017), and the main drivers of the NBE anomaly in 2015/2016 in the Amazon using satellite-constrained

inverse estimates (Wang et al., 2023). At the time of these studies, the available data only allowed time-limited analyses, which

provided insight primarily into the response to a drought year and normal/wet years. The longer measurement records of in-situ

CO2 measurements at the Amazon Tall Tower Observatory (ATTO) (Botía et al., 2022) and the vertical CO2 profiles in the

Amazon region (Gatti et al., 2021) now enables the community to further examine interannual and seasonal variations using60

atmospheric inversions (Koren, 2020; Basso et al., 2023) or column budget techniques (Gatti et al., 2021, 2023).

Gatti et al. (2021) suggested that the NLF of the eastern Amazon was on average a carbon source from 2010 to 2018, mainly

explained by fire emissions, but also by a vegetation related-source in the southeastern part of the Amazon forest. The authors

attribute the carbon source to the combined impact of temperature and precipitation anomalies on vegetation, hindering its

carbon uptake capacity. However, Basso et al. (2023) reported a smaller carbon source compared to Gatti et al. (2021) for the65

same period (2010-2018), using similar CO2 observational constraints but integrating additional CO observational constraints

on fire emissions. Both studies agree on the calculation of a net carbon source (positive NLF) and a small vegetation-related

carbon sink after subtracting fires and fossil fuels (or assuming them negligible). Similarly, two studies which up-scaled old-

growth forest plot data to the Amazon found that old-growth forests are a small carbon sink with a decreasing trend over the

last 30 years (Brienen et al., 2015; Hubau et al., 2020). Although these studies are broadly consistent with the existence of an70

Amazon-wide vegetation carbon sink and net biomass growth in old-growth plots, substantial uncertainties persist regarding

their magnitudes. This aligns with a recent synthesis (Rosan et al., 2024), which reported an Amazon-wide carbon sink for

vegetation over the period 2010-2018, albeit with considerable uncertainties in magnitude. While all of these studies have

investigated the carbon balance of the Amazon, having different definitions in area, be it the biogeographic or a selection of

sub-regions defined by Eva et al. (2005), a perspective including the neighboring biomes (i.e., ’Cerrado & Caatinga’) is lacking.75

In this study, we use the CarboScope Global and Regional inversion system to assimilate the 2010-2018 airborne CO2 profile

record and the continuous and long-term CO2 record at the Amazon Tall Tower Observatory (ATTO). We build on previous

studies using the CarboScope Regional system in Europe (Kountouris et al., 2018b, a; Munassar et al., 2021), to explore its

ability to constrain the NLF at the continental scale over a larger domain, but with a sparser observational network. We aim

to quantify where, when, and on which property the atmospheric inversion using this set of atmospheric data can provide a80

constraint. A sub-continental analysis with a strong focus on the biogeographic Amazon, but not limited to it, is performed to

shed light on spatial gradients. Furthermore, we present a detailed quantification of how systematic uncertainties in measured

mole fractions affect the estimated fluxes in an atmospheric inversion. With this, we contribute with a broad perspective on the
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carbon exchange in tropical South America, going beyond the Amazon biome. An aspect that serves not only as a reference

for future atmospheric inversions, but also as a contribution to updates of the regional carbon balance assessment project85

(RECCAP2: https://www.globalcarbonproject.org/reccap/overview.htm) over the upcoming years.

2 Methods and Data

2.1 CarboScope Regional Inversion System

2.1.1 Two-step scheme description

The version of the CarboScope Global inversion system used here is described in detail by Rödenbeck et al. (2018b). To refine90

the resolution of fluxes and atmospheric transport within our study area, we use the two-step scheme described in Rödenbeck

et al. (2009); Trusilova et al. (2010); Kountouris et al. (2018b); Munassar et al. (2021). Our inversion set-up follows largely

that of Kountouris et al. (2018a), but we use an isotropic exponential decay for the spatial error structure, mainly because in

our domain, unlike in mid-latitudes, the climatic gradients are similar in both latitude and longitude.

In the two-step scheme, two atmospheric transport models with different spatial resolutions are used. In step 1, a global95

inversion is performed using the CarboScope Global inversion system (Rödenbeck et al., 2018b) to obtain an optimized NBE

flux field having Ocean and Fossil Fuel fluxes prescribed. This global inversion is performed on a coarse global scale using

the TM3 atmospheric transport model (Heimann and Körner, 2003) at 4 x 5 deg resolution driven by the NCEP reanalysis

meteorological fields (Kalnay et al., 1996). Using that optimized NBE flux field and the same atmospheric transport set-up,

simulated mole fractions increments for all sites are obtained. These "forward" runs represent an intermediate step and are100

done twice, see equation 1 (adapted from Rödenbeck et al. (2009)). The first one is performed using TM3 at the coarse global

resolution and for the entire time-period of the global inversion. The second forward run is performed using NBE fluxes at

coarse spatial resolution, only for the regional domain (i.e. with zeros outside the regional domain) tropical South America and

the desired period of interest (i.e., 2010-2018). Both forward runs result in simulated mole fraction increments (∆cmod1 and

∆cmod2) and their difference corresponds to the far-field contribution from fluxes outside of the regional domain. An initial105

condition (cini) that corresponds to a well-mixed atmosphere with a given initial tracer mole fraction is then added to the

far-field contribution. All this together is subtracted from the measured mole fractions at the sites within the domain of interest.

This difference represents a "remaining mole fraction" (∆cremain), corresponding to signals from fluxes within the regional

domain, as defined by Rödenbeck et al. (2009).

∆cremain = cmeas− (∆cmod1−∆cmod2 + cini) (1)110

In step 2, the ∆cremain is assimilated in a regional inversion at high-resolution (0.25 x 0.25o) using the model STILT Lin

et al. (2003). STILT is driven by the ECMWF Integrated Forecasting System (IFS) (following the contemporary IFS cycle

development; for more information, see https://www.ecmwf.int/en/publications/ifs-documentation). At each measurement lo-
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cation and time (x, y, z, t) in the regional domain, we released an ensemble of 100 particles back in time (10 days) to calculate

the surface influence on the observations. The surface influence, with units of ppm/(µmolm−2s−1), provides the link between115

measured mole fractions and the prior surface fluxes. A set of different prior fluxes (representing a prior ensemble) is used (see

Section 2.1.6), and the regional inversion is performed for each prior ensemble member individually. The domain in this study

extends from 28.875oS to 13.875oN and from 83.875oW to 34.125oW, see Figure 1. We have limited our domain to 28.875oS

due to the lack of observational records further south.

2.1.2 Definition of CO2 flux components120

The total CO2 exchange with the atmosphere is denoted as Net Land Flux (NLF, FNetLand, hereafter used interchangeably),

which consists of Net Biome Exchange (NBE) and fossil fuel CO2 emissions (Fff ),

FNetLand = NBE + Fff (2)

NBE, in turn, is composed of Net Ecosystem Exchange (NEE), the carbon exchange between atmosphere and rivers (Friver),

and emissions from fires (Ffire),125

NBE = NEE + Friver + Ffire (3)

For all fluxes we adopt the atmospheric sign convention in which positive (+) denotes a source to the atmosphere and negative

(-) denotes a sink.

The atmospheric signals reflect the total CO2 flux, FNetLand. However, as Fff is prescribed as a prior the inversion optimizes

NBE. In the figures in which the posterior FNetLand is reported, we have added the Fff in post-processing. When subtracting130

Ffire from the NBE we obtain a flux component composed of NEE and Friver, reported in Section 3.2.

2.1.3 Analysis regions in postprocessing

To analyze the spatial distribution of the estimated posterior fluxes and the coverage of the atmospheric network, we have used

the definition of sub-regions shown in Figure 1a. One of the criteria for the choice of these regional areas is that they should

be independent of our observational network and associated with a biogeographic gradient. Thus, the selection of these areas135

follows, to some extent, a biome-like distribution, but it does not represent individual biomes strictly. The division within the

biogeographic Amazon serves to provide individual sub-regions dividing east-west but also north-south. In addition, we have

also kept a separate sub-region for the main branch of the Amazon river as we are interested in the atmospheric constraint over

these areas. The biogeographic limit of the Amazon we use here is the same as defined by Albert et al. (2021) as Amazon

biome. When reference to the Amazon sensu-stricto+, the area corresponds to four subregions defined in Eva et al. (2005):140

Amazon sensu stricto, Andes, Guiana and Gurupi. The Amazon sensu-stricto+ area is only used for comparative reasons in

the Discussion.
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2.1.4 Observational network

The location of the measurement sites is shown in Figure 1b, together with their aggregated annual mean surface influence

(sensitivities of atmospheric concentrations to surface fluxes, in the following called "footprint") from 2010 to 2018. The145

coverage of the observational network in our regional domain concentrates on the areas within the Amazon but also in the

northeast of Brazil. For the seasonal footprints for each site see Figure A1.

In the global inversion (step 1) we have used the set of stations in the 2022 release version of the CarboScope global

system with nearly continuous coverage from 2010 onward (i.e., s10oc_v2022, see http://www.bgc-jena.mpg.de/CarboScope/

?ID=s10oc_v2022, for details of stations and data providers). To this default 2022 station set, we added the ATTO CO2150

record (available at: https://attodata.org/), five sites within the Amazon region where airborne profiles (available at: https:

//doi.org/10.1594/PANGAEA.926834) are collected Gatti et al. (2021), and the weekly flask sampling record in Natal (NAT),

a station in the northeast of Brazil Dlugokencky et al. (2021). While the global inversion (s10, step 1) is augmented with all of

the above sites (s10 + ATTO + NAT + aircraft), only the sites within our domain are used for the regional inversion (step 2). The

monthly time series at each site is shown in Figure 1c, indicating the data gaps and the evolution of CO2 over the last decade.155

Note that ATTO has provided continuous data since 2013 from an 80-m tower, ≈ 50 m above the canopy, and there were

major gaps in the aircraft network during 2015 and 2016. For the continuous data (ATTO), we use only daytime measurements

(i.e., from 13:00 to 17:00 local time), to ensure we have measurements representative for the well-mixed boundary layer when

the transport model errors are smallest (Botía et al. (2022), Fig S4, Supplementary material). The average number of aircraft

profiles per month is two, see Figure A2. For each measurement in an aircraft profile (full profile goes up to ≈4500 m a.s.l),160

for the weekly flask measurements at NAT, and for every single data point at ATTO, we have simulated the surface influence

using the STILT model. Therefore, each measurement has an individual footprint linking the observations with surface fluxes

in the regional inversion. The STILT set-up follows that of Botía et al. (2022), but the spatial resolution used here is 0.25x0.25

deg. For validating the estimated posterior fluxes we use airborne data from the Manaus site (MAN) (Figure 1), which was not

assimilated and is left as an independent site. The information gained from using the South American stations (Aircraft profile165

+ ATTO) is tested using CarboScope global with (s10sam) and without (s10) these stations.

The model-data mismatch uncertainty (including the representation error of the measurements within the transport model)

for the three types of sites is chosen to be 1.5 ppm for weekly time scales, following Kountouris et al. (2018b) and Munassar

et al. (2021). To assimilate multiple data streams, we apply a data density weighting Rödenbeck (2005): For the hourly ATTO

data, the error will be inflated by
√

Nhours/week (details see Kountouris et al. (2018a)), while for aircraft profiles (composed170

of several flasks) the error is scaled with
√

Nflasks/profile. The data-density weighting practically ensures that one week of

hourly ATTO observations, one aircraft profile, or one weekly flask sample have the same weight in the inversion, reflecting

the assumption that they provide the same amount of information due to roughly weekly error correlations. We assume that

weekly error correlations are driven by synoptic-scale transport variability.

6

https://doi.org/10.5194/egusphere-2024-1735
Preprint. Discussion started: 15 July 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. South American domain (from 13.875oN to 28.875oS and 83.875oW to 34.125oW ) with a sub regional division adapted from

EPA (2011) (a). The percentages in the legend denote the area of the region relative to the total land area in the domain. The annual mean

footprint, associated with the period where data are available is shown in b. Note that MAN is not assimilated and is used as a validation

site. The time series showing the monthly mean CO2 mole fraction at each station or aircraft profile site is shown in c. The gaps are shown

in grey and are due to logistical problems and/or instrument malfunction. The Amazon contour corresponds to the biogeographic limit of the

Amazon.
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2.1.5 Addressing systematic uncertainties in vertical profiles175

Gatti et al. (2023) (Methods Section) reported a source of uncertainty in the aircraft profiles given by moisture in the flask

samples that can lead to biases in the measured CO2 mole fractions. The bias manifests itself as an underestimate of the true

mole fraction of atmospheric CO2 in the measurements, due to the removal of gaseous CO2 into water between the time of

sampling at the aircraft inlet and analysis in the lab. Both liquid water and condensation of water vapor after pressurizing

the flasks form the source for this CO2 absorption and thus a relation with water vapor mixing ratio exists (hereafter xH2O),180

as described specifically for this sampling method by Baier et al. (2020) and Paul et al. (2020). Moreover, systematic errors

in assimilated data can bias inverse results in various ways (Masarie et al., 2011). To quantify the effect of such systematic

uncertainty on the estimated fluxes, we apply a water-vapor-dependent bias correction to the data, before it is assimilated.

To derive the water vapor bias correction, we used CO2 vertical profiles collected approximately 80 km northeast of the city

of Manaus in the central Amazon basin (site code MAN; Miller et al. (2023)) aboard a Cessna Grand Caravan. Collocated185

portable flask packages (PFPs; which have a water-related CO2 bias) and in situ, on-board measurements (Picarro Inc. CRDS

analyzer model G-2401m) were performed. The in situ analyzer also provided measurements of CH4, CO, and H2O roughly

every 3 seconds. The MAN time series of vertical profiles, extending from approximately 150 m above ground level (agl)

to approximately 5 km above sea level (asl) began in April 2017 and continues to this day at a frequency of approximately

twice per month. The in situ gas stream was undried (but CO2 mole fractions have been converted from wet to dry using190

the simultaneously measured water vapor), and calibrations occurred on the ground. Previous results have shown this kind

of implementation has minimal (≈ < 0.1 ppm) impact on CO2 values (Rella et al., 2013). Critically, the fact that the air

stream was undried allows us to use the analyzer’s water vapor measurement. The PFPs used were version 2 models and

CO2 measurements on PFP air samples were performed at INPE LaGEE; the sampling and analysis methodologies have been

described previously (Gatti et al., 2014).195

Between April 2017 and June 2019, when air sample collection via PFP stopped at MAN, there were 12 vertical profiles

available that had collocated PFP discrete samples and in-situ measurements that could be compared. These 12 profiles span

a range of water vapor mole fraction from 0.2 to 3.5 % that decrease with altitude (see Figure A4) and allow us to define a

relationship between CO2 bias (∆CO2 = CO2in−situ - CO2P F P
) vs. ambient water vapor as described previously (Gatti et al.

(2023), Methods). Matching between the independent PFP and on-board analyzer systems could be performed accurately by200

matching each system’s GPS time and position signals. Because the PFP sample is collected over ≈15 - 40s (depending on

altitude), we tested a wide range of Picarro time averaging windows ranging from 10 s to 40 s to best match the single value

of CO2 measured in the laboratory from the PFP air sample. Fortunately, this averaging window range had a negligible impact

on the final relationship between ∆CO2 and water vapor (see Figure A3); the results presented here use a window of 30 s. We

also filtered Picarro data for high variability by excluding any 30 s period where the CO2 standard deviation was greater than205

0.5 ppm. Finally, we binned all ∆CO2 and xH2O values in 10,000 ppm (or 1%) increments to define a bias relationship. This

relationship (Figure A3) shows little bias between 0 and 1% (above 3 km agl), but an increasing, approximately linear bias

with increasing xH2O (below 2 km agl).

8

https://doi.org/10.5194/egusphere-2024-1735
Preprint. Discussion started: 15 July 2024
c© Author(s) 2024. CC BY 4.0 License.



We used the STILT model to extract the water vapor mixing ratio from the ECMWF-IFS short-term forecasts (as also used

to drive STILT) at the same measurement and sampling locations in the Manaus flights in which PFPs and the CRDS analyzer210

were collocated. These flights span altitudes from 280 m agl to 5200 m agl and vertical profiles are taken at≈ 17:00 UTC. The

correlation between the measured water vapor (CRDS analyzer) and that extracted from ECMWF-IFS was 0.94 (p<<0.05,

N=158) (see Figure A4), with a mean bias of -0.2% (ECWMF-IFS biased low relative to the continuous measurements). The

observational record at MAN includes both dry and wet seasons, and in combination with a large altitude range covers the

range of water vapor variability at the other vertical profile sites (see Figure A5). The latter gives us confidence in ECMWF-215

IFS as a proxy for the water vapor mixing ratio at the time and location (x, y, z) of each flask sample at ALF, RBA, TEF, TAB,

SAN. Therefore, the difference between the dry air CO2 mole fraction from the continuous measurements (using the wet-dry

correction as proposed by Rella et al. (2013) and the PFP on the Manaus flights was fitted to the water vapor mixing ratio from

ECMWF-IFS. The linear fit is y = 0.594x− 0.168, where y is the resulting CO2 increase [ppm] to be applied to the PFP data

at a given water vapor mixing ratio x [%], the slope (0.594) was significantly (p<<0.05) different from zero (See Figure A6).220

The standard error of the slope and the intercept is ± 0.11 and ± 0.20, respectively. We have further quantified the expected

error in the PFP mole fractions by the
√

SSR
N−2 , introducing the correction (0.93 ppm) and without the correction (1.30 ppm).

The sum of squared residuals (SSR) with the correction is obtained using the linear fit reported previously, and N is the number

of measurement points (N=158). In the case without the correction the SSR is calculated by obtaining the residuals with respect

to a line with no slope and intercept at zero in Figure A6. This indicates that applying the water vapor correction decreases the225

measurement error.

Using this function and the ECMWF-IFS-water-vapor at ALF, RBA, TEF, TAB, SAN we applied the water-vapor correc-

tion to each individual PFP sample (see Figure A7). Note that in RBA there were 6 flights (dates: 16/02/2018, 09/03/2018,

06/04/2018, 08/05/2018, 15/07/2018, 19/09/2018) that had a drier installed, so for these flights we did not apply the correction.

With this, we re-ran the inversion system (Global and Regional) assimilating the data including the water vapor correction, and230

quantified the potential effect of such systematic uncertainty on the posterior fluxes (hereafter s10samwvc, for CarboScope

global). We note that this approach was only implemented to diagnostically quantify the effect of water vapor in the PFPs,

and how that propagates to the estimated fluxes in an inversion system. Further investigation of the water vapor effect on PFP

measurements might find a different correction method, or different structure for the differences to continuous in-situ mea-

surements, hence our preference to separately provide the offsets (y) used in this study. Note that the uncertainty added by the235

accuracy of the water vapor mole fraction given by the ECMWF-IFS forecast is dealt with using the fit of the ∆CO2 to the

ECMWF-IFS.

2.1.6 A-priori fluxes

We present an ensemble of inversions based on a set of prior fluxes that differ in several aspects (see Table 1). The first

aspect is their conceptual nature, having (a) the Vegetation Photosynthesis and Respiration Model (VPRM) (Mahadevan et al.,240

2008), a simple diagnostic model using MODIS imagery and fitted to eddy covariance data within the domain which provides

NEE; (b) the FLUXCOM product (Bodesheim et al., 2018) and its latest version FLUXCOMX (Nelson et al., 2024), which
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up-scales site-level eddy covariance data to the globe using a random forest regression; and (c) two process-based models,

the SiB4 (Haynes et al., 2019) and SiBCASA (Schaefer et al., 2008) models, both having served as biospheric flux priors in

earlier published studies focusing on the Amazon (van der Laan-Luijkx et al., 2015; van Schaik et al., 2018). By having this245

set of priors we have a wide representation of the potential spatio-temporal dynamics of NEE over our domain. The other

variable aspect of this prior selection is their flux magnitudes and seasonal patterns (see Figure A8 and A10). Originally the

eddy-covariance-based products, like the two FLUXCOM versions and VPRM, have a large sink magnitude for the Amazon.

Regardless of how they compare to current independent estimates we proceeded to test an opposing (in sign) prior scenario.

To achieve this, we scaled ecosystem respiration in VPRM and SiB4 such that the total NEE integral for the biogeographic250

Amazon equals 0.5 PgC year−1 and 1 PgC year−1 (namely 0.5xVPRM, 1xVPRM, 0.5xSIB4, and 1xSIB4). An example for

0.5xVPRM is shown in Figure A8. Two additional sensitivity tests were performed using the original VPRM. In one, we

removed the long-term mean, seasonality, and interannual variability (IAV) from VPRM (called VPRMflat). In the second

one, we used VPRM as prior but left the ATTO data out from the assimilated station set (called VPRMnoATT).

Note that the CarboScope global v2022 has no diurnal cycle in the prior, and the effect of this and how that propagates to255

the regional inversion will be discussed in an upcoming publication (Munassar et al., 2024). Here, we apply a region-specific

correction based on this work. The correction is based on the response of CarboScope global to having a diurnal cycle in the

prior fluxes, which was derived by inverting the diurnal anomalies (hourly - dailyMean) of two forward runs (one with and the

other without diurnal cycle) using CarboScope Global. The prior flux diurnal cycle was based on FLUXCOM. The posterior

fluxes of such inversion correspond to the per-grid-cell correction that should be added to the posterior fluxes of the normal260

inversion, assuming that the FLUXCOM diurnal cycles are correct. Then, we propagate such a correction using the two-step

scheme described above via the lateral boundary conditions.

The fire emissions used in this study (GFAS-opt CO2) are based on the original GFAS product (Kaiser et al., 2012), with

an adjustment over the Northern part of South America based on CO inversions by Naus et al. (2022). These inversions were

performed using the TM5-4DVAR system (Krol et al., 2005; Meirink et al., 2008) using CO data from MOPITT (Deeter et al.,265

2019) inside the study area (Northern part of South America) and NOAA station data outside of this region. We calculated

the increment ratios from prior (GFAS) to posterior CO fluxes for each grid cell and applied this factor to the GFAS CO2 fire

emissions as previously done in Koren (2020). For regions outside the domain of Naus et al. (2022) we did not scale the GFAS

emissions.

Furthermore, a non-optimized set of fluxes is used to account for important CO2 sources that contribute to the integrated270

signal of CO2 in the atmosphere within our domain. Ocean fluxes are based on surface-ocean pCO2 data (Rödenbeck et al.,

2013) but specifically processed at higher (1x1 deg) resolution (Run ID: oc_1x1_v2022). Following Steinbach et al. (2011),

the EDGAR 4.3 inventory, sector and fuel-type specific and scaled at the national level for each year based on the British

Petroleum statistical review (BP Annual report 2020), is used to account for emissions related to the burning of fossil fuels.

The assumed regional prior uncertainty for the domain-wide and annually integrated flux is chosen to be 0.9 PgC year−1,275

which is based on the contribution of the regional domain to the assumed prior uncertainty (2.8 PgC) in the CarboScope global
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Table 1. Inversion runs indicating the type of inversion (Global or regional), the selection of prior NEE fluxes used in the regional inversion

and the label identifying each individual run. All these individual runs except VPRMnoATT, represent the prior ensemble. IAV stands for

interannual variability and Reco for ecosystem respiration.

Identifier Station Set Type Comment

s10 s10 Global Inv.

s10sam s10+Aircraft+NAT+ATTO Global Inv.

VPRM s10+Aircraft+NAT+ATTO Regional Inv.

VPRMflat s10+Aircraft+NAT+ATTO Regional Inv. IAV, Mean and seasonality removed

0.5xVPRM s10+Aircraft+NAT+ATTO Regional Inv. Reco scaled to get 0.5 PgC NEE

1xVPRM s10+Aircraft+NAT+ATTO Regional Inv. Reco scaled to get 1 PgC NEE

VPRMnoATT s10+Aircraft+NAT Regional Inv.

FLUXCOM s10+Aircraft+NAT+ATTO Regional Inv.

FLUXCOMX s10+Aircraft+NAT+ATTO Regional Inv.

SiBCASA s10+Aircraft+NAT+ATTO Regional Inv.

SiB4 s10+Aircraft+NAT+ATTO Regional Inv.

0.5xSiB4 s10+Aircraft+NAT+ATTO Regional Inv. Reco scaled to get 0.5 PgC NEE

1xSiB4 s10+Aircraft+NAT+ATTO Regional Inv. Reco scaled to get 1 PgC NEE

inversion system. Therefore, when spatially aggregating the spatially and temporally correlated prior error, regardless of the

correlation length scale, it scales to the assumed prior uncertainty for the domain.

2.2 Statistical metrics

To report our results, we have adopted the following metrics. The uncertainty associated with the posterior covariance matrix280

in the inversion system, what is often referred to as "Bayesian" uncertainty, is used in the context of reporting the ensemble

median for particular regions. The posterior flux uncertainty can be calculated from the prior uncertainties given by the prior

flux and the measurement covariance matrices as described by Rödenbeck (2005). The posterior uncertainty is calculated for

each year of interest (2010-2018) and the regions in Figure 1a as the square root of the covariance matrix multiplied by a

regional operator. This uncertainty primarily depends on the observation availability and the assumed uncertainties for model-285

data-mismatch and prior fluxes, which is independent of the biosphere or diagnostic model used as a prior. The uncertainty

reduction (UR, ∆σ) is then calculated with equation 4,

∆σ =
σprior −σpost

σprior
(4)

The amplitude of the interannual variability (IAV) for CarboScope global and for a single regional inversion run is given by

the standard deviation of the annual mean flux throughout the 9 years (Equation 5),290
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IAV =

√√√√ 1
n

n∑

i=1

(FNetLandi
−FNetLand) (5)

For the complete prior and posterior ensemble in CarboScope regional an ensemble mean is calculated for each single year

(Equation 6). Then the ensemble IAV is calculated as the standard deviation of the ensemble mean across all years (Equation

7). The equations 5-7 refer to FNetLand, but one can replace it with a different flux component, like NBE, to obtain the same

quantities.295

FNetLandens.meank
= (

1
n

n∑

i=1

EnsMemberi)j , j = 2010− 2018,k = Region (6)

FNetLandIAVk
= std(FNetLandens.meank

) (7)

12

https://doi.org/10.5194/egusphere-2024-1735
Preprint. Discussion started: 15 July 2024
c© Author(s) 2024. CC BY 4.0 License.



3 Results

3.1 Understanding atmospheric and prior constraints

Consistent with the predominant air transport, we found that the eastern part of the South American domain has a better300

observational constraint compared to the west. We obtained a mean (averaged over 2010-2018) Uncertainty Reduction (UR)

of 44% for the Amazon region and for all the regions within it a reduction equal to or above 18% (Figure 2). Despite the

uncertainty reduction of 44%, the absolute uncertainty of the posterior is 0.33 PgC year−1. For the ’Amazon River Flat Plains’

and the ’Brazilian Shield Moist Forests’ the mean reduction is 53% and 54%, followed by the ’Guianan Shield Moist Forests’

with 25% and the ’Amazon and Andes Piedmont’ with the lowest mean reduction of 18% within the Amazon region. Note that305

the ’Cerrado & Caatinga’ has a mean UR of 29%, higher than the ’Amazon and Andes Piedmont’, indicating that on average

there is better observational coverage over this eastern part of the domain.

The UR not only varies spatially but also from year to year, depending on the continuity of the measurement records. As

expected, years with data gaps have a lower uncertainty reduction (see Figure A11). For example, due to the gaps in 2015 at

the sites of TEF, SAN, and partly ALF, the uncertainty reduction was affected largely in the ’Brazilian Shield Moist Forests’310

(decreasing by 21% from 2014 to 2015), the ’Amazon River Flat Plains’ (17%) and the ’Cerrado & Caatinga’ (18%). This

impact on UR was also observed in the biogeographic Amazon with an effect of 10% (Figure A11). Furthermore, in the

’Amazon and Andes Piedmont’ we observe a slight decrease in the UR throughout the years. The highest UR is observed from

2010 to 2012, when the TAB site was active; after that, the UR never gets back to the 2010-2012 values. The latter highlights

the effect of the location and the continuity of the measurement record on the UR for a particular region.315

The largest UR caused by adding the ATTO data is for the flux estimate from ’Guianan Shield Moist Forest’. Sensitivity

tests (not shown) excluding ATTO from the assimilated data show that on average the UR is 7% lower in this region, but some

years reaching 12% (i.e. 2016). The constraint added by ATTO is smaller but also relevant in the ’Amazon River Flat Plains’,

increasing the UR by 6% also in 2016. At the biogeographic Amazon scale, the mean impact on the UR is small (2%), but

it can amount to more than 5%. These changes in UR are somewhat conservative as in this study we have treated the aircraft320

data and the continuous data from ATTO in a similar way, inflating the uncertainty depending on the number of observations

per week or per vertical profile, as described in Section 2.1.4. It is important to mention that the mean bias error of simulated

mole fractions at each site assimilated, shows a better agreement between ensemble members (individual priors) relative to the

simulations using prior fluxes, and the magnitude is reduced considerably from prior to posterior (see Figure A12). For the

MAN site, used as validation (i.e. not assimilated), we observed a reduction in the mean bias from -0.4 ppm to 0.1 ppm.325

The regions with low or almost no uncertainty reduction highlight with more detail the limitations of the existing observa-

tional network. See for example the Central (region #5, 4%) and Northern Andes (#8, 3%), the Orinoco Savannah (#9, 5%),

the Gran Chaco (#6, 5%) and the Atlantic Forests (#2, 4%). All these regions are barely within the footprint of our obser-

vational network (Figure 1 b), which means that there is almost no information in the atmospheric data to estimate the fluxes

over these regions. The different uncertainty reductions for individual regions point to a better constraint within the continental330

land mass that is concentrated in the tropical band, including the Amazon but also to the eastern part of it in the ’Cerrado &
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Figure 2. Areas for spatial integration of fluxes (a) and prior / posterior uncertainty for each of these areas (b). The percentages represent the

mean uncertainty reduction over the period between 2010 and 2018, the values in brackets indicate the min-max range. For a complete time

series for each region see Figure A11. Region 11 (biogeographic Amazon) is the sum of 1, 3, 7 and 10.

Caatinga’ region. Given these findings, it is evident that the observational constraint has spatial limitations which lead us to

limit the rest of our analysis to the areas with mean uncertainty reductions larger than or equal to 15% (regions #1, #7, #10,

#3 and #4).

For the biogeographic Amazon and the ’Cerrado & Caatinga’ regions, we find a linear dependence of the posterior on335

the prior mean NLF across the ensemble of priors (Figure 3a,b). Notably, the biogeographic Amazon exhibits a more robust

linear relationship compared to the ’Cerrado & Caatinga’. In the latter, two distinct clusters of data points emerge, with one

centered around -0.4 gC m−2 day−1 (e.g. VPRM, 0.5xVPRM, 1xVPRM) and the other cluster converging on positive values

(i.e. SIBCASA, SIB4, 1xSIB4, 0.5xSIB4, s10, s10sam and VPRMflat) for the posterior estimates. The fact that VPRMflat

is part of the second cluster underscores the impact of the prior flux magnitude on the posterior estimates, given that the340

long-term mean was removed from VPRM in the VPRMflat inversion run. Moreover, the posterior ensemble spread for the

experiments with SIB4 and VPRM (i.e. 0.5x and 1x) is smaller in the ’Cerrado & Caatinga’ (for the VPRM and the SIB4

ensembles ±0.03 gC m−2 day−1 and ±0.04 gC m−2 day−1) than in the biogeographic Amazon (for the VPRM and the SIB4

ensembles ±0.25 gC m−2 day−1 and ±0.07 gC m−2 day−1). Consequently, we observe a more pronounced prior dependence

for the biogeographic Amazon compared to the ’Cerrado & Caatinga’. However, a more detailed analysis of smaller regions345

within the Amazon reveals additional insights into the atmospheric constraint.

The ’Amazon River Flat Plains’, ’Brazilian Shield Moist Forests’, and the ’Guianan Shield Moist Forests’, which constitute

the eastern part of the ’Biogeographic Amazon’, exhibit superior constraint by atmospheric data, as illustrated in Figure 3c-f.

The slopes of the linear regression in these four regions are inversely proportional to their respective reduction in uncertainty, as
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depicted in Figure 2. This inverse relationship indicates that the posterior estimates are more effectively adjusted, irrespective350

of the prior magnitude, in regions with a higher reduction in uncertainty. Therefore, the ’Amazon and Andes Piedmont’ in the

west stands out as an area where a bias in the prior fluxes would exert a more substantial impact on posterior estimates.

Interestingly, adding South American stations result in a slightly larger sink (-0.05 gC m−2 day−1 for s10sam and -0.01

gC m−2 day−1 for s10) in the biogeographic Amazon and a larger source in the ’Cerrado & Caatinga’ (0.12 gC m−2 day−1

for s10sam and 0.03 gC m−2 day−1 s10). The effect is less apparent for the regions within the biogeographic Amazon, yet355

we observe a shift in sign for the ’Brazilian Shield Moist Forests’ (from 0.00 gC m−2 day−1 in s10 to 0.03 gC m−2 day−1

in s10sam) and in the ’Guianan Shield Moist Forests’ (0.04 gC m−2 day−1 in s10 to -0.05 gC m−2 day−1 in s10sam). In the

’Amazon River Flat Plains’ the NLF goes from neutral (0.00 gC m−2 day−1) in s10 to a small sink in s10sam (-0.04 gC m−2

day−1). Note that in the ’Amazon and Andes Piedmont’ the effect of adding stations in South America has a minimal impact

with the smallest difference between s10 and s10sam, -0.02 gC m−2 day−1. This reinforces the lack of observational constraint360

in the ’Amazon and Andes Piedmont’.

For all regions, there is a substantial increase in the IAV from prior to posterior estimates as shown in Table 2. Interestingly,

the posterior IAV is larger in the regional inversion than in the global setup. Such a difference could be associated with the

assumed prior uncertainty, which has been chosen differently in the regional and global inversions. However, comparing global

and regional we obtain a similar pattern as in the mean NLF, in which the magnitude of the prior IAV has a linear effect on the365

posterior IAV in the biogeographic Amazon (see Figure A13). In addition, the effect of adding South American stations on the

IAV is manifested as a slight decrease in the posterior IAV, as shown in Table 2. In the next Section, the implications of these

findings on the regional carbon budget are discussed.

Table 2. Posterior mean NLF estimated with the global inversions with and without South American data. From column 3 onwards, the

posterior interannual variability given by the two global inversions, s10 and s10sam, and the posterior ensemble consisting of the individual

regional inversions with multiple prior fluxes. Units in gC m−2 d−1.

Mean NLF Mean NLF IAV IAV IAV IAV

Reg. Inv Reg. Inv

Region s10 s10sam s10 s10sam Pri. ens Post. ens

Biogeographic Amazon -0.01 -0.05 0.09 0.07 0.06 0.15

Cerrado & Caatinga 0.03 0.12 0.08 0.08 0.06 0.15

Amazon River Flat Plains 0.00 -0.04 0.08 0.06 0.05 0.24

Amazon/Andes Piedmont -0.07 -0.09 0.06 0.05 0.06 0.19

Guianan Shield 0.04 -0.05 0.13 0.12 0.07 0.28

Brazilian Shield 0.00 0.03 0.07 0.06 0.08 0.22
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Figure 3. Prior and posterior mean net land flux (NLF or FNetLand). On the y and x axes of each panel the density distribution is shown.
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3.2 Carbon balance for tropical South America

The atmospheric inversion allocates a net carbon source (FNetLand) to the ’Cerrado & Caatinga’ region (except for VPRM,370

0.5xVPRM and 1xVPRM) and consistently identifies a net carbon sink in the biogeographic Amazon (Figure 4 and see Figures

A8 and A9 for the spatial patterns). The estimates obtained using VPRM, 1xVPRM, and 0.5xVPRM for the ’Cerrado &

Caatinga’ undergo substantial adjustments, with some cases exceeding +1 PgC year−1 (VPRM). However, this diagnostic

model (VPRM) exhibits a bias towards a large sink in the prior (<-1 PgC year−1) that even after the inversion, the posterior

estimate is far from the other ensemble members and beyond the posterior uncertainty. Similarly, in the biogeographic Amazon375

a comparable pattern is observed for VPRM, FLUXCOM, and FLUXCOMX. Nevertheless, the removal of the long-term mean

of the prior flux, as implemented in VPRMflat, results in a FNetLand that aligns more closely with the main cluster of posterior

estimates at ≈-0.2 PgC year−1 for the Biogeographic Amazon and at ≈0.3 PgC year−1 for the ’Cerrado & Caatinga’.

Despite the considerable variability in magnitude for the biogeographic Amazon, the atmospheric constraint tends to adjust

priors with a positive sign, shifting them towards a smaller source (e.g., 1xSIB4) or even turning them into a sink with a negative380

FNetLand (e.g., 1xVPRM, 0.5xVPRM, and 0.5xSIB4). Furthermore, in the global inversion when adding South American data,

the resulting fluxes follow closer the sign and magnitude of those obtained in the regional inversion. Therefore, we contend

that information suggesting a sink-source gradient between these two regions is embedded in the atmospheric measurement

record even with the inherent limitations in adjusting certain individual priors. To provide further insights on the main drivers

of such a gradient we explore the individual components of FNetLand.385

Figure 4. Carbon balance for the biogeographic Amazon (a) and the Cerrado & Caatinga (b) regions. The posterior flux components shown

with a vertical bar (NEE + Friver), result from subtracting the Ffire and Fff from the posterior FNetLand (shown with the markers).

The mean fire emission estimates for the biogeographic Amazon and the ’Cerrado & Caatinga’ are 0.10 PgC year−1 and 0.19

PgC year−1, respectively (differences between marker and vertical bar in Figure 4 and shown in Figure 5). Our findings indicate
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that, for most estimates, the carbon source in the ’Cerrado & Caatinga’ does not solely originate from fires (Figure 4b). Within

the cluster that exhibits positive posterior estimates (excluding s10), the remaining flux components (NEE + Friver) remain

positive even after subtracting the fires and fossil fuels from the mean FNetLand. Values range from neutral for s10sam with390

0.00 PgC year−1 to 0.35 PgC year−1 for SIBCASA. Despite fires contributing 0.19 PgC year−1 in this region, the persistence

of positive NEE + Friver in most inversions suggests a non-fire-related carbon source. Conversely, for the biogeographic

Amazon we observe a consistently negative NEE + Friver across all posterior estimates, with a smaller fire component (0.10

PgC year−1) compared to the adjacent ’Cerrado & Caatinga.’ Therefore, given these results the majority of fire-related carbon

sources lie outside the biogeographic Amazon, emphasizing the critical role of fire locations in determining remaining flux395

components in the NBE.

Figure 5. Cumulative burned area for the domain of the regional inversion using GFED5 (a) Chen et al. (2023) and the prior and posterior

fire emission estimates from GFAS and optimized with using satellite retrievals from MOPITT Deeter et al. (2019) (b) for the biogeographic

Amazon and the ’Cerrado & Caatinga’ regions, the error bars denote the IAV.

The largest contribution (63%) to the mean fire emission in the biogeographic Amazon (0.10 PgC year−1) is from the

’Brazilian Shield Moist Forests’ (see Figure A14). This fire estimate is lower than the estimates reported in other studies (Gatti

et al., 2021; Basso et al., 2023), but our analysis shows that fire emissions are concentrated on the border of the Amazon and

the ’Cerrado & Caatinga’ region. Note that when adding the fire emissions from the ’Brazilian Shield Moist Forests’ and the400

’Cerrado & Caatinga’, we obtain 0.25 PgC year−1, which is close to the fire estimate of Basso et al. (2023). Furthermore,

the cumulative burned area in GFED5 (Chen et al., 2023), a fire emission proxy independent of the optimized fires used here,

has most of the burning in the ’Cerrado & Caatinga’ (Figure 5a), which is also the case when using an alternative Amazon

boundary, such as that defined by Eva et al. (2005). Burned area is indicative of fire activity but it does not scale 1:1 with fire

carbon emissions, as they depend on factors like fuel load and combustion efficiency (van der Werf et al., 2010; van Wees et al.,405

18

https://doi.org/10.5194/egusphere-2024-1735
Preprint. Discussion started: 15 July 2024
c© Author(s) 2024. CC BY 4.0 License.



2022). However, fire emissions in the ’Cerrado & Caatinga’ region increase from prior (0.08 PgC year−1) to posterior estimates

(0.19 PgC year−1) (Figure 5c), consistent with an increase in burned area from GFED4 (Giglio et al., 2013) to GFED5 Chen

et al. (2023). It is worth noting that the fire we use here is a top-down optimized version (Naus et al., 2022) based on CO

using satellite retrievals from MOPITT (Deeter et al., 2019). Therefore, the difference in fire emissions relative to other studies

is likely associated with the distinct methodologies used to attribute the fluxes as well as the spatial resolution used in the410

inversion, both of which can lead to accounting for fire emissions outside of the regional boundaries in the Amazon region.

3.3 Effect of systematic measurement uncertainty on posterior fluxes

The flask-specific CO2 bias-correction (see Section 2.1.5) results in a consistent shift towards a source on the posterior NLF

(Figure 6a) for the biogeographic Amazon. No significant effect is observed on interannual variability or spatial gradients

(Figure A15). Applying the correction results in a mean posterior NLF with a weaker sink or a larger source of carbon (Figure415

6a) for particular years, consistent with the need to simulate higher CO2 levels to match the data. Using the global inversion,

we find a mean effect 0.21 PgC year−1, while in the regional inversion the effect is 0.31 PgC year−1 (see Table A1). For the

’Cerrado & Caatinga’ the mean effect is 0.10 PgC year−1 (CarboScope Global) and 0.14 PgC year−1 (CarboScope Regional),

and for the regions within the Amazon equal or less than 0.10 PgC year−1 for both global and regional inversions (see Table

A1). Note that the correction is allocated to the regions that were selected previously having an uncertainty reduction larger420

than 15% consistent with the observational coverage (compare Figure 6b with Figure 1). In other words, the correction only

affects the areas covered by the aircraft network.

Assuming that the correction brings the observational data closer to the truth implies that the Amazon is a weaker sink

of carbon and that the ’Cerrado & Caatinga’ is a larger source. We do not find a strong spatial shift of fluxes within the

biogeographic Amazon due to the correction, nor do we find a strong impact on the interannual variations. Therefore, the425

findings of our sensitivity tests support the hypothesis in Gatti et al. (2023) that the water vapor bias mainly affects the absolute

annual flux magnitudes.
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Figure 6. Posterior flux estimates using the global inversion assimilating vertical profile data without a bias correction (s10sam) and with

the correction (s10samwvc) (a). The integrated flux corresponds to the Biogeographic Amazon. The error bars correspond to the posterior

uncertainty for the Biogeographic Amazon. In (b), the difference per grid cell of the two resulting posterior estimates.
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4 Discussion

4.1 The Amazon carbon exchange in context

Significant progress advancing the monitoring capacity over the continent, particularly in Brazil, has allowed for an increasing430

number of studies (Gatti et al., 2014; van der Laan-Luijkx et al., 2015; Alden et al., 2016; Koren, 2020; Botía et al., 2022;

Basso et al., 2023) using atmospheric mole fraction measurements to understand ecosystem carbon exchange. Nevertheless,

using atmospheric inversions to estimate net carbon exchange remains a challenging task given the remaining limitations in

data constraint, as shown in Figure 2. We have shown that posterior estimates have a linear dependence on the prior magnitude

that varies according to the uncertainty reduction and absolute posterior uncertainty. On the biogeographic Amazon scale, such435

linear dependence together with the large posterior uncertainty (±0.33 PgC year−1) makes it difficult to attribute a mean carbon

exchange based solely on one prior, as the magnitude and sign could be greatly influenced by that of the prior. To address this

issue, our study offers a meticulous evaluation of uncertainty for specific regions, recommending areas where the inversion

benefits from superior atmospheric data constraint. In light of this assessment, we identify potential sites for new measurement

stations to reduced the uncertainty in Amazon-wide top-down estimates, like the ’Amazon-Andes foothills’.440

In this study, using an ensemble of prior fluxes in a regional inversion and a global inversion with and without South

American data, we can infer that the biogeographic Amazon is a net carbon sink (i.e. negative FNetLand) given by the direction

of the adjustment introduced by the inversion. When subtracting fires and fossil fuels we obtain a negative ’NEE + River’ flux

component in all of the individual inversion runs, suggesting a consistent ecosystem carbon sink over 2010-2018. Taking

into account all posterior estimates, the median FNetLand is -0.33 PgC year−1. The posterior median without considering445

the inversion runs using priors with a large sink (FLUXCOM, FLUXCOMX, and VPRM) is -0.24 PgC year−1, both with a

posterior uncertainty of ± 0.33 PgC year−1. We avoid reporting an ensemble mean as the large variability in the magnitude

given by the setup of our experiments could be biased, and thus we rather interpret the individual posterior estimates in relative

terms (as done in Section 3.1).

We acknowledge that a shortcoming of our regional inversion, common to other regional systems (Munassar et al., 2023),450

is the use of a single global inversion for the far-field contribution (e.g. the CO2 mole fraction advected into the regional

domain). For example, if the global inversion has a regional bias in the CO2 mole fractions, it can propagate to the regional

inversion via the far-field contribution. Yet, this influence should be smaller in well-constrained areas (those having high

uncertainty reduction, Figure 2). In this regional domain, the predominant atmospheric flow changes seasonally from easterly

to northeasterly, both directions constrained by two background stations: Ragged Point Barbados (RPB, 13.1650◦N, 59.432◦W455

) and Ascension Island (ASC, 7.9667◦S, 14.4◦ W). CarboScope global assimilates data from these stations and the mean bias

error between posterior CO2 mole fractions and local measurements at these sites is lower than 0.1 ppm (Botía et al. (2022),

Supplementary Figures).

Our estimates for the biogeographic Amazon are consistent with bottom-up approaches in the negative sign of net land

flux (FNetLand) (Table 3), yet a large uncertainty remains in both approaches. For the same area, Basso et al. (2023) reports460

a small net source of carbon, but considering the uncertainty range, all approaches overlap. Integrating our posterior fluxes
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for the same Amazon boundaries as in Gatti et al. (2021) and Basso et al. (2023) results in contrasting signs, but again with

an overlapping uncertainty range. Therefore, to answer the sink/source question for the Amazon region -regardless of its

boundaries-, reducing uncertainty in both bottom-up and top-down approaches should be the priority in upcoming studies.

From the top-down perspective, such uncertainty reduction can be achieved by expanding the observational network to the465

west of the Amazon, towards the Andes foothills in Peru, Colombia, and Ecuador, as this region had the smallest uncertainty

reduction in our study. Moreover, top-down estimates could combine in-situ data with satellite retrievals to further reduce the

uncertainty in this domain. Currently, we believe that mean estimates should be interpreted with caution, as the selection of

prior fluxes can largely influence the sign and the magnitude of such a mean.

Part of the large uncertainty can be associated with the magnitude of fire emission (see Table 3). The fire flux for the Amazon470

area used in Gatti et al. (2021) is 0.41 ± 0.05, which is relatively high compared to the 0.09 PgC year−1 (Rosan et al., 2024),

the 0.26 PgC year−1 (Basso et al., 2023), and the 0.10 PgC year−1 from this study. The Gatti et al. (2021) approach with

the column budget technique solves for the total flux concerning a background signal linked to each of the aircraft profiles.

Using an observation-based CO:CO2 relationship, they obtained the contribution of fires and subtract that from the NLF, but

the area for attributing fluxes corresponds to the regional influence of each aircraft site limited to the Amazon boundaries.475

Such an approach and the CO:CO2 could lead to an overestimation of the fire flux, as the CO:CO2 is also influenced by areas

outside of the Amazon (see Figures 5 and 6 in Cassol et al. (2020) and Figure 1 in Gatti et al. (2014) ). The effect of fires

is fundamental to understanding the NBE and quantifying this signal remains challenging. Studies like van der Laan-Luijkx

et al. (2015); Koren (2020); Naus (2021), show that further optimization of Fires in a Bayesian setup can have an important

impact on the magnitude of the derived fire-CO signal, which can be translated to a fire-CO2 signal and thus impact the net480

carbon flux on the regional scale. This is why we selected an optimized fire emission for our domain, as did Basso et al. (2023),

which results in fire emissions that are generally larger than the prior used, in both cases GFAS. The higher estimates than the

original GFAS product are in line with recent findings that the global burned area has been strongly underestimated, resulting

in underestimated fire emissions (e.g. Ramo et al. (2021)). Further advances in global burned area mapping (Chen et al., 2023)

and fire emission estimates (van Wees et al., 2022; Wiedinmyer et al., 2023) will help to reduce the estimated fire flux and help485

to further constrain NBE in the future.

In addition to the challenges posed by a limited observational constraint in this region, other sources of uncertainty could

be associated with water vapor in the samples of the aircraft vertical profiles, as was mentioned in Gatti et al. (2023). Previous

studies (Baier et al., 2020) focusing on the effect of water vapor in flasks, have shown that the linear dependency of the ∆CO2

on humidity in the flasks is more evident above≈1.5% xH2O. We have fitted the ∆CO2 to the entire humidity range simulated490

by the STILT-ECMWF-IFS model (see Figure A6), so we recognize that the bias estimates at low water vapor levels could be

slightly overestimated. Nevertheless, we hypothesized that the effect of that overestimation on the posterior fluxes should be

minor, as water vapor mole fractions are predominantly above 1% at all sites. Thus, our approach provides a reference for future

studies focusing on characterizing the water dependence in undried PFP samples and the effect of such a bias in an atmospheric

inversion. We have quantified the effect of this systematic uncertainty on the posterior estimates, resulting in a weaker sink or a495

larger carbon source of 0.31 (based on the regional inversion) to 0.21 PgC year−1 (based on the global inversion). As we have
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shown, assimilating a bias-corrected dataset does not affect the IAV nor the spatial patterns of the retrieved fluxes and rather

results in an upward shift (towards a source of carbon) of the posterior flux.

The implications of our suggested correction depend on the prior used, but factoring in the correction (see Table 3) in the

median NLF of -0.33 PgC year−1 ± 0.33 PgC year−1, we obtain a close-to-neutral carbon balance (-0.02 PgC year−1 ± 0.33500

PgC year−1 if the correction from the regional inversion is used) or a small sink (-0.13 PgC year−1 ± 0.33 PgC year−1, if the

correction from the global inversion is used). Note that in both cases after subtracting fires and fossil fuels the resulting flux will

still represent an ecosystem carbon sink (a negative NEE + Frivers). In addition, considering the posterior uncertainty of± 0.33

PgC year−1 together with the potential effect of water vapor in the flasks (0.31 PgC year−1, using the regional adjustment),

the positive shift amounts to +0.64 PgC year−1 suggesting a large change in the carbon balance at the biogeographic Amazon505

scale. In any case, this change is within the large spread in NLF estimates by different approaches (Table 3). Now, placing

this in the context of the global carbon budget, an increase of +0.64 PgC year−1 is within the uncertainty of the global net

land carbon fluxes (1.1 PgC year−1) for 2013-2022 reported in Friedlingstein et al. (2023), and would represent a third of the

constraint given by atmospheric inversions with a range of 0.5-2.3 PgC year−1 (Friedlingstein et al., 2023). Therefore, given

the large uncertainties reported for the global carbon budget, it is possible to accommodate such a magnitude shift in the net510

land carbon flux of the biogeographic Amazon.

Table 3. Comparison of NLF for the Amazon region based on top-down and bottom-up approaches. We present estimates for two different

definitions of Amazon boundaries, the Biogeographic Amazon and the Amazon sensu-stricto+. The latter corresponds to four subregions

defined in Eva et al. (2005): Amazon sensu stricto, Andes, Guiana and Gurupi. We present our estimates for the Amazon sensu-stricto+ so

the area is comparable to previous top-downs studies. The acronym WVC, stands for water vapor correction. Units in PgC year−1.

Area Fires NLF Uncertainty

This study (all ensemble members) Biogeographic Amazon 0.10 -0.33 ± 0.33

This study (only process-based models) Biogeographic Amazon 0.10 -0.24 ± 0.33

Rosan et al. (2024)-Bottom-up Biogeographic Amazon 0.09 -0.15 ± 0.19

Rosan et al. (2024)-Hybrid Biogeographic Amazon - -0.25 ± 0.19

Rosan et al. (2024)-CARDAMOM Biogeographic Amazon - -0.34 CI=[-2.94,2.45]

Basso et al. (2023) in Rosan et al. (2024) Biogeographic Amazon - 0.02 ± 0.13

This study Amazon Sensu stricto+ 0.11 -0.18 ± 0.34

Basso et al. (2023) Amazon Sensu stricto+ 0.26 0.13 ± 0.17

Gatti et al. (2021) Amazon Sensu stricto+ 0.41 0.29 ± 0.40

This study (all ensemble members) + WVC-global Biogeographic Amazon 0.10 -0.33+0.21 = -0.12 ± 0.33

This study (all ensemble members) + WVC-regional Biogeographic Amazon 0.10 -0.33+0.31 = -0.02 ± 0.33

23

https://doi.org/10.5194/egusphere-2024-1735
Preprint. Discussion started: 15 July 2024
c© Author(s) 2024. CC BY 4.0 License.



4.1.1 Rivers

For the carbon balance of the main branch of the Amazon River, we estimated a NLF close to neutral. The median FNetLand

for the ’Amazon River Flat Plains’ region was -0.04 ± 0.09 PgC year−1. Note that this region is relatively well constrained

by the atmospheric monitoring network with an mean UR of 53%, thus the posterior estimates have the smallest spread of all515

regions (see Figure 3d). After removing fires and fossil fuel emissions (0.01 and 0.007 PgC year−1) the resulting flux, NEE +

Friver, is slightly negative. In this work we have considered river CO2 evasion (Friver) as an explicit component of the NBE

because we believe is a land flux that should be characterized independently of the NEE, in particular for the Amazon lowland

area considering that at least 31% (Fleischmann et al., 2022) can be seasonally flooded.

Using output from a process-based model (ORCHILEAK, Hastie et al. (2019)), Botía et al. (2022) suggested that river520

outgassing could play an important role in representing the seasonal pattern of CO2 mole fractions at ATTO, yet there are

important processes in that model that are not accounted for (i.e. aquatic plants), which is why in this study we did not used

ORCHILEAK as a prior. However, if we consider Friver as the CO2 evasion based on the ORCHILEAK model (Hastie

et al., 2019) for the ’Amazon River Flat Plains’ (0.09 PgC year−1), the resulting NEE for this area would be even more

negative, suggesting that plant productivity in this region is larger than the respired CO2 from the decomposition of organic525

matter. Nevertheless, the growth of aquatic plants in rivers could play an important role in the net balance of riverine CO2

fluxes (Science Panel for the Amazon, 2021). This uptake of carbon, which is not taken into account in ORCHILEAK, could

potentially balance out the CO2 outgassing due to decomposition of submerged organic carbon and respiration of roots, which

are the main sources in ORCHILEAK for the CO2 evasion. Our results for the ’Amazon River Flat Plains’ suggest the region is

close-to-neutral, but to partition the components NEE + Friver using an atmospheric inversion, bottom-up estimates for rivers530

should consider aquatic plant productivity, which is a crucial process to determine net river evasion or uptake.

4.2 Sink-to-source gradient between the biogeographic Amazon and the Cerrado & Caatinga

Our results suggest that the ’Cerrado & Caatinga’ biomes are possibly net sources of carbon, even after removing fires in

some individual inversions we obtain a positive NBE. This is in contrast to Gatti et al. (2021) and Basso et al. (2023). Gatti

et al. (2021) suggested that vegetation of the southeast of the Amazon was losing the capacity to capture carbon, reporting on535

average a positive NBE for the years 2010 to 2018, thus locating a net source of carbon within the Amazon in the southeast

regions. Basso et al. (2023) report a posterior carbon source in the eastern part of their domain (see Figure A11 in Basso et al.

(2023)). In both studies, the analyses were limited to the Amazon Sensu stricto + (as defined in Table 3) but used the same

aircraft data as we used in this study. Therefore, we believe that the main reasons explaining the differences reported here are:

1. limiting their region of interest to the Amazon boundaries, while using atmospheric data that is influenced by a footprint that540

goes beyond the Amazon and 2. having a coarse global inversion in which the boundaries between the Amazon biome and the

Cerrado are not well-defined leading to attributing sources from the Cerrado to the Amazon. Let us expand on 1.

The spatial attribution of fluxes in Gatti et al. (2021) is performed using a column budget technique. In this method, the

residence time of air parcels over each region of influence for each aircraft site is used to account for the time and the area
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that contribute to an enhancement or depletion of CO2 mole fractions at the site relative to the background. In our study, a545

similar source is needed to match the atmospheric profile data, but it is further east outside the Amazon bounds. This solution

is possible in our system with individual (though correlated) grid points that can be assigned extra flux, but it is not possible in

the setup of Gatti et al. (2021), where a mean flux rate is assigned to the areas of influence of the airborne measurements, which

is limited to the Amazon boundary. Thus, the degrees of freedom to place sources/sinks in specific biomes further upwind are

not present. Sensitivity tests in Botía B. (2022) indicate that our result is robust against changing the spatial error structure550

in the inversion settings. While recognizing such spatial differences between the studies, we nevertheless conclude that the

east-to-west gradient within Amazonia that Gatti et al. (2021) reports is not seen in our posterior ensemble median estimates.

Interestingly, an individual ensemble member (i.e. s10sam) do result in a source (0.03 gC m−2 d−2) in the ’Brazilian Shield

Moist Forest’, but still having a larger one (0.12 gC m−2 d−2) in the ’Cerrado & Caatinga’ (see Table 2). Therefore, it is likely

that the atmospheric signal of a carbon source is unmistakably in the data, but is attributed to different spatial regions by the555

different methodologies. Understanding this discrepancy, and determining the location of the eastern Brazilian CO2 source

should have the highest priority in further work. Next, despite of these discrepancies, we speculate on what could be driving a

source of carbon in the ’Cerrado & Caatinga’ region.

The ’Cerrado & Caatinga’ biomes cover approximately 35% of the Brazilian land mass (Beuchle et al., 2015) and are

characterized by a savannah-type ecosystem (Cerrado) (Sano et al., 2007) and seasonally dry tropical forest (Caatinga) (Prado,560

2003). Both biomes have a marked seasonality in precipitation, with mean annual precipitation of less than 750 mm year−1 in

the Caatinga (Prado, 2003; Leal et al., 2005), and from 800 to 2000 mm year−1 in the Cerrado (Ratter et al., 1997; Rodrigues

et al., 2022). Studies focusing on ecosystem functioning conducted in both biomes using eddy covariance measurements have

shown that these ecosystems have similar seasonal patterns in net ecosystem exchange. In general, with the onset of the rainy

season a higher carbon uptake is observed over converted pastures and over natural vegetation (Miranda et al., 1997; Varella565

et al., 2004; Santos et al., 2004; Silva et al., 2017; Mendes et al., 2020; Alves et al., 2021). Studies focusing on soil CO2

emissions comparing converted pasture and both natural ecosystems, Caatinga (Ribeiro et al., 2016) and Cerrado (Varella

et al., 2004), found no significant differences in magnitude between the pasture and the natural ecosystem. Both coincided with

higher CO2 emissions at the beginning of the rainy season (Varella et al., 2004; Ribeiro et al., 2016). The findings of Ribeiro

et al. (2016) are in line with Mendes et al. (2020), where they observed an increase in ecosystem respiration with the onset of570

the rainy season, but offset by GPP. Integrated over time, these ecosystems in their natural form or converted to pasture seemed

to be carbon sinks when no disturbance is taken into account (Santos et al., 2004; Bustamante et al., 2012; Silva et al., 2017;

Mendes et al., 2020; Alves et al., 2021).

However, these biomes have suffered considerable loss of natural vegetation due to the expansion of the agricultural frontier

(Beuchle et al., 2015; Alencar et al., 2019). Beuchle et al. (2015), found that over the period between 1990 and 2010, both575

biomes had a continued net loss of natural vegetation. More recently, most of the agricultural expansion in the Cerrado has

been concentrated in a region called MATOPIBA, which refers to portions of the Maranhão, Tocantins, Piauí and Baia states

(Spera et al., 2016; da Conceição Bispo et al., 2024). Drought periods in the Caatinga can extend over years (Leal et al., 2005),

making agricultural activities more difficult to sustain, yet considerable pasture conversion for extensive livestock has changed
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the Caatinga landscape (Leal et al., 2005). Fire is used for the conversion of forest and shrublands to pasture or croplands, thus580

that conversion leads to fire CO2 emissions (van der Werf et al., 2010; Pivello, 2011; van der Werf et al., 2017). The Cerrado

biome was found to have higher fire CO2 emissions than the Caatinga, with an increasing trend in recent years (da Silva Junior

et al., 2020). Moreover, the annual fire regime fluctuates between naturally occurring low-intensity fires at the end of the wet

season ignited by lighting, and anthropogenic high-intensity fires at the end of the dry season (Ramos-Neto and Pivello, 2000;

Pletsch et al., 2022). Frequent fires can lead to aboveground biomass reduction, changing the ecosystem from a sink to a source585

of carbon (de Azevedo et al., 2020). Moreover, Bustamante et al. (2012) found that a large portion of the CO2 emissions

from pasture management (i.e. burning practices) in Brazil originated in the Cerrado. Throughout 2003 to 2013, changes in

vegetation stocks due to cropland conversion in the Cerrado and specifically in the MATOPIBA region, contributed to 33% of

the forest carbon emissions (Noojipady et al., 2017).

Given these studies and our findings, carbon emissions in these two biomes but primarily in the Cerrado, can be grouped into590

two categories. The first one is associated directly with fires (either from deforestation or pasture management), and the second

arises from degradation after the conversion of natural vegetation to pastures or croplands. For the first category, we showed

that fire emissions increased from prior to posterior in the ’Cerrado & Caatinga’ region by a factor of 2.3, which is broadly

consistent with an increase in burned area from GFED4 to GFED5, by a factor of 1.7. Emissions in the second category are

associated with changes in carbon stocks, decomposition, and sink-to-source shifts due to climate change (Bustamante et al.,595

2012; Marengo et al., 2022). Having this in mind, we hypothesize that the carbon source in the semi-arid ecosystems of the

’Cerrado & Caatinga’ given by the atmospheric inversion is likely due to agricultural expansion in the Cerrado, mainly from

the second category mentioned above. On top, their capacity for secondary forest regrowth is compromised. This contrasts

with the Amazon biome, which is highly resilient (Sakschewski et al., 2016; Poorter et al., 2021), and has shown a relatively

rapid recovery of aboveground biomass by secondary forest growth (Poorter et al., 2016) with considerable potential to capture600

carbon (Heinrich et al., 2021, 2023). It is important to note here that Amazon forest resilience is heavily affected by anthro-

pogenic disturbances (Wang et al., 2024) and it seems to be decreasing since 2000 (Boulton et al., 2022), although this finding

has been questioned (Tao et al., 2023). This would make the carbon source we find in this study not only large but likely

also influence the regional carbon balance for decades to come. Therefore, the hypothesis of the ’Cerrado & Caatinga’ source,

driven by changes in carbon stocks and fires, should be part of a future study in which additional ways of testing the robustness605

of the inversion results are explored. For example, comparing several inversion systems using same data constraint could shed

light on the spatial gradients reported here. Finally, an assessment of having different or even multiple global inversions for

constraining the far-field contribution in the regional inversion should also be quantified and studied.

5 Conclusions

In this study, we have integrated in-situ CO2 measurements from the Amazon Tall Tower Observatory together with a network610

of airborne vertical profiles in the CarboScope regional inversion system to estimate carbon fluxes in tropical South America.

Our analysis is limited to regions with uncertainty reduction above 15%, which amounts to 67% of the land mass in our
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domain. Among these regions, the ’Amazon River Flat Plains’, the ’Brazilian Shield Moist Forests’ and to a lesser extent the

’Guianan Shield Moist Forests’ are better constrained than others. We suggest the regions with low uncertainty reduction, such

as the ’Orinoco Savannah’, the Northern and Central Andes, and the ’Gran Chaco’, as potential locations for new atmospheric615

measurement sites.

Furthermore, our results suggest a sink-source gradient between the Amazon (sink) and the ’Cerrado & Caatinga’ (source).

Across all ensemble members, this net absorption amounted to a median of -0.33 PgC year−1. When relying solely on process-

based models as priors, this value slightly decreased to -0.24 PgC year−1, both estimates with a posterior uncertainty of ±
0.33 PgC year−1. The Cerrado & Caatinga biomes together, acted as a median carbon source of 0.31 ± 0.24 PgC year−1. This620

finding, which is in contrast to other top-down studies (Gatti et al., 2021; Basso et al., 2023), is explained by two reasons.

The first one is that we do not limit our analysis to the Amazon boundaries, instead, we take into account the extended

surface influence of the vertical profiles, which goes beyond the Amazon. The second reason is associated with a higher spatial

resolution in our regional inversion system (0.25x0.25 degree) than in Basso et al. (2023). The latter allows us to integrate

fluxes over the analysis regions with improved precision. This is particularly relevant considering that fires occur on -but are625

not limited to- the border of the Amazon and the Cerrado, so when having coarser grids one can attribute Cerrado fires to the

Amazon.

Finally, we have quantified and reported important uncertainties associated with the data and methodology used in this work.

Part of this was the assessment of how systematic uncertainties due to water vapour in the aircraft vertical profiles affect the

estimated fluxes in our inversion system. Our analysis suggests that the proposed correction for water-vapor leads to an upward630

adjustment ranging from 0.2 to 0.3 PgC year−1 in the biogeographic Amazon carbon flux. Note that other than the shift in

magnitude, the interannual variability or the spatial gradients of the posterior fluxes do not change. Considering this correction

and the remaining uncertainty (0.33 PgC year−1) for the biogeographic Amazon, we conclude that such a change in the carbon

budget is within the uncertainty of the global net land carbon flux, but represent further challenges in constraining the recent

Amazon carbon balance.635

Code and data availability. The data that support the findings of this study are, the ATTO CO2 measurements, openly available in: https://

attodata.org/ and the aircraft vertical profiles, which are openly available in PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.926834.

The data generated in this paper, the simulated water vapor at each aircraft site with its corresponding bias correction (in ppm) will be

made public at the time of publication. For the review process, the reviewers can access the data under this private link https://edmond.

mpg.de/privateurl.xhtml?token=36e3c67d-d564-4c15-beaf-c0d46193a5b6. The analysis regions in postprocessing can be found here: https:640

//edmond.mpg.de/privateurl.xhtml?token=a4af161f-1b77-4611-aa01-7de9203639b8. At the time of publication, both links will be made

public. The posterior fluxes for each individual inversion run and the fire-CO2 emissions based on the MOPITT-CO inversions can be made

available upon request to Santiago Botía (sbotia@bgc-jena.mpg.de). The GFED5 burned area was retrieved from the open repository Zenodo

(https://doi.org/10.5281/zenodo.7668423) (Chen et al., 2023).
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Appendix A

Figure A1. Seasonal surface influence for each station used in the regional inversion. The averaging period for each station corresponds to

the period of data availability, which is site-specific, see Figure 1.
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Figure A2. Number of aircraft profiles per month over the period of interest in the inversion. An aircraft profile goes up until 4500 m.a.s.l

and on average collects samples at 14 heights.

Figure A3. Bias between PFPs and CRDS analyzer (Picarro Inc. model G2401-m) CO2 mole fractions at MAN as a function of water vapor

mole fraction measured by the CRDS analyzer.
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Figure A4. Correlation between STILT ECMWF-IFS water vapor and the measured water mixing ratio at the Manaus flights with a Picarro

(model G2401-m). The grey line corresponds to the predicted y using a linear regression.

Table A1. Mean effect on the posterior estimates of assimilating bias corrected vertical profiles using CarboScope global and regional. The

difference was calculated postFluxWVC - postFluxNonWVC, therefore positive numbers indicate that the WVC posterior flux is larger.

Units in PgC year−1.

CarboScope Global CarboScope Regional

Amazon and Andes Piedmont 0.02 0.04

Brazilian Shield Moist Forest 0.08 0.10

Cerrado & Caatinga 0.10 0.14

Guianan Shield Moist Forest 0.04 0.07

Amazon River Flat Plains 0.05 0.09

Biogeographic Amazon 0.21 0.31

All LAND 0.28 0.50
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Figure A5. Distribution of water vapor mole fractions at all sites extracted from ECMWF-IFS and the measurements at Manaus.
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Figure A6. Bias between Picarro (model G2401-m) and PFPs CO2 mole fractions at Manaus as a function of water vapor mole fraction

measured by the Picarro (model G2401-m) and also extracted from ECMWF-IFS.
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Figure A7. Bias (Picarro - PFP) estimated at each site using the fit to ECMWF-IFS water vapor.
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Figure A8. Prior mean NEE over 2010-2018 for several of the models used. Note the different range in the colorbar.
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Figure A9. Posterior mean NBE over 2010-2018 for several of the models used. Note the different range in the colorbar.
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Figure A10. Prior (upper panel) and posterior (lower panel) seasonal cycle of NBE for each ensemble member aggregated for each region

of interest.
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Figure A11. Prior to posterior uncertainty reduction throughout the complete inversion period (2010-2018).
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Figure A12. Atmospheric forward runs using the prior (a) and posterior fluxes (b). Model-data comparison is done at the sites assimilated

in the inversion (NAT, ATT, ALF, TAB, TEF, SAN, RBA) and at one site that was not assimilated (MAN*, v2 (Miller et al., 2023)) as a

validation site. Note that the global inversions s10 and s10sam have a zero-prior, so no forward run is available for those. In addition, note

that s10 global inversion did not assimilated any of the sites shown here. At the MAN site we use aircraft profiles using a Picarro (model

G2401-m) over the 2017 to 2018. For the MAN measurements the surface influence (or footprints) over were calculated for a 10s CO2 mole

fraction average. We used the same setting described for STILT-IFS in methods.
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Figure A13. Prior and posterior IAV of the NLF for the Biogeographic Amazon (a), the ’Cerrado & Caatinga’ (b), and the regions within the

Biogeographic Amazon (c-f).

40

https://doi.org/10.5194/egusphere-2024-1735
Preprint. Discussion started: 15 July 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure A14. Prior and posterior GFAS fire emissions for the regions within the Biogeographic Amazon (a-d), the Cerrado & Caatinga (e)

and the Biogeographic Amazon (f).
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Figure A15. Time series of posterior fluxes for each region using the global inversion assimilating data with the water vapor correction and

without it.
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