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Abstract 
Hydrogen may be the most important electron donor available in the subsurface. Here we analyse the diversity, abundance and 
expression of hydrogenases in 5 proteomes, 25 metagenomes, and 265 amplicon datasets of groundwaters with diverse geochemistry. A 
total of 1545 new [NiFe]-hydrogenase gene sequences were recovered, which considerably increased the number of sequences (1999) in 
a widely used database. [NiFe]-hydrogenases were highly abundant, as abundant as the DNA-directed RNA polymerase. The abundance 
of hydrogenase genes increased with depth from 0 to 129 m. Hydrogenases were present in 481 out of 1245 metagenome-assembled 
genomes. The relative abundance of microbes with hydrogenases accounted for ∼50% of the entire community. Hydrogenases were 
actively expressed, making up as much as 5.9% of methanogen proteomes. Most of the newly discovered diversity of hydrogenases was 
in “Group 3b”, which has been associated with sulfur metabolism. “Group 3d”, facilitating the interconversion of electrons between 
hydrogen and NAD, was the most abundant and mainly observed in methanotrophs and chemoautotrophs. “Group 3a”, associated 
with methanogenesis, was the most abundant in proteomes. Two newly discovered groups of [NiFe]-hydrogenases, observed in 
Methanobacteriaceae and Anaerolineaceae, further expanded diversity. Our results highlight the vast diversity, abundance and expression 
of hydrogenases in groundwaters, suggesting a high potential for hydrogen oxidation in subsurface habitats. 
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Generating hydrogen (H2) from solar and wind energy, and subse-
quently storing it on a terawatt scale in the subsurface is currently 
considered a key aspect of the energy transition [1-3]. One of the 
potential challenges of this approach is the microbial oxidation 
of hydrogen, which could induce hydrogen loss [4-6]. Our recent 
work suggested a high potential for microbial hydrogen turnover 
in groundwaters, based on dissolved hydrogen concentrations, as 
well as detection and activity of hydrogenotrophic methanogens 
[7]. Here we explored the diversity and potential functions of 
hydrogenases with an expanded sample set encompassing 265 
groundwater samples (geochemically characterised and amplicon 
sequenced, with additional 25 metagenomes and 5 proteomes) 
from 138 wells in Alberta (Canada), with sampling depths between 
0 and 157 m (Fig. S1, Tables S1, S2). The groundwaters displayed a 
range of oxidation states from oxic to completely reduced, accom-
panied with a wide range of sulfate (>10 g/L to below detection) 
and methane concentrations (74 mg/L to below detection). 

The abundance and expression of different types of hydroge-
nases were estimated based on unassembled reads, assembled 
contigs, metagenome-assembled genomes (MAGs), and proteins 
in 25 groundwaters. Few [Fe]- and [FeFe]-hydrogenases were 
present in our data. Notably, the catalytic subunit of [NiFe]-
hydrogenase was as abundant as the DNA-directed RNA 
polymerase (rpoB) (Fig. 1A, Table S3). In 12 out of 25 metagenomes, 
hydrogenase genes were more abundant than rpoB genes, 

indicating multiple copies of same subtypes or various subtypes 
of hydrogenases in a single genome. The ratio of hydrogenase 
over rpoB correlated positively with depth (P = 0.009, Fig. 1B). 
From metagenomes, 616 high-quality and 629 medium-quality 
MAGs were obtained. Hydrogenases were present in 481 out of 
1245 MAGs, which together accounted on average for 50% of the 
relative abundance of all MAGs (Fig. 1C, Table S4). In eight sam-
ples, MAGs with hydrogenases accounted for >70% of all MAGs. 
Although conducting proteomics with groundwater samples is 
challenging due to low cell counts, we obtained proteomes of 
five groundwaters, showing hydrogenases accounted for 0.016– 
1.0% of all proteins (Tables S5–S9). In proteomes of individual 
species associated with our MAGs, the relative abundance of 
hydrogenases ranged from 0.0026% (Methylomonadaceae) to 5.9% 
(Methanobacteriaceae) (Fig. 1D). Interestingly, hydrogenase was 
more abundant in the three methanogen proteomes (>1.3%) 
than the 21 bacterial proteomes (<0.19%) (Tables S5–S9). Thus, 
hydrogenase genes might be one of the most prevalent genes in 
the subsurface and active expression indicated these genes were 
functional. 

From the assembled contigs, 1545 [NiFe]-hydrogenase gene 
sequences were recovered (Supplementary Result 1), which 
displayed vast diversity (Table S10). These groundwater hydro-
genase sequences considerably increased the number (1999) of 
[NiFe]-hydrogenase sequences present in a widely used database
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Figure 1. Abundance and expression of hydrogenases. (A) Ratio of reads mapped to hydrogenase genes over reads mapped to rpoB genes in 
metagenome of 25 groundwater samples. The arrow indicates the subgroup of hydrogenases with the highest abundance in sampled groundwaters. 
(B) Relationship between depth and total abundance of hydrogenases. Spearman’s rank correlation coefficient and the P-value are shown. The line 
shows the linear regression. (C) Relative abundance of 1245 MAGs (13–194 per sample) with and without hydrogenases. MQ: medium-quality. HQ: high-
quality. Relative abundances were based on reads mapped to an MAG divided by total reads mapped. (D) Abundance of hydrogenases in proteomes. 
Relative abundance within a sample was calculated as % of all peptide spectral matches of the sample. Relative abundance for individual MAGs was 
calculated as % of all peptide spectral matches associated with the MAG. 

( Fig. 2) [8]. The newly discovered diversity, abundance, and 
expression were concentrated among a few specific subtypes 
of [NiFe]-hydrogenases, groups 1e, 3a, 3b, and 3d. Most of the new 
diversity was observed in group 3b, while group 3d was the most 
abundant in metagenomes and group 3a was the most abundant 
in proteomes. 

Hydrogenases of groups 1e and 3b are associated with 
sulfur reduction [8, 9]. In our data, the abundance of groups 
1e and 3b both positively correlated with sulfate concen-
tration (P = 0.025 and 0.007, respectively, Fig. S2). Group 3b 
hydrogenases were occasionally observed in close proximity to 
sulfhydrogenase subunit delta and sulfite reductase subunit 
A (Tables S12, S13). Among high-quality MAGs, group 1e 
was exclusively present in members of Burkholderiales, and 
sometimes co-existed with group 3b. Group 3b was commonly 
detected in MAGs of sulfate-reducing microorganisms, par-
ticularly thirteen Desulfobacterota and three Thermodesul-
fovibrionia. These MAGs also encoded sulfate adenylyltrans-
ferase, adenylylsulfate reductase, and dissimilatory sulfite 
reductase (Table S11). Some group 3b hydrogenases were detected 
in MAGs of sulfur-oxidising microorganisms such as three 
Gallionellaceae that encoded sulfide:quinone oxidoreductase and 
sulfite dehydrogenase, and four Thiobacillaceae that contained the 
thiosulfate oxidation sox complex. These hydrogenases might 
also function alongside sulfur oxidation, coupled to oxygen or 
nitrate reduction. Many other group 3b were detected in genomes 
of microbial “dark matter” clades, such as Patescibacteria 
(14) and Omnitrophota (5), consistent with previous findings 
[10, 11]. 

Group 3a hydrogenases are associated with methanogenesis 
[8, 9] and were most abundant in our proteomes (Fig. 1D, 
Tables S5–S9). They were exclusively observed in MAGs of 
hydrogenotrophic methanogens, six Methanomicrobiales and 
four Methanobacteriales [12]. All Methanobacteriales also 
encoded tetrahydromethanopterin-reducing [Fe]-hydrogenases. 
Nine of them possessed tetrahydromethanopterin S-methyltrans-
ferase (Mtr), the key enzyme for hydrogenotrophic methano-
genesis [13]. Two of them contained Methylamine:Coenzyme M 
Methyltransferase (mtbA), suggesting that they might produce 
methane from methylamine [14]. These results were consistent 
with previous research showing active conversion of CO2 into 
methane in hydrocarbon reservoirs [15]. 

Group 3d is associated with fermentative metabolism and 
chemoautotrophy, interconverting electrons between hydrogen 
and NADH depending on cellular redox state [8, 9]. Group 3d 
was the most abundant subgroup in 15 out of 25 groundwater 
samples (Fig. 1A). Most group 3d hydrogenase genes were close 
to an NADP oxidoreductase gene (Tables S13, S14). 3d hydroge-
nase genes were present in 89 high-quality MAGs, with 12 of 
them encoding formate C-acetyltransferases or lactate dehydro-
genases, both signature genes of fermentative metabolism. Of 
these MAGs, 21 were associated with methanotrophic Methy-
lomonadaceae. For the other 68 MAGs, 40 of them contained 
both RuBisCO and phosphoribulokinase, indicating a functional 
Calvin cycle. For instance, MAGs associated with Rhodocyclaceae 
(12), Hydrogenophaga (7), Nitrosomonas (7), and Rhodoferax (5) fall 
into this category. Thus, it is likely that these chemolithoau-
totrophs can use hydrogen as an additional energy source, with
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Figure 2. Phylogenetic tree of the catalytic subunit of [NiFe]-hydrogenases. The tree is midpoint-rooted. An arrow inside indicates the place of 
[NiFe]-hydrogenases with high diversity, abundance, or expression discovered in sampled groundwaters. Any sequences with total read counts over 
1000 in the 25 samples are marked with a star. From inside to outside, the three rings around the tree indicate (1) source, (2) phylum-level taxonomy, 
and (3) subgroups based on HydDB [5]. 

the hydrogenase transferring electrons from H2 to NAD+ to drive 
their Calvin cycles. 

Two newly discovered groups of [NiFe]-hydrogenases further 
expanded diversity. The first was positioned near the root of 
the tree (Fig. 2). This group consisted of three sequences, exclu-
sively found in Methanobacteriaceae. The other newly discovered 
group was near the root of group 3b, composed of six sequences, 
including five sequences affiliated with Anaerolineaceae and one 
affiliated with Bathyarchaeia. 

Consistency in the types/subgroups of hydrogenases and 
metabolisms among MAGs with the same taxonomic identity 
was observed for common groundwater residents, which helped 
to extrapolate metagenomic findings to 265 amplicon-sequenced 
groundwater samples. For example, the total relative abundance 
of Methylomonadaceae bacteria (all 21 MAGs had hydrogenases) 
could reach 88.6% (Table S15). Members of Hydrogenophaga (8 out 
of 14 MAGs had hydrogenases) could be as abundant as 71.2%. 
These findings suggest a high potential for hydrogen consumption 
in sampled subsurface habitats. 

While the subsurface ecosystems analysed here would not be 
suitable for hydrogen storage, our study adds to growing evi-
dence that hydrogenases are diverse, functional and ubiquitous in 
subsurface environments [16-19]. However, as hydrogenases were 
most abundant in methanogen proteomes, this need not always 
be a barrier to hydrogen storage, since recovery of methane could 
still be a desirable outcome. Likely, any subsurface environment 
at a temperature conducive to life would harbor microorganisms 
that thrive on hydrogen. 
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