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Abstract Interpretable Machine Learning (IML) has rapidly advanced in recent years, offering new
opportunities to improve our understanding of the complex Earth system. IML goes beyond conventional
machine learning by not only making predictions but also seeking to elucidate the reasoning behind those
predictions. The combination of predictive power and enhanced transparency makes IML a promising approach
for uncovering relationships in data that may be overlooked by traditional analysis. Despite its potential, the
broader implications for the field have yet to be fully appreciated. Meanwhile, the rapid proliferation of IML,
still in its early stages, has been accompanied by instances of careless application. In response to these
challenges, this paper focuses on how IML can effectively and appropriately aid geoscientists in advancing
process understanding—areas that are often underexplored in more technical discussions of IML. Specifically,
we identify pragmatic application scenarios for IML in typical geoscientific studies, such as quantifying
relationships in specific contexts, generating hypotheses about potential mechanisms, and evaluating process‐
based models. Moreover, we present a general and practical workflow for using IML to address specific
research questions. In particular, we identify several critical and common pitfalls in the use of IML that can lead
to misleading conclusions, and propose corresponding good practices. Our goal is to facilitate a broader, yet
more careful and thoughtful integration of IML into Earth science research, positioning it as a valuable data
science tool capable of enhancing our current understanding of the Earth system.

Plain Language Summary Artificial Intelligence is a rapidly advancing field, in which Interpretable
Machine Learning (IML) is seen as having the potential to significantly improve our understanding of Earth's
complex environmental systems. IML goes beyond the predictive power of machine learning models, focusing
instead on uncovering the relationships within the data that are revealed by the model's learning process.
However, there is still a lack of straightforward, practical domain‐specific guidelines for geoscientists that
facilitate both broader and more careful application in the field. In this paper, we aim to demonstrate the real‐
world benefits of IML in typical geoscientific analysis. We provide a clear, step‐by‐step workflow that shows
how IML can be used to address specific questions. We also point out some common pitfalls in using IML and
offer solutions to avoid them. Our goal is to make IML more accessible and useful to a wider range of
geoscientists, and we believe that IML, if used properly and thoughtfully, can become an essential and valuable
tool to advance our understanding of complex Earth systems.

1. Introduction
The widespread application of machine learning (ML) in the geosciences, particularly for predictive modeling,
represents a significant technological advance (e.g., Bi et al., 2023; Ham et al., 2019). While their predictive
capabilities are widely acknowledged, MLmethods are often considered separate from the fundamental scientific
methodologies of the geosciences, typically being viewed as more practical tools for simulation and forecasting
rather than integral components of scientific exploration (Nearing et al., 2021). It was hoped that ML would
revolutionize scientific inquiry (H. Wang et al., 2023), but this anticipated transformation has yet to fully
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manifest. One concern is that these innovations may not be fully aligned with the core scientific goals of the
discipline (e.g., Birhane et al., 2023).

In recent years, the ML community has made significant progress in developing strategies to improve model
interpretability, leading to the evolution of interpretable ML (IML) and explainable AI (XAI) (Gunning &
Aha, 2019; Murdoch et al., 2019). Despite the differences between IML and XAI as they are used in the ML
community, for example, IML focuses more on models and XAI includes a broader set of techniques to make ML
more explainable (Rudin et al., 2022), we choose not to emphasize these distinctions in this paper. Our con-
centration is more on the broader concept and practical applications of IML, and thus most terms related to IML
can be used interchangeably with XAI in the following discussions. In this paper, we approach IML from a
practical perspective, focusing primarily on the use of post‐hoc interpretation techniques, although inherently
interpretable models are also discussed in context. These post‐hoc interpretation techniques, such as Shapley
additive explanations (SHAP) (Lundberg & Lee, 2017), integrated gradients (Sundararajan et al., 2017), and local
interpretable model‐agnostic explanations (LIME) (Ribeiro et al., 2016), are intended to help users demystify the
inner workings of complex, often opaque ML models. For geoscientists with ML expertise, these techniques
(albeit with varying effectiveness) provide a way to demonstrate the credibility of a model by justifying its
mechanisms against existing knowledge (Dwivedi et al., 2023). Here, however, we highlight the potential of IML
to benefit a much broader range of geoscientists, including those who have not engaged with ML models in their
research. Essentially, IML provides a new lens for exploring, interpreting, and understanding the complex re-
lationships within geoscientific data (Toms et al., 2020). Through the process of interpreting ML models, we may
gain insight into how different input features interact and influence geoscientific phenomena, including re-
lationships that might be difficult to identify through traditional analysis (e.g., Ham et al., 2023; Jiang et al., 2024;
Kraft et al., 2019).

Despite the progress made in implementing IML to improve scientific understanding and discovery in many fields
(Roscher et al., 2020b), its integration into established geoscientific methodologies still requires both more
diverse and careful application. On the one hand, IML is often introduced through a data science‐centric lens that
typically focuses on its fundamental concepts, various algorithms, and major research trajectories and trends (e.g.,
Adadi & Berrada, 2018). However, for geoscientists engaged with process‐based models, the value of IML may
not be immediately apparent, as IML is more likely to be perceived as a technical tool for justifying or debugging
ML models. On the other hand, the rapid proliferation of IML has also led to instances of careless application
without a thorough understanding of its limitations and underlying assumptions (Arif & MacNeil, 2022; Molnar
et al., 2022; Roscher et al., 2020a).

Therefore, this paper aims to bridge this gap by highlighting both the practical benefits and good practices of using
IML in geoscientific research. Our goal is not to provide an exhaustive review of IML techniques and their
applications in the geosciences, which have been extensively covered in the literature, such as Gevaert (2022) on
IML in Earth observation and remote sensing, Başağaoğlu et al. (2022) in hydroclimate, and Mamalakis, Ebert‐
Uphoff, and Barnes (2022) in meteorology and climate science. Here, we narrow our focus to the direct relevance
of IML for broad geoscience purposes, particularly with respect to process understanding, an aspect that has been
variously highlighted as critical in AI for Earth system science (e.g., Irrgang et al., 2021; Reichstein et al., 2019;
Shen et al., 2023) but still needs more focused discussion. Specifically, we will concentrate on promising ap-
plications of IML for targeted insights for geoscientists, including non‐linear quantification of relationships
within data, generation of hypotheses about potential mechanisms, and evaluation of process‐based models. We
present a general but practical workflow for effectively integrating IML into routine research activities, from
translating specific geoscience research questions into IML tasks to obtaining actionable insights from the IML
models. Importantly, we identify several common pitfalls of IML applications and emphasize that careless use of
IML can not only lead to potentially misleading conclusions but also undermine its credibility in the geoscience
field. Ultimately, we hope to make IMLmore accessible and relevant to a broader range of geoscientists, enabling
them to properly use these innovative tools in their scientific endeavors and opening new avenues for under-
standing Earth's complex systems.
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2. Relevance for Geosciences
2.1. Demystifying IML for Geoscientists

While there has been a surge in IML research over the past decade, the concept of deriving interpretable models
from data has a longer tradition (Molnar et al., 2020). For instance, linear regression, which dates back to the early
nineteenth century and has been widely used in scientific studies, can be broadly considered an early incarnation
of IML. Linear regression has evolved into a variety of regression analysis tools, such as logistic regression,
generalized linear models (GLMs) (Nelder & Wedderburn, 1972), and generalized additive models (GAMs)
(Wood, 2017). These models are often designed based on specific distributional assumptions and a predefined
limit on complexity to ensure interpretability. Similarly, models such as decision trees (Quinlan, 1986) and
decision rules (Quinlan, 1987) are inherently interpretable, as their decision logic can be easily traced by
examining the learned rules or structured hierarchy of decisions.

However, relying solely on the inherent interpretability of these simple models can have limitations, particularly
in terms of predictive performance, as their simplicity may restrict their ability to capture arbitrarily non‐linear
interactions. On the other hand, complex ML models, such as deep neural networks (NNs) and boosting algo-
rithms, often outperform simpler models in terms of accuracy, but lack inherent interpretability (Dramsch, 2020;
Molnar et al., 2020). As a result, popular IML research uses post‐hoc interpretation methods to explain the output
of “black‐box” ML models (Dwivedi et al., 2023). Particularly, the built‐in measure of feature importance in
random forests (RFs) was a major milestone (Breiman, 2001a). Since around 2015, the IML field has experienced
significant growth, with the emergence of numerous model‐agnostic explanation methods applicable to different
ML model types as well as model‐specific explanation methods tailored to NNs or tree ensembles (Molnar
et al., 2020). These post‐hoc methods (hereafter referred to as interpretation methods or interpretation techniques)
do not simplify the model itself, but rather provide a window into the complex interactions and non‐linear re-
lationships that the model has captured from the data.

Generally, interpretation methods analyze the relationships learned by ML models by examining the model
components or sensitivities (Figure 1). For instance, activation maps help reveal how internal representations are
formed by convolutional NNs by visualizing the layer‐wise activation patterns (Olah et al., 2017). In comparison,
interpretation methods (e.g., SHAP, integrated gradients, and LIME) study the sensitivity aspect of MLmodels by
perturbing the original inputs, computing the gradient of model outputs with respect to inputs, or approximating
complex models with inherently interpretable models. Other than understanding the contribution of each input
feature to individual predictions, interpretation methods such as partial dependence plots (Friedman, 2001) and
permutation feature importance (Altmann et al., 2010) illustrate the general impact of features across the data set.
Overall, compared to inherently interpretable models, post‐hoc methods bring partial but functional interpret-
ability without sacrificing the predictive power of advanced ML models.

Figure 1. The relationship between data, machine learning (ML) models, and post‐hoc interpretation techniques, in the
framework of interpretable ML (IML), as well as the usefulness of their results in Earth science studies. The primary goal of
using IML in this context is to uncover relationships within the data used to make predictions. Dark blue arrows represent the
flow from data through opaqueMLmodels to post‐hoc interpretation techniques that make the MLmodels interpretable. The
revealed relationships can support various aspects of geoscientific research, with green boxes indicating applications that are
directly relevant to broader geoscience studies in terms of process understanding.
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In summary, IML is not an entirely new concept but can be regarded as a form of data analysis, or more spe-
cifically, an approach to understanding data through the lens of the data‐driven models that process it. This
perspective, though differing from the formal definition of IML, is useful in its pragmatism. IML essentially
extends the capabilities of traditional statistical tools by providing sophisticated methods for analyzing variable
relationships, which is particularly valuable in the geosciences where complex interactions and non‐linear re-
lationships are common. For readers interested in a more detailed technical understanding of the IML algorithms
and methods discussed in this paper, we recommend referring to comprehensive reviews (e.g., Adadi & Ber-
rada, 2018; Barredo Arrieta et al., 2020; Başağaoğlu et al., 2022; Gevaert, 2022; Gilpin et al., 2018; Gunning
et al., 2019; Mamalakis, Ebert‐Uphoff, & Barnes, 2022; Molnar et al., 2020; Murdoch et al., 2019; Roscher
et al., 2020a, 2020b) that provide in‐depth discussions of various interpretation techniques, their theoretical
underpinnings, their implementation details, and their applications in various subfields of the geosciences.

2.2. Usefulness of IML for Geoscientists

IML offers a variety of applications in the geosciences, and its usefulness may be most apparent to geoscientists
who focus on ML, primarily to justify and diagnose their models for predictive tasks (e.g., Kratzert et al., 2019;
Mayer & Barnes, 2021). In this paper, however, we will not discuss such applications in depth, but rather explore
how IML can be directly used to potentially enhance process understanding for the field (Figure 1).

2.2.1. Quantifying Relationships Within a Given Context

A fundamental aspect of process understanding in the geosciences is quantifying the relationships within data,
including identifying which variables are most influential, understanding the nature of their influence (whether
linear, non‐linear, or conditional), and determining how changes in one variable might affect others. IML is
directly applicable in this context, equipping geoscientists with the tools necessary to quantitatively delineate
relationships within established frameworks. These relationships may be partially known, but possibly remain
qualitative, conceptual, or local. For example, IML has been used to explore relationships between environmental
variables and diverse phenomena, such as species distributions (Ryo et al., 2020), flooding mechanisms (Jiang,
Zheng, et al., 2022), landslide generation processes (Brenning et al., 2015), and soil‐vegetation coupling (W. Li
et al., 2022). IML has facilitated the identification of hotspot regions where precipitation anomalies are highly
sensitive to anthropogenic warming (Ham et al., 2023), or where regional temperature signals exhibit significant
sensitivity to aerosol forcing (Labe & Barnes, 2021). Overall, IML allows geoscientists to refine and enhance the
current scientific understanding in a quantifiable and non‐linear context. However, it should be emphasized that
the relationships uncovered by IML using predictive models, while potentially useful, are not inherently causal, as
discussed in more detail in Section 4.2.

In general, the primary approaches to infer variable relationships in the geosciences are conventional statistical
analysis and numerical experiments using process‐based models. Conventional (parametric) statistical methods,
which are based on solid theory and usually provide additional confidence intervals, prediction intervals, and
significance tests, are best suited for confirming well‐defined hypothetical relationships. In contrast, IML en-
hances data exploration within large, high‐dimensional data sets that often contain a multitude of interacting
factors and patterns that are not readily apparent through traditional statistical analysis (Breiman, 2001b).
Moreover, a practical advantage of IML is its ability to provide granular interpretations for individual instances
(Lundberg et al., 2020), which is important in scenarios where we need to understand specific data points, such as
the potential drivers of extreme events (van Oldenborgh et al., 2021).

Numerical experiments, such as controlled experiments, scenario analyses, and sensitivity analyses using
process‐based models, are common in the geosciences and critical to understanding how systems respond to
environmental change (e.g., O'Neill et al., 2016). However, conducting such numerical experiments can be time‐
consuming, limiting the number of experiments that can be realistically conducted. Controlled simulation ex-
periments also run the risk of inadvertently disrupting natural interdependencies, such as the typically anti-
correlated relationship between temperature and precipitation at interannual scales during summer (Madden &
Williams, 1978). If specific variables are manipulated in isolation, these experiments may lead to artificial
combinations of variables that are not physically plausible. This consideration is particularly important for un-
derstanding compound weather and climate events, where the combination of non‐extreme drivers can lead to
extreme impacts (Zscheischler & Seneviratne, 2017). Moreover, the effectiveness of numerical experiments often
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depends on a well‐established understanding of the underlying mechanisms of the systems. In cases where these
mechanisms are not fully known, or where comprehensive process‐based models are not available, the application
of IML to observational data may be partially useful (Irrgang et al., 2021).

2.2.2. Generating Hypotheses About Mechanisms With IML

In traditional geoscientific research, hypothesis generation often follows a time‐intensive path that begins with
careful observation of phenomena, followed by the formulation of a hypothesis based on those observations
(Sivapalan & Blöschl, 2017). This process typically involves extensive data collection, analysis, and integration
of multiple data sources (often based on the researcher's intuition) to identify patterns or anomalies. While
thorough, this approach can be slow and sometimes limited by the inherent biases and perceptual limitations of
human analysis. This is especially challenging in the era of big Earth data, where traditional analytical methods
may struggle to navigate the complexities inherent in large, diverse, and multimodal data sets (X. Li et al., 2023).
In comparison, IML can quickly analyze large and complex data sets, such as multidimensional data from
multiple sources (e.g., satellite imagery, sensor networks, and historical records). For instance, using a large data
set of Earth observations and climate variables, Kraft et al. (2019) analyzed variable contributions to temporally
lagged dependencies (i.e., memory effects) in vegetation modeling through interpretation of long short‐term
memory (LSTM) models. This investigation revealed some new aspects of memory effects, such as their asso-
ciations with climate gradients. While IML by itself does not confirm causality, because ML models may predict
the right outcome for the wrong reasons (Lapuschkin et al., 2019), the correlations, statistical dependencies, and
patterns it uncovers can still be informative. For example, IML may reveal that certain variables, previously
deemed unlikely to be relevant, play a significant role in predictions, or that the relevance of variables shifts in
ways that defy initial expectations (Ryo et al., 2020). These findings can prompt geoscientists to reevaluate their
prior assumptions, providing valuable starting points for further rigorous testing and investigation through tar-
geted studies and experiments (Carloni et al., 2023). This ability of IML to efficiently sift through and interpret
large amounts of data can accelerate the hypothesis generation process, and thus the entire research cycle. This
rapid turnaround is particularly beneficial in climate research or natural hazard assessment, where timely insights
can have a significant impact (van Oldenborgh et al., 2021). Furthermore, IML's ability to handle large data sets
means that hypotheses can be generated and refined in real time as new data become available, keeping pace with
the dynamic and evolving nature of the Earth system.

2.2.3. Evaluating Process‐Based Models With IML Insights

The relationships and patterns revealed by IML also facilitate the assessment of the variability of specific factors
across models, data sets, or scenarios (Reichstein et al., 2019), something that is often less emphasized. Un-
derstanding whether different models consistently reproduce the dependence structure of variables observed in
real‐world data would help evaluate and refine process‐based models (e.g., Gnann et al., 2023). Process‐based
models are essential for projections of future trends, though the reliability of these models in simulating future
climate events cannot be directly evaluated. Traditional model evaluation and intercomparison have largely relied
on benchmarking approaches that focus on univariate comparisons, where the performance of models is assessed
based on their ability to reproduce observed values of individual variables (Jägermeyr et al., 2021). However, the
univariate approach may overlook compensating errors that arise from interactions among multiple variables
within a system, potentially masking problems in model structure or parameterization (Touzé‐Peiffer et al., 2020).
C. Müller et al. (2024) emphasize the need to include analyses of functional properties in process‐based model
evaluation, which may reveal more about model plausibility and skill than merely comparing variables, since
different model responses to drivers may offset each other in the historical evaluation period, but not in future
scenarios. To this end, the use of IML to evaluate these multifaceted relationships holds promise to provide
geoscientists with a tool that complements and enhances traditional evaluation techniques and moves toward
pattern‐ and process‐oriented model evaluation (Reichstein et al., 2019). By inter‐comparing IML‐derived re-
lationships from models with those from observational data sets, we can uncover the consistencies and in-
consistencies in their covariability, and thus identify specific aspects of the model that may require adjustment or
further investigation. Such evaluations are particularly relevant for addressing the challenges of predicting
extreme climate and weather events under climate change, which are often caused by complex interactions among
multiple factors (Zscheischler et al., 2018). In this case, however, the challenges of out‐of‐distribution predictions
and representational biases are considerable.
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Recently, advanced data science methods such as complex networks and causal discovery algorithms have been
increasingly used in climate model evaluation. For example, Feldhoff et al. (2014) applied complex networks to
evaluate a regional climate model simulating multiple climate variables in South America, where the charac-
teristics of the constructed networks were compared between the model and reanalysis data. Likewise, Nowack
et al. (2020) used causal networks to evaluate coupled model intercomparison project phase 5 (CMIP5) models,
focusing on their ability to simulate atmospheric dynamical interactions represented by lagged correlations be-
tween climate variables at remote locations. They found models that more accurately capture characteristic causal
relationships tend to have smaller biases in their precipitation simulations. However, the potential for using IML
for model evaluation, for example, in various model intercomparison projects (e.g., Eyring et al., 2016; Wars-
zawski et al., 2014), remains largely unexplored. IML could be used to systematically compare these models to
identify common or different model biases, to constrain uncertainties in climate change projections, and to
provide a comprehensive overview of areas for improvement.

3. Typical Workflow of IML for Process Understanding
Having established the relevance and applicability of IML in the geosciences, this section is dedicated to outlining
an actionable workflow for the effective use of IML in geoscientific research (Figure 2a). This workflow is
intended as a practical guide to assist geoscientists in structuring their research questions and methodologies
around IML to achieve reliable and meaningful results. Here, we focus on presenting the key stages and general
principles of the workflow, exemplified by selected cases from the existing literature (Figures 2b–2g). Detailed
technical discussions and more extensive examples can be found in Supporting Information S1.

In all cases, the decision to use IML, whether simple or complex, should be contextually appropriate to the
specific complexity and demands of the data and research questions. Once the IML workflow has been imple-
mented, it is advisable to compare the results with those derived from traditional analysis methods to assess the
unique insights and added value that IML can bring to the study.

3.1. Translating Geoscientific Research Questions Into IML Tasks

The first and perhaps most critical step is to clearly define the research question and translate it into a task that can
be effectively addressed using IML methods. Typical investigations may focus on identifying key influencing
factors and their contributions, or untangling dependencies and conditional effects. For example, geoscientists
may want to understand how a specific outcome (e.g., extreme weather and climate events) can be attributed to
potential drivers (e.g., Davenport & Diffenbaugh, 2021; Jiang, Zheng, et al., 2022; Kondylatos et al., 2022; Ryo
et al., 2020; R. Wang et al., 2021). In these scenarios, the IML task is to quantify the relationships between these
events (Y) and a number of possible influencing factors (X ), such as atmospheric conditions or geographic
features. Beyond attribution to individual factors, IML can be used to determine how multiple factors interac-
tively affect a particular outcome (e.g., H.Wang et al., 2022; Xu et al., 2023). The question of critical thresholds in
systems can also sometimes be translated into IML tasks of identifying inflection points in the contribution of X
relative to its value (e.g., Chakraborty et al., 2021). These examples and additional case studies are elaborated in
Text S1 in Supporting Information S1.

At this stage, it is important to form preliminary hypotheses based on existing knowledge, literature review, or
exploratory data analysis. These hypotheses can guide the selection of appropriate IML methods that address
specific types of data and are consistent with the goals of the research. For instance, if the hypothesis involves
exploring the complex interaction effects between variables in tabular data, the IML methods considered should
be capable of explicitly quantifying these interactions. Possible approaches may include the use of tree‐based
models, such as RFs or extreme gradient boosting (XGBoost) (Chen & Guestrin, 2016), in conjunction with
TreeSHAP (Lundberg et al., 2020), which allows the decomposition of model predictions into the contributions of
feature pairs based on the structured decision paths inherent in these models. Alternatively, one could consider
Explainable Boosting Machines (Lou et al., 2013), where interaction terms can be explicitly specified during
model configuration and each interaction term is modeled and interpreted separately.

For readers seeking detailed guidance on method selection, numerous comprehensive reviews and studies (e.g.,
Barredo Arrieta et al., 2020; Bommer et al., 2024; Graziani et al., 2023; Mamalakis, Barnes, & Ebert‐Uph-
off, 2022; McGovern, Lagerquist, et al., 2019; Schwalbe & Finzel, 2023; Zhong et al., 2022) are available that
thoroughly examine the suitability and conditions for using specific IML methods. For instance, Schwalbe and
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Finzel (2023) provide a structured and detailed taxonomy of IML methods that synthesizes insights from a
multitude of surveys on IML techniques, metrics, and characteristics, which can assist researchers in identifying
the most suitable IML methods for various domain‐specific explanation use cases. Additionally, Bommer

Figure 2. Workflow and examples of applying interpretable machine learning for geoscientific process understanding. (a) Flowchart illustrating the general workflow,
where gray boxes represent objects and red boxes represent operations (explained in the corresponding subsections). (b–g) Illustrate how the algorithmic explanation
results for different types of data can be translated into scientific understanding with examples from the literature (briefly explained in Section 3.5 and detailed in Text
S4 in Supporting Information S1). (b, e) Are modified from Davenport and Diffenbaugh (2021), where (b) shows a sea level pressure anomaly map for a given day, with
the IML‐derived pixel‐wise relevance indicating its contribution to the classification of the day as having large‐scale extreme precipitation circulation patterns (EPCP).
(e) Presents composite relevance maps for EPCP days, which aggregate the relevance maps exemplified in (b). (c, f) Are adapted from Jiang, Bevacqua, and
Zscheischler (2022). (c) Shows the IML‐derived feature importance of precipitation, temperature, and day length over 180 days for predicting streamflow on the
subsequent day. (f) Illustrates the results of a clustering analysis applied to all feature importance values across events and basins, with the bar plot indicating the average
feature contribution pattern (aP: antecedent precipitation from 180 to 7 days before the event) and the map showing the proportion of events falling into this cluster in
individual basins. (d, g) Are adapted from H. Wang et al. (2022). (d) Indicates the contribution of seven variables in predicting gross primary productivity for a specific
sample, as estimated by the SHAP value. The actual values of these variables are shown in gray. The top plot in (g) illustrates the relationship between feature
contribution (x‐axis) and values (color) across all variables. The bottom plot in (g) is a dependence plot of vapor pressure deficit (VPD) versus its contribution value
along the soil water content (SWC) gradient in grasslands. For more information, including definitions of other abbreviations, see the respective references.
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et al. (2024) discuss metrics for evaluating different IML methods in the context of climate science. They
highlight key considerations in selecting an appropriate IML method and propose a framework using evaluation
metrics to support the selection of an appropriate IML method for a specific research task.

3.2. Preparing and Preprocessing Data

Data preparation is a fundamental step in the IML workflow. The accuracy and reliability of IML outcomes
depend heavily on the collection of appropriate and comprehensive data relevant to the defined problem.
Typically, variable selection is improved iteratively, guided by model evaluation and interpretation in subsequent
steps. In addition to following general principles of data preparation for ML models, such as handling missing
values or outliers (Zhu et al., 2023), it is necessary to ensure that the data adequately reflect the temporal and
spatial scales relevant to the processes under study (Jiang, Bevacqua, & Zscheischler, 2022; W. Li et al., 2022).
Importantly, data volume alone may not be sufficient for IML studies; diversity within the data is equally
important (Fang et al., 2022), and different scenarios, conditions, and variations should be included. However, the
sample distribution should not disproportionately favor, for instance, certain climatic zones or geographic fea-
tures, a common issue in site‐based observational data sets (Chu et al., 2017). In addition, as a general principle,
data often require cleaning, formatting, and transformation to be used effectively (e.g., L. Yu et al., 2006), and this
is no different for geoscience data. Depending on the research question, it may also be necessary to remove
seasonality and long‐term trends from time series data in order to focus on more specific variables of interest (e.g.,
Davenport & Diffenbaugh, 2021; W. Li et al., 2022) (detailed in Text S2 in Supporting Information S1).

3.3. Training and Validating ML Models

Training a ML model for process understanding may require more consideration than for purely predictive tasks.
For example, the choice of an appropriate ML model should be informed by the complexity of the geoscience
question and data, as well as the goals of the analysis. In general, the chosen model should be as complex as
necessary to capture the essential dynamics of the data, but as simple as possible so that its interpretations can be
translated into concise and actionable insights (Toms et al., 2020). The full extent of complexity is often not
immediately evident, so it is wise to start with a simpler and more transparent model as a baseline and increase
complexity incrementally (discussed in Section 4.5). Also, different ML models have unique strengths and are
better suited to specific types of geoscience questions, and the choice of model affects how well it can handle
spatial and/or temporal aspects of the data (Grinsztajn et al., 2022; Ham et al., 2019; Jiang, Bevacqua, &
Zscheischler, 2022; Kraft et al., 2019; Kratzert et al., 2019; Lees et al., 2022; Saha et al., 2021) (detailed in Text
S3 in Supporting Information S1).

An important consideration throughout the model building process is to prevent potential information leakage and
ensure that the resulting model is generalizable and does not learn shortcuts (Schratz et al., 2019; Sweet
et al., 2023). This requires careful management of the training and test data sets with consideration of the specific
characteristics of the data (Bischl et al., 2023; Brenning, 2022; Davenport & Diffenbaugh, 2021; de Burgh‐Day &
Leeuwenburg, 2023; Lopez‐Gomez et al., 2023; McGovern, Jergensen, et al., 2019; Meyer & Pebesma, 2022)
(detailed in Text S3 in Supporting Information S1), and implementing strategies such as regularization and early
stopping to prevent the model from exploiting certain patterns in the training data to overfit (Ying, 2019).

Careful evaluation of model performance is essential to derive meaningful interpretations in subsequent steps.
While sufficient predictive accuracy is necessary, it alone does not guarantee that the model has effectively
captured the underlying patterns and relationships in the data (Murdoch et al., 2019). Therefore, a comprehensive,
multifaceted approach to evaluation is essential. Ideally, model performance should be tested across diverse
subsets that vary in time, space, and/or feature distribution (Sweet et al., 2023). Rigorous testing helps to
challenge the model, ensuring that it has not only learned specific patterns, shortcuts, or biases that may be
inherent to a particular segment of the training data, but has instead developed a broad, generalizable under-
standing of the data (discussed in Section 4.1). Typically, fitting multiple, independent models (e.g., Jiang,
Bevacqua, & Zscheischler, 2022; McGovern, Jergensen, et al., 2019) or exploring different data sets (e.g.,
Davenport & Diffenbaugh, 2021; Ham et al., 2019; W. Li et al., 2022) and then examining the distribution of their
performance metrics can solidify the robustness of the findings. Ultimately, the success of IML in producing
reliable and insightful results depends on thorough and thoughtful ML model training and validation.
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3.4. Implementing Interpretations and Ensuring Robustness

The choice of an appropriate interpretation technique depends not only on its compatibility with the specific ML
model, but also on the level of explanation required (e.g., explanation for individual predictions or global un-
derstanding of model behavior). In recent years, SHAP values have gained popularity for their ability to provide
detailed insight into each feature's contribution to instance‐level model predictions, which can be further
aggregated to provide a global perspective of the data set (Lundberg et al., 2020). Other methods such as inte-
grated gradients or expected gradients can be applied to temporal models including LSTM (e.g., Jiang, Bevacqua,
& Zscheischler, 2022; Kratzert et al., 2019), while techniques such as layer‐relevant propagation or occlusion
sensitivity are often used for image‐based models (e.g., Ham et al., 2023; Toms et al., 2020). However, choosing
among the available interpretation techniques can be challenging due to the lack of ground truth for evaluation.
Several metrics have been developed to evaluate the suitability and effectiveness of interpretation techniques,
focusing on comparing key properties between techniques for specific research problems (e.g., Hedström
et al., 2024; Nauta et al., 2023). Typical examples of these properties include faithfulness—where the high
importance assigned to a feature by the interpretation technique should significantly affect the model's prediction
—and robustness, which assesses the stability of the explanations against minor input variations. This evaluation
is critical for making an informed decision about the most appropriate interpretation technique(s). Readers are
encouraged to consult recent studies (e.g., Bommer et al., 2024; Mamalakis, Barnes, & Ebert‐Uphoff, 2022) that
have conducted comprehensive evaluations of different methods against various metrics tailored to the specific
context of Earth science.

It should be recognized that no interpretation technique is universally optimal or suitable for all models and tasks,
and results from different interpretation methods have been found to be inconsistent (Krishna et al., 2022;
Mamalakis, Barnes, & Ebert‐Uphoff, 2022). It is therefore advisable to use more than one method whenever
possible to assess the robustness of findings. In addition, an essential consideration for some interpretation
techniques is the selection of appropriate baselines or background data, which serve as reference points for
understanding how different feature values shift the model output from a base value. Different baselines can lead
to divergent interpretations (Mamalakis et al., 2023).

To ensure the robustness and generalizability of the interpretation results obtained, the interpretations should be
confirmed as not merely artifacts of the specific data set, ML model, or interpretation technique used. For
example, the major patterns of interpretation results should remain as consistent as possible under minor input
data perturbations or when using independent data sets from various data sources. Therefore, validation across
multiple satellite products, model‐based data, or in‐situ measurements is appreciated (e.g., W. Li et al., 2022). The
inclusion of random variables unrelated to the target variable can also serve as a point of comparison to evaluate
the importance of genuine features (e.g., Zhou & Hooker, 2021). Furthermore, the sensitivity of interpretation
results to various model configurations (e.g., filter sizes in CNNs, temporal lengths in LSTM, random seeds)
should be examined (Mishra et al., 2021). Note that the uncertainty arising from the above processes is an
important aspect to consider when applying IML, which will be further discussed in Section 4.4.

3.5. Distilling Interpretation Results Into Geoscientific Understanding

The process of distilling meaningful geoscientific insights from interpretation results requires interpreting the
revealed model behavior within the existing geoscientific context. Some interpretation methods are capable of
directly describing model behavior within its operational domain by illustrating how input features affect pre-
dictions on average, or what concepts a model has generally learned to encode. These include partial dependence
plots (Friedman, 2001), permutation feature importance (Altmann et al., 2010), and several emerging techniques
such as concept relevance propagation (Achtibat et al., 2023), network dissection (Bau et al., 2020), and structural
causal model‐based feature relevance (Reimers et al., 2020). In contrast, some interpretation methods (e.g., SHAP
value) focus on instance‐level explanations, detailing the contribution of individual variables to specific pre-
dictions. Figures 2b–2d showcases the form of instance‐level interpretation results based on three types of data
typical in the geosciences (i.e., spatial data, multivariate time series, and tabular data) from the literature
(Davenport & Diffenbaugh, 2021; Jiang, Bevacqua, & Zscheischler, 2022; H. Wang et al., 2022). For spatial data,
for instance, the pixel relevance map in Figure 2b highlights areas that significantly influence model predictions.
For multivariate time series, the interpretation assigns feature importance values over time, revealing how input
variables contribute to specific predictions at each time step, as shown in Figure 2c. In the context of tabular data,
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which often has fewer dimensions, interpretations tend to be more straightforward (Figure 2d), indicating how
each input variable moves the output value from the model's baseline value to the actual prediction for a given
instance. In addition, several other interpretation methods, such as anchor algorithms (Ribeiro et al., 2018) and
counterfactual explanations (Wachter et al., 2017), can provide more problem‐specific and actionable insights for
decision making by identifying precise conditions for predictions or pinpointing minimal input changes that alter
the outcome.

Generally, elevating these instance‐level interpretations to a comprehensive understanding requires synthesizing
these individual insights into a cohesive perspective. Figures 2e–2g presents aggregated interpretation results,
corresponding to those in Figures 2b–2d, using various strategies. For example, methods such as composite maps
(Figure 2e) and clustering of feature importance (Figure 2f) can help identify key features or common underlying
mechanisms across different scenarios or instances. Moreover, investigating how a feature's contribution to model
predictions changes with its value and the value of other variables can be informative. For instance, the bee swarm
plots in Figure 2g provide a dense summary of each input feature's impact on model output, while the dependence
plot illustrates how model predictions depend on interactions between multiple features. These examples are
described in more detail in Text S4 in Supporting Information S1 and can be found in the respective literature. In
addition, examining variations in feature contributions is also helpful in identifying thresholds or saturation points
at which a feature value begins to have diminishing or increasingly significant effects on the predicted outcome
(Chakraborty et al., 2021).

4. Common Pitfalls and Good Practices
To effectively apply IML in the geosciences, it is essential to recognize and understand common pitfalls, which
are not isolated but interrelated, and to adopt good practices that ensure robust, reliable, and scientifically sound
outcomes. This section aims to summarize some key considerations and practical advice on both what to avoid
and how best to approach IML applications.

4.1. Model Interpretations Do Not Always Reflect Data Truths

A common pitfall in seeking insights from IML is the misconception that the model's interpretations necessarily
equate to truths about the underlying data‐generating process or real‐world phenomena. In reality, the in-
terpretations offered by these methods merely estimate how a specific ML model arrives at certain predictions
based on inputs (Good & Hardin, 2012). Misinterpreting these as direct insights into real‐world phenomena can
lead to misleading or incorrect conclusions, especially if the model's learned decision rules do not match the actual
underlying data relationships (Figure 3a). For example, models that are underfitted due to overly general decision
rules will perform poorly on both training and test data, indicating a failure to capture the true underlying
relationship. Conversely, overfitted models that learn rules too close to the training data, including noise and
anomalies, may also struggle to generalize the underlying relationships. Perhaps more imperceptibly, even
models that perform well on training and independent and identically distributed test data, but not on out‐of‐
distribution data, may misrepresent the data‐generating process. This scenario can occur when a model relies
on superficial or spurious patterns (e.g., shortcut learning) (Geirhos et al., 2020)—for instance, classifying images
based on embedded text labels rather than their actual features. In essence, ML algorithms can skillfully perform
tasks based on spurious, non‐physical relationships, but the true relationships may deviate from the correlations
initially observed in the training data.

In the context of the geosciences, the unique spatial and temporal structures inherent in geoscientific data, such as
autocorrelation, make these issues particularly critical. For instance, in large‐scale ecological mapping studies,
ML models are often used to characterize the relationship between local environmental conditions (e.g., climate,
topography, and soil types) and targets of interest, such as vegetation reflectance properties, in order to extrapolate
the targets of interest beyond the sampling locations (Ploton et al., 2020). However, it has been reported that the
predictive power of ML models in the literature is often evaluated using nonspatial cross‐validation, which can
lead to misleadingly confident interpretations of model accuracy and reliability where autocorrelation may act as
a shortcut (Stock et al., 2023). Consequently, any inference of ecological determinism based on post‐hoc in-
terpretations of these models must be approached with extreme caution (Ploton et al., 2020). In practice, rigorous
validation is essential, using resampling procedures such as holdout or (repeated) cross‐validation, depending on
sample size. These validation procedures should reflect the structure of the prediction task, taking into account
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spatial or temporal prediction distances and out‐of‐sample estimation where appropriate (Brenning, 2022), since
validation results as well as model interpretations will inevitably depend on the chosen resampling strategy
(Meyer & Pebesma, 2022; Schratz et al., 2019; Sweet et al., 2023). Ideally, model interpretations should also be
validated against out‐of‐sample data sets (e.g., independent data sets relevant to the study) to ensure that the
insights they provide are not artifacts of the unique characteristics or biases present in the training data but reflect
more general patterns and relationships. Overall, insights derived from IML should not be regarded as definitive
interpretations of data truths, but rather as hypotheses that require further validation through additional analysis
and experimentation.

4.2. Tendency of Causal Interpretation

In IML applications, a subtle yet significant risk is the often‐unintentional misinterpretation of relationships
derived from predictive models as causal in nature (Figure 3b). Standard supervised ML models are designed to
exploit associations in the data rather than explicitly model causal relationships. Generally, predictive models
focus primarily on understanding the observational conditional probability p(Y∣X = x0) by inferring the probable
values of Y when X is observed to be value x0. Conversely, causal tasks focus on the interventional probability
p(Y∣do(X= x0)), which attempts to understand the effect of a change or intervention in X (e.g., setting it to x0) on Y
(Pearl & Mackenzie, 2018). For example, consider a flood prediction model that uses vegetation cover as one of
its input variables. Such a model might perform well by exploiting the observed association between vegetation
cover and certain flood processes (Calder & Aylward, 2006). However, this observed association within the
predictive model does not inherently reveal the direct impact of interventions in vegetation cover (e.g., affor-
estation or deforestation) on flood events (Rogger et al., 2017). This is because the observed association may arise

Figure 3. Common pitfalls in geoscience interpretable machine learning (IML) applications. (a) ML model training can
result in underfitting, overfitting, shortcut learning, or successful capture of the underlying data generation process. These
results can be reflected by sufficient model performance on training data, independent and identically distributed (i.i.d.) test
data, and out‐of‐distribution (o.o.d.) test data, as indicated by the corresponding links in the diagram. (b) The difference
between predictive and causal goals. The predictive model generally captures only the observational distribution of the data
and cannot be equated with causal insights based on the interventional distribution. (c) Strongly interdependent input
variables can lead to varying feature importance scores in different model runs, due to similar information about the target
output. (d) Different methodological choices can lead to diverse insights, thereby introducing uncertainty into the
interpretation process. (e) Complex models may accurately capture intricate data patterns, but the interpretations may be
difficult for humans to intuitively understand, hindering the ability to gain actionable insights from the IML framework.
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from correlations between vegetation and climate characteristics or geomorphology, which also influence the
distribution and characteristics of flood events. Moreover, when building predictive ML models, it is common to
include as many explanatory variables as possible to maximize performance. However, this approach can be
counterproductive when the goal is interpretation. For example, research has shown that IML methods used to
identify influential variables and uncover underlying functional relationships in ecology are negatively affected
by the inclusion of spurious variables (those that are correlated with, but not causally related to, the target var-
iable) (Q. Yu et al., 2021). Therefore, when process understanding is important, it can be helpful to construct ML
models using independent variables that have clear causal effects on response variables.

Typically, an important condition for a predictive model to yield a causal effect estimate is that its input variables
are independent of unobserved confounders (i.e., variables that affect both the input and the model target).
Otherwise, interpretations derived directly from a predictive model do not directly indicate whether a variable acts
as a cause, an effect, or has no causal relationship with the target variable (Molnar et al., 2022). Despite the
awareness that correlation does not imply causation, there is a tendency to interpret the results of IML methods
from a causal perspective (Arif & MacNeil, 2022), especially if such an interpretation is consistent with pre‐
existing beliefs or theories. Recent literature suggests that predictive ML models have already been conflated
with causality in ecological studies, where ML models are increasingly being misused for causal interpretations
(Arif & MacNeil, 2022). When interpreting IML outputs, it is important to use language that accurately reflects
the nature of these findings. For example, terms such as “associated with” may be more appropriate than “driven
by” (Thapa et al., 2020). However, there remains the possibility that readers may interpret correlational state-
ments as causal (Gershman & Ullman, 2023). Explicitly stating the limitations of the analysis and acknowledging
the potential for alternative explanations or confounding factors can help readers understand the nature of the
relationships presented.

In most cases, IML should not be considered a definitive source of causal knowledge. The challenge of causal
discovery and inference remains an important open question in ML research (Runge et al., 2023). In general, a
thorough investigation is needed to make explicit under which assumptions causal insights can be extracted from
the interpretation of ML models (Janzing et al., 2020). Recently, there has been a growing interest in integrating
causal inference concepts such as structural causal models, do‐operators, and causal metrics into ML interpre-
tation (e.g., Carloni et al., 2023; Reimers et al., 2020). For example, Heskes et al. (2020) proposed causal Shapley
values, which extend the traditional Shapley value framework by explicitly incorporating interventional expec-
tations to account for both direct and indirect contributions of a feature to the model's predictions. Similarly, the
knockoff framework allows causal exploration with ML models by generating synthetic control variables to
rigorously assess the importance of features, distinguishing between causally relevant features and correlated
features (Popescu et al., 2021). In addition, innovations such as double ML (Chernozhukov et al., 2018) and
causal ML (Tesch et al., 2023) are being explored in Earth science research. To robustly explore and validate
causal relationships, it may be necessary to complement IML findings with additional causal inference frame-
works, such as quasi‐experimental approaches (Butsic et al., 2017) and time‐series causal analysis (Runge
et al., 2019).

4.3. Multicollinearity and Dependence Among Features

Another issue that often receives insufficient attention in IML applications is interdependence among features,
where one or more features can be explained non‐linearly by ML models using the other features, which is
referred to as “concurvity” in some contexts (Wood, 2017). A widely known example of this is multicollinearity
among input variables, where some features are strongly correlated with one another. In addition to exacerbating
the risk of misattribution of causality discussed above, the problem of multicollinearity can also affect the reli-
ability of IML results (Figure 3c). While this concern is well recognized in classical statistical analysis, for
example, variance inflation factor (Mansfield & Helms, 1982), its importance seems to be less emphasized in the
context of IML. This oversight may be due to the fact that ML models, even when trained on multicollinear data,
are likely to retain predictive power, especially when the test data used have a similar dependence structure
(Farrell et al., 2019). However, this predictive power does not negate the interpretive challenges posed by
multicollinearity, especially when attempting to derive quantifiable insights for process understanding from a
predictive model. This issue is particularly prevalent and critical in the geosciences, where variables often exhibit
strong dependence and multicollinearity due to the interconnected nature of Earth systems. A case study in at-
mospheric chemistry demonstrated that correlated and dependent features can lead to spurious process‐level
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explanations, where chemical reactions can be wrongly attributed to fundamentally incorrect compounds (Silva &
Keller, 2024).

Theoretically, ML models could arbitrarily assign importance or weight across highly correlated variables when
making predictions because they carry similar information about the target variable. In this case, the importance
of features may be spread across multiple features, suggesting a weak or negligible association with the response
(Brenning, 2023), or it may show high variability and even directional shifts (Chan et al., 2022). Furthermore, the
presence of multicollinearity can lead to unreliable interpretations, especially when using perturbation‐based
methods. When features are highly correlated, these perturbations can extrapolate into “uncharted” regions
within the feature space that lie outside the observed joint distribution of the variables, leading to biased as-
sessments of feature importance (Hooker et al., 2021).

A common and straightforward strategy to mitigate the effects of multicollinearity is to exclude highly correlated
variables whose information may be redundant in feature selection (Katrutsa & Strijov, 2017). However, this can
sometimes conflict with the goal of identifying underlying relationships based on a comprehensive set of as many
relevant variables as possible, which may contain subtle but crucial information. For instance, two climate
variables may be closely related, but may affect an ecological process differently under varying conditions. In this
case, it is important to increase the diversity of the environment (e.g., varied climate regions, geographic con-
ditions, and species diversity) for the variables. This increased diversity can help account for multifaceted re-
lationships between variables, especially when certain correlations are actually dependent on other factors
(Dormann et al., 2013). For example, the dependence between soil moisture and evapotranspiration is generally
determined by water and energy availability, which varies with season and geographic location (Hsu & Dir-
meyer, 2023). Moreover, where possible and appropriate, closely related variables may be grouped or trans-
formed for collective or conditional interpretation, where their contributions can be considered more holistically,
rather than attempting to separate the individual contributions of these variables (Brenning, 2023; Jiang
et al., 2024). Krell et al. (2023) further suggest that models based on gridded geospatial data can be sensitive to the
choice of grouping scheme, and thus it is beneficial to compare explanations from multiple grouping schemes for
more accurate insights, as each may probe the model differently.

4.4. Uncertainty in Interpretations

Using interpretation to enhance the transparency of ML models may inadvertently create an illusion of certainty
about their results. However, as highlighted earlier, these interpretations are subject to various uncertainties,
including those inherent in the data, the structure and training processes of the ML model, and the specific as-
sumptions and computations behind the interpretation methods (Figure 3d). For example, multiple distinct ML
models with comparable performance may provide divergent explanations for the same set of data (i.e., model
multiplicity (Breiman, 2001b) or equifinality)—how can we discern which explanation is the most accurate or
valid? The different narratives offered by each model often stem from their unique approaches to processing and
using the input data, including biases in feature selection (Strobl et al., 2007). Furthermore, while predictive
accuracy is not typically a primary concern in the pursuit of process understanding, interpretations from poorly or
unstably performing models are likely to be inherently unreliable (Murdoch et al., 2019). In many cases, applying
different interpretation methods to a single model (Mamalakis, Barnes, & Ebert‐Uphoff, 2022), or even applying
the same interpretation method but with varying settings or hyperparameters (S. Müller et al., 2023), can lead to
different results. The variance in the latter case can be largely due to the approximations used by the interpretation
techniques. These approximations simplify complex mathematical models into forms that are more under-
standable and computationally manageable, but can vary with each computation when stochastic processes are
involved. For instance, the LIME method constructs simpler, surrogate models based on perturbed samples to
locally approximate the prediction function of complex models (Tulio Ribeiro et al., 2016). Consequently, the
explanations provided by LIME are sensitive to changes in the number of perturbed samples (Bansal et al., 2020).
Similarly, Monte Carlo integration methods are often used to approximate Shapley values, which are also subject
to sampling variability (Goldwasser & Hooker, 2023; Štrumbelj & Kononenko, 2013).

For example, Hu et al. (2023) have compared 11 IML methods to gain process understanding of climate and crop
interactions from crop yield prediction modeling and found divergent results among these methods. They advised
that future studies should not uncritically rely on the variable importance rankings produced by a single IML
method to draw definitive conclusions. In practice, it is advisable to consider approaches or strategies for
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quantifying uncertainty in IML explanations, such as probabilistic and bootstrapping techniques. For example,
Slack et al. (2020) proposed a Bayesian framework to generate probabilistic versions of LIME and SHAP, instead
of pointwise estimates of feature importance. To account for various sources of uncertainty and enhance the
robustness and reliability of interpretations, it may be beneficial to perform IML analysis repeatedly by resam-
pling the data, using different subsets of data, varying initial random seeds in ML models, or applying multiple
interpretation methods (e.g., Jiang et al., 2024; Labe & Barnes, 2021; W. Li et al., 2022). In addition, it is
important to be aware of the assumptions, limitations, and potential weaknesses of the interpretation methods
applied to realistic and complex geoscientific data sets. Recently, Mamalakis, Barnes, and Ebert‐Uphoff (2022)
developed synthetic attribution benchmark data sets specifically tailored for geoscience applications, providing a
solid foundation for more falsifiable and rigorous research. Bommer et al. (2024) also introduced a suite of
metrics to evaluate the effectiveness of different interpretation methods in climate research, such as robustness,
faithfulness, randomization, complexity, and localization, to facilitate the selection of the most appropriate
interpretation methods for both technically robust and contextually relevant applications.

4.5. Gap Between Complexity and Interpretability

The development of post‐hoc interpretation methods has somewhat alleviated the long‐standing trade‐off between
accuracy and interpretability of ML models (Murdoch et al., 2019). However, extracting scientific insights from
ML models with complex structures remains a practical challenge (Figure 3e). Interpreting the internal mecha-
nisms of complex, high‐performing ML models in a human‐understandable way often requires a degree of
simplification that may obscure the subtle intricacies captured by the model. Moreover, even when interpretation
methods accurately reflect the algorithmic functioning of ML models, the resulting explanations are not neces-
sarily intuitive and aligned with human understanding in specialized domains (Ehsan et al., 2022). This mismatch
between the computational logic of algorithms and human intuition can lead to misinterpretations, requiring
thoughtful translation of algorithmic explanations into terms that are both accessible and relevant to the domain
(Achtibat et al., 2023). In a study examining ozone mapping models, SHAP values revealed that the models
placed more importance on geographical features such as absolute latitude and altitude than chemical factors like
NOx emissions (Betancourt et al., 2022). The authors noted that this finding might appear counterintuitive, as
ozone chemistry is typically expected to play a more significant role in such models. However, on the other hand,
comparing these interpretations to existing knowledge can be fraught with cognitive biases that tend to reinforce
existing theories or expectations and potentially overlook novel insights. For example, if a model suggests an
unconventional factor as influential in climate change, it may be dismissed if it contradicts long‐held beliefs,
despite its potential validity. These challenges highlight the need to balance the advanced computational accuracy
of complex ML models with the practical need for clear, concise, and actionable insights.

As noted previously, an iterative model building strategy is advocated, where complexity is incrementally
increased and the interpretability of the model is continuously evaluated (Molnar et al., 2022). This method aims
to find a sweet spot where the model achieves both high accuracy and meaningful interpretability. For example, a
GAM and its geospatial extensions can serve as a gradual transition between linear models and complex ML
models in this iterative process (Rudin, 2019; Wood, 2017). The additive structure of a GAM is specified prior to
model fitting, allowing for the estimation of prescribed features or interaction effects. In addition to GAM
implementations based on smoothing splines (Wood, 2017), tree‐based GAM smoothers, such as Explainable
Boosting Machines (Lou et al., 2013), can provide greater flexibility and robustness, especially in high‐
dimensional situations. Such additive models are often as accurate as state‐of‐the‐art ML models (e.g.,
XGboost), while remaining inherently interpretable (Goetz et al., 2015).

Furthermore, as noted by Betancourt et al. (2022), the counterintuitive results for ozone attribution may arise
because the purely data‐driven model approach is inherently a posteriori and not process‐oriented in any way, that
is, scientific consistency was not enforced during the training process. These shortcomings highlight the value of
hybrid (Reichstein et al., 2019) or differentiable modeling (Shen et al., 2023) strategies in Earth sciences that aim
to be effective in creating inherently interpretable models, that is, models that follow a domain‐specific set of
constraints that make the reasoning processes understandable (Rudin et al., 2022). These strategies involve the
integration of physical relationships or models into ML architectures (e.g., Jiang et al., 2020; Kraft et al., 2022; C.
Wang et al., 2024). In this way, the complexity inherent in the data can be effectively managed by anchoring the
models in well‐established scientific principles, which helps constrain the models to plausible behaviors and thus
reduces ambiguity in their explanations.
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5. Conclusion and Outlook
The rapid development of AI and its subfield IML has opened new frontiers in various scientific disciplines,
including the geosciences. However, amidst the rapid expansion in the use of IML, there has been both a tendency
toward careless and superficial application and an underestimation of its much broader potential in the field. This
study aims to address these issues, improve the accessibility and relevance of IML to a wider range of geo-
scientists and, more importantly, facilitate more effective and appropriate use of these innovative tools. In this
paper, we specifically focus on the potential benefits of IML for process understanding in the geosciences. It is
anticipated that IML will become an indispensable method for enhancing our current, often conceptual and
qualitative understanding with quantifiable non‐linear insights, and for generating innovative hypotheses with
large data sets. In particular, IML is expected to play an important role in evaluating and revising existing process‐
based models. However, it is important to recognize that AI tools alone are not sufficient to drive progress in
domain science, and to remain vigilant about the potential risks of scientific monocultures that AI‐led science may
foster (Messeri & Crockett, 2024). Rather than advocating a shift away from process‐based modeling, we
emphasize the complementary role of IML in addressing tasks that are challenging for traditional methods. While
the current application of IML to understanding the complexities of the Earth system is in its early stages, its far‐
reaching implications are undeniable. We envision a future in which a broad spectrum of geoscientists benefit
from the insights provided by IML, using it as an advanced analytical method in an era of abundant data to deepen
our understanding of Earth's complex systems both directly and indirectly in the future.

This study presents a practical workflow with examples for geoscientists to effectively integrate IML into their
research. Especially, we identify several potential pitfalls that are likely to be encountered when applying IML.
We advocate cross‐disciplinary collaboration between geoscientists, data scientists, and ML experts to tailor IML
tools to specific geoscience needs, with a focus on causal and multifactorial process considerations, knowledge
integration, and uncertainty quantification. In general, we argue for a pragmatic approach to these tools and their
more thoughtful use in geoscientific research to ensure responsible knowledge production. While existing
research has pioneered the use of IML, we recognize the need to be more cautious in drawing conclusions,
especially in scenarios where rigorous validation is not possible. We encourage researchers to carefully evaluate
the robustness of their results, taking into account the good practices we have suggested, before reporting them,
with the goal of further solidifying the role of IML as a reliable and effective tool for advancing geoscientific
research.

Data Availability Statement
No new data were created or analyzed in this study.
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