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Texts S1-S4 

Introduction  

Texts S1-S4 provide detailed examples and case studies from the existing literature that 
illustrate the general rules and theoretical steps involved in the workflow of using 
interpretable machine learning (IML) presented in Section 3 of the main text. Specifically,  

• Text S1 supplements Section 3.1: Translating geoscientific research questions into IML 
tasks 

• Text S2 supplements Section 3.2: Preparing and preprocessing data 
• Text S3 supplements Section 3.3: Training and validating ML models 
• Text S4 supplements Section 3.5: Distilling interpretation results into geoscientific 

understanding 
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Text S1. Examples of translating geoscientific research questions into IML tasks 

 
The types of relationships typically explored with IML involve identifying key influencing 
factors and their contributions (i.e., understanding how a specific outcome can be individually 
attributed to each factor) and deciphering dependencies and conditional effects (i.e., 
determining how multiple factors collectively or interactively affect a particular outcome). 
Thus, it is essential to identify the specific outcomes (𝑌) that need to be explained and to 
determine the factors or variables (𝑋) that are hypothesized to influence those outcomes. 
 
For instance, Jiang et al. (2022b) aimed to identify possible mechanisms behind river flooding 
by examining the predictive contribution of meteorological drivers, where the formulated IML 
task was to quantify the relationship between extreme runoff events (𝑌), and precipitation and 
temperature over the past 180 days (𝑋). In another study focused on identifying 
meteorological patterns critical for predicting extreme precipitation events (Davenport & 
Diffenbaugh, 2021), the selected predictors (𝑋) were sea level pressure and 500-hPa 
geopotential height anomalies, and the outcome of interest (𝑌) in this case was a binary 
variable indicating extreme versus non-extreme precipitation. Similarly, for ecological studies 
such as investigating which environmental factors may affect the distribution of certain 
species (e.g., African elephant) (Ryo et al., 2020), the potential predictors (𝑋) in the IML 
included several land use and climatic factors, while the dependent variable (𝑌) was the 
geographic distribution of the species. Moreover, following the functional capability of the 
IML in examining how 𝑋 contributes to 𝑌, a broader range of potential research questions can 
be considered, which may include identifying the primary factors relevant to wildfire 
occurrence in a given region (Kondylatos et al., 2022), or understanding how urban 
development may affect stream water quality (Wang et al., 2021). Possible questions that focus 
on feature dependencies and interactions (i.e., the interactive effects of 𝑋 on 𝑌) include how 
atmospheric chemical processes and meteorological factors together may influence ozone 
formation (Xu et al., 2023) or at what soil water content does vapor pressure deficit have the 
greatest effect on plant water stress (Wang et al., 2022). The question of critical thresholds in 
systems can also sometimes be translated into IML tasks by identifying inflection points in the 
contribution of 𝑋 relative to its value. For example, Chakraborty et al. (2021) used IML to 
explore the non-linear hydroclimatic dependencies and interactions underlying hydrological 
droughts, uncovering a critical temperature point beyond which groundwater depletion 
occurs despite increased average precipitation. 
 

Text S2. Examples of data preparation and preprocessing 

 
In addition to following the general principles of data preparation for ML models, attention 
must be taken to ensure consistency between the data and the underlying processes so that 
they are represented at appropriate and relevant temporal and spatial scales. For example, in 
Jiang et al. (2022a), overly large or small catchments were excluded from the dataset to 
account for potential heterogeneity and to ensure a match between the spatial resolution of 
the meteorological data and the size of the catchment. Likewise, in Li et al. (2022), who 
investigated changes in global vegetation sensitivity to soil moisture, growing seasons were 
identified across experiments and hydroclimatic zones to ensure temporal consistency in the 
datasets.  
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During data pre-processing, depending on the research question, it may be necessary to 
remove seasonality and long-term trends from time series data.  For example, when dealing 
with leaf area index (LAI) products from different satellite sources where discrepancies are 
common, removing trends is important to lessen common trends caused by exogenous 
factors such as CO2 and biases resulting from multi-sensor drifts in satellite instruments (e.g., Li 
et al., 2022). Similarly, an observed systematic increase in geopotential height values in recent 
years, attributed to tropospheric warming, necessitated the removal of such trends when 
using this variable to interpret anomalies in extreme precipitation events (e.g., Davenport & 
Diffenbaugh, 2021). This would allow the model to focus on spatially non-uniform changes in 
geopotential height, rather than the overall homogeneously elevated values.  
 
When the target variable is a relative value (e.g., when using a binary value to encode extreme 
and non-extreme precipitation), it is important to note that if this relative value is calculated, 
for instance, per grid cell, the causes of the target variable may now vary in space. Therefore, 
the same combinations of predictor values could now correspond to different target values 
depending on the location. This could lead to poor ML model performance and/or misleading 
IML results, especially if the distribution of the target values is very spatially heterogeneous. 

Text S3. Examples and details of ML model training and validation 

 
It is important to recognize the applicability and limitations inherent in different ML models. 
Each model has its own set of strengths and weaknesses, which can make some models more 
appropriate for certain types of geoscience questions and data than others. For instance, the 
conceptual analogy between the catchment memory effect and the recurrent cells of the long 
short-term memory (LSTM) network (Lees et al., 2022), has led to the prevalence of LSTM in 
hydrological studies using basin-scale time series (e.g., Jiang et al., 2022a; Kratzert et al., 2019). 
The ability of convolutional neural networks (CNNs) to handle multidimensional array data 
makes them particularly suitable for spatiotemporal climate and weather data (e.g., Ham et al., 
2019). Tree-based regression models are versatile for tabular data (Grinsztajn et al., 2022), but 
are usually limited in their ability to predict values beyond the range encountered in their 
training data. In contrast, generalized additive models or neural networks may be more 
successful at extrapolating trends. Moreover, in spatial regionalization tasks, it is particularly 
important to not only exploit tabular spatial data, but also to account for spatial proximity and 
autocorrelation by combining with geostatistical Kriging or Gaussian process models (Saha et 
al., 2021). 
 
When training ML models, data splitting is a fundamental step to ensure that the model can 
learn a generalizable relationship. For robustness and reliability of model interpretation, it is 
necessary to ensure that the split training and testing sets can accurately represent the true 
distribution of the data (de Burgh-Day & Leeuwenburg, 2023), yet do not overlap in the 
sequential or spatial information they contain. For example, when dealing with datasets that 
span decadal timescales, sequential splitting may inadvertently lead to distributional shifts 
between subsets in the presence of climate change (Lopez-Gomez et al., 2023). It should be 
noted, however, that applying a random shuffle strategy to data with sequential 
dependencies may introduce a risk of data leakage due to potential information overlap in the 
input data (Sweet et al., 2023). Similar issues arise when learning environmental relationships 
from spatial data, where adjacent data locations may be autocorrelated, and random splitting 
into training and test data may not adequately represent the typical prediction distances 
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encountered in model application (Brenning, 2022; Meyer & Pebesma, 2022). Moreover, in 
scenarios involving unbalanced datasets, such as those encountered in classification tasks 
with disproportionate frequencies of categories (e.g., rare extreme events), it may be helpful 
to employ a stratified data splitting strategy to preserve the distribution observed in the full 
dataset (e.g., Davenport & Diffenbaugh, 2021; McGovern et al., 2019) or to use custom loss 
functions that emphasize more extreme events (e.g., Lopez-Gomez et al., 2023). In addition to 
data splitting, ML models usually involve multiple hyperparameters that should be tuned to 
optimize learning behavior, often using techniques such as grid search or random search 
(Bischl et al., 2023). Cross-validation is an essential step in assessing the generalizability of a 
model to independent datasets. It involves repeatedly partitioning the data into different 
subsets, using one subset for training and the rest for validation, to ensure that every data 
point has been used for both training and testing. Data splitting or cross-validation for 
hyperparameter tuning and model assessment should be performed in a nested fashion to 
avoid information leakage from tuning into the validation step (Schratz et al., 2019). 
Throughout the model training process, additionally, it is usually necessary to implement 
strategies (e.g., regularization and early stopping) to prevent the model from exploiting 
certain patterns or shortcuts in the training data to overfit (Ying, 2019). 
 

Text S4. Details on the examples of distilling interpretation results into geoscientific 
understanding 

 
Figure 2b-d in the main text illustrates the form of interpretation results based on three types 
of data typical in the geosciences, i.e., spatial data, multivariate time series, and tabular data, 
from the literature (Davenport & Diffenbaugh, 2021; Jiang et al., 2022a; Wang et al., 2022). For 
spatial data, interpretation methods are often used to produce heatmaps of feature 
importance over the spatial input domain (e.g., the pixel relevance map in Figure 2b). For 
instance, the pixel relevance map for the daily sea level pressure (SLP) anomaly highlights 
specific areas that influence the model’s prediction of the occurrence of extreme precipitation 
circulation patterns (EPCPs) over the Midwest on a given day. The example suggests the 
sensitivity of the EPCP to the location and presence of strong, negative SLP anomalies 
(Davenport & Diffenbaugh, 2021). In multivariate time series, interpretation methods can 
reveal how input variables contribute to a particular prediction over time by assigning feature 
importance values. In the illustrated case of predicting a specific streamflow peak, it is shown 
that past precipitation events collectively contribute more than recent precipitation, as 
evidenced by a higher sum of integrated gradient values than other periods or variables (not 
shown here). This pattern often implies that soil moisture, elevated by antecedent 
precipitation, plays a key role in predicting flood events other than recent precipitation events 
(Jiang et al., 2022a). With tabular data, where dimensions are comparatively fewer, 
interpretations can be more straightforward. The example shows how variables such as soil 
water content (SWC) and vapor pressure deficit (VPD) positively influence the model’s 
prediction of gross primary production (GPP) in a given half hour for a specific FLUXNET site, 
while air temperature (TA), incoming shortwave radiation (RAD), and CO2 exhibit negative 
effects. The role of each variable can be presented in a quantifiable way that illustrates how it 
moves the predicted value of GPP from the expected model output over the background 
dataset to the model output for that prediction (Wang et al., 2022). 
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Figure 2e-g in the main text presents aggregated interpretation results, corresponding to 
those in Figure 2b-d, using various strategies. In the study by Davenport & Diffenbaugh (2021), 
for example, composite maps were created for EPCP and non-EPCP days to elucidate overall 
circulation regions and patterns that drive extreme event predictions. Figure 2e shows the 
composite map of SLP anomalies during EPCP days, highlighting the CNN model’s focus on 
circulation features over the Midwest. In contrast, non-EPCP days exhibit no clear spatial 
coherence or a particular region of high relevance (not shown here). Alternatively, clustering 
patterns of feature importance across different instances or scenarios that segment the data 
into groups is useful for identifying common underlying mechanisms or processes. For 
instance, Jiang et al. (2022a) applied cluster analysis to the feature importance values (as 
exemplified in Figure 2c) for all annual maximum discharge events across European basins 
and identified three major contribution patterns. The cluster depicted in Figure 2f is 
characterized by high importance of antecedent precipitation, with a spatial pattern in the 
proportion of events clustered in this category in individual basins. 
 
Moreover, it can be informative to examine how a feature’s contribution to model predictions 
changes with its value and the value of other variables. For example, the bee swarm plots 
shown in Figure 2g provide a dense summary of each feature’s impact on model output, 
where each dot corresponds to a site-half-hourly sample in the study (Wang et al., 2022). The 
position of each dot along the x-axis indicates the impact of a variable on the predicted GPP 
for that sample, with the color indicating the original feature value. The figure shows the 
important role of VPD, RAD, and SWC in GPP sensitivities. Specifically, high VPD negatively 
induces larger variations in GPP dynamics with long left tails, while the contribution of SWC 
shows a relatively balanced pattern across its range. The dependence plot in Figure 2g further 
reveals how the model’s predictions depend on interactions between multiple features. As 
shown in the plot, the same VPD value can have different effects on GPP, which is relevant to 
SWC values (indicated by the color). This example illustrates a significant coupling and 
interactive effect between SWC and VPD, which is valuable for understanding the influence of 
climatic drivers on water stress-vegetation relationships.  
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