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Statistical mechanics from relational complex time with a pure state
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Thermodynamics and its quantum counterpart are traditionally described with statistical ensembles.

Canonical typicality has related statistical mechanics for a system to ensembles of global energy eigen-

states of system and its environment analyzing their cardinality. We show that the canonical density for

a system emerges from a maximally entangled global state of system and environment through relational

complex time evolution between system and environment without the need to maximize the entropy or to

count states.

Canonical typicality has proven to be a powerful con-

cept to understand how statistical mechanics emerges for
a (small) system S singled out from its environment E

where environment and system together are in a pure en-
ergy eigenstate of the global Hilbert space [1, 2]. This is

achieved by analyzing what is "typical" about the ensemble
of excessively many possibilities to realize such an eigen-

state in a small energy interval [E, E + δE] and assessing
the exponentially growing number of typical realizations in

ensembles of increasing energy E. The approach carries the
spirit of statistical mechanics which deals with many de-
grees of freedom and therefore naturally with ensembles.

Yet, quantum mechanics introduces already for a single de-
gree of freedom a probabilistic perspective with the wave-

function associated to its dynamics. Hence, one could hope
to capitalize on this fundamental quantum property to de-

rive statistical mechanics from a single pure state. The fact
that, compared to classical mechanics, quantum mechanics

offers with entanglement another resource for variety al-
ready encoded in a single state renders the existence of such

a state as the source of statistical mechanics more likely.
We will show that statistical mechanics is contained in a

single, maximally entangled global eigenstate (MES) of sys-
tem and environment without the need to consider ensem-

bles of global states at different energies [1, 2] or to count
degenerate states of the system [3]. Instead, we extend

the relational time approach originally conceived by Page
& Wootters [4] to propagate density matrices in imaginary

relational time. This will allow us to conceive the funda-
mental thermodynamic relation from the density matrix of
a maximally entangled global state for any desired imagi-

nary time γ, which will turn out to represent temperature
in the well known way, (kB T )−1 = γ, if infinite temperature

γ = 0 is linked to the MES. Hence, relational complex time
evolution turns out to be the element which completes the

quest for deriving statistical mechanics from a pure quan-
tum state without the need to resort to additional statisti-

cal considerations. The result confirms the conjecture that
temperature, similarly as time, has a relational root [5] and

provides a physical justification for the striking connection
between dynamics and thermal physics [6].

Relational time emerges from a splitting of the global
Hamiltonian Ĥtot=Ĥ⊗1̂E+1̂⊗ĤE+V̂ into system Ĥ and en-
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vironment ĤE interacting with each other through V̂ . Since

the global state Ψ fullfills (Ĥtot − Etot) |Ψ〉〉 = 0 one can for-
mulate the invariance principle [7]

eΛ(Ĥtot−Etot) |Ψ〉〉= |Ψ〉〉 (1)

which does not only hold for all imaginary-valued symme-

try parameters Λ = iλ, but also for real ones Λ = γ, or in
general for complex Λ.

With (1) we can write for the density matrix PΨ = |Ψ〉〉〈〈Ψ|
of the global state

P̂Ψ = eΛ(Ĥtot−Etot) P̂Ψ eΛ
∗(Ĥtot−Etot) . (2)

From now on we will assume in accordance with the orig-

inal proposal for relational time [4] that the interaction V
is small enough to be neglected. In fact, this condition can
be softened without loosing the thrust of the relational time

concept by only demanding that [ĤE, V̂ ] = 0, implying that
the environment’s eigenstates are not changed by the inter-

action, as we will see later.

For now with V̂=0, the evolution according to the Hamil-

tonians for the environment ĥE ≡ ĤE − Etot and system Ĥ
in (2) factorizes,

eΛ(Ĥtot−Etot) = eΛĥE⊗eΛĤ , (3)

and we can obtain from (2) the density matrix of the system

evolved in complex time Λ,

ρ̂(Λ) =
1

Z(Λ)
e−ΛĤ ρ̂0e−Λ

∗Ĥ , (4a)

where

e−ΛĤ ρ̂0e−Λ
∗Ĥ = trE[ρ̂E(−Λ

∗)P̂Ψ] (4b)

with

ρ̂E(Λ) = e−ΛĥEρ̂E(0)e
−Λ∗ ĥE , (4c)

which follows from (2) after tracing over the environment.
We have left room for a conditioning density ρ̂E(0) of

the environment, such that ρ̂(0) = Z(0)−1 trE[ρ̂E(0)PΨ ].
The normalization Z(Λ) = 〈〈Ψ|ρ̂E(−Λ

∗)|Ψ〉〉 ensures that
tr ρ̂(Λ) = 1.
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Note that according to (4b) the evolution of the system
density ρ̂ with Λ means evolution of the environment den-

sity with−Λ∗ illustrating the relational character of the evo-
lution in system and environment, respectively. For real and

continuous Λ= γ, differentiation of (4a) leads to

dρ̂(γ)/dγ= −
¦

Ĥ − 〈Ĥ〉(γ), ρ̂(γ)
©

, (5)

the von Neumann equation for imaginary time γ emerg-

ing from complex relational time. The mean energy 〈Ĥ〉 =
tr
�

Ĥρ̂
�

of the system in the anti-commutator {·, ·} ensures

the normalization. For real time Λ = iλ, λ ∈ R, the stan-
dard von Neumann equation

dρ̂(iλ)/dλ= −i[Ĥ, ρ̂(iλ)] , (6)

for the time-dependence of the density matrix follows from

(4a) by differentiation. The conditioning environmental
density ρ̂E in ρ̂0 = trE[ρ̂E(0)PΨ ] allows one to specify dif-

ferent initial conditions with the global state |Ψ〉〉 as dis-
cussed for wavefunctions in [7]. Both differential equations

hold of course for all global states satisfying (1).

Statistical mechanics is encoded in (4). Standard trac-
ing over the environment (implying ρ̂E(0) ∝ 1̂E) with

eigenstates |J〉E and eigenenergies EJ of ĤE in (4b) ren-
ders the system density diagonal. Denoting |φJ〉 = 〈J |Ψ〉〉
and Λ = γ/2+ iλ we get from (4b) using (4c)

ρ̂(Λ) =
1

Z(Λ)

∑

J

〈J |eΛĥE P̂Ψ eΛ
∗ĥE |J〉E

=
1

Z(Λ)

∑

J

e−γεJ |φJ 〉〈φJ | (7)

=
1

Z(Λ)
e−γĤ ρ̂0 ,

where εJ = E − EJ and the normalization Z(Λ) absorbs the
constant of proportionality in ρ̂E(0)∝ 1̂E. The last iden-

tity follows from the invariance principle and (3).

Obviously, (7) represents the canonical density for all

temperatures if one identifies γ= 1/(kT ) and if 〈φJ |φJ ′〉 =
cδJJ ′ , where the constant c once again can be absorbed in

Z(Λ) and therefore may be set to unity, c = 1. Then, evalu-
ating the entropy S = − tr(ρ̂ ln ρ̂) with (7) gives S(γ/2) =
γ〈Ĥ〉(γ/2)+ln Z(γ/2) implying the thermodynamic relation
dS = γd〈Ĥ〉.

Note that we have derived the canonical density for the

system solely by the relational connection to the global state
apart from requiring the |φJ 〉 to be orthonormal. This re-

quirement has a physical reason: With a system at infinite
temperature γ=0 we associate minimal structure implying

in the relational context that the system states |φJ 〉 with
their different energies εJ should be contained in the global

state with equal probability 〈φJ |φJ 〉 = 〈〈Ψ|J〉〈J |Ψ〉〉 = 1 for
all J . The global state with this property is maximally en-

tangled,

|ΨM〉〉 =
∑

J

|J〉E ⊗ 〈J |ΨM〉〉 =
∑

J

|J〉E ⊗ |φJ 〉 , (8)

where the {|φJ 〉} form an orthonormal basis for the system
Hamiltonian with eigenenergies εJ . Note, that thanks to

the MES and with 〈ĤE〉E = trE(ĤEρ̂E),

E = 〈Ĥ〉(Λ) + 〈ĤE〉E(Λ) (9)

holds for all complex times Λ, in particular for all tempera-

tures. The link of the MES to infinite temperature through
complex relational time motivates its role for statistical me-

chanics which is given in [3] on very general grounds of
symmetry considerations for a global pure state describing
system and environment.

This remarkably direct quantum route to the fundamen-
tal relation of thermodynamics through relational imag-
inary time propagation of a maximally entangled global

state bears some interesting properties of relational com-
plex time, we would like to point out in the following.

(A) The energy constraint (1) has the consequence, that

[ρ̂E, ĥE] = 0⇔ [ρ̂, Ĥ] = 0 . (10)

In other words, if the conditioning density ρ̂E is

(block) diagonal in the energy eigenstates of the en-
vironment, the system’s density matrix ρ̂ commutes

with the system Hamiltonian, rendering ρ̂ station-
ary in real time, see (6). As the imaginary time evo-
lution is ruled by the anti-commutator, the system’s

density changes in imaginary time, but only through
the exponential energy factors, the coefficients in the

density remain constant. Since simply tracing over
the environment implies ρ̂E(0)∝ 1̂E diagonal, this

is also true for the imaginary time evolution giving
rise to statistical mechanics as derived: The evolu-

tion relates via the von Neumann equation in imagi-
nary time the system at different temperatures, main-

taining equilibrium (that is stationarity in real time),
thereby explicating the "peaceful coexistence of ther-

mal equilibrium and emergence of time" as put for-
ward in [8].

(B) As a pure state the MES carries vanishing entropy

Stot=0. A density matrix of the system singled
out from the MES by tracing over the environment,

ρ̂ = D−1 trE[P̂Ψ] = D−1
∑D

J=1
|φJ〉〈φJ |, is maximally

mixed with (maximal) entropy, S = ln D, where D
is the dimension of the system’s Hilbert space. This

property characterizes the maximal deficit of knowl-
edge or degree of in-determinism, which is typically
associated with a system’s state at infinite tempera-

ture.

The mathematical connection of a maximally de-
termined global MES with a maximally mixed (in-

determined) state of the system originates from the
way, how information about the system is encoded

in the MES, namely by exclusively and evenly link-
ing system wave functions to those of the environ-

ment. Hence, giving up the link through tracing over
the environment leaves minimal information about
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the system. On the other hand, a global state which
is not an MES is in general a Schmidt state |Ψ〉〉 =
∑

J aJ |J〉E⊗|φJ 〉, aJ ∈R. Links within (sub-)systems,
represented by coefficients aJ 6= 1 in the global state

are preserved upon cutting the links to the environ-
ment by tracing over it, and the resulting system state

is not maximally mixed.

In an experimental situation the global system designed
may not be in a maximally entangled or close by state,

but only in a Schmidt state. In this case it is still pos-
sible to mimic thermodynamics for the system via a suit-

able conditioning density ρ̂E of the environment. With
ρ̂E(0) =
∑

J pJ |J〉〈J |E one gets explicitly

ρ̂(Λ) =
1

Z(Λ)
e−γĤ ρ̂(0)

=
1

Z(Λ)

∑

J

e−γεJ pJ a2
J
|φJ 〉〈φJ | , (11)

where Λ = γ/2 + iλ. A conditioning density ρ̂E with

pJ = a−2
J

gives rise to a canonical density for the system and
therefore statistical mechanics. Such a setup is conceivable

using cavities and quantum control. It may be even more
interesting to study with this kind of setup deviations from

statistical mechanics with densities of the form of (11). An-
other step of complication would be to include real time

dynamics if ρ̂ does not commute with Ĥ, directly relevant
for eigenstate thermalization [9, 10]. Of course this com-

plicates, the expression for entropy which is also true for
explicit interaction V 6= 0 in Ĥtot.

Partially, the effect of interaction is included through the
entanglement in the global state: Without interaction the

global state could be a simple product state. Preserving
the general outcome, an interaction V̂ in (1) can be in-

cluded which commutes with the environmental Hamilto-
nian, [ĤE, V̂ ] = 0, or due to the Jacobi identity [11] equiv-

alently [V, |J〉〈J |E] = 0. This means that the environment
is big enough such that its eigenfunctions are not mod-

ified by V̂ . The result (7) remains the same, only that
now the eigenfunctions |φJ〉 and eigenenergies εJ fulfill the
Schrödinger equation (Ĥ + 〈J |V̂ |J〉E − εJ ) |φJ〉 = 0.

In summary, we have shown from a relational dynamics
point of view how statistical physics of a system is encoded

in maximally entangled states of the system and its environ-
ment. The observation underscores their pivotal role for

fundamental quantum principles, as these states are also
key in the derivation of Born’s rule with envariance [12].

Maximally entangled states have the least structure and are
evenly distributed over system and environment, corrob-

orating the situation at infinite temperature. Without the
need of ensemble considerations such as canonical typical-

ity, but by capitalizing on the probabilistic nature of a quan-
tum state itself, statistical physics for the system at finite
temperature emerges from propagation of the maximally

entangled state in relational complex time.

We thank A. Eisfeld and F. Fritzsch for helpful discussions.
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