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Finite-to-one equivariant maps and

mean dimension

Michael Levin ∗

Abstract

We show that a minimal dynamical system (X,Z) on a compact metric X with
mdimX = d admits for every natural k > d an equivariant map to the shift ([0, 1]k)Z

such that each fiber of this map contains at most [ k
k−d ]

k
k−d points.

Keywords: Mean Dimension, Topological Dynamics
Math. Subj. Class.: 37B05 (54F45)

1 Introduction

A classical result in Dimension Theory [4, p. 124] says that if a compact metric X is with
dimX = d then for almost every map f : X → [0, 1]k, k > d, the fibers of f contain at
most k

k−d
points. In an attempt to generalize this result to Mean Dimension we prove:

Theorem 1.1 Let (X,Z) be a minimal dynamical system on a compact metric X with
mdimX = d and let k > d be a natural number. Then almost every map f : X → [0, 1]k

induces the map fZ : X → ([0, 1]k)Z whose fibers contain at most [ k
k−d

] k
k−d

points.

Here fZ denotes the equivariant map to the shift ([0, 1]k)Z defined by fZ(x) = (f(x+z))z∈Z
for x ∈ X . In this note for an additive group G acting on X we use the notation x + g
rather than gx to denote the action of g ∈ G on x ∈ X . This seems to be more consistent
with the fact that 0 is the identity element of G.

Although the right estimate for the size of the fibers of fZ in Theorem 1.1 should
probably be [ k

k−d
], Theorem 1.1 still implies that fZ is an embedding for k > 2d (the case

of a minimal action of the Gutman-Tsukamoto theorem [2]) and fZ is finite-to-one for
k = [d] + 1 (the case that motivated this note).

The proof of Theorem 1.1 is self-contained and, basically, an interplay of two beautiful
constructions in Topology, namely, Kolmogorov’s covers (used in Kolmogorov’s proof of
the continuous version of Hilbert’s 13th problem [3]) and Lindenstrauss’ level functions (of
Rokhlin-type used in Lindenstrauss’ proof of the embedding theorem [5]).

Another essential ingredient of the proof of Theorem 1.1 (that to a certain extent bridges
between Kolmogorov’s covers and Lindenstrauss’ level functions) is Borel’s construction,
aka the mapping torus in Topological Dynamics, and the following property.

∗The author was supported by the Israel Science Foundation grant No. 2196/20 and the Max Planck
Institute for Mathematics (Bonn) where this note was written during his visit in 2023.
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Theorem 1.2 For any dynamical system (X,Z) on a compact metric X one has
mdimX ×Z R = mdimX where X ×Z R is Borel’s construction for (X,Z).

The case of a minimal action on X in Theorem 1.2 was obtained by Gutman and Jin [1]
based on Lindenstrauss’ characterization of mean dimension via metric mean dimension
[5]. We prove Theorem 1.2 by a direct argument which does not require any restriction
on the action. Theorem 1.2 together with Kolmogorov’s covers and Lindenstrauss’ level
functions seem to provide (at least for minimal actions) an elementary replacement of the
signal processing technique used in the proof of Gutman-Tsukamoto’s embedding theorem
[2].

The note is organized as follows: Section 2 - a description of the notations used in the
note, Section 3 - a review of mean dimension, Section 4 - a review of Borel’s construction,
Section 5 - a proof of Theorem 1.2, Section 6 - a review of Kolmogorov’s covers, Section 7
- a review of Lindenstrauss’ level functions, Section 8 - a proof of Theorem 1.1.

2 Notations

Everywhere in this note i, j,m, n, l and k stand for natural numbers (=non-negative inte-
gers) and z for an integer number (although in most cases it is stated explicitly).

For an additive G group acting on X we use the notation x+g rather than gx to denote
the action of g ∈ G on x ∈ X and the expression x + (−g) shortens to x − g. We also
denote A+ g = {x+ g : x ∈ A} for A ⊂ X , A+ g = {A+ g : A ∈ A} for a collection A of
subsets of X , A+H = {x+ g : x ∈ A, g ∈ H} for H ⊂ G and A+H = {A+H : A ∈ A}.

For a function f : X → Y and collections A and B of subsets of X and Y respectively
we denote f(A) = {f(A) : A ∈ A} and f−1(B) = {f−1(B) : B ∈ B}.

A map means a continuous function. For a finite open cover U of a compact metric X
the nerve of U is denoted by N(U) (a finite simplicial complex with ordU = dimN(U)+ 1)
and a canonical map f : X → N(U) means a map constructed on the basis of a partition
of unity subordinate to U and an important property of f is that the fibers of f refine U .

3 Mean Dimension

Let (X,Z) be a dynamical system on a compact metric X and d a positive real number.
Let us write mdimX ≤ d− if for every ǫ > 0 there is a finite closed cover A of X such
that mesh(A + z) < ǫ for every integer z ∈ Z satisfying 0 ≤ zd < ordA. We will write
mdimX > d− if mdimX ≤ d− does not hold. Note that slightly enlarging the elements
of A to open sets we may assume that in the above definition that A is an open cover.
We leave to the reader to verify that Gromov’s mean dimension mdimX can be defined as
mdimX = inf{d : mdimX ≤ d−} (and mdimX = ∞ if the defining set is empty). Note
that 1− < mdim[0, 1]Z = 1.

Let A0, . . . ,An be covers of X . The notation A0 ∨ · · · ∨ An is used to denote the cover
{A0 ∩ · · · ∩ An : Ai ∈ Ai, 0 ≤ i ≤ n}. Assume that each Ai is an open finite cover of
X and recall that for a canonical map fi : X → Ki = N(Ai) to the simplicial complex
Ki which is the nerve of Ai one has that the fibers of fi refine the elements of Ai and
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dimKi + 1 = ordAi. Thus for f = (f0, . . . , fn) : X → K0 × · · · × Kn we have that the
fibers of f refine A = A0 ∨ · · · ∨ An and therefore A can be refined by an open cover of X
of ord ≤ dimK + 1 = dimK0 + · · ·+ dimKn + 1.

Also note that if for (not necessarily open) covers Ai ofX we have that mesh(Ai+z) < ǫ
for every 0 ≤ i ≤ n and 0 ≤ z < m, z ∈ Z, then for the cover B = A0 ∨ (A1 − z1) ∨ · · · ∨
(An − zn) where zi = im we have that mesh(B+ z) < ǫ for every 0 ≤ z < m(n+ 1), z ∈ Z.

4 Borel’s construction

Let Z act on a compact metric X . Consider the induced action of Z on X × R defined by
(x, t) + z = (x+ z, t+ z), z ∈ Z. Borel’s construction X ×Z R is the orbit space (X ×R)/Z
with the action of R induced by the action (x, t) + r = (x, t + r), r ∈ R, on X × R and
the action of Z considered as a subgroup of R. We identify X with the subset X ×Z R

corresponding to X×{0} in X×R. Note that X×ZR is metric compact, the action of Z on
X×ZR extends the original action of Z on X , X×ZR = X +[0, 1] and for every r ∈ R the
set X+r is invariant under the action of Z. We denote by πX , πR and πZ the projections of
X×R to X , R and X×ZR respectively and denote by π the map π : X×ZR → S1 = R/Z
induced by πR. The space X ×Z R, also known in Topological Dynamics as the mapping
torus of (X,Z), can be represented as the quotient of X × [0, 1] where each point (x, 0) is
identified with (x+ 1, 1).

5 Proof of Theorem 1.2

Clearly we may assume mdimX <∞. Fix ǫ > 0 and d > mdimX , and take an open cover
A of X such that mesh(A+ z) < ǫ/2 for every integer z ∈ Z such that 0 ≤ zd < n = ordA.
Consider Borel’s construction X ×Z R. Without loss of generality we may assume that
mesh(A+ r) < ǫ/2 for every r ∈ R such that 0 ≤ rd < n+2d. Take a finite closed cover B
of X× [0, 1] such that ordB ≤ ordA+1 = n+1 and πX(B) refines A. Clearly C = πZ(B) is
a closed finite cover of X ×Z R with ordC ≤ 2ordB = 2(n+1). Recall that X is considered
as a subspace X ×Z R and note that every point of X ×Z R not belonging to X is covered
by at most ordB elements of C. Also note that we may choose B so that that meshπ(C) is
as small as we wish. Then we may assume that mesh(C + r) < ǫ for every r ∈ R such that
0 ≤ rd < n+ d.

Recall that R acts on X ×Z R, define Di = C + (i/n) for 0 ≤ i < n and note that
mesh(Di + z) < ǫ for every z ∈ Z such that 0 ≤ z < [n/d]. Denote zi = [n/d]i. Then for
the cover D = D0∨ (D1− z1)∨· · ·∨ (Dn−1− zn−1) of X×ZR we have that mesh(D+ z) < ǫ
for every z ∈ Z such that 0 ≤ z < [n/d]n.

Now consider the set P of the points of X ×Z R of ord > n + 1 with respect to C.
Note that P is a closed subset of X ⊂ X ×Z R. Then Pi = P + (i/n) is the set of the
points of ord > n + 1 with respect to Di and Pi ⊂ X + (i/n). Replace the elements of
Di by slightly larger open sets to get an open cover D′

i of X ×Z R with ordD′
i = ordDi,

denote by P ′
i the set of points of ord > n + 1 with respect to D′

i and consider a canonical
map fi : X ×Z R → Ki = N(D′

i) to a simplicial complex Ki (the nerve of D′
i) for which

the fibers of fi refine D′
i and dimKi ≤ 2n + 1. Assuming that the elements of D′

i are
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sufficiently close to the elements of Di and meshπ(C) is small enough we can also assume
that there are subcompexes Li ⊂ Ki such that fi(P

′
i + z) ⊂ Li, dim(Ki \ Li) ≤ n, and

fi(f
−1
j (Lj) + z) ⊂ Ki \ Li for every i, j 6= i and z ∈ Z.
Consider the map f : X×ZR → K = K0×· · ·×Kn−1 defined by f(x) = (fi(x+zi))0≤i<n.

Then the fibers of f refine the cover D′ = D′
0 ∨ (D′

1 − z1) ∨ · · · ∨ (D′
n−1 − zn−1) of X ×Z R

and f(X ×Z R) ⊂ M =M0 ∪ · · · ∪Mn−1 where Mi is the product of Ki with all Kj \Lj for
j 6= i. Note that dimMi ≤ 2n+ 1+ n(n− 1) = n2 + n+ 1 and hence dimM ≤ n2 + n+ 1.
Thus D′ can be refined by an open cover of ord ≤ n2 +n+2. Recall that mesh(D+ z) < ǫ
for every z ∈ Z such that 0 ≤ z < [n/d]n. Assuming that the elements D′ are sufficiently
close to the elements of D we can assume that the latter property holds for D′ as well and
we get that mdimX ×Z R ≤ d since n2+n+2

[n/d]n
goes to d as n goes to ∞. This implies that

mdimX ×Z R = mdimX .

6 Kolmogorov’s covers

For a subset A ⊂ R and r ∈ R denote rA = {ra : a ∈ A}. Fix a natural num-
ber n and a real number ǫ > 0 and consider the collections of closed intervals Ai =
{ ǫ
m+1

[zm+ i, zm+ i+m] : z ∈ Z} for 1 ≤ i ≤ m + 1. Note that meshAi < ǫ and the col-
lectionsA1, . . . ,Am+1 cover R at leastm times. For a natural n denoteAn

i = {A1×· · ·×An :
A1, . . . , An ∈ Ai}. Then for n ≤ m the collections An

1 . . .A
n
m+1 cover R

n at least m− n+1
times. Indeed, for a point x = (x1, . . . , xn) ∈ Rn each coordinate of x is covered by at least
m collections from A1, . . . ,Am+1 and therefore there are at least m− n+ 1 collections Ai

so that each of them covers all the coordinates of x and and hence for each such collection
Ai the point x is covered by An

i . Clearly An
1 , . . . ,A

n
m+1 are collections of disjoint cubes of

diam < ǫ with respect to the l∞-norm in Rn. We will refer to A = An
1 ∪ · · · ∪ An

m+1 as
Kolmogorov’s cover of Rn.

Let U be a finite open cover of a compact metric X with ordU ≤ n + 1 and let m be
any integer such that n ≤ m. Consider a canonical map f : X → K = N(U) to the nerve
of U . Since K is a finite simplicial complex with dimK ≤ n there is a finite-to-one map
g : K → Rn. Then for a sufficiently small ǫ > 0 we have that for Kolmogorov’s cover A
the components of the elements of (g ◦ f)−1(A) will refine the elements of U and hence by
splitting the elements of (g◦f)−1(An

i ) into finitely many disjoint closed sets and taking into
account that g(K) meets only finitely many elements of A we get from each (g ◦ f)−1(An

i )
a finite family Fi of disjoint closed sets such that F = F1∪ · · ·∪Fm+1 refines U and covers
X at least m− n+ 1 times. We will refer to F as a Kolmogorov-Ostrand cover.

7 Lindenstrauss’ level functions

Let (X,Z) be a non-trivial minimal dynamical system on a compact metric X , U a non-
empty open set U in X and φ : X → [0, 1] any map such that φ(X \ U) = 1 and
φ−1(0) has non-empty interior. Define the random walk on X by stopping at x ∈ X
with the probability 1 − φ(x) and moving from x to x − 1 with the probability φ(x).
Then Lindenstrauss’ level function ξ : X → R is defined at x ∈ X as the expecta-
tion of the number of steps in the random work starting at x. In other words, ξ(x) =
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φ(x)(1 − φ(x − 1)) + 2φ(x)φ(x − 1)(1 − φ(x− 2)) + . . . Since the action of Z is minimal,
each random walk will eventually hit φ−1(0) and stop there, moreover, the number of steps
in each random walk is bounded by a number depending only on the set φ−1(0). Thus ξ is
well-defined and continuous. It is easy to see that ξ(x+ 1) = φ(x+ 1)(ξ(x) + 1) for every
x ∈ X and therefore given a natural number n we have that ξ(x+ z) = ξ(x) + z for every
integer −n ≤ z ≤ n and x ∈ X \ ((U − n) ∪ · · · ∪ (U + n)). We will refer to ξ(x) as a
Lindenstrauss level function determined by U .

8 Proof of Theorem 1.1

Let us first present some auxiliary notations and properties used in the proof.
Let (Y,R) be a dynamical system, A a subset of Y , A a collection of subsets of Y and

α, β ∈ R positive numbers. The subset A is said to be (α, β)-small if diam(A+ r) < α for
every r ∈ [−β, β] ⊂ R. The collection A is said to be (α, β)-fine if mesh(A + r) < α for
every r ∈ [0, β] ⊂ R. The collection A is said to be (α, β)-refined at a subset W ⊂ Y if
the following two conditions hold: (condition 1) no element of A+ r meets the closures of
both W + r1 and W + r2 for every r, r1, r2 ∈ [−β, β] ⊂ R with |r1 − r2| ≥ 1 and (condition
2) if for an element A of A the set A + [−β, β] meets the closure of W + [−β, β] then
diam(A+ r) < α for every r ∈ [−β, β] ⊂ R.

Proposition 8.1 Let (Y,R) be a free dynamical system on a compact metric Y , ω a point
in Y and let α and β be positive real numbers. Then there is an open neighborhood W of
w and an open cover V of Y such that ordV ≤ 3 and V is (α, β)-refined at W .

Proof. Note that L = w + [−3β, 3β] is an interval in Y and consider a map g = (g1, g2) :
Y → R2 such that g1 embeds L into R and g2(y) is the distance to L from y ∈ Y . Then
g−1(a) is a singleton for every a ∈ g(L) and therefore there is a fine open cover O of R2

with ordO = 3 and a small neighborhood W of w in Y such that the cover V = g−1(O) of
Y is (α, β)-refined at W . Clearly ordV ≤ 3. �

Proposition 8.2 Let q > 2 be an integer. Then there is a finite collection E of disjoint
closed intervals in [0, q) ⊂ R such that E splits into the union E = E1∪ · · ·∪Eq of q disjoint
subcollections having the property that for every t ∈ R the set t+Z ⊂ R meets at least q−2
subcollections Ei (a set meets a collection if there is a point of the set that is covered by the
collection). Moreover, we may assume that meshE is as small as we wish.

Proof. Let E1, . . . , Eq−1 ⊂ [0, q) be q − 1 disjoint closed intervals of length > 1. Clearly
for each t ∈ R the set t+Z meets all the intervals Ei. Consider a finite set A ⊂ [0, q) such
that 1 ∈ A and the numbers of A are linearly independent over Q (the rationals). Define
φ : R → R by

φ(t) = inf{|t+ z1 − a1|+ |t+ z2 − a2| : a1, a2 ∈ A, z1, z2 ∈ Z, (z1, a1) 6= (z2, a2)}.

Note that φ is continuous and periodic with period 1 and φ(t) > 0 for every t. Then
σ = inf{φ(t) : t ∈ R} > 0. Set Ω to be the open σ/3-neighborhood of A and note that Ω
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contains at most one point of t+Z for every t ∈ R. Also note that for every 1 ≤ i ≤ q−1 the
set Ei \Ω splits into a finite collection of disjoint closed intervals and denote this collection
by Ei. Thus we have that for every t ∈ R the set t+Z meets at least q− 2 collections from
E1, . . . , Eq−1. Assuming that A is sufficiently dense in [0, q) we can get meshEi as small as
we wish for all i. Setting Eq to be empty or any finite collection of disjoint small closed
intervals in [0, q) that don’t meet E1, . . . , Eq−1 we get the collection E = E1 ∪ · · · ∪ Eq with
the required properties. �

Proof of Theorem 1.1. Let f = (f1, . . . , fk) : X → [0, 1]k be any map and let ǫ > 0
and δ > 0 be such that under each fi the image of every subset of X of diam < 3ǫ is
of diam < δ in [0, 1]. Our goal is to approximate f by a δ-close map ψ such that the
fibers of ψZ contain at most γ = γ(d) points with pairwise distances larger than 3ǫ where
γ(t) = [k/(k − t]k/(k − t), t < k.

Since [γ] = [γ(t)] for every t > d sufficiently close to d we can replace d by a slightly
larger real number and assume that mdimX < d. Take natural numbers n and q such that
mdimX < n/q < d and set m = qk. Then n < qd < qk = m and m/(m− n) ≤ k/(k − d).
By Theorem 1.2 we have mdimX ×Z R = mdimX . Then, assuming that n is large enough,
there is an open cover U of X ×Z R such that ordU ≤ n− 2 and U is (ǫ, q)-fine. Clearly we
may assume that q > 2.

Since the theorem obviously holds if X is a singleton, we may assume that (X,Z) is
non-trivial. Fix a point w ∈ X and let l > q be a (sufficiently large) positive integer which
will be defined later and will depend only on q. By Proposition 8.1 there is an open cover
V of X ×Z R and a neighborhood W of w in X ×Z R such that V is (ǫ, 2l)-refined at W .

Now replacing U by an open cover of ord ≤ n refining U ∨ V we can assume that
ordU ≤ n, U is (ǫ, q)-fine and U is (ǫ, 2l)-refined at W . Clearly we can replace W by any
smaller neighborhood of w and assume that W is (ǫ, 3l)-small and the elements of DW are
disjoint where DW is the collection of the closures of W + z for the integers z ∈ [−2l, 2l].

Refine U by a Kolmogorov-Ostrand cover F of X ×Z R such that F covers X ×Z R at
least m−n times and F splits into F = F1∪· · ·∪Fm the union of finite families of disjoint
closed sets Fi. Note that F is (ǫ, q)-fine and (ǫ, 2l)-refined at W .

Let ξ : X → R be a Lindenstrauss level function determined by W restricted to X .
Denote W+ = W +Z∩ [−l, l] and X− = X \W+. Recall that ξ(x+ z) = ξ(x)+ z for every
x ∈ X− and an integer −l ≤ z ≤ l.

We need an additional auxiliary notation. Let A be a collection of subsets of X×ZR, B
a collection of intervals in R. For B ∈ B and z ∈ Z consider the collection A+B restricted
to ξ−1(B + qz) and denote by A ⊕ξ B the union of such collections for all z ∈ Z. Now
denote by A⊕ξ B the union of the collections A⊕ξ B for all B ∈ B. Note that A⊕ξ B is a
collection of subsets of X .

Consider a finite collection E of disjoint closed intervals in [0, q) ⊂ R satisfying the
conclusions of Proposition 8.2. For 1 ≤ i ≤ k define the collection Di of subsets of X as
the union of the collections Fi ⊕ξ E1, Fi+k ⊕ξ E2, . . . , Fi+(q−1)k ⊕ξ Eq. Note that assuming
that meshE is small enough we may also assume that F+

i = Fi + [−meshE ,meshE ] is a
collection of disjoint sets and the collection F+ = F + [−meshE ,meshE ] is (ǫ, q)-fine and
(ǫ, 2l)-refined at W and, as a result, we get that Di is a collection of disjoint closed sets of
X of diam < ǫ and each element of Di meets at most one element of DW .
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Define a map ψ = (ψ1, . . . , ψk) : X → [0, 1]k so that for each i the map ψi is δ-close
to fi, ψi sends the elements of DW restricted to X and the elements of Di to singletons
in [0, 1] and ψi separates the elements of DW restricted to X together with the elements
of Di not meeting DW . We will show that the fibers of ψZ contain at most γ points with
pairwise distances larger than 3ǫ.

Denote by S the set of all the pairs of integers (i, j) with 0 ≤ i ≤ l − 1 and 1 ≤ j ≤ k.
We say that a point x ∈ X is marked by a pair (i, j) ∈ S if x+i is covered by Dj and denote
by Sx ⊂ S the set of the pairs by which x is marked. Let us compute the size of Sx for a
point x ∈ X−. Consider a non-negative integer z such that ξ(x) ≤ zq < (z+1)q < ξ(x)+ l.
Recall that x+(zq−ξ(x)) is covered by at leastm−n collections from the family F1, . . . ,Fm

and ξ(x)+Z meets at least q−2 collections from E1, . . . , Eq. Then (†) the point x is marked
by at least m− n− 2k pairs (i, j) of S with zq ≤ ξ(x) + i < (z + 1)q.

Indeed, for every Ep that meets ξ(x) + Z pick up zp ∈ Z such that ξ(x) + zp is covered
by Ep. Denote ip = zp + zq and note that zq ≤ ξ(x) + ip < (z + 1)q and, hence, 0 ≤ ip < l.
Also note that different p define different ip and for every 1 ≤ j ≤ k such that Fj+(p−1)k

covers the point x+ (zq− ξ(x)) we have that the collection Dj covers x+ ip, and therefore
x is marked by the pair (ip, j) in S. Thus if ξ(x) + Z meets all the collections E1, . . . , Eq
the number of pairs (i, j) ∈ S with zq ≤ ξ(x) + i < (z + 1)q marking x will be at least the
number of times x+ (zq − ξ(x)) is covered by the collections F1, . . . ,Fm, which is at least
m− n. Each time ξ(x) + Z misses a collection from E1, . . . , Eq reduces the above estimate
by at most k. Since ξ(x) + Z can miss at most two collections from E1, . . . , Eq we arrive at
the required estimate m− n− 2k in (†).

Thus, by (†), the point x is marked by at least ( l
q
− 3)(m − n − 2k) pairs of S. Since

m−n ≥ m(k−d)/k = q(k−d) we have |Sx| ≥ ( l
q
−3)(m−n−2k) ≥ ((l/q)−3)(q(k−d)−2k) =

l(k − d)∆ where ∆ = (1 − 3q
l
)(1− 2k

(k−d)q
). Note that we may take q sufficiently large and

then l sufficiently large with respect to q and assume that ∆ < 1 and ∆ is as close to 1 as
we wish.

Now we will show that there is no set contained in a fiber of ψZ and containing more
than γ points with pairwise distances larger than 3ǫ. Aiming at a contradiction assume
that such a set Γ ⊂ X exists with |Γ| = [γ] + 1. First note that Γ can contain at most one
point in X \X− since each ψi separates DW restricted to X and mesh(DW ) ≤ ǫ.

Now assume that Γ contains a point x ∈ X \X− and a point y ∈ X−. Take any pair
(i, j) ∈ Sy and an element D ∈ Dj that contains y+ i. Since ψZ

j does not separate x and y
we get that D meets the element of DW containing x+ i, and (††) the latter is impossible
because F+ is (ǫ, 2l)-refined at W and W is (ǫ, 3l)-small that implies that x and y are
2ǫ-close.

Indeed, D is contained in an element of F+ + t for some 0 ≤ t < q. Then y is covered
by an element of F+ + t− i that intersects the element of DW containing x, and the facts
that (ǫ, 2l)-refined at W and W is (ǫ, 3l)-small yield the conclusion of (††).

Thus, by (††), we get that Γ ⊂ X−. Now we can assume that ∆ > γ/|Γ| and get that∑
x∈Γ |Sx| > |Γ|l(k− d)(γ/|Γ|) = lk[k/(k − d)]. Then, since |S| = lk, there is a pair (i∗, j∗)

in S and Γ∗ ⊂ Γ such that |Γ∗| = [k/(k−d)]+1 and every point in Γ∗ is marked by (i∗, j∗).
Thus Γ∗+ i∗ is covered by Dj∗. Then (†††) there is an element D of Dj∗ containing Γ∗+ i∗.

Indeed, if Γ∗+ i∗ meets two elements of Dj∗ then those elements cannot touch the same
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element of DW (because the points of Γ∗ are 3ǫ-distant and F+ is (ǫ, 2l)-refined at W ) and,
hence will be separated by ψZ

j∗ . Thus (†††) holds.
Then, by (†††), we have that ξ(Γ∗) is contained in an element (interval) of E+qz for some

non-negative integer z. Since meshE is small there is an integer 0 ≤ q∗ ≤ q − 1 such that
ξ(Γ∗−q∗) ⊂ [qz, qz+2]. Denote by S∗ the set of pairs (i, j) such that 0 ≤ i ≤ q−3, 1 ≤ j ≤ k,
and say that a point x ∈ Γ∗ − q∗ is marked by (i, j) ∈ S∗ if x+ i is covered by Dj . Since F
covers X at least m−n times we get by an argument similar to the one applied above that
each point of Γ∗ − q∗ is marked by at least m− n− 6k ≥ q(k− d)− 6k = q(k− d)∆∗ pairs
in S∗ where ∆∗ = 1− 6k

q(k−d)
. Note that (k/(k−d))/|Γ∗| < 1 and assume that q is such that

(k/(k − d))/|Γ∗| < ∆∗. Then, since |S∗| = k(q − 2), there are two distinct points x and y
of Γ∗ − q∗ marked by the same pair (i, j) of S∗. Again by the above reasoning x + i and
y + i cannot lie in different elements of Dj. Thus x + i and y + i lie in the same element
D of Dj . Then, since F+ is (ǫ, q)-fine, this implies that the points x+ q∗ and y + q∗ of Γ∗

are ǫ-close.
Indeed, D is contained in an element of F+ + t + i with t ∈ [0, 2). Then x and y are

contained in an element of F+ + t, and x + q∗ and y + q∗ are contained in an element of
F+ + t+ q∗. Hence x+ q∗ and y + q∗ are ǫ-close since 0 ≤ t+ q∗ < q and F+ is (ǫ, q)-fine.

Thus the assumption |Γ| > γ leads to a contradiction and hence ψ is the desired
approximation of f . Then the theorem follows by a standard Baire category argument. �
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