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SOLID LOCALLY ANALYTIC REPRESENTATIONS

JOAQUIN RODRIGUES JACINTO AND JUAN ESTEBAN RODRIGUEZ CAMARGO

ABSTRACT. We develop the p-adic representation theory of p-adic Lie groups on solid vector spaces over
a complete non-archimedean extension of Q,. More precisely, we define and study categories of solid,
solid locally analytic and solid smooth representations. We show that the category of solid locally analytic
representations of a compact p-adic Lie group is equivalent to that of quasi-coherent modules over its algebra
of locally analytic distributions, generalizing a classical result of Schneider and Teitelbaum. For arbitrary
G, we prove an equivalence between solid locally analytic representations and quasi-coherent sheaves over
certain locally analytic classifying stack over G. We also extend our previous cohomological comparison
results from the case of a compact group defined over Q, to the case of an arbitrary group, generalizing
results of Lazard and Casselman-Wigner. Finally, we study an application to the locally analytic p-adic
Langlands correspondence for GL;.
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1. INTRODUCTION

Let p be a prime number, G be a p-adic Lie group defined over a finite extension L of Q, and let
K = (K,K") be a complete non-archimedean extension of L. The purpose of this article is to give new
foundations of the theory of locally analytic representations of G' on K-solid vector spaces through the use
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of condensed mathematics. This generalizes our previous work [RJRC21|, where the case G compact and
L = Q,, was studied.

Our first purpose is to provide definitions and study the main properties of categories appearing naturally
in the representation theory of a p-adic Lie group. There are at least three of them, namely continuous,
smooth and locally analytic representations. Using the formalism of condensed mathematics, we construct
and study the (oo-)categories of solid, solid smooth and solid locally analytic representations of G. We de-
note them, respectively, by Repyg (G), Repig (G), Repﬁ‘é. (GQ). These categories arise as the derived category
of a corresponding abelian category of representations. Furthermore, these abelian categories contain fully
faithfully all the classical categories of continuous, smooth and locally analytic representations on complete
compactly generated locally convex K-vector spaces. One of the main advantages of our approach is that
many of the difficulties appearing in fundamental constructions in classical representation theory, such as
Hochschild-Serre, Shapiros’s lemma, duality, etc., are easily overcome with the use of homological algebra
when one works on a solid framework.

Let us now explain our results in more detail. Let G be a p-adic Lie group over L. Let Km[G] be the
Iwasawa algebra of G over Km, i.e. the free Km-vector space generated by G. If K = (K,Ok) is a finite
extension of Q,, then Km[G] is the classical Iwasawa algebra of G, i.e. the dual of the space C(G, K)
of continuous functions on G. Let D"(G, K) denote the locally analytic distribution algebra of G, i.e.
the dual of the space C!%(G, K) of locally analytic functions on G. We denote by Modg (D'*(G, K)) and
Modg (Km[G]) the (co-)categories of D'(G, K) and Km[G]-modules on Km-vector spaces, respectively. The
following result resumes our construction of the category of solid locally analytic representations and its
main properties (cf. Propositions B.2.3] and [3.2.0]).

Theorem A. There exists a full subcategory Rep%.(G) C Modyg (DG, K)) of solid locally analytic
representations of G on Km-vector spaces stable under tensor product and colimits, where the inclusion has
a right adjoint given by (derived) locally analytic vectors V ~ VI Moreover, the following properties are
satisfied.

(1) An object V € Modig(D'(G, K)) is locally analytic if and only if H (V) is (non-derived) locally
analytic for every i € Z. In particular, Rep%.(G) has a natural t-structure.
(2) Rep%.(G) is the derived category of its heart.

(3) The functor of locally analytic vectors satisfies the projection formula, namely, for any V,W €
MOd]CI (Dla(G, K)), one has (VRla ®k- W)Rla — VRla ®k- WRla.

Remark 1.0.1.

(1) Let V be a locally L-analytic representation of G on an LB space in the classical sense. Then point
(1) implies that V is an object in Modxg(D!(G, K)) that is derived locally analytic. In particular,
classical locally analytic representation theory lives naturally in Repfg.(G).

(2) If G is a p-adic Lie group over Q,, then Dl“(G, K) is an idempotent algebra over the Iwasawa
algebra Km[G], namely D'(G, K) ®é- ] Dl4(G, K) = D'*(G, K). This implies that the category of
Dl(@, K)-modules on Kg-vector spaces embeds fully faithfully in the category of Km[G]-modules
on Km-vector spaces. In particular, Repﬁ‘é. (G) is a full subcategory of Modjg(Km[G]) and one
can also define the locally analytic vectors of Km[G]-modules as the right adjoint of this inclusion.
For D!*(G, K)-modules, this coincides with the construction of Theorem [Al Nevertheless, when the
group is not defined over Q,, both constructions of locally analytic vectors differ, c.f. Remark
for a detailed discussion.

(3) We also give an analogue of Theorem [A] for solid smooth representations, cf. §5.2

(4) As a corollary of Theorem [Al we obtain a description of Repfg. (G) and Repgy (G) as quasi-coherent
sheaves on the classifying stack [*x/G] of G, where G is endowed with the sheaf of locally analytic
or smooth functions, cf. Theorem E.3.3] and Proposition

We now explain some applications of our theory. The first main result is an equivalence, for G a compact
group, between the (derived) category of solid locally analytic representations of G and the category of
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solid quasi-coherent sheaves over certain non-commutative adic Stein space associated to G. This can be
seen as a generalization of a classical anti-equivalence of Schneider and Teitelbaum [STO03|, which can be
recovered from our equivalence when restricting to the (abelian) subcategory of admissible representations
after applying a duality functor. This result can also be seen as a step towards geometrizing the category
of solid locally analytic representations. Our second main application is an extension of the cohomologi-
cal comparison theorems for solid representations from the case where G is compact and defined over Q,
obtained in [RJRC21] to the general case, extending also the non compact version [CWT74] of Lazard’s
isomorphisms |[Laz65| from the case of finite dimensional representations to arbitrary solid representations.
The main novelty of our approach to the comparison results is that we deduce them in a completely formal
way from adjointness properties between certain functors.

If G is compact the distribution algebra D'(G, K) is a Fréchet-Stein algebra in the sense of [ST03], and
the category of its coadmissible modules can be seen as the category of coherent sheaves over certain (non-
commutative) Stein space associated to D!*(G, K). More precisely, for h € [0,00) a parameter depending
on some choices, there is a limit sequence of h-analytic distribution algebras {D"(G, K)};>0 such that
DG, K) = r&lh—mo DG, K). For example, if G = Zy, is the additive group of p—adicointegers, by the
Amice transform Dla(Zp,K ) is isomorphic to the global sections of an open unit disc Dg over K, and

—h
the algebras Dh(Zp, K) are overconvergent algebras on closed discs of radius p_z;fl. In this way we can
think of the sequence {D"(G, K )}n>0 as a family of dagger affinoid algebras defining closed subspaces of
a non-commutative Stein space whose global functions are equal to D'*(G, K). We define the category of
solid quasi-coherent D'*(G, K)-modules to be the limit co-category

Mod, (D'(G, K)) = lim Modx(D"(G, K))

h— o0
where the transition maps are given by the K-solid base change D"(G, K) ®2L)h,(G K~ for b’ > h. Con-
cretely, an object in Mod?cc. (D'*(G, K)) is a sequence of objects (Fj,)n>0 with F, € Modxg(D"(G, K)),

L
DM (G,K)
In the case where G = Z,, the category Mod;lcc. (D'(@G, K)) is nothing but that of solid quasi-coherent

sheaves on D - Our second main result is the following.

together with natural equivalences D" (G,K)® Fn = Fp, for ¥ > h, subject to higher coherences.

Theorem B (Theorem EIT). Let G be a compact p-adic Lie group defined over L. Then there is an
equivalence of (stable co-)categories

Modf (D'(G, K)) = Repiy (G)

(Fu)n = 31 F = (lim Fp) .
h

Remark 1.0.2.

(1) The functor j; giving the equivalence of categories can be thought of as taking cohomology with
compact support of quasi-coherent sheaves. Indeed, if G = Z, the functor j is the cohomology
with compact supports on Dx of solid quasi-coherent sheaves as defined in [CS22], Lecture XII| for
complex spaces.

(2) The functor j; of Theorem [B] does not respect the natural ¢-structures on both sides and hence does
not arise from a functor defined at the level of abelian categories. Indeed, the module D'(G, K)
defines a quasi-coherent sheaf which is given by F = (D"(G,K))p>0 and one has that jF =
(DG, K))fte = C'(G, K) ® x[—d] where d is the dimension of the group G and y = det(g)~"
denotes the determinant of the dual adjoint representation of G on its Lie algebra g, cf. Corollary
5.1.10l

(3) We also prove an analogous version of Theorem [Bl for solid smooth representations (Proposition
[£.2.2]), where the category Mod?cc- (D*™(G, K)) is defined as fm, - Modig (K[G/H]) for H running
through all the open compact subgroups of G.
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From Theorem [B], we can recover Schneider-Teitelbaum’s anti-equivalence as follows.

oy oy . . . l .
i’roposmlon C (Proposition A27T). There is a locally analytic contragradient functor on Rep,g. (@) given
Yy
V — VVBa — RHom . (V, K)®e,
and a duality functor D on Mod?cc- (Dl*(G, K)), such that for F € Mod;lcc. (D'*(G, K)) one has

H(D(F)) = (jr.F)" e

The functor F +— jD(W) = (5. F)V-Fle restricts to Schneider and Teitelbaum’s classical anti-equivalence
between coadmissible D'*(G, K)-modules and admissible locally analytic representations of G.

Remark 1.0.3.

(1) In the bigger category Modig(D'(G, K)) of all solid D'*(G, K)-modules, the duality functor is
given by the formula D(V) = RHompia (g x)(V, DG, K) ® x~![d]), where x and d are as before.
Note that this functor coincides (up to a twist and a shift in the cohomological degree) with the
one defined in [ST03| when G is compact (cf. Corollary 2.9 for a discussion of the duality functor
in the non-compact case). We refer the reader to Definition [L.T.11] for an explicit definition of D.

(2) Even though the result is stated for a compact group G, one trivially recovers the anti-equivalence
of Schneider-Teiltelbaum for non-compact groups, since the classical notions of admissible and
coadmissble are local in G, i.e. they only depend on the restriction to an open compact subgroup.

(3) Along the way, the above proposition also answers a question raised in [ST05, p. 26|, concerning
the extension of the smooth contragradient functor from the category of admissible smooth rep-
resentations to the cateory of admissible locally analytic representations. We refer the reader to
Proposition 53] for the precise answer to Schneider and Teitelbaum’s question.

We now explain our cohomology comparison results. There are natural functors

Mod(Km) — RepiZ2 (G) 2 Reple, (Gr) 2 Reple, (Gq,) = Repig (G),

where we denote by Gq, the restriction of scalars of G from L to Qp, and G = G to stress that the group
is defined over L in order to avoid confusion. All these functors commute with colimits and hence possess
right adjoints. The main idea for our comparison results is to reinterpret the cohomological comparison
results as formal identities coming from adjunctions and hence reduce them to calculating the right adjoints
of the above arrows. Classically, there are many possible cohomology theories associated to G that consider
different possible structures of G, e.g., continuous, Q, and L-locally analytic, smooth and Lie algebra
cohomology.

Definition 1.0.4. We define
e Solid group cohomology RI'(G,—) : Repgg(G) — Mod(Km),
¢ (Qp-)Locally analytic group cohomology RFl“(GQP, —): Rep%. (Gq,) — Mod(Knm),
e (L-)Locally analytic group cohomology RI'*(Gp,—) : Rep%.(GL) — Mod(Km),
e Smooth group cohomology RI*™ (G, —) : Repi'g (G) — Mod(Km)
e Lie algebra cohomology RI'(g, —) : Modxg(U(g)) = Mod(Km),
as the right adjoint of the embedding of Mod(Km) in the corresponding category.

One can check (Proposition [6.3.3)) that these definitions coincide with the usual definition of cohomology
using (continuous, locally analytic, etc...) cochains. Our main key calculation is to show (Proposition [6.2.1])
that

(1) The right adjoint of Fj is given by Lie algebra cohomology RI'(gr,—) := RHomy; g, (K, —).
(2) The right adjoint of F% is given by RI'(¢, —) := RHomyy (K, —), where £ = ker(gq, ®q, L — 91).

(3) The right adjoint of F3 is given by the functor of locally analytic vectors (—)%e,

Moreover, the right adjoint to the composition of Fy o...o F; (j = 1,2,3) can be interpreted as taking
smooth vectors in the corresponding category. Analogously, the right adjoint of Fho...F; (j = 2,3) can
be interpreted as taking locally L-analytic vectors, and so on. Summarizing this, we obtain our third main
result.
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Theorem D (Theorem [6.3.4]). We have the following commutative diagram:
RF(E -)

. )Rl Rep GQp Rep RF( :
¢ g,—
RIa( GQP, RUle (G, —

Repyg (G) Rep (@)

RI™ (G, —
Mod(Km)

Moreover, since the embedding Repf‘é. (Gq,) in Repyg (G) is fully faithful, we have RT'(G,V) = RI'(G, Vv Rla)
forV e RepK-(G), In particular, if G is a p-adic Lie group over Qp, we have

RT(G,V) = RI(G, VEe) = prie(q, vie) = RT*™ (@G, RT (g, V9)).
Remark 1.0.5.

(1) When G is compact and V is a finite dimensional representation, the last two equivalences are a
classical result of Lazard [Laz65]. When G is given by the Q,-points of an algebraic group and V
is finite dimensional, Casselman-Wigner generalized Lazard’s result in [CW74]. For G compact and
any solid V, this result was obtained by the authors in [RJRC21].

(2) When G is a p-adic reductive group over @, and V is an admissible Banach representation of G,
then VFle = V! and the isomorphism RI'(G,V) = RI'(G,V!®) was recently and independently

shown by Fust in [Fus23] by reducing the problem to the compact case [RJRC21], Theorem 5.3] via
a Bruhat-Tits building argument.

We conclude this introduction with an application of Theorem [Blto the p-adic Langlands correspondence
for GLy. We heartily thank Eugen Hellman for pointing out this application to us. We let X7 be the
classifying stack of rank 1 (¢, T')-modules over the Robba ring on affinoid Tate algebras over K = (K, K™),
cf. [EGH23, §5]. Since every such (¢, I')-module is given, up to a twist by a line bundle on the base, by a
continuous (and hence locally analytic) character on Q = Z; x p”, this stack is represented (cf. [EGH23]
§7.1]) by the quotient

(W x Gi) /G
with trivial action of G&', where W is the rigid analytic weight space of O whose points on an affinoid ring
A are given by continuous characters Hom(O;, A), and where G{" denotes the rigid analytic multiplicative
group. Let Modqlcc.(/l’l) be the category of solid quasi-coherent sheaves on Xj. In [EGH23|, the authors
conjecture that the natural functor

£ Repjdy (Lgy ) — Modg (1)

given by SS;“(V) Ox, ® V' is fully faithful when restricted to a suitable category of “tempered”

Dl“(Lgp,K)
(or finite slope) locally analytic representations (cf. [EGH23| Equation (7.1.3)]). Here Lép is the restriction
of scalars to Q, of the p-adic Lie group L*. On the other hand, for the functor £2§,“ to be fully faithful
without restricting to a smaller subcategory of Repﬁg. (L@p), one can also modify the stack X7, namely, we
consider
Xmod [W « Galg/Galg]

where Git? is the analytic space, in the sense of [(S20], attached to the ring (K [T+, K)g = Km®zZ[T*1].

In order to describe the category of solid quasi-coherent sheaves on the stacks le"d and A7 in terms
of representation theory, we need to introduce some notation. We let (G%') = fm K (p"T, p%) and

EtZ?"[}p = O0(G¥)V be the Hopf algebras of functions of the group G** and its dual. We let Z!*™ denote
the analytic space defined by the algebra KtZegzp . We also let Ctemp (Lép, K)=0 (W x G¥)V be the Hopf
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temp

algebra of tempered locally analytic functions on L*. Finally, we let Repyg"(Lg ) := Modg ([*/ L@Zemp )

be the category of tempered (locally analytic) representations of L@p.
Theorem E (Theorem .44). There are natural equivalences of stable co-categories
Mod{<, ([Z/ L") = Modf<, (x74),  Mod<, (12 /L") =5 Modf, (A1)
Furthermore, the functor QSL“ induces equivalences
Rep%. (Lap) = Modq,Cc-(W x G49), Repfg:w(l/ap) = Mod?cc- (VNV x G&M).

Acknowledgements. We heartily thank Eugen Hellman for pointing out the application of Theorem [Blto
the categorical p-adic Langlands correspondence, and Arthur—César Le Bras for many inspiring conversa-
tions that concluded in the stacky interpretation of locally analytic representations. We thank Lucas Mann
for several discussions on six functor formalisms and their connection with representation theory. Finally,
we thank Johannes Anschiitz, Ko Aoki, Yutaro Mikami, Cédric Pepin, Vincent Pilloni, Peter Scholze and
Matthias Strauch for their comments and corrections. The first author was supported by the project ANR-
19-CE40-0015 COLOSS. The second author thanks the Max Planck Institute for Mathematics for their
hospitality during the preparation of this paper.

Notations and auxiliary results. Throughout this paper we use the language of oo-categories of [Lur(9],
and the techniques of higher algebra from [Lurl7]. We use Clausen and Scholze condensed approach to
analytic geometry as presented in the lecture notes [CS19,/CS20, [(CS22]. We refer the work of Mann [Man22b]
for complete and rigorous proofs of foundational results on the subject, particularly those regarding the
set theoretical subtleties in condensed mathematics. Nevertheless, throughout this paper we will fix an
uncountable solid cutoff cardinal « as in [Man22bl Definition 2.9.11] and work with s-small condensed sets,
it will be clear from the definitions that the functors and adjunctions constructed below are independent
of k, and therefore that they extend naturally to the full condensed categories.

For C an oo-category with all small limits and colimits, we let Cond(C) denote the oo-category of
condensed C-objects, see [Man22b, Definition 2.1.1]. Given X € Cond(C) and S a profinite set, we let
Cont (S, X) or C(S, X) be the object in Cond(C) whose values at S’ € Extdis are X (S x S’). This is still
a condensed object by [Man22b, Corollary 2.1.10] under a mild condition on C (eg. if it is presentable).
In particular, we shall write CondSet, CondAb and CondRing for the categories of condensed sets, abelian
groups and commutative rings, respectively.

All the analytic rings considered in this document are assume to be animated and complete in the sense
of [Man22bl Definition 2.3.10], unless otherwise specified. Given A = (A, M) a commutative animated
analytic ring we shall write Mod 4 for the symmetric monoidal oco-category of analytic A-modules and
Modfl for the heart of its natural t-structure. Given D an Ej-algebra in Mod 4, we let LMod 4(D) and
RMod4(D) be the oo-category of left and right D-modules in Mod 4, if it is clear from the context we
will simply write Mod 4(D) = LMod4(D). We say that an analytic ring A is static if for all extremally
disconnected set S, the object A[S] is concentrated in cohomological degree 0. We let — ®ﬁ — denoted the
complete tensor product of Mod 4, and RHom 4(—, —) the internal Hom space, right adjoint to the tensor.
By Warning 7.6 of [CS19], the tensor — ®% —x is the left derived functor of the tensor — ®% — if A[S x T
sits in degree 0 for all extremally disconnected sets. The analytic rings we will consider live over the solid
base Zm, so this property is always true for them.

Recall that a map f: N — M of objects in Mod 4 is called trace class (JCS22|, Definition 8.1]) if there is
amap A — NY ® M with NV = RHom 4(N, A), such that f factors as

N N4 N o M — M.

An object N € Mod4 is called nuclear ([CS20, Definition 13.10]) if for all extremally disconnected set S,
the natural map

A[S]Y @F M(x) — M(S)
is an isomorphism. By [CS20, Proposition 13.14|, if N € Mod 4 is nuclear, then for all S extremally
disconnected set and any M € Mod 4, the natural map

(RHom 4 (A[S], M) @4 N)(x) — (M @4 N)(S)
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is an isomorphism.

We will let £ = (K, K1) denote a complete non-archimedean extension of Q,, and let Km = (K, K" )m
be the analytic ring attached to the Huber pair as in [And21] §3.3]. Given an algebra D in Mod(Km), we
endow D with the induced analytic ring structure from g, and let — ®%) — (or sometimes — ®%) s )
denote the relative tensor product of D-modules in Kg-vector spaces. 7

Finally, we address the following proposition that will be used in different parts of the paper.

Proposition 1.0.6. Let R be a static commutative analytic ring such that —®7Lz— 18 the left derived functor
of — ®r —. Let A be a static R-Hopf algebra over R with the induced analytic structure. Suppose that
A is co-commutative and that its antipode is an anti-involution, i.e. s> = id. Suppose that the self tensor
products of analytic rings A®R™ are static for all n € N. Then the following assertions hold:

(1) The tensor product — ®@% — defines a symmetric monoidal structure on LModg(A) obtained by
restriction of scalars along the co-multiplication A : A - AQp A.
(2) (®-RHom adjunction) The derived internal Hom over R induces a natural functor

RHomp (—, —)x, 5 : LModg (A) x LModg (A) — LModg (A)
given by precomposing the natural AP’ @z A-module structure with the map A N ®r A el
A% @r A, where s : A = AP is the antipode. Furthermore, RHomp(—, =), , is a right adjoint of
the internal tensor product — ®7Lz —.
(3) (Twisting/untwisting) There are natural equivalences of functors

U ARE - 5 ARk (<)
P : RHO—mR(Av _)*1,3 = RHO—mR(Av _)*1 = RHO—mR(Av (_)0)7

where (=)o is the trivial A-module structure obtained by restricting scalars along the composition
AL RE A

(4) Let ¢t : LModg(A) = RModg(A) be the precomposition with the antipode of A. We have natural
equivalences of functors

UN) @4 M =Rl (N oy M)
RHom 4(N, M) = RHom 4(R, RHomp (N, M), ,)

for any N, M € LModg(A), where R is endowed with the trivial A-structure given by the counit.

(5) Let B be a static R-Hopf algebra satisfying the same hypothesis as A and let A — B be a morphism
of R-Hopf algebras. Then B is an idempotent A-algebra if and only z‘fB@iE =R where R is seen
as an A or B-module via the co-unit.

Proof. (1) First, let C = Modg be the symmetric monoidal oo-category of R-modules, and let C°P
be its opposite category. Then, A defines a commutative Hopf algebra in the symmetric monoidal
category C°P. Therefore, the category CoMod 4(CP) = @[n]@ A®R™_Mod(C) of (left) comodules

of A over C° is symmetric monoidal, with symmetric monoidal structure given by — ®7L€ — on
underlying objects. Part (1) follows since LModg (A) = (CoMod 4(C°))°, and since the opposite
of a symmetric monoidal category is symmetric monoidal.

(2) Given N, M € LModg(.A), we see RHomy (M, N) as an A-module via the forgetful functor through

the algebra homomorphism A 24 Or A 9L, por ®r A. To prove the ®-RHom adjunction, since

both functors arise as derived functors of suitable abelian categories with enough projectives and
injectives (after fixing the cardinal k), it suffices to know the non-derived ®-Hom adjunction of the
underlying abelian categories, which is [Sch92 Example 1.2.2 (3)].
(3) Let C = Modg. We have an equivalence of symmetric monoidal categories Modg (A) = CoMod 4(CP)P.

Let f*: CoMod4(C°) — C° be the forgetful functor taking the underlying object in C°?, and let

f« be its right adjoint. In the opposite category f*°P is the forgetful from A to R-modules, and f,

is its left adjoint f¥ = A ®7L2 —. The functor f* is symmetric monoidal, we then have a natural
transformation

RO M — fof*M
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for M € CoMod(C). In the opposite category this translates to a natural transformation
Aor My — Ak M
We claim that it is an isomorphism. By writing M as filtered colimits of projective generators, and
since A[S] = A®x R[S], one is reduced to the case when M = Ajy. Following the construction, the
map of A-modules A ®@r Ay — ARr A is adjoint to the map
Ay 2% Aor A.

An inverse of this map can be given explicitly by the composite

Ar A — A8id ARr Adr A ——— id®seid ARr AQr A —— oV A®7r Ao,

where m : A ®r A — A is the multiplication map. Finally, the untwisting map ® for the internal
Hom follows from adjunction and the untwisting map W.

(4) The natural transformation for the tensor product is a consequence of the following natural equiv-
alences for N, M,Y € Modg(A).

RHomp (R @4 (N ®@r M),Y) = RHom 4(N ®r M,Y)
= RHom 4 (M, RHomz (N,Y )4, ;)
= RHom 4 (M, RHomp (:(N),Y))
= RHomg (¢(N) ®A M,Y).

The natural equivalence for the internal Hom’s follows by the adjunction of point (2).
(5) Suppose that B is an idempotent A-algebra. Then we have that

BohR=Bos(BeLkR)=(BoLB)@5kR=BokR="R.
Conversely, suppose that B ®ﬁ R =R, then by (the version for right modules of) part (4) we have
Be4iB=(BoruB) 4R
= (Bo @ 1(B)) ®4 R
= By ®@r (B ®£\ R)
=B,

in the third equality we used the antipode s : B? =5 B to identify the right and left actions of A
on B. An explicit diagram chasing shows that the resulting map B ®£\ B — B is the multiplication
map, proving that B is an idempotent A-algebra.

O

2. DISTRIBUTION ALGEBRAS

We record in this chapter basic properties of the several spaces of functions and algebras of distributions
we will be working throughout the text. Most of the results are probably well known but we give statements
and proofs for the sake of notation and completeness. Let L be a finite extension of Q, and w € L a pseudo-
uniformizer. Let G be a p-adic Lie group over L. We normalize the p-adic absolute value of L such that

lpl =p~".

2.1. Locally analytic distribution algebras. Let G be a compact p-adic Lie group of dimension d over
L. Let g denote the Lie algebra of G, and let £ C g be an (’)L lattice such that [£, L] C pL. Let Lm[G]
be the Iwasawa algebra of G, i.e., Lm[G LHcG Or| G/H])[ | where H runs over all the compact open

subgroups. As it is explained in [Emel7 §5.2], the Lie algebra L can be integrated to an analytic group
G, over L whose underlying adic space can be identified with a polydisc of dimension d. More precisely,
let X1,...,%4 be an Op-basis of £, then the map

(Tl, - ,Td) — eXp(Tlxl) - exp(Td%d)

induces an isomorphism of adic spaces between the polydisc D¢ = Spa(L(T),Or(T)) and G.. After
shrinking £ if necessary we can assume that G.(L) C G is a normal compact open subgroup which is
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moreover a uniform pro-p-group. In the following, we will always assume that £ is small enough such that
this holds.

The previous construction can be slightly generalized as follows. Let L be an algebraic closure of L, and
let £ C g7 be a free Oz-lattice such that [£, £] C pL. There exists a finite extension F' of L such that £ is
defined over F', one can define an affinoid group G, g over F' by integrating £. Furthermore, suppose that
the action of Galy, leaves L stable, then G, r can be obtained as the base change from L of an affinoid
group that we denote as Gz. A locally free lattice £ C gy is said good if it is Galg-stable and [£, L] C pL,
if £ is defined over F' we let L denote the Galp-invariants of L.

Example 2.1.1. Let us fix a good Op-lattice Lo C g with group Go. For h > 0 a rational, the lattice p Ly
over gy is good, and it defines an affinoid subgroup Gy, C G¢ which is nothing but the polydisc of radius
p—h. ,

Gy, = Go(ﬁ) .

Given a good lattice £ we can also define analytic groups which are Stein spaces, namely, we let Ge =
Unso Gy If £ is already defined over L then @5 is an open polydisc.

Finally, we can construct affinoid and Stein group neighbourhoods of G by taking finitely many translates
of the groups G, and G. Indeed, since G£(L) and G.(L) are normal subgroups of G, we can define

GY=GGe= || ¢GLandGF) =GGe= || G
9€G /G (L) 9€G/G (L)

If Lo is a fixed good lattice and £ = p"Ly we will simply denote G® = G(£) and G = GULD,
With the previous notations we can now define the following distribution algebras and analytic functions.

Definition 2.1.2. Let £ C g be a good lattice defined over F'/L.

(1) Let G be one of the adic groups Gg, ([O}g, G©) or GXT). The space of analytic functions of G
with values in L is the space C(G, L) = 0(G). The algebra of distributions of G is the dual space
D(G,L) = Hom,(C(G,L),L). If Ly is fixed as in Example 2T and £ = p"Ly, we will simply
denote D"(G, L) = D(G""), L) and CMG, L) = C(G"D) L).

(2) We let U(L)* be the Galp, -invariants of the p-adic completion of the enveloping algebra of Lp.
We also denote U (L) = ﬁ(ﬁ)ﬂ%]

(3) Finally, we let C'%(g, L) := @ECQ C(Gg, L) and C(G,K) = ligﬁCg C(G®), L) be the spaces of
locally analytic functions of g and G respectively. We let D'(g, L) = Hom (C'"(g,L),L) and

D'(G, L) = Hom, (C'*(G, L), L) be the spaces of locally analytic distributions of g and G respec-
tively.

Remark 2.1.3.

(1) We note that, for G = Gz or GO (resp. for G = G, or G£1), the space C(G, L) is a Banach
space (resp. a nuclear Fréchet space), and the distribution algebra D(G, L) is a Smith space (resp.
an L B-space of compact type), cf. [RJRC21], [ST03] or [Sch02].

(2) The algebra C"(G, L) is by definition the space of functions of G that are analytic with radius
p~ for any B > h with respect to the coordinates of Gz. The reason for considering analytic
functions on open balls instead of affinoid balls comes from the fact that the algebras D"(G, L) are
idempotent over D'*(G, L), cf. Corollary below.

(3) The colimit diagrams {C(G., L)}, and {C(Gz, L)}, (resp. {C(GX),L)},, {C(GED) L)}, and
{CM@G, L)}) are isomorphic and their colimit is the space of locally analytic functions of g (resp.
of G). Dually, the limit diagrams of distribution algebras {D(Gz, L)}z, {D(G,, L)} and {U(L)}~
(resp. the limit diagrams {D(GY), L)}z, {D(G~), L)}, and {D"(G,L)},) are isomorphic and
their limit is equal to D'(g, L) (resp. D'(G,L)). In particular, for A’ > h > 0 we have the
inclusions

o o

D(Gph’cov L)C D(GphIEO,L) CD(Gprg,, L),
D"(G,L) ¢ DG %), L) c DMG, L),
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On the other hand, we have that

(2.1) DGy, L) = lim UL
W= (h—=t7)+

for h > p%l’ see [Emel7, Proposition 5.2.6] and [RJRC21], Corollary 4.18|.
(4) Let £ C g be a good lattice defined over F' and let X1,..., X4 be a base of Lr over Op. One has

a power-series description
j— (6%
ﬁ) QL = @aeNdFi

2.1.1. Koszul complexzes and idempotency. Let L C g be a good lattice, our next goal is to prove that the
distribution algebras of Definition are idempotent algebras over the enveloping algebra U(g) or the
locally analytic distribution algebra D'(G, L). Since all the algebras involved are co-commutative Hopf
algebras, the idea is to show that the co-unit is preserved by base change and to apply Proposition
(5). Without loss of generality let us assume that £ is defined over L.

Proposition 2.1.4. Let L C g be a good lattice, and let Kos(g,U(g)) be the standard Koszul resolution of
L:

0—U(g ®/\g—> Ulg)®g—U(g) = L —0,

where the differentials are given by
k

AR ZIN.. NZ) =Y (1) TWZ@Z A AL AL+ (1) TR Z, Zi A NZiN Ny N
i=1 1<J

Let D denote D(Gg, L), U(L) or D'(g,L). Then
Kos(g, D) := D @y g)m Kos(g, U(g))

1s a resolution of L as D-module. In particular, D ®5(g) al =1L

Proof. Let Kos(L,U(L)") be the standard resolution of the trivial representation Oy, and ¢ : Kos(L,U (L)) —
Oy, the augmentation map. There is an Op-linear homotopy he : U(L)T @ A\* L — U(L)" @ A*T! £ such
that detihe + he—1de = id —e (|[Wei94, Theorem 7.7.2]). Taking a p-adic completion and inverting p,
one obtains an homotopy e between id and e for Kos(g,U (£)T). Inverting p we have an equivalence

Kos(g,U(L)) < L. Taking colimits of the Koszul resolutions for p"' £ as h' — (h — p11)+, one gets an
equivalence Kos(g, D(@g, L)) S L. Taking limits of p"£ as h — oo, by topological Mittag-Leffler [RJRC21],

Lemma 3.27] one gets an equivalence Kos(g, D'(g, L)) = L. O

Proposition 2.1.5. Let G be a compact p-adic Lie group over L. There is a Koszul resolution of the trivial
D(GED), L)-module L

dim g
0— D(G ®© Na—- >DGF) L)wg—DGE) L) L0

obtained as the dual of the de Rham complex of GLD, Furthermore, the limit along all the lattices L defines

a Koszul resolution of L as D'*(G, L)-module. In particular, D(G(£+), L) ®él“(G L) L=1L.

Proof. This is roughly [RJRC21], Proposition 5.12| which is based on the Poincaré Lemma for open polydiscs
[Tam15, Lemma 26]. Let G~ be the Stein group defined by L, since L is defined over L, G£) is a finite
disjoint union of open polydiscs. We can then consider the de Rham complex DR(G(£+)) of G, Taking
a basis of the tangent space by right invariant vector fields, the de Rham complex is written explicitly as a
left G-equivariant complex
i dim g
[C(GED, L) = =5 CGE) Lye Ng¥ = - CGE), D)o N\ ¢']
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and differentials induced by right derivations. By the Poincaré Lemma, the natural map L — DR(G(EJr))
is an equivalence. Taking duals, one gets a resolution of D(L*(G), L)-modules

Kos(D(G¥ ), L) := DR(GENY — L

which is noting but finitely many translates of the Koszul resolution of Proposition 2.1.4l Taking limits
along all lattices £, one gets an equivalence of D'*(G, L)-modules

Kos(D'(G, L)) — L.
One clearly has
DG, L) ®fuu(g 1y L = DGE"), L) ©puu g, ) Kos(D'*(G, L)) = Kos(D(G“1), L) = L.
0

Corollary 2.1.6. (1) Let £ C g be a good lattice and let D denote D(Gz, L), U(L) or D'(g, L). Then
D ®[L](g) a D = D. In particular, the co-category Modrg (D) of solid D-modules is a full subcategory

of Modr4(U(g)).
(2) We have D(G£), L) ®1L)la((; o D(GED, L) =D(GED, L). In particular Mod g (D(GED), L)) is
a full subcategory of Mod g (D'*(G, L)).

Proof. This follows from the Koszul resolutions of Propositions 2.1.4, 2.1.5] and the idempotent algebra
criterion for co-commutative Hopf algebras of Proposition [[.O.0] (5). O

Next, we want to relate the distribution algebras associated to an immersion of Lie algebras h C g.

Proposition 2.1.7. Let g be a Lie algebra over Locmd let h C g be a subalgebra. Let L C g be a good lattice
and let Ly = LNY. Let D(L) denote U(L), D(Gg, L) or D'(g, L) (resp. for Ly), and let D(L/Ly) =
D(L) ®p(cy) L-

(1) Let T C L be a free complement of Ly in L with basis Y1, ...,Ys and t = T[%]. Let Gr C G be

the image by the exponential of the ordered basis P1,...,Ys, and let @T = Up>0 Gy be the open
polydisc. Then we have isomorphisms of solid L-vector spaces

D(L/Ly) = D(T)
where R e
O(T) = B LD
D(T) = { D(Gr, L) := Hom,, (0, L)
Dle(t, L) = lim, U(p"T).
(2) We have an isomorphism of right D(Ly)-modules
D(L) = D(T) ®f D(Ly).
Furthermore, we have an equivalence of left D(L)-modules Kos(h, D(L)) = D(L/Ly) where Kos(h, D(L))
is the Koszul complex
dim b
Kos(h,D(£)) = [0 = D(L)®L [\ h—---D(L)@Lbh— D(L)].
In particular, D(L/Ly) = D(L) ®%( £y)m m L, and taking b = g, one recovers Proposition [2.1.4]
Proof. The proof of the proposition follows the same lines as those of Proposmons 214 and Since
L = Ly@®T, we can write G =Grx Gﬁh Taking global sections one finds that D(Gg, L) = (GT, L)® L
(Ggh, L). We can then take the relative de Rham complex of the map

Gr — G /G, =G,

and by taking duals we find the Koszul complex Kos(b, D(@E), L) which is quasi-isomorphic to D(@E, L)
by the Poincaré Lemma. The case for D"(g, L) and D'%(h, L) is obtained by taking limits along all lattices
L in the previous construction.
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Finally, for U(L) and ﬁ(ﬁh), consider the Koszul resolution of U(L) as Ly-module. Since U(L) =
U(Ly) ®o, U(T) where U(T) = P, D", the same argument of [Wei94, Theorem 7.7.2] provides an homo-

topies between id and the augmentation map
Kos(Ly,U(L) = U(T).

T\aking p:\adic comp}\etions and inverting p one gets the Koszul complex for the U -algebras, and the equality
U(L) =U(T) @fg U(Ly). O

The following particular case will be of special interest: Let g be the Lie algebra g seen as a Lie algebra
over Qp, similarly we let G be the restriction of G to Qp. Take £ = ker(g ®qg, L — g). Let £ C gf be a
good lattice and let L be its restriction to Qp, i.e. the lattice obtained by its Galg, / Galr-translates in

§ZZQ®QPEZ H ga,f'
o:L—L

Corollary 2.1.8. Let D denote one of the algebras DGEN L), UL), D(Gg, L), D(g, L) or D'(G, L).

Let D be the analogue algebra associated to G and L. Then there is a natural equivalence of right D'*(¥, L)-
modules B
D &g, L =D &g D(t, L).

In particular, (D ®ép L) ®pia,y L =D.

Proof. This follows from Proposition 217 once we note that D(G£"), L) = D(G, L) @1, L|G/G(L)] =
LIG/G (L) @1, D(Gg, L). The case of D'(G, L) follows by taking limits of the G(£")-cases. O

2.1.2. Locally analytic functions and distributions. We now define locally analytic functions on G taking
values in a solid vector space V. Recall from [RJRC21] that we have defined analytic rings C(G"), L)g =
(C(G™, L),C(G™,Or))m in order to define h-analytic and locally analytic vectors of a solid representation.
The following Lemma says basically that, in the limit, the analytic structure becomes trivial.

Lemma 2.1.9. Let b/ > h, we have natural maps of analytic rings (6(GM), 67 (GM))g — (¢(G")), 01 )m
(0(G")), 6+(G")))m. In particular for V e MOd(L.) we have maps

C(GW, Dmef, V- C0G", L)k V- CG"), Lmaf, V.
Proof. By [And21, Lemma 3.31] one has that for an affinoid ring (A4, A"), (A4,01)m = (4, A™"")g
where A™™*F is the integral closure of Of + A%. The lemma follows from [And21, Proposition 3.34]

and the fact that we have morphisms of Huber pairs (0(G™), 6+(GM)) = (0(G")), o(GI)ymint)

(0(G")), 0+(G"))). Indeed, 1f ~ denotes a variable of the group G, one can write 1% = ph’_hl%,

proving that the image of ]% in 0 (G(h )) is topologically nilpotent. U
Definition 2.1.10. Let V € Mod(Lm), we define the following spaces of functions with values in V.
(1) For G compact the space of G(h)-analytic functions

C(GM, V) :=C(GM, L)maf, V.

().

(2) For G compact the space of G analytlc functions

CMG,V) = Rlim C(G"),V) = R1im (C(G"), L) @7, V)
h'>h h'>h
where the second equality holds by Lemma 2.1.91
(3) For G arbitrary the space of locally analytic functions

G V)y= ][] (C"(9Go,L) &g V)
geG/Go

with Gy C G an open compact subgroup.
(4) For G arbitrary we define the algebra of locally analytic distributions of G as

D'%(@, L) = Hom, (C'(G, L), L).
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Remark 2.1.11. Let G be a compact p-adic Lie group and V' € Mod(Lm). Then we have that
(@G, V) =lim C(GM, L) @, V =lim C(GM, V) = lim C'(G, V) = lim C"(G, L) @7, V,
h h h h

where the first equality is by definition, the others follow by Lemma and the cofinality of the algebras
in Remark 2.T.3] (3).

Lemma 2.1.12. We have

D'(G, L) = Lu[G] © gy P*(Go, L) = € D"“(9Go, L)
geG/Go

for any Gy compact open subgroup of G. Moreover, D'*(G, L)Y = C**(G, L).

Proof. The first claim is trivial in the compact case, and the duality between the space of distributions
and locally analytic functions follows by the duality of nuclear Fréchet and LB spaces of compact type, see
[RJRC21], Theorem 3.40|. Let us prove the general case.

Provided the first formula is proved, then we immediately have:

DG, L)Y = [ (D(Go.L)Y = [[ C"™(9Go,L)=C"(G,L),
geG/Go g€G/Go

which proves the last statement.
We now prove the first formula of the statement. We write

c@G,r)= [ ¢"™(9Go, L)
geG/Go
= [ lmC"Go, L)
gEG/G0h>O
= lim II ¢™@. 1.

9€G/Go geG/Gy
hy>0

Therefore,

(2.2) C'G, L)Y = lim @ D(G,L).
9€G/Go geG/Gy
hg>0

We want to prove that the RHS is equal to ®QEG/G0 Dl(4Gy, L). Notice that the RHS injects into
@lgig/go [iec/cy Dhs (G, L) = [Lec/co Dla(gGy, L). let (ag)gec/a, be a sequence in the RHS of [2.2),
g>0

it suffices to prove that all but finitely many elements a4 € D'*(gGy, L) vanish. Suppose the opposite, then
we can find infinitely many g € G/Gp, and numbers hy > 0, such that the image of a, in D (gGy, L) is
non-zero, but this contradicts the fact that (ay) defines an element in @ cq/q, Dha(gGy, L). Moreover,
the same applies when evaluating at an arbitrary profinite set .S. The proposition follows. O

The same proof of the above lemma implies the analogous duality between continuous functions and the
Iwasawa algebra.

Lemma 2.1.13. Let G be an arbitrary p-adic Lie group, then C(G,L)" = Lu[G].

Proof. This follows by the duality between Fréchet and LS spaces [RJRC21l, Theorem 3.40] and the last
argument of Lemma to commute products with sums. Namely,
v

c@G L=\ [ CwGnL)| = P LulgGol = LalG].
geG/Go geG/Go
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2.2. Smooth functions and distribution algebras. Let L be a finite extension of Q,, G a p-adic Lie
group over L. For defining smooth functions and distributions on G one only needs G to be a locally
profinite group. However, since we will be only interested in p-adic Lie groups we prefer to stay in this
situation.

Definition 2.2.1 ([Man22bl Definition 3.4.7]). Let S be a profinite set and V' € Mod(Lm), the space of
smooth functions from S to V' is the solid Lg-vector space given by

C*™(S,V) = Cont(S,Z) ®z V.

In particular, since Z is discrete, we have C*"(S,V) = hgl Cont(S;, V) where S = L&ll S; is written as a
limit of finite subsets.
Lemma 2.2.2 ([Man22b| Lemma 3.4.8]). Let S be a profinite set and V € Mod® (Lm). The following hold

(1) The values of C*™(S, V') at a profinite set T are given by

C*™(S,V)(T') := Cont(S,V(T)),
where V(T') is discrete.
(2) The natural map C*™(S,V) — Cont (S, V) is injective.

Definition 2.2.3 ([Man22b, Definition 3.4.9]). Let G be a locally profinite group and V' € Mod(Lm) a
solid L-vector space. We define the space of smooth functions of G with values in V' to be the solid L-vector
space with values at a profinite T given by

C*™(G,V)(T) = Cont(G, V(T)).
Equivalently, if H C G is an open compact subgroup, we have that
cmG, V)= [ ¢™gH, V).
geG/H
Definition 2.2.4. The algebra of smooth L-valued distributions of G is defined as
D*™(G, L) := D"(G, L)/(g).
Proposition 2.2.5. The following assertions hold.
(1) If G is compact, then
D*™(G,L) = lim La[G/H] = C*"(G,L)".
HcG
Furthermore, C*™(G, L) = D*™(G,L)V.
(2) For arbitrary G and any open compact subgroup Gy C G, we have
'Dsm(G, L) = L.[G] ®L.[GO} Dsm(Go, L) = 'Dsm(Go, L) ®L. [Go] L.[G].
Furthermore, we have D*™(G, L) = C*™(G, L)V and C*™(G,L) = D(G, L)V .
(3) For G arbitrary, there is an isomorphism of left D'*(g, L)-modules
DG, L) =D"(g,L) ©14 D""(G, L),

resp. for right D'*(g, L)-modules.
(4) For G arbitrary, there is an isomorphism

D"™(G, L) = L ®Fya(y 1y m D'*(G, L).

Proof. We first prove (1), (2) and (3) at the same time. For any open compact subgroup H of G we have
an D!%(H, L)-equivariant isomorphism

D'(G, L) = D"(H, L) ®14 Lm[G/H].
Taking limits for H C G we get a D'%(g, L)-equivariant isomorphism

D'*(G,L) = D'(g,L) @14 (lim La[G/H])
HCG
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so that D*"(G,L) = L @, ;,m D'"(G,L) = lim, . Lu[G/H]. The duality between D*"(G,L) and

C*™(G, L) follows from the previous computation and the duality between Fréchet and LS spaces of
[RJRC21, Theorem 3.40].

Finally we prove (4), it follows the same lines of the proof of Lemma By loc. cit. we have
D'(G,L) = La|G] ® L[Go] Dl(Gy, L) = D'(Gy, L) ®ru[Go] Lm[G] for any compact open subgroup Go.
The tensor product formula of (4) follows by (3). Finally, we prove the duality between D*"(G, L) and
C*™(G, L) in the non-compact case. We can write

DG, L) = @ D™(9Go,L) and C*™(G,L) = [[ C™™(9Go.L).
gGG/Go gEG/Go
Then
DG, L)Y = [ (DG, L)Y = ] C*™(9Go,L) = C*™(G,L).
geG/Go g€G/Go
For the other duality, we write
cm™(G, L) = [[ ¢"™(9Go, L)
9€G/Go

= I 1m c"(9Go/H. L)

geG/Go HCGy

= lim [ ©"(9Go/Hq L).

9€G/Go geG/Gy

HyCGo
Therefore,
(2.3) C™G, L)Y = lm D LalgGo/H,].
9€G/Go geG/Go
HyCGo

We want to prove that the RHS is equal to ®QEG/G0 D™ (gGo, L). Notice that the RHS injects into

l'&lggcé/go [iec/c, ImlaGo/Hgl = [secic, P (9Go, L). let (ag)gec/c, be a sequence in the RHS of
g 0

(Z3). It suffices to prove that all but finitely many elements a;, € D*"(gGp, L) vanish. Suppose the
opposite, then we can find infinitely many g € G /Gy, and open subgroups Hy, such that the image of a4, in
Lum[gGo/Hyg,] is non-zero, but this contradicts the fact that (ag) defines an element in @ e/, LmlG/Hy).

Moreover, the previous holds when evaluating at any profinite set .S. The proposition follows. U

Corollary 2.2.6. Let G be a compact p-adic Lie group. Then D*™(G, L) = ][, p@Hompsm (g 1y (p, D™ (G, L))
where p runs over all the irreducible finite dimensional smooth representations of G. In particular:
(1) The functor Hompem (g 1) (0 —) is an ezact functor in the abelian category of D*™(G, L)-modules.
(2) D*"™(G, L) is self-injective (algebraically).
(3) Lm[G/H] is a idempotent D™ (G, L)-algebra for all H C G normal open subgroup.

Proof. Any group algebra of a finite group Gy over a field of characteristic zero is isomorphic to the product
of p ® Homygc01(p, Lm[Go]) where p runs over all irreducible representations of Go. Since D™(G, L) =
l'&l ey [G/H] if G is compact, the first part of the corollary follows. The second statement is clear since
p is a direct summand of D*"™ (G, L), so a projective module. The second assertion follows since any direct
product of division algebras is self-injective, cf. [Lam99, Corollary 1.33B|. For the last claim, notice that
Lu[G/H] is a direct summand of D*"(G, L), namely, the projection D*™(G, L) — Lm[G/H]| has a section
given by the Haar measure of H. Writing D*"(G,L) = Lm|G/H| & M as D*"(G, L)-modules, tensoring
with La[G/H] gives

L.[G/H] == L.[G/H] ®'Z%57”(G,L),. L.[G/H] @ M ®'ZL§5"”(G,L),. L.[G/H]7

but the image of M in Lm|G/H] is zero, this implies that Lm[G/H] = La|G/H] ®%SM(G L. La|G/H]
proving the corollary. O
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Lemma 2.2.7. Let G be compact. Then

DMG,L) @hia(s.1m D" (G L) = LulG/Ge ],
where G+ 1= Gphﬁg(L)-
Proof. By (3) of 225, we have D"(G, L)®pia,0)mD™(G, L) = DG, L)®éla(g 1ymL- Onthe other hand,
we have D"(G, L) = Lu[G/G),+]®Lg D(@phﬁo, L). Hence we reduce to showing that D(@phﬁo, L) ®’éla(g Hm
L = L, which follows from Corollary O

Corollary 2.2.8. Let G' be an arbitrary p-adic Lie group over L and let G, be G considered as a p-adic
Lie group over Q. Let £ = ker(gg, ® L — g). Then

D'(G, L) = L @y D'*(Gy,, L) = D'(g. L) ®é’“(g@pl) D"(Gg,, L).

Proof. We have
L ®f D'(Gg,.L) = L D) D"(gq,,L) ®f, D™(G,L) = D'*(g,L) ®f, D*™(G, L) = D"(G, L),

where in the first and last equality we used Proposition 2.2.5] (3) and the middle equality follows from
Corollary 1.8l This shows the first assertion. The last identity is proven in a similar way:

L& D*(Ga, L) = LG D(9a,: L) ©pia(yq, 1) P (Gay L) = D(8, L) @pua(pq 1) P (Gays L),

9q,,L)

where the second equality follows also from Corollary 2.1.8 O

3. SOLID LOCALLY ANALYTIC REPRESENTATIONS

In [RJRC21] the authors introduced the concept of a solid locally analytic representation for compact
p-adic Lie groups over Q,. The goal of this first section is to extend the main results of loc. cit. to the case
where G is a locally profinite p-adic Lie group defined over a finite extension of Q.

Let L be a finite extension of Q, and @ € L a pseudo-uniformizer. Let (K, K™) be a complete non-
archimedean field extension of L. Let G be a p-adic Lie group over L. In §3.1] motivated from the main
theorems of [RIRC21], we define the derived L-analytic vectors of a solid representation of G. We will show
that they can be recovered as the Qp-locally analytic vectors which are killed by some “Cauchy-Riemann
equations”. In §3.2] we define the oo-category of locally analytic representations of GG, which will be a full
subcategory of the category of solid D'*(G, K)-modules, where D'(G, K) is the locally analytic distribution
algebra of G. If in addition G is defined over @, the co-category of locally analytic representations is itself
a full subcategory of the solid G-representations. Finally, in §8.3l we give sufficient conditions for a solid
representation to be locally analytic.

3.1. Locally analytic vectors. Let G be a p-adic Lie group over a finite extension L of Q, and let
K = (K, K1) be a complete non-archimedean extension of L. We denote K@ the analytic ring associated to
K. In the following we review the definition of locally L-analytic vectors of solid G-modules on Kg-vector
spaces. We shall fix a good lattice £y C g defined over L, and for h > 0 we let G and G®") denote the

analytic groups G#"Lo) and G#"LS) containing G (resp. we let Gy, and G+ denote Gz, and @ph Lo)-

Remark 3.1.1. When G is compact and L = Q,, the notation of [RJRC21] and the one presented in
this paper agree for the spaces of functions, i.e. C(G(h),K) and C(G(H),K). Notice however that the
distribution algebras D(G™, K) and D(G(hﬂ, K) are written, respectively, as D" (G, K) and D(H)(G, K)
in loc. cit.. In the current paper we are writing D"(G, K) = D(G""), K) and C"(G,K) = C(G"") K)
instead since these are the spaces that we use more often, we apologise for the discrepancy in the notations.

Lemma 3.1.2.
(1) Let G be a compact group, then the functors V — C(G™ V) and V — C"(G,V) for V € Mod(Km)

are naturally promoted to exact functors

Modyg (D'(G, L)) — Modig(D'“(G3, L)).
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(2) Let G be arbitrary, then the functor V s C'%(G, V) for V € Mod(Km) is naturally promoted to an
exact functor
Modjcg (D'*(G, K)) — Modyg(D"(G?, K)).

Moreover, the functors V s C(G™ V) and V +— C'(G, V) are exact in the abelian categories.

Proof. For the compact case it suffices to prove the lemma for C (G(h), —), namely the other functors are
constructed as limits or colimits of this. But then by [RJRC21l Corollary 2.19] we have

C(G™,V) = RHom (DG, L), V),
as D(G™, L) is a D'*(@, L)-algebra one has the desired left and right natural actions of D"(G x G, K) =
DG, L) ®£- DG, L) ®£- Km on C(G™, V). On the other hand, D(G™ L) is a Smith space, so
projective as Lg-vector space by [RIRC2I], Lemma 3.8 (2)], this implies that V — C(G"), V) is exact in
the abelian category. If in addition V is a D'%(G, K)-module then one has the full action of D'%(G3, K) as

wanted.
In the non-compact case, note that we have natural equivalences

C'(G,V) = RHompua (g, 1) (D*(G, K),C'*(Go, V)

for both the left or right regular action of D'*(G, K) on C'*(Gy, V) and any compact open subgroup Gy C G.
This endows C'(G,V) with commuting left and right regular action of D'*(G, K), if in addition V is a
D'%(G, K)-module then we have the compatible action of

D'*(G?* K) = D'*(G,K) ®gy D'*(G, K) ®fy D'(G,K)

as desired. Finally, since C'*(G,V) = lim, C(G™ V), the functor V + C'(G, V) is exact in the abelian
category. O

Remark 3.1.3. The action of G® on a function f in any of the three cases is heuristically given by ((g1, g2, g3)*
f)(h) =g3- flgy Yhgs). If V arises as the solid vector space attached to a locally convex vector space then
the action of G x G x G is given precisely by these formulas.

Given I C {1,2,3} a non-empty subset and V € Modyg(D'*(G?, K)) we let V,, € Modxg(D'(G, K)) be
the restriction of V to the I-diagonal of D'(G3, K), i.e. V equipped with he D'*(G, K)-module structure
induced by the embedding t7 : G — G2, 11(g9); = g if j € I and 11(g9); = eq if j & I, where e € G denotes
the identity element.

Definition 3.1.4. Let G be a p-adic Lie group over L.
(1) For G compact the functor of (derived) G™-analytic vectors (=)= : Modyg(D'*(G, K)) —
Modjcg (D'*(G, K)) is defined as
Vit = RBompu g, 10 (K, (C(GM, V), o).

where the action of D'*(G, K) on V"= is induced by the o-action (the right regular action).
Similarly, the (derived) G("")-analytic vectors is the functor on solid D'(G, K)-modules given by

VART=an = R 1im V0" = RHompia ) (K, C™(G, V), 5)-
h'>h
IfV e Mod,%. (D'*(G, K)) we let V=9 and V" =" denote the HO of their derived analytic vectors.
(2) For G compact, we say that an object V € Modyg(D'%(G, K)) is h-analytic (resp. ht-analytic) if
the natural arrow VE=0n 5V (resp. VERT=an 5 V) is an equivalence. If V € Modg. (D'*(G, K)),

we say that V is non-derived h-analytic if the map V"% — V is an equivalence (resp. for h™).
(3) For G arbitrary we define the functor of locally analytic vectors (—)%? : Modig(D'(G, K)) —
Modjcg (P'%(G, K)) as

yBla _ RHO_InDla(G,K)(K’ Cla(G, V)sis)

where we see V@ endowed with the %g-action of D'(G).
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(4) For G arbitrary, we say that an object V' € Modig(D"(G, K)) is locally analytic if the natural
arrow VF@ — V is an equivalence. If V € Modg. (Dl(G, K)) we write Ve .= HO(VFa) If

Ve Modg. (Dl*(@G, K)), we say that V is non-derived locally analytic if V** — V is an isomorphism.

Remark 3.1.5. The distinction between derived and non derived locally analytic representations might look
subtle at the beginning, we will see in Proposition 8.2.5] that there is no actual difference.

Remark 3.1.6. The definition of locally analytic vectors might seem slightly strange since we are taking as
an input a module over the distribution algebra instead of a solid representation of G as it is usual. Note
that, for any V' € Modig(Km[G]) one can define the analytic vectors of V' as

VA= RHomy iy (K, C'(G, V)1 ).

If G = Gg, is a defined over Q,, then D'(G, K) is an idempotent algebra over Km[G] and the inclusion of
Modg(D'%(G, K)) into Modyg (Km[G]) is fully faithful. Then, for any V € Modxg(D'(G, K)) one has
RHO—mIC. [G] (K’ Ola(Gv V)*l,S) = RHO—le“(G,K) (Kv RHO—mIC. [G] (Dla(Gv K)’ Ola(Gv V)*1,3))

= RHO—lea(G,K)(Kv RHO—lea(G,K) (Dla(Ga K) ®1Lc.[c;] Dla(Ga K), Cla(Ga V)*l,S))

= RHO—le“(G,K)(Kv Cla(Gv V)*1,3)
proving that both definitions agree. However, if G is defined over L # Q, and V is a Dl(G, K)-module,
then the locally analytic vectors of V considered as a solid G-representation are given by V@ RT'(¢, L),
where V@ are the locally analytic vectors as D'*(G, K )-module and RT'(¢, L) is the Lie algebra cohomology

of ¢ = ker(g®q, L — g), see Theorem [6.3.4l This shows that there are different versions of “locally analytic
vectors”, depending on the category we start with.

Let us prove some basic properties of the functor of locally analytic vectors.

Proposition 3.1.7. The following assertions hold.

(1) Let Go € G be any open subgroup and V € MOdK.(Dla(G, K)), there is a natural equivalence
VEa o = (V]g,) ™ between the restriction to Go of the G-locally analytic vectors of V' and the
Go-locally analytic vectors of Vg, -

(2) The functor (—)® : Modig(D'(G, K)) — Modig(D'*(G, K)) is the right derived functor of
W+ W' on the abelian category Mod%. (Dl (G, K)).

(3) The functor (=) : Modyg(D'*(G, K)) — Modyg(D'“(G, K)) preserves small colimits. The same
holds for (—)®'= and G-compact.
; Rla _ q; Rh—an _ 7; Rht—an
(4) If G is compact, then V™ = hﬂh v = hﬂh v .

Proof.
(1) By construction one has that

C'(G,V) = RHompua (g, 1) (D*(G, K), C'*(Go, V)

where the D(Gy, K) acts by left multiplication on D"(G, K) and by the left regular action on
C'%(Gy, V). One finds that

VI = RHompia (g o) (K, (C"(G, V) y5)
= RHompia g, i) (K, RHompua g, 10)(D'(G, K), C*(Go, V )y )
= RHompa (g, 1) (K, C** (G0, V) sy )
(Vg

(2) By Lemma the functor V + C"(G,V) is exact in the abelian category of solid D'*(G, K)-
modules. Then, one has that

vV = RHompa(g, i) (K, C*(G, V) ,1,3)

is a derived Hom-functor, which implies that it is the right derived functor of the invariants V' =

Cla(@, K)C*s.
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(3) By (1), we can assume that G is compact. By definition of (—)f® and (—)®"=® since V s
Cl(G, V) = C'"(G, K) ®,LC. Vand V — C(GM,V)=C(GCM K)a ®,LC. V' commute with colimits,
it suffices to show that K is compact as D'(G, K)-module, this follows from Proposition

(4) Since taking locally analytic vectors commutes with colimits by (3), and since one can assume G to

be compact by (1), this is as consequence of the compacity of K as pla (G, K)-module and Remark
2111

O
The following proposition relates the functor of analytic vectors with the distribution algebras.
Proposition 3.1.8. Let G be a compact p-adic Lie group over L, and let V € Modicg (D'*(G, K)). Then
vHih=an — RHompua(g, i) (PG, K), V)
VER =an — RHompa g 1) (D" (G, K), V).

In particular, an object V. € Modyg(D'%(G, K)) is h'-analytic if and only if it is a module over the
idempotent D'%(G, K)-algebra DM(G, K).
Proof. This follows from the same proof of Theorem 4.36 of [RJRC21] using Corollary 2.19 of loc. cit. O

Remark 3.1.9. It should be not true that the distribution algebra D(G, K) is an idempotent D'*(G, K)-
algebra for general G. For example, if G = Z,, then D(G(h),Qp) can be described as the generic fiber

of the formal complete PD-envelope of X of a polynomial algebra Z,[X], which is not an idempotent
Zp| X]-algebra.

For general groups, we have the following immediate consequence.

Corollary 3.1.10. Let G be a p-adic Lie group over L and let V € Modxg(D'(G, K)). Then
Ve = lim RHompr g, 1) (D" (Go, K), V) = thm_lea(GO,K)(D(Gg"), K),V),
h h

where Gq is any open compact subgroup of G.
The following result verifies that taking locally analytic vectors defines an idempotent functor.

Proposition 3.1.11. Suppose that G is compact. Let V € Modyg (D'(@G, K)), then VEh—an — (17 Rla)Rh—an
and VEhT —an — (VRl“)Rh+_“”. In particular, for any group G, (V)R = yEla gnd the locally analytic
vectors of a D'*(G, K)-module is a locally analytic representation of G.

Proof. Tt suffices to prove that VFh—an — (y/RlayRh—an the other cases follow from this after taking limits
or colimits.

(VRla)Rh—an VRh1+—an)Rh—an

= lim(
h1

= lim RHompa (g k) (D(G™), K), RHompra (1) (D" (G, K), V)
h1

= hgl R—Hom'Dla(G,K) (Dhl (G7 K) ®él‘l(G,K) D(G(h)7 K)v V)
h1

= lim RHompa g, 10)(P(C™), K), V)
h1
— VRh—an

where the first equality follows from Proposition BI.7 (3), the second equality follows from Proposition
BI8, the third equality is a ®-Hom adjunction, the fourth equality follows from the fact that D" (G, K)
is an idempotent D'*(G, K )-algebra and that D(G™), K) is a D1 (G, K)-module for all h; big enough, and
the last equality is Proposition B.1.8 again. O

The following proposition provides a different way to compute locally analytic vectors as a relative tensor
product of D(G, K)-modules.
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Proposition 3.1.12. Let G be a compact p-adic Lie group. The following assertions hold.

(1) Let V,W € Modxg(Ka[G]). Let V ®k- W be endowed with the diagonal action. Then there is a
natural equivalence

RHomyey (K, V @kg W) = (K(xq,) kg UV)) @k gic) W]

where (V') is the right G-module induced by V under the natural involution ¢ : Km|G] — Ka[G],
xq, = det(gg,) ™", and d = dimg, G.
(2) Let D denote D'(G, K) or D'%(g,K). Let V,W € Modyg (D), then there is a natural equivalence

RHomp (K, V ©fq W) = (K(x) @ t(V)) ©p W[—d]
where (V) is the right D-module obtained by the involution of D, x = det(g)~! and d = dimy, G.

Proof. Without lose of generality we can take K to be a finite extension of @@, the general case is deduced
by taking a base change. By Theorem 5.19 of [RJRC21] one has that

RHomyg (K, V ®/Lc. W) = K(xq,) ®/Lc.[(;] % ®/Lc. W)[—d].
where we see K(xq,) as a right representation. By Proposition (4), we have natural equivalences
K (xa,)®xglc)(V @Ka W) [=d] = 10K g0 (1K (x0,)@Ka V Ok g W)[=d] = (K (x0,) Ok g (V) Ok i)W [,

this shows (1). By PropositionsZT.4dland 2.1.5] the trivial representation is a perfect D-module, in particular
dualizable, this implies that the natural functor

RHomp (K, D) ®% W — RHomp (K, W)

for any W € Modjcg (D) is an equivalence. Then, for V,W € Modcg (D), by Proposition [L0.6] (4) we have
natural equivalences

RHomp (K, V ®f W) = RHomp, (K, D) @3 (V @gg W) = (RHomyp (K, D) ®@gg (V) @5 W.

We are left to compute RHomp (K, D) = K(x). For D = D!%(g, K) this follows by an explicit computa-
tion using the Koszul resolution of Proposition 214l For D = D'*(G, K) one argues as follows: K is a
D*"(G, K)-module and D*"(G,K) = K ®Dl“(g K) Dl4(G, K) by Proposition (3). Then
RHompyu (g 1) (K, D'(G, K)) = RHompya (g 1) (D¥™(G, K) @m0y K, D*(G, K))
= RHompem (g, i) (K, RHompua 1) (D*"™(G, K), D*(G, K)))
= RHompem (g, ) (K, RHompra g 1) (K, D*(G, K)))
(K, K(X) 51 g 1) D(G. K)
(K, K(x) ®xq D™ (G, K))

= RHompsm (g k)
= RHompsm (g k)
= K(x).

O

Remark 3.1.13. The last calculation in the proof is a special case of our cohomological comparison isomor-
phisms that will be shown in §6l

Remark 3.1.14. In Proposition we see Y as a right D!%(G, K)-module. It arises as the determinant
of the right action of G on gV given by
(H - g)(v) = H(gvg™")

for H € g¥,v € gand g € G. We will often consider x as a left representation as well, in this case, it arises
as the determinant of the contragradient representation g¥ with action

(9-H)(v) = H(g "vg).

Corollary 3.1.15. Let G be an arbitrary p-adic Lie group over L of dimension d. The following assertions
hold.
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(1) Let V € Modxg(D'(G, K)), then for any open compact sugroup Go C G one has

VIS = ((C"(Go, K)x1) © K(X)[=d]) @ta( 1) V-

In particular, the functor (=)™ has cohomological dimension d.

(2) Suppose that G is defined over Q, and let V € Modyg(Km[G]). Then for any open compact sugroup
Go C G one has

VRS = (((C(Go, K)uy) © K(O)[~d)) @iy V

where the locally analytic vectors are as in Remark[31.0.
(3) Let V,W € Modg(D'(G, K)), there is a natural equivalence

(V ®ILC. WRla)Rla — VRla ®K. WRla.

Proof. (1) By Proposition BI.7 the locally analytic vectors are independent of Gy C G compact open,
so we can assume without loss of generality that G is compact. Then, by Proposition B.I.12] (2) one
has

VU = RHompia(gy (K, C'*(G, K )+, ®q V)
= (C"(G K)ay) © K () S5 V-
(2) This follows from the same argument of the previous point using Proposition B.1.12] (1) instead.

(3) We can assume that G is compact. The orbit map Oy : W — Clo(G, K) ®,LC. W induces a
natural equivalence

(3.1) clyG,whey, = ol whe),, .,

at the level of functions this maps sends f : G — W to the function f : G — W given by

f(g) =g- f(g). Then, one computes

(V @ WHnR = (,(C(G, K)u) © K(X)) @i i) (V g W)

H(C(G, K )y @g W) @ K (X)) ©p1o( i) V

L(Cla yWRla)*Ls) ® K(X)) ®1L)la(G,K) Vv
(

W(c'e ,WRla)h) ® K(X)) ®1L)la(G,K) Vv

(w(C™(
(w(C™(
W@
W@
= <(L((ﬂa(c, K)u) ® K(X)) ®Prac.x) V> Qg WH
_ yhla ®’LC. W hRla

In the first equality we use part (1). In the second equality we move W to the left part of the tensor
using Proposition (4). The third equality is the definition C'*(G, W) = C'*(G, K) ®,LC. w.
The fourth equality uses the natural equivalence (BI]). In the fifth equality we take out the tensor
with W since D!*(G, K) is acting trivially on it. In the last equality we use part (1) again.

O

The previous computation implies that there are representations with higher locally analytic vectors.

Corollary 3.1.16. Let G be a p-adic Lie group over L of dimension d. Then for any profinite set S we
have

(D'*(G, K) ®xq Kul[S)™* = (C4(G, K) ® K(x)[~d]) ©xq KulS]

where C1%(G, K) = D'%(G, K) Qpla(Gy,K) C'%(Gy, K) is the space of compactly supported locally analytic
functions of G. If G is defined over Q, we also have

(Km[G x S))f = (GG, K) @ K (x)[~d]) ©xq KnlS].
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Proof. By Corollary (1) we have that
(D'(G, K) @xcg Km[S])™ = ((C"(Go, K))sy @ K(x)[~d]) @piac, i) (P(G, K) @xq KulS])

= <(L(Cl“(G0,K))*1 ® K(x)[—d]) ®piacy, i) D(G, K)> Qg Km[S]

= (CG, K) @ K(Y)[~d]) @xq KulS].
The second claim follows by the same argument using Corollary (2) instead. O

3.2. The category of locally analytic representations. Let L be a finite extension of Q,. Our next
goal is to define the oco-category of locally analytic representations and discuss some general properties of
it.

Definition 3.2.1. We define the oco-category of locally analytic representations, denoted as Repfg.(G), to
be the full subcategory of Modyg (D'(@G, K)) whose objects are locally analytic representations of G. In
other words, Repf‘é. (G) is the full subcategory of solid D" (G, K)-modules whose objects are the V such
that Ve = V.

Our next task is to show that the derived category of locally analytic representations has a natural
t-structure and that it is the derived category of its heart.

Lemma 3.2.2. Given V € Modxg(D'(G, K)), one has that
VRla — hg 1&] (7_[(1717]‘/*')1251(17
b—+o00 a——00

<

in the homotopy category, where a,b € Z with a < b and 7% = 729 0 7=b 4s the canonical truncation in

the interval [a,b] in cohomological notation.

Proof. This follows from the fact that (—)f® has finite cohomological dimension, see Corollary
(1). O

We now prove some basic and fundamental properties of the category of solid locally analytic represen-
tations.

Proposition 3.2.3. Repfg.(G) is stable under all small colimits of Modg (D'%(G, K)) and tensor products
over Km.

Proof. This follows from the fact that taking locally analytic vectors preserves colimits, cf. Proposition
BI7 and the projection formula of Corollary (2). O
Lemma 3.2.4. Let G be compact. Then Repﬁg.(G) is the full subcategory of Modig(D'(G, K)) stable
under all small colimits containing the categories Modxg (DMG, K)) for all h > 0.

Proof. This follows from Corollary BI.10l O

Proposition 3.2.5. An object V € Modyg(D'%(G, K)) is locally analytic if and only if H (V') is non-
derived locally analytic for all © € Z. In particular, the t-structure of Mod;c.(Dl“(G,K)) induces a t-
structure on Repjyg (G).

Proof. We can assume without lose of generality that G is compact. If V is locally analytic then Ve =
lim, VAR =" and H(V) = ling, H' (V=) but V= is o DM@, K)-module. This shows that the
cohomology groups H*(V') are colimits of D"(G, K)-modules for h — oo and is locally analytic by Lemma
3.2 (so afortriori non-derived locally analytic). Conversely, suppose that H*(V) is non-derived locally
analytic for all ¢ € Z. We want to show that V is locally analytic. By Lemma we can assume that V
is bounded with support in cohomological degrees [0, k]. By an inductive argument one the lenght of the
support of V', we can assume that 721V is locally analytic, then V is an extension

H(V) =V — 2V — HO(V)[1].
Since H°(V') is non-derived locally analytic, it can be written as a filtered colimit of D"*(G, L)-modules,

then it is actually locally analytic by Lemma[B3.2.4l This exhibits V' as the fiber of 721V — H?(V)[1] which
is a locally analytic representation by Proposition [B.2.3] O
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Proposition 3.2.6. The category RepﬁgﬁG] 1s a Grothendieck abelian category. Moreover Repﬁg-(G) is the
. la,Q
oco-derived category of RepK.[G},

Proof. To show that Repﬁg’-o(G) is a Grothendieck category, by the above results, it is enough to see that

it has a small family of generators. Let Gog C G be a compact open subgroup. Since we are working with
r-small condensed sets, by Lemma [3.2.4] the category Repf‘é. (G) is generated by {D'(G, K) Qpla(Gy,K)
DMGo, K) ®xg Km[S]}n,s where h > 0 and S runs over all the s-small profinite sets.

Let us first prove that the right adjoint of the fully faithful inclusion Repﬁg’.o(G) — Mod"¥(D'(G, K))
of abelian categories is given by the (non-derived) locally analytic vectors. Let V € Repﬁg’:?(G) and
W € Modig(D'(G, K)), we want to prove that the natural map

Hompia (g (Vi W) — Hompia (g k) (V, W)

is an equivalence. Then, it suffices to take V = D' (G, K) Qpla(Gy,K) DGy, K) @ Km[S] and show that
the natural map
RHompua (g 10y (V, W) — RHompia ¢ 10y (V, W)

is an equivalence. Indeed, one can find a resolution P* — V of V where each term is a direct sum of
elements in {D'*(G, K) ®pla(Go,K) DMG,K) ®xq Km[S]}h.s and calculate RHompia (g gy (V, W) in terms
of this resolution. Let V = D"(G, K) Qpla(Go, K) DGy, K) ®1q Km[S], since we are taking internal Hom,
we can assume that S = *. By Proposition B.I.11] we have that

RHompua (¢ 10y (V, W) = RHomopa(g, gy (D"(Go, K), W)
_ WRh*—cm

— (WRla)Rffr —an

= RHompya (g 10y (V, WH%),

proving the claim.

Now, let I be a k-small injective D!*(G, K)-module. By [Sta22 Tag 015Z] I'* = I is an injective

object in Repig’:?(G). Moreover, we have that

I = lim RHoWpa g, 1) (D" (Go, K), I)
h
= hﬂHo—m’Dla(Gg,K) (Dh(G()v K),I)
h
=1
Then, if V € Repgg’.o(G) and I*® is an injective resolution of V as D'(G, K )-module, we have
V = VRla — Io,Rla — Io,la
so that I*! is an injective resolution of V in Repﬁg’.o(G). The previous implies that the RHom in the
derived category of Repﬁg’.o(G) can be computed as the RHom in Modyg(D'(G, K)). Since Repﬁg’.o(G) is
left complete by Lemma B.2.2] one deduces that it is the oo-derived category of Repig’:?(G). O

As a byproduct of the proof of Proposition B22.6] we have the following result.

Corollary 3.2.7. The fully faithful inclusion Repﬁg-(G) — Modjcg (D'(G, K)) has for right adjoint the
functor of locally analytic vectors V — Ve,

We end this section briefly discussing some functorial properties of the categories of locally analytic
representations. Let H — G be a morphism of p-adic Lie groups over L and denote by h — g the
corresponding map between their Lie algebras. We have a natural morphism of projective systems of good
lattices {M}rmcy, — {L}rcg, - In particular, if M maps to £, we have a morphism of distribution algebras

U(M) — U(L). On the other hand, the forgetful functor F : Modjcg (P'*(G, K)) — Modig(D'*(H, K))
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restricts to a forgetful functor Repf‘é. (G) — Repf‘é. (H). It has a right adjoint which is given by the locally
analytic induction

F : Repi, (G) = Modg (H, K) : la-Indf; ()
where

la- Indf (V) := RHompua g7 ) (D" (G, K), V) 7.

If H C G is an open subgroup, then the forgetful functor commutes with limits in the category of locally
analytic representations (computed as the locally analytic vectors of the limit in Modg (D'*(G, K))). Then
it has a left adjoint called the compactly supported induction and is given by

la-cInd (V) = DG, K) ®%,, V.

(H,K)

3.3. Detecting locally analyticity. We finish this section with some additional results that can come in
handy when proving that a solid representation is locally analytic. In the following we let G be an uniform
pro-p-group over Q, of dimension d and let log : G — g = Lie G be its logarithm.

Lemma 3.3.1. Let g1,...,9s € G and let I'1,...,I's C G be their generated pro-p-groups. Suppose that the
smallest Lie subalgebra of g containing LieT'; + - -- + Lie 'y is g itself. Then there exists a tuple (i1, ..., i)
with i; € {1,...,s} such that the multiplication map

mZFhX’”XFZ’T—)G

has open image around 1 € G. Furthermore, the map m admits a section of p-adic manifolds locally around
leG.

Proof. Let X; = log(g;) € Liel';. Let . C G be the subset of elements that can be written as a product
of powers of gis. We claim that {hX;h71 : 1 <i <s, h € .7} contains a basis of g. Indeed, by density
of . in an open subset of G, the Q)-spam V' of the objects hX;h~! is a G-stable subspace of g which
in addition is stable under the Lie bracket. By hypothesis V' = g and we can find such a base. Let us
take hi,...,hqg € ., and k1,...,kq € {1,...,s} such that {9); := h;X,,h;'}L, is a basis of g, and set
gi = hig,ﬁ.hi_l. Given a tuple ¢ = (¢1,...,¢,) let us write I', =T, x ---T', and let m(I',) C G be its image
under the multiplication map. Let us take ¢ big enough so that h;, hi_1 em(l,) foralli =1,...,d. We
claim that

m: (T, xTy xI)x---x ([, xTy, xI)—=G

has open image around 1 € G. Indeed, denoting T, = ﬁiz” , we have inclusions T; — (I', x Iy, x T',) induced
by 7' = higy, hi_l, but the multiplication map m : Iy x - xI'y— G has open image around 1 € G since it
is an isomorphism at the tangent space of the identity. Finally, m is a local isomorphism and we can find
a local section s: G = Ty x -+ x Iq C (I, xTy, xT,) x---x (T, xTy, xT,) as wanted. 0

Proposition 3.3.2. Keep the hypothesis of Lemmal3.31l An object V € Modyg(Km[G]) is locally analytic
if and only if its restriction to I'; is locally analytic for oll i = 1,...,s. Furthermore, if the restriction to
each T'; is h-analytic for some h, then V is itself h-analytic representation of G for some (maybe different)

h.

Proof. If V' is an analytic representation of G it is obviously a analytic representation of I'; for all 7. Let
us show the converse. By Proposition (2) we can assume that V' € Mod%-(lC. [G]) is concentrated
in degree 0. By Lemma B3] there is a tuple ¢ = (¢1,...,¢-) of elements in {1,...,s} such that the
multiplication map

m:I', =T, x---xI', =G

is surjective, and such that we can find a section s : Gy — I', from an open compact subgroup.
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For each i € {1,...,s} we let €; : V. — Cont(I';, V) and 0% : V — C'(I';, V) denote the orbit maps.
Then, composing orbit maps we obtain a commutative diagram

O,_ o,
Cont(I',,,V) — Cont(T',, , x I, ,V) y oo — Cont(T,, V)

6.,

% ﬁla ﬁla

clar, vy —=% ¢lo(r,  xT,.,V) oL O, V).

v

~

Then, taking pullbacks along s, we have a commutative diagram

Cont(T',, V) — 4 Cont(Gp, V)
3

%«

(T, V) —s Ca(Gy, V)

v

such that s*o 0, = O¢, is the orbit map of Gy. It is easy to see that s*o 0' lands in V', namely, we have to
see that s* o 0'%(V) lands in the x; 3-invariant vectors of C'*(Gy, V'), but this can be easily prove using the
fact that each ﬁf“ lands in the x 3-invariant vectors of C'e(I;, V) for all i. Thus, we find a Gy-equivariant
map V — V! whose composition with the natural map V' — V is the identity. One deduces that V is a
direct summand of V@ and afortriori a locally analytic representation of G.

The proof for the h-analyticity follows the same lines as above, knowing that the product mI', — G and
the section s : Gg — I', is locally on the I'; and G given by some analytic power series. ) O

The following proposition tells us when the generic fiber of a p-adically complete G-representation is
locally analytic.

Proposition 3.3.3. Let V € Modxg >0(Km[G]) a connective solid Km|G]-module. Suppose that the follow-
ing holds:
(1) There exists a p-adically complete object V' € MOdK:,zo(K: [G]) with VT ®f{: K=V.
(2) The action of G on V't /p factors through a finite quotient, i.e. there exists an open subgroup Gy C G
such that the restriction of V't /p to Gg belongs to the image of Mod((K ™ /p)m) into ModK: (Kqg[Gol)
via the trivial representation.

Then V' is a h-analytic representation for some h > 0.

Proof. We can assume without loss of generality that K is a finite extension of Q,. Let g1,...,94 € G be a

local basis of G, and set I'; = gin . By Proposition B.32] it is enough to show that the restriction of V' to T';
is h-analytic for ¢ = 1,...,d. Thus, we can assume that G = Z,. In this case we have Ok m[Z,] = Og[[X]]
with X = [1] — 1, and being h-analytic for some h > 0 is equivalent to the existence of € > 0 such that V'
is a K(%%module, or equivalently, that K(§> ®(L9K[[X]] V=V

The tensor product K (%) ®(L9K[[ X]] V is represented by the cone

(3.2) cone[V @% g K(T) 2225 v ok g K(T)].

By taking the g; small enough, we can assume that the multiplication by X is homotopic to 0 on VT /p.
Then, the multiplication map X : V™ — VT factors through a map
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Take € = 1, the cone (B8.2)) is equivalent to the cone

cone[V ®%<,. K(T) Xy ®%<. K(T)]

which is the generic fiber of

C = cone[V ™" ®éK7. Or(T) =Xyt ®(L9K7. Ok (T)].

On the other hand, we have a natural equivalence

cone[V ®(L9K OklT] =Xyt ®éK O[T =V™.

Taking derived p-completions and using [Man22bl Proposition 2.12.10] one gets an equivalence

cone[V* ©%, g Ox(T) 725Vt @k g Ox(T)] = V*.
By inverting p one deduces that (3.2]) is equivalent to V finishing the proof. U

Remark 3.3.4. The same proof of Proposition B.3.3] holds for a quotient V' /p® for any € > 0, namely, it is
enough to suppose that V' /p® arises as a trivial Go-representation.

4. GEOMETRIC INTERPRETATION OF LOCALLY ANALYTIC REPRESENTATIONS

Let G be a p-adic Lie group over a finite extension L of Q,. The purpose of this section is to identify
the category of locally analytic representations inside the category Modxg (Dl(G, K)). If G is compact,
the algebra D'(G, K) can be though as the global sections of a non-commutative Stein space. Global
sections of sheaves over this space will give objects of Modyg(D'*(G, K)), and we will prove that the
functor of “global sections with compact support” induces an equivalence of stable co-categories between
quasi-coherent sheaves of this space and Repfg. Q).

In a second interpretation, for general G, we will show that the category of solid locally analytic represen-
tations of G’ can be described as the derived category of co-modules of the coalgebra C'*(G, K) of L-analytic
functions. Heuristically, if G' denotes the “analytic spectrum of C'*(G, K)”, the previous description pro-
vides a natural equivalence between Repfg.(G) and solid quasi-coherent sheaves of the classifying stack

[+/G").
4.1. Locally analytic representations as quasi-coherent D'*(G, K)-modules.

Definition 4.1.1. Let us write D"*(G, K) = lim, DM@, K) as alimit of h-analytic distribution algebras.
We define the category Mod;lcc. (D'*(G, K)) of solid quasi-coherent modules over D'*(G, K) as the oo-
category
Modf,, (P"(G, K)) := lim Modyg (D"(G, K)),
h>0
where the transition maps in the limit are given by base change.
Objects in the category C = Mod;lcc. (D'(G, K)) are sequences of modules (V},), with V}, € Modxg (D"(G, K))
such that for h' > h one has D"(G, K) ®éh’(G K) Vi = Vi Given two objects (Vi,)n, and (Wy)p in
Mod?cc. (D'*(@G, K)), the spectra of morphisms is given by

RHome((Vi)n, (Wh)n) = lim RHompr ¢ ) (Vs Wh).-
h

The following lemma will give a sufficient condition for a morphism of objects in C to be an equivalence.

Lemma 4.1.2. Let (Ry)nen be a limit sequence of Eqi-Km-algebras and let C = l&ln Mody g (Rr) be the
limit category along base change. Let fo : (Xpn)n — (Yn)n be a morphism of objects in C, and suppose that
there are arrows hpy1 : Ynie1 — Xy of Rypr1-modules making the following diagram commutative

Xn—l—l — Xn

[t 1

Yn+1 E— Yn
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Then fo is an equivalence in C.

Proof. We have to prove that each fy 1 : X501 — Yn41 is an equivalence. We have a commutative diagram
by extension of scalars

L ~
Xps1 — Ry ®%  Xoy1 — X,

lfn-}—l 1®fn+1l A*llfn

L ~
Yngpr —— R ®p, Yoy —— Yoo

~ 1®hn .
A diagram chasing shows that the map Y,, — R, ®ﬁn+1 Yot 1@hnt1, X, defines a homotopy inverse of f,

proving that f, is an equivalence. O
Next, we define natural functors between the category of modules over D'*(G, K) and Mod;lcc. (Dl*(G, K)).

Lemma 4.1.3. Let j* : Modxg(D'%(G,K)) — Moquc-(Dl“(G,K)) be the localization functor sending a

DG, K)-module V to the sequence (V) with Vi, = D'(G, K) ®éla(G K) V. Then j* has a right adjoint

Jx given by
J«(Va)n = RIm V.
h

Proof. Let us denote C = Mod;lcc. (D'*(G, K)), let V = (V},) € C and W € Modyg(D"(G, K)). We have a

natural map W — Rl'&lh(Dh(G, K) ®éla(G,K) W), and by construction we have

RHome(j*W, V) = Rlim RHompn g ) (D"(G, K) ©@Fa(g 1) Ws V)
h
- R 1&1 RHomela(QK) (VV, Vh)
h

= RHOIIlfDla(GJ{) (VV, R @ Vh)7
h

proving that the right adjoint of j* is j, as wanted. O

Our next goal is to construct a left adjoint ji for the localization functor j* : Modxg(D'(G, K)) —
Moquc-(Dl“(G, K)). We shall exploit the fact that the maps D (G, K) — D"(G,K) and C*G,K) —
C’h/(G, K) are of trace class for A’ > h. Moreover, they factor through D"-modules

D" (G, K) — D" (G, K) — D'G, K)

and

ch@G, K) - TG, K) — C" (G, K)

with ﬁh/(G, K) and Uh(G, K) being compact projective as Km-vector spaces. We will write C*5(G, K)
and DB (G, K) for the duals of D" (G,K) and Uh(G, K) respectively, these are K-Banach spaces.

Lemma 4.1.4. Let f : V. — W be a trace class map of Km-vector spaces. There is a morphism RHom ;- (W, —) —
Vv ®,]€. — making the following diagram commutative

WY g, — — RHomy (W, -)

I

VY ®gy — — RHomy(V,-)
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Proof. This is analogue to [CS22] Lemma 8.2|. By definition the map f arises from a morphism K —
VY ®,]€. W. Let P € Mod(Km) we have morphisms functorial in P

RHom (W, P) — RHom (V" @xq W, V" @xg P)
— RHomy (K, VY @y P)
=V Qxq P
— RHom (V, P).
0

Corollary 4.1.5. Let f:V — W' be a morphism of D'*(G, K)-modules which is trace class as Km-vector
spaces such that the morphism f : K — VV ®é- W defining f is D'*(G, K)-equivariant. Then there is

a map RHompua (g ) (W ® x[—d], =) — vV ®él“(G,K) — (depending on f) making the following diagram
commutative

WY @iy — — RHompua g i) (W @ x[~d], -)

VV ®%ZG(G,K) e d RI—IO—lea(G,K)(V X X[—d], —)

where VY = RHom g (V, K), x = (detg)~! and d = dim(G).
Proof. By Lemma [£.1.4]l we have morphism functorial on P
RHomy (W ® x[~d], P) — (V @ x[~d))" ®©kg P — RHom (V ® x[~d], P),

since the map K — (V)Y ®@ygq W is Dl(@, K)-equivariant, then the previous are morphisms of D'(G, K)-
modules. Taking invariants and using Proposition B.1.12](2) one finds the desired commutative diagram. [

Lemma 4.1.6. Let h > I, the trace class maps D" (G, K) — DMG, K) and C*(G, K) — C" (G, K) arise
from a natural D'(G, K)-equivariant arrow K — C" (G, K) ®xq D"(G, K).

Proof. Without lose of generality we can assume that K is a finite extension of QQ,. We can factor
DM(G,K) — D" (G,K) — DG, K) where D" (G, K) is a distribution algebra whose underlying Km-
vector space is compact projective with dual C"5(G, K). Then the morphism Dhl(G,K) — DG, K)
comes from the map

K — Hom (D" (G, K),D"(G, K)) = C""B(G, K) 0cq D"(G, K) = C" (G, K) 0cq DG, K),

which is D' (@, K)-equivariant by construction. Similarly, the map C"(G, K) — C" (G, K) factors through
a smith space Uh(G, K) with dual D"B(G, K). Thus, C"G,K) — C" (G, K) arises from the map

K — RHom (C(G, K),C" (G, K)) = D"B(G, K) ®xq C"' (G, K) = DG, K) ®xg C" (G, K).

Theorem 4.1.7. The map j* has a left adjoint j given by
ji : Modie (D'(G, K)) — Modig (D" (G, K))

3V = (R1im V3) e,
h

The functor j is fully faithful, and 5 7*W = W for all W € Modjg (D'(G, K)) so that the essential
image of j1 is the category Rep%’.(G). In particular, it induces an equivalence of (stable oo )-categories

Modf, (D'(G, K)) = Repiy (G).
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Proof. The lines of the proof are as follows. We will first prove that there is a natural equivalence j*5V = V
for V€ Mod?(D'(G, K)). Then, we show that for W € Modxg(D'*(G, K)), the map W — j,j*W gives
rise a natural equivalence W =5 5 i*TV. Taking inverses, these define a unit V' = j*5/V and a counit
W = Whe 5 W which will give automatically an adjunction such that ji is fully faithful with essential
image the category of locally analytic representations. To lighten notations, we will denote D'* = D!*(G, K),
D' = D"(G,K) and C" = C"(G,K) for any h > 0, and we omit the decoration for derived limits and
tensor products. We will also use Corollary B.I.10] to write the locally analytic vectors as colimits of Hom’s
spaces from distribution algebras.

Step 1. We first show that there is a natural equivalence j*ji(V)p — (Vi,)n. Unravelling the definitions,
we have

7 i1 (Vi)n = (D" @pie lim RHompia (D2, 1im Vi) , .
hQ hl

In the above description, observe that we can assume that hy > hy > hs. Observe that the map D'* — D2
induces a map

(4.1) D" @pia limg RHompua (D2, im Vi, ) = Vi
ho h1

Indeed, this follows since

Dhs ®Dla @R—Hole“ (Dlaa l&n Vhl) - DhS ®Dla 1&1 Vh1 — th.
h2 hl hl

This provides a natural morphism j*ji(Vy)n — (Vi) for (Vi) € Mod;]é. (D'*). We want to prove that this
map is an equivalence, for this we will use Lemma The key idea to will be to successively use that,
for h > I/ the restriction maps C" — C are trace class maps and use Corollary to move from one
sequencial diagram to the other.

Consider, for any hg > hg > hf the following commutative diagram:

Dha ®pla RHOlea (,Dh2’l.&nh1 Vh1) Dhé Qpla RPIO_HM)ZG (DhQJ.&nhl Vh1>
| -

lim (Dh3 @mie RHom la(phz Vi, )) _ o m (Dhg ®Rpla RHompia (Dh2 Vh ))

A pla ftHOMp » Vha o ha D D » Vha

| i

RHompw. (C" @ x[—d], RHosza(Dh2,@hl Vi,)) —— RHomp (C" ® x[—d], RHompia (th,l'&th Vi)

The horizontal maps are the obvious maps, and the first vertical maps are the natural maps. The only maps
needing explanation are the last vertical ones and the dotted diagonal arrows. The last vertical arrows are
) hs _ 1; R’ hsy _ 1; o n
Co.nstructed as follows...we have C"3 = lﬁlhkhg C. and D"3 = h%I'nhthD = hﬂhkhg RHomK(C ,K)
with trace class transition maps. The second equality for the distribution algebras follows since the maps
Cch — M factor through the compact projective Km-vector space Uh, so in the colimit the derived or
non-derived Hom’s are equal. Then, the second vertical arrows arise from the natural maps
lim V;¥ @ (=) — limg RHom(V;, —) — RHom(R1im Vi, —).
(2

3 (2

The dashed arrows are given by applying Corollary ELL5] to the restriction map f: V = C" — W =
C"s which is trace class and evaluating it at RHompia (Dh2, Vi, ) for each hy and passing to the limit.
Furthermore, evaluating Corollary @15 at the object RHomp. (D"2, X) with X = Vi, and l'&lh1 Vh, gives
us a map

RHomp (C" @ x[—d], RHomp (D2, X)) = D" @pi RHompa (D2, X).
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Corollary 4. 1.5 also implies that the previous functors are natural on X and that the dashed arrows in the
diagram above are compatible. We note that by adjunction

RHompa (Ch3 ® X[_d]7 RHompua (Dh27 1£1 Vhl )) = RHompua (Ch3 ® X[_d] Qpla Dh27 1£1 Vhl ))
h1 hl

= RHompu. (Ch3 ® x[—d], 1£1 Vh1))v
hi

where the last equality follows since C"# is already a D"2-module, as hy > hs. The same holds for the
analogous term with hj.
On the other hand, we have another commutative diagram

l'&nhl RHompua (Ch3 ® X[_d]? Vhl) - l'&nhl RHompia (Ché ® X[_d]> Vhl)

| |

%lnhl (Dh3 ®1L)za Vh1) > %lnm (Dhg ®éla Vhl)
zT J
Vha th

Summarizing, joining both diagrams and taking colimits as hy — 0o we get a commutative diagram

D" @pia limy,  RHompia (D"2,lim, V) —— D"s @i ling, RHompua (D", 1im, Vi)

gnhl R—HOle“(Ch3 ®x[=d, Vp,) ——— @hl R—HOle“(Ché ® x[—d], Vi)

| |

Vh3 > Vhé .

Finally, a diagram chasing shows that the vertical maps commute with the morphism (41]), obtaining a
(final!) commutative diagram

Dhs &Qpla hghz RHompia (Dh2,1'£lhl Vi) —— Dhs Rpla hﬂhz RHompa ('Dh2,l'&nhl Vi)

VhS 7 Vhé .

Now Lemma concludes the proof of Step 1.

Step 2. Next, we will prove that for W € Modyg (D'(@G, K)) the unit map W — 7,5*W induces an
equivalence on locally analytic vectors W =5 (4, 5*W)Fle = 4, *W. Composing the inverse of this map
together with the natural arrow W — W one obtains a counit jj*WW — W. To prove the equivalence
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on locally analytic vectors note

(j*j*W)Rla — hA’lRHomela (DhQ, @(Dhl ®éla W))
ha ha

= lim lim RHomp. (D2, D™ @, W)
ha hi

= lim Jim((C"2 @ x[~d]) @pia D" @, W)
ha hi

= lim(C"* ® x[~d]) @F W
ha

= hg] RHOm'Dla (th, W)
ha

RI
= Whla

where the first equality is just the definition, the second one is obvious, in the third and fifth equalities we
use Corollary ELL5] and the fourth follows since C"2 is already a D" -module since one can assume hq > ho
in the limit.

Step 3. We now show the adjunction using the first two steps. Indeed, let V' € Mod?(D'(G, K)) and
W € Mod(D"(G, K)). We have

RHomp (71V, W) = RHompua (;V, W)
= RHompua (j1V, (j:5* W) ™)
= RHompua (31V, jj* W)
= RHom, (5% 5V, j*W)
= RHom,(V,j*W),
where in the first and third equalities we used the adjunction of Corollary B2.7 since 51V is locally analytic.
The second equality follows from Step 2, the fourth equality follows from Lemma[Z1.3] and the last equality
follows from Step 1.
Step 4. Finally, the last thing to check is that the essential image of ji are the locally analytic functions.

But this follows immediately from Step 2 since W = j*W for any W € Modyg (D*(G, K)). This
concludes the proof of the theorem. O

Corollary 4.1.8. Let V € Moquc-(Dl“(G,K)), then the counit map j*5.V — V is an equivalence. In
particular, j. also defines a fully faithfull embedding from Mod;lcc. (D'*(G, K)) into Modycg (D'(G, K)) with
essential image those D'*(G, K)-modules W such that W = j,5*W.

Proof. By definition one has j,V = R@lh V. By Theorem 1.7 j* is a right adjoint, in particular it
commutes with limits, one deduces that j*7,V = R@lh 7*Vp, by definition this object is the sequence

(RYm 5 Vi) ) = (Im(D" @pia Vi) = (Vi)
h h

which proves the corollary. O

We now give some examples showing how this equivalence behaves. In particular, it does not preserve
the natural ¢-structures on both sides and hence does not induce at all an equivalence of abelian categories.

Example 4.1.9. We have
(1) *D'(G, K) = (D"(G, K))n.
(2) 315" D"(G, K) = C'(G, K) ® x[~d.
(3) j*C"(G, K) = (DG, K) @ X~ [d])-
(4) If V is a D"(G, K)-module then the sequence (V )~y defines an element in Mod;lcc- (D'(G, K))
and one has j1(V), = 7.(V)p = V. In particular, for each h > 0, Theorem [I.7] restricts to the
equivalences of [RJRC21l Theorem 4.36].
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Proof. The first point follows by definition. Part (2) follows from (1) and Corollary Indeed, we have
j!j*Dla(G,K) — (I'&nph(G,K))Rla — Dla(G,K)Rla.
h

Applying j* to the second example, we obtain
J*C(G K) = j 3 DG, K) @ x T d] = DG, K) © X [d] = (DMG, K) @ X d)n,

where for the second equality we used the equivalence of j*ji — id of Theorem .T.7l The last point follows
directly from the definitions. Indeed, if V' € Modxg (D" (G, K)) is in fact a D*(G, K)-module, then j*V =

(D" (G, K) ®pia(i,k) V) = (V)n>n, which is a constant sequence, and we have j.(V), = lim V' =V and
T A e R ¢ 0
Example 4.1.10. As the notation suggests, the functors j*, j. and j' should come from a 6-functor

formalism of “non-commutative spaces” which at the moment is not available. When G = Z,,, nevertheless,
the functors j*, j. and ji can be interpreted as part of the six functors of the open rigid ball of radius one.

Definition 4.1.11. We define a duality functor on C = Mod;]CC. (D'*(G, K)) by mapping an object V = (V},)y,
to

D(V) := j*(lim RHompya (Vi, D(G, K) ® x'[d])) = lim j* RHomp (Va, D" (G, K) @ x~'[d))
h h

Lemma 4.1.12. Let V € Modyg (DG, K)), then

j* RHompia (V, D'(G, K)) = j* (lim(RHompue (Vi,, DM(G, K))).
h

Proof. We compute
j*RHompi (V, D) = (D" ®k,, RHompw (V, D'))p,.
By Corollary I T.5] this system is cofinal with the system
(RHompia (C" @ x[—d], RHompya (V, D'*))j.
But
RHomype (C" @ x[—d), RHomp (V, D)) = RHompia (C" ® x[—d] ©@pia V, D'*)
= RHompu (V, RHompie (C" @ x[—d], D'*)),

and hence, applying again Corollary EI5, we get that the Pro-system (RHompw. (C" @ x[—d], D))y is
equivalent to the Pro-system (D" ®@pw. D), = (D");,. We deduce from Corollary EE1.8 a natural equivalence
of Pro-systems j* RHompu (V, D') = (RHompua (Vj,, D)5, which proves the lemma. O
Proposition 4.1.13. Let V € Modig (D'(G, K)), then

j*RHom (V, K) = D(j*V')
where we use the involution of D'*(G, K) to see both modules as left D'*(G, K)-modules. In other words, the

duality functors as K -vector space or D'*(G, K)-module become the same (modulo a twist) in the category
of quasi-coherent D'*(G, K), e.q. in the category of solid locally analytic representations.

Proof. By definition we have that j* RHom , (V, K) = (D" ®éla RHomy (K,V))n. By Corollary the

Pro-system j*(RHom (V, K)) is cofinal with the Pro-system
(RHompi (C" @ x[~d], RHom (V, K)))».
We also have that
RHompia (C" @ x[~d), RHom (V; K)) = RHom (C" @ x[~d] @ V, K)
= RHomp (V, RHom . (C" @ x[—d], K)).

Using Lemma B.1.4] we see that the Pro-system (RHom, (C" ® x[—d], K))p, is cofinal with (D" @ x~![d]).
One deduces that j*(RHomy(V, K)) is cofinal with the Pro-system (RHompuw.(V,D" @ x~![d]))n. One
concludes by Lemma O
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4.2. Admissible and coadmissible representations.

Definition 4.2.1. We define the derived category of perfect D'*(G, K)-modules to be the inverse limit
Mod?™ (Dl*(G)) = Jim, Mod?™ (DG, K)) of perfect DG, K)-modules. Under the fully faithful em-
bedding j. : Mod;lcc. (D'(G, K)) — Modgg (D' (G, K)), we denote by Mod2°¢(D'(G)) the essential image
of Mod%erf (D'*(@)) and call it the derived category of coadmissible D'(G, K )-modules. Analogously, un-
der the equivalence j : Mod;lcc. (D'(G, K)) — Repﬁg. (G), we denote by Rep?¢(G) the essential image of
Mod$24(D! (@) and call it the derived category of admissible locally L-analytic representations of G.

Let us relate Rep‘}g(G) with a more classical definition of the category of admissible representations. We
first need to recall some properties of the distribution algebras.

Proposition 4.2.2 (|ST03]).
(1) There are Banach distribution algebras DM (G, K) with dense and trace class transition maps
DIN(G,K) - DMW(G,K) for ' > h, such that D"(G,K) = lim, DG, L) is presented as a
Fréchet-Stein algebra. In particular the rings DM (G, K) are noetherian so any finite DM (G, K)-
module is naturally a Banach space, and the morphisms of algebras D'*(G,K) — DM (G, K) and
DG, K) = DMW(G, K) for i > h are flat.
(2) The rings DM (G,K) are Auslander of dimension d = dimy, G. In particular, any DM (G, K)-
module of finite type has a finite projective resolution of length at most d.

Remark 4.2.3. The algebras D) (G, K) used by Schneider and Teitelbaum (denoted by D,.(G, K) in loc.
cit.) are different from those D"(G, K) used in this paper. It should be true that that algebras D"(G, K)
are noetherian and Auslander of dimension d, and that the transition maps D'(G, K) — D"(G, K) and
D"(G,K) — DG, K) are flat for b’ > h, see [CS22, Theorem 10.5]. On the other hand, the systems
(DM(G, K)), and (D"(G, K))y, are cofinal, this implies that we can also write

Modj, (D'(G, K)) p_ModK (G, K)).

Corollary 4.2.4. The category Mod?gad(Dla(G, K)) has a natural t-structure with heart given by the abelian
category of coadmissible D'*(G, K )-modules, i.e. D'*(G, K)- modules of the form'V = yﬂh(vh)h, where the

Vi’s are DM (G, K)-modules of finite type such that D (G, K) ® DU’) Vi = Vy, for b/ > h.

Proof. The flatness of the rings of distribution algebras implies that the t-structures on the categories
Mod’[’(erf (DM (G, K)) are preserved under base change, this shows that Mod$2*4 (D! (G, K)) has a natural

t-structure and that the heart is, by definition, the abelian category of coadmissible D'*(G, K)-modules of
[STO03]. O

Remark 4.2.5. One can ask for the relation of the (triangulated) bounded derived category of the abelian cat-

egory of coadmissible D'*(G, K)-modules and the homotopy category of the bounded objects in Modc[?ad(Dla(G, K)).
We do not have an answer to this question, however the first could be poorly behaved as the abelian category

of coadmissible D'*(G, K)-modules might not have enough injectives or projectives.

Lemma 4.2.6. Let V € Modzlée:f’o(Dla(G)) be a perfect D'*(G, K)-module in the heart. Then (j, V)Y fe
1s a locally analytic representation concentrated in degree 0.

Proof. Let V = (Vi) be a perfect D'*(G, K) module. By definition we have
(4. V)" = lim RHomp (D™, RHom (5. V, K)) = lim RHom (D™ @, 5.V, K).
h h

By Corollary ZI.8 we have j*5,V =V, so that D) Q@i 5.V = Vj,. Therefore
(4:V)" 11 = lig RHom ¢ (Vi K),
h

but Vi is a D®")-module of finite presentation, and V;, = D) ®pnn Vi One deduces that Vi — V is
a trace class map, defined by a trace map K — HO(Vh\{) Qg Vi Let Wy = HO(Vh\{), one then has a
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factorization
V' = RHom (Wi @k g Vi, Wir)
— Wh/
-V
where the first map is the obvious one, the second follows from the trace map K — H O(th,) ®xm Vi, and
the last from the natural map Wy, = H°(V;Y) — V,7. One concludes that

ling V," = linmg W/,
h h
sits in degree 0 which proves the lemma. O

The reader might ask about the relation between the equivalence provided by Theorem [£.1.7] and the
classical anti-equivalence of categories [ST03|, Theorem 6.3] of Schneider and Teitelbaum. In [RJRC21]
Proposition 4.42] we have shown how one can recover this result from our previous work. The following
result, which is a summary of many of the previous results of this section, shows how Schneider and
Teitelbaum’s equivalence sits inside the equivalence of Theorem 1.7, proving that our theorem can be
seen as a refinement of [ST03, Theorem 6.3].

Proposition 4.2.7. We have a commutative diagram

Modyg (D*(G, K)) —2— Modfs, (D'*(G, K))

[ |p)

Repjy (G) «—"—— Mod{, (D"*(G, K)),

where the right vertical arrow is given by the dualizing functor of Definition [{.1.11 Moreover, when re-
stricted to the abelian category of coadmissible D'*(G, K)-modules, the composition jy o D o j* restricts to
the anti-equivalence of [ST03, Theorem 6.3].

Proof. We first prove that the diagram is commutative. By Proposition LT.13] we know that D o j*V =
Jj*RHom;(V, K), so that

j! oD oj* _ (]IJ*VV) — (VV)Rla
by the second step of the proof of Theorem AI.7l Lemma shows that, when we restrict to the
subcategory Modfgzd’o(Dl“(G, K)), this composition of functors is concentrated in degree 0 and hence
coincides with V' +— Hom ;- (V, K') which is an admissible locally analytic representation. O

Proposition 4.2.8. Let V € Rep‘}g(G) be an admussible locally analytic representation. Then, letting
VV = RHomy (V, K), we have

DGVY) =V
Proof. Since V' is admissible one has that V' = jW for W € Mod’;(erf(Dl“(G, K)), in particular j*V = W.
The object W is reflexive for the functor ID(—) being a limit diagram of perfect D(G, K)-modules, one

deduces that W = D(D(W)). On the other hand, Proposition 1. T3] says that D(W) = j*(VV), one deduces
that 7*V = D(D(W)) = D(;*V") proving the proposition. O

We conclude by studying the dualizing functor in the non-compact case. Let G be a locally profinite
p-adic Lie group over L and Gy C G an open compact subgroup. We denote

Hla a a a
D“(G,K) = RHompua (g, x)(D"(G, K), D" (Go, K)) =[] D"“(Go, K),
9€G/Go
one easily verifies that this is the dual space of the locally analytic functions of G with compact support. We
define a duality functor in Modxg (D" (G, K)) by D(W) = RHompa (g iy (W, ﬁla(G, K) ® x![d]). Notice
that by adjunction
D(W) = RHompia g, ) (W, D*(Go, K) @ x " [d))
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so that it is the natural induction of the duality functors from compact p-adic Lie groups. Observe that
the duality functor just defined is compatible with the duality functor on Mod?cc. (D'%(Gy, K)) of Definition

LTI namely if W € Modycg (D'*(Go, K)), then by Lemma one has D(j*W) = j*D(W). We have
the following proposition.

Corollary 4.2.9. We have a commutative diagram

(7 Rla

Reple, (G) £ Modig (D'9(G))

(7)V,Rlal JD(,)

Repig(a) iz Modig(D'(G)).

(7)Rla
In other words, the duality functor D is compatible with the duality functor (—)V-e of Repfg.(G).

Proof. Observe that, if Go C G is an open compact subgroup, since for any W € Modyg (D(G, K)) we
have j*(W) = j*jij* (W) = 7* (W) by Theorem @17 the diagram of Proposition B.2.7] can be written as

Repjg (Go) «=— Mod{ (D'*(Go, K))

(- | |pe)

Repgg. (Go) —— Mod?cc. (Dl (G, K)).

The corollary follows since D(W) = RHomg, (W, Dl (Gy, K) @ x~'[d]) is the duality functor for G, and
the duality functor D : Mod§ (D'*(Go, K)) — Modi¢ (D'%(Gy, K)) is the pullback by j* of the duality
functor on Modg(D"(Go, K)) by Lemma O

4.3. Locally analytic representations as comodules of Cl“(G, K). Let G be a p-adic Lie group over
L. In this section we show that the category of locally L-analytic representations of G can be undestood as
the derived category of quasi-coherent sheaves over a suitable “classifying stack” [*/G'] of G. Throughout
this paper we will only see this stack as a formal object for which the category of quasi-coherent sheaves
can be defined by hand as a limit of a cosimplicial diagram, an honest definition as a stack will require a
notion of stack on analytic rings that we will not explore in this work.

Definition 4.3.1.
(1) Let G be a group acting on a space X. We define the simplicial diagram (G" x X)pjeaer With
boundary maps d, : G" x X — G"! x X for 0 < i < n defined by

(9717"'79279133) ifi=0
dz(gnv"'vgl’x): (Qn,---,gi+1gi,---,g1,x) Hfo<i<n
(n-1,---,91,) ifi=n

and degeneracy maps s’, : G"x X — G"*1x X for 0 < i < n given by sending the tuple (g, ..., g1, )
to (gny---51,...,91,2) with 1 in the i 4+ 1-th coordinate.
(2) Let Gy C G be an open compact subgroup. We define the category of quasi-coherent sheaves on
G' to be
Modf (G') = [] Modkg(C"(9Go, K)).
9€G/Go
(3) We define the category of quasi-coherent sheaves on the classifying stack [x/G'] to be the limit
Mod?cc.([*/Gl“]) = lim Moquc.(G"’l“).
[nleA
Remark 4.3.2. The definition of Mod;lcc. (G'*) is made in such a way that for G' compact we can see G'* as
the analytic spectrum of C'*(G, K), and that for G arbitrary G'* = |—|g€G/Go gGé‘”. Then, the definition
of Modqlcc.([*/ G'*]) follows the intuition that [*/G'?] is the geometric realization of the simplicial space

(Gn’la)neAOP-
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Theorem 4.3.3. There is a natural equivalence of symmetric monoidal stable co-categories
l l
Repif (G) = Mod®, ([+/G'“)),
where the tensor product in the LHS is the tensor product over Kn.
We need a lemma.

Lemma 4.3.4. There is a natural symmetric monoidal equivalence between the abelian category Repﬁg’-o(G)

of locally analytic representations of G, and the abelian category of comodules of the functor C'*(G, )
mapping V € Mod” (Km) to C'*(G,V) = HQGG/GO(Cl“(gGO,K) QkgV)-

Proof. Given a map ¢ : V — C'(G,V) we have a morphism V — C"(G,V) — Homy (D"(G,K),V)
which by adjunction gives rise a map p : D'*(G,K) @ V — V. If € is a comodule then p is a module
structure and V' defines an object in Modg. (D'*(G, K)). Restricting the co-module structure to Gy one
finds that the morphism O|g, : V — C!%(Go, K)®xqV lands in the invariants of the x 3-action of D'%(G, K)
in right term. Thus, by taking invariants one finds that V is a direct summand of V' which implies that

V' is locally analytic itself, i.e. V € Repﬁg’.o(G). Conversely, given V' € Repﬁg’.o(G) one has an orbit map

0 :V — C"(@G,V) which is clearly a comodule for the functor C**(G, —). It is easy to check that these
constructions are inverse each other. O

Proof of Theorem [{.53.3 By [Man22bl Proposition A.1.2] the category Mod;lcc.([*/Gl“]) is the derived cat-
egory of descent datum of % over G/ via the trivial action, which is the same as the abelian category of
comodules V' — C!(G,V). By Lemma E3.4] this abelian category is naturally isomorphic to Repgg’.o(G)
as symmetric monoidal categories, taking derived categories one has an equivalence

Repity (G) = Modg ([¥/G™])
as symmetric monoidal stable co-categories. U

Corollary 4.3.5. Let G be a compact p-adic Lie group over L, then we have natural equivalences of stable
oo-categories

Mod§ (D"(G, K)) = Repily (G) = Mod, ([+/G"]).

4.4. Classifying stack of rank one (¢,I')-modules and locally analytic representations of GL;.
In this section, we explore an interesting application of Theorem ETIT for the group O] to the locally
analytic categorical p-adic Langlands correspondence for GL; as formulated in [EGH23|.

We let &) be the classifying stack of rank 1 (¢, I')-modules over the Robba ring on affinoid Tate algebras
over K = (K, K™), cf. [EGH23| §5]. This stack is represented (cf. [EGH23| §7.1]) by the quotient

(W x Gi) /G
with trivial action of G, where W is the rigid analytic weight space of O whose points on an affinoid ring
A are given by continuous (eq. Qp-locally analytic) characters Hom (O}, A), and where G%" denotes the

rigid analytic multiplicative group. Let Lap be the restriction of scalars of L™ from L to Q,. In [EGH23],
the authors conjecture that the natural functor

(4.2) gl Rep%’-(Lap) — Modg (1)
given by 22;“(77) = Oy, ®f]51a(Lx K" (cf. [EGH23, Equation (7.1.3)]) is fully faithful when restricted to a
Qp~’

suitable category of “tempered” (or finite slope) locally analytic representations.
On the other hand, for the functor ££fna to be fully faithful without restricting to a smaller subcategory
of Repgg- (Lap), one can also modify the stack X7, namely, we consider

Xl = [W x GU9 /GU9)

where G2 is the analytic space attached to the ring (K[T%], K*)m = Km ®z Z[T*!]. To lighten notation

we will use the version of X7 and le"d involving the space W C W of L-locally analytic characters, and
the group L™ instead. The same arguments will hold for the spaces defined over Q,,.
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To describe the category of solid quasi-coherent sheaves of the original stack X in terms of representation
theory we need to introduce a certain algebra of “tempered sequences” on Z.

Definition 4.4.1.

(1) We let ftZT}zp C [I; K be the subalgebra with respect to the pointwise multiplication consisting on
sequences (a,)nez such that there exists 7 > 0 such that sup,cz{|a./p™"™} < co. Equivalently,
Let 0(Giy) =1lim . K(p"T, D7), then KtZinIzp = O0(G¥)V. We let Z!*™P denote the analytic space
defined by the algebra EtZ%p .

(2) Welet L*"**™ be the analytic space associated to the algebra C**™P(L* | K) := C!(OF, L)®,LC.€tZe7nI$p
of tempered locally analytic functions on L*. Equivalently, we have

ctemp(LX, K) = O(W x G4V,

(3) We let Repfg:w (L*) := Modg ([*/L*"*"P]) be the category of tempered (locally analytic) represen-

tations of L*.

Remark 4.4.2. In [CS20, Definition 13.5] Clausen and Scholze have introduced a notion of analytic space as
certain sheaves in the category of analytic rings with respect to steady localizations. The analytic spaces
ZtmP and L>'*"™P can be considered in this category, or equivalently, as the presheaves on analytic rings
corepresented by the corresponding algebra.

Lemma 4.4.3. The spaces Z'™ and L™ have unique commutative group structures compatible with
the natural maps Z — ZX*™P qnd LXt¢ — [X-temp,

Proof. A commutative group structure on Z!*"™ and L*'*™P is the same as a commutative Hopf algebra

structure on their spaces of functions. But by definition EtZ?"[}p and C'*"P(L* K) are the duals of the
global sections of G%' and W x G%' which are themselves commutative groups, proving that EtZer[rép and

CtmP([* | K) have a natural structure of commutative Hopf algebras. O

Theorem 4.4.4. There are natural equivalences of stable oco-categories
(4.3) Mod ([Z/L7"]) = Modje (X1"%),  Modj, ([Z'™ /L**"P]) = Mod{, (X1)

Furthermore, the functor 22;,“ defined in (42)) induces equivalences
(4.4) Repjig (LX) = Modi, (W x G9), Repica”(L*) = Modfs, (W x G&').

Remark 4.4.5. The equivalences of Theorem [£.4.4] (1) should follow from a Cartier duality theory for quasi-
coherent sheaves in analytic spaces, this would imply that the natural symmetric monoidal structures are
transformed in the convolution products via the Fourier-Moukai transform. In the cases of the theorem, we
will roughly prove that modules over the Hopf algebras of the groups are equivalent to comodules of the
dual Hopf algebras.

Proposition 4.4.6. Let A be a flat solid Km-algebra. Then there are natural equivalences
Mod{, ([AnSpec A/Gi)) = Func(Z, Modjcg(A))
and
Modf, (AnSpec A x G51) = Modf, ([AnSpec 4/2))

functorial with respect to base change B ®ﬁ7. —. In particular, the same statement hold for analytic spaces
glued from flat K-algebras.

Proof. By [Man22bl Proposition A.1.2], the oo-category Mod;]é.([AnSpec A/Gu9)) is the derived category
of A[T*']-comodules over A. The data of a A[T*!]-comodule is the same as the data of a Z-graded A-
algebra, namely, given M an A[T*']-comodule and & : M — M ® 4 A[£1] the co-module map, one has a
graduation M = @; M (i) by defining M (i) = 6~ (M @ T~"). Conversely, if M = @,., M (i) one defines
the co-module structure & : M — M ® A[T*!] by mapping € : M (i) = M (i) ® T~*. We have constructed
a natural equivalence

Mod,%. (AnSpec A/G,,) = Func(Z, Mod,%. (A)),
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taking derived categories we get the first equivalence.
For the second one, the category Mod?cc- (AnSpec A x Galg ) is by definition the derived category of Km-

solid A[T*'] = A[Z]-modules, i.e. Z-representations on solid A-modules. This gives a natural equivalence
c,Q
Mod%. (A[T*) = Mod;lc. ([AnSpec A/Z]),
taking derived categories one obtains the second equivalence of the lemma. O

Remark 4.4.7. In the proof of the following lemma we are going to use some facts coming from a 6-functor
formalism for solid quasi-coherent sheaves of analytic stacks over Q,m in the Z-topology as in [Sch23|
Definition 4.14]. This theory has been partially constructed in [CSI9] and [CS22] for schemes or complex
analytic spaces, and the methods of [Man22bl Appendix A.5|, [Man22al §5-9] and [Sch23| are enough to
give proper foundations. In particular, we assume that:

(1) The family E of morphisms in the 6-functor formalism (see [Man22bl Definition A.5.7]) contains all
maps f : X — Y of rigid spaces. In particular, we have shriek functors fi and f' satisfying proper
base change and projection formula, and compatible under compositions.

(2) Let f: A — B be amap of analytic rings that defines a map of analytic spectra f : AnSpecB —
AnSpec A. If the pullback f* : Modyg — Modp is an open immersion in the sense of [CS22]
Proposition 6.5], then f € £ and f, is the left adjoint of f*. Similarly, if B = B4, has the induced
analytic ring structure, then f € E and f) = f, is the right adjoint of f*.

(3) Smooth morphisms of rigid spaces are cohomologically smooth (cf. [Sch23, Definition 5.1]). For
partially proper smooth rigid spaces over a point this follows from the proof of [CS22] Proposition
13.1] for complex analytic spaces. Moreover, given f : X — Y a smooth map of rigid spaces, we
have that f' = f'Oy ® f* and we have a natural isomorphism f'0y = Q;l{i;nYX_dimY[dimX —dimY],
the last equality can be proven via the same argument of [CS19, Theorem 11.6].

(4) Being cohomologically smooth is local in the target for the Z-topology (see [Sch23| Definition 4.18
(2)]), this follows from arguments analogue to those of [Man22a, Lemma 8.7 (ii)]. In particular,
if G is a smooth rigid group over K = (K,K%), and *+ = AnSpecKnm, then f : x — [*/G] is
cohomologically smooth. Indeed, by definition [*/G] is the geometric realization of the Cech nerve
{G" }nenor, so that the map * — [¥/G] is a Z-cover and * X[,/g) * = G which is cohomologically
smooth over by (3).

(5) Being cohomologically proper is local in the target for the Z-topology, this follows from the same
arguments of [Man22al Lemma 9.8 (iii)]. In particular, if G = AnSpec A is the analytic affinoid
group associated to a Km-algebra with the induced analytic structure, then the map * — [x/G] is
cohomologically proper.

In this section we do not pretend to give proper foundations of the theory of analytic stacks or the
6-functor formalism of solid quasi-coherent sheaves. Instead, we only give an example of the power of these
abstract tools, and their relation with our Theorem 1.7 and categorical Langlands for GL;. This section
is completely independent of the rest of the paper.

Before stating the next proposition, we explain how the formalism of categorified locales of [CS22] allows
us to see G¥' and G in the same footing. let ]P’}ga" be the projective space over K with coordinates [z, y]

seen as a rigid space, let 0 = [0 : 1] and oo = [1 : 0] be marked points. Then ]P’k‘m can be given a structure
of categorified local as in [CS22] Definition 11.14]. We can identify G as the complement of {0, 00} in
]P’k‘m as rigid analytic spaces. We can embed
j: G C G
as the open subspace in the sense of categorified locales whose complement is the idempotent K [Tﬂ]—algebra
C = K{T}[T~"] & K{T'}[T]
where K{U} = lim K <1%> is the algebra of germs of functions of Ak‘m at 0, and unit map K[T*!] — C
given by (1,—1). Indeed, by [CS22, Proposition 5.3 (4)] the idempotent algebra defined by {0, 00} in ]P’},gm

is equal to
D=K{T}e K{T™}
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with 7' = z/y, namely, we can write {0,000} as the intersection of the union of two discs centered in 0
and oo and radius going to 0. By [CS22) Theorem 6.10] we have a natural isomorphism of analytic spaces

]P’}fm = ]P’}%alg between the rigid analytic and the schematic projective spaces (in the notation of loc. cit. the
rigid analytic and the schematic projective space correspond to C'(X, X) and C(X) respectively). Taking

pullbacks of D through the map Gd — P}™? one obtains that C = K{T}[T~'] @ K{T~'}[T] is the

complement idempotent algebra of G in G as claimed.

Proposition 4.4.8. Let A be an animated solid Km-algebra. There are natural equivalences
Modi’ ([AnSpec A/Gy']) = Modj (AnSpec(A ®rcq Bz"&p))

and
MOquCC. (AHSPGCA X Ggr?) = Mod?g.([AnSpeC(A)/Ztemp])

natural with respect to base change B ®ﬁ —. In particular, the same statement holds for analytic spaces
glued from animated Km-algebras.

Proof. To simplify notation we will assume that A = K, the same arguments hold for general A. Let
* = AnSpecKCm. We start with the proof of the first equivalence. Consider the map f : x — [x/G%] of
stacks obtained as the geometric realization of the morphism of simplicial analytic spaces

(4~5) fo: (G%L’nﬂ)neAOP — (G%L’n)neAOP,

where the map f, : Gty GAM s the projection towards the first n components. In particular, as
) . . . .. . |~ !

(G'%‘ is cohomologically smooth, the map f is cohomologicaly smooth. Thls| implies that f* = f*® f'1 and

f'1 invertible, which shows that f* has a left adjoint given by f; = fi(—® f'1) (the homology). Then, f* is

a conservative functor that preserves limits and colimits and, by Barr-Beck-Lurie theorem [Lurl7, Theorem

4.7.3.5], we have a natural equivalence

Mod?cc. ([+/Gy']) = Mod g« 5, (Mod (Km)).

By the projection formula, f*f; is a Mod(Km)-linear functor, this shows that Mod«y, (Mod(Km)) =
Modig (f*f5(K)) by [Lurl7, Theorem 4.8.4.1]. By Lemma 4.9 below we have that the object f*f,(K) is

naturally isomorphic to EtZenIzp as Hopf algebras, and hence we obtain
Modfy ([+/G51]) = Modkg (47 %)

which shows the first part of the lemma.

For the second part, we consider the projection map g : G&' — * and let g : G%g — % so that g =g o j,
we also write h : x — [x/Z!™P]. Tt suffices to prove that the adjunction g = ¢" is co-monadic. Indeed,
assuming this, by Barr-Beck-Lurie one has

Modi (Gy') = CoModg, ¢~ (Mod(Km)).

The projection formula implies that the functor ¢y¢* is Mod(Km)-linear so that by Lemma 4.9 we have
CoMody, ¢+ (Mod(Km)) = COMOdZtZey{Lp(MOd(IC.)).

Finally, by [Lurl7, Theorem 4.7.5.2] (3) we have a natural equivalence
CoModp+p, (Mod(Km)) = Moquc.([*/Ztemp]).

Indeed, the left adjointable condition is a consequence of proper base change as h is a proper map (cf.
Remark 47 (5)). By projection formula and proper base change h*h, is Mod(Km)-linear and one
has CoModp+4, (Mod(Km)) = CoMody«, (k) (Mod(Km)), but [Lurl?, Theorem 4.7.5.2] (2) implies that
h*h(K) = Etzi%p as co-algebra, proving what we wanted.

We are left to prove co-monadicity of the adjunction ¢, = ¢*:

e The functor g, is conservative: it is (modulo a twist) the composition of the forgetful functor g, :
Modjcg (K[T#!]) — Mod(Km) and the fully faithful inclusion j : Moquc.(G%") — Modjcg (K[T*1]).
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e The functor g, preserves gg-split totalizations. Since g5 = ¢1(— ® Q%}m[l]), it suffices to see that g
preserves qi-split totalizations. Let M € Modxg (K[T*1]), we can write

QG M) = 6. (jj* M) = [K[T*1] - C) &k g M,
and since K[T*!'] is a Hopf-algebra we have that
(4.6) [K[T*] = C] @ e @M = (KITH] = C] @xq M) @ ey K

where K[T*!] acts antidiagonally in [K[T*!] — C] ®,LC. M and K is the trivial representation of
G9 Observe that K is a perfect K [T*'-module by the exact sequence

0— K[T¥) =45 K[T¥) - K =0

and hence the functor — ®§([Ti1} K commutes with limits. Let (Mp)[,jea be a cosimplicial diagram
in Modcg (K [T*!]) such that (J*Mn)njen is q-split. Then we have
q( lim j*My,) = q(lim j*jij"My)
[n]eA [n]eA
= q (" m jij*My)
[n]eA

= ([K[Til] — (] ®ILC. l&l qj* My) ®%{[Ti1} K
[n]eA

— (lim (K[T#) - C) 0ky 0" Ma) S ppan K
[nJeA
L ( T:I:l — C] ®]C. QI] M ) ®K[Ti1] K)
[nleA

1&1

In the first equivalence we used that 7*7 is the identity. In the second equivalence we used that
j7* commute with limits being the pullback of an open immersion. In the third equality we use
(£4). The fourth equivalence follows by [Matl6, Examples 3.11 and 3.13]. The fifth follows since

the functor — ®§<[Ti1} K commutes with limits. The last equality follows from (0] again.
O

Lemma 4.4.9. Consider the cartesian square
G — % %
L
« —L 5 [x /G,

temp

Then f*fuK = quq* K s canonically isomorphic to £, 7 as Hopf algebras.

Proof. Let j : G&' C G and g: GY9 —5 «. We have that
F 1K) = 54" (K)
= a1(Qgp[1])
= q(0ggp(1])
= 9+(71(Tggr))[1]
= [K[T*'] = C][1]

~ ptemp
EZ K

The first equality follows from proper base change. The second one follows from the identity ¢, = qi(— ®
(¢'K)) and Remark L7 (3). The third one follows since Qfan = Ogan by taking the differential dT'/T as
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a basis. The fourth one follows since f = g o j, j is an open immersion, and Ga9 = AnSpec K[T*!] has
the induced analytic structure from Km, see Remark 4.7 (2). The fifth one follows from the formula for
4 for an open immersion given in [CS22 Lecture V]. In the last isomorphism we write [K[T*!] — C][1] =
TK{T}@® K@ T 'K{T'} to identify it with EtZe’r[rép. This shows that f*f,(K) is a solid Km-vector space
that is abstractly isomorphic to thenIzp , which is an LB space of compact type.

We claim moreover that they are actually naturally isomorphic. For this, by the duality of LB and
Fréchet spaces of compact type (see [RJRC21, Theorem 3.40]) it suffices to see that their duals are naturally
isomorphic. Indeed

RHomy (f*f,K, K) = RHomy (K, f*£.K)

and f* f, K is naturally isomomorphic to ¢.¢*K = €(G%") by smooth base change [Man22al, Proposition 8.5

(ii.b)]. This shows that f*f,K is naturally isomorphic to the (abelian) dual of &(G") which by definition
is Etzef}zp .
It is left to see that the Hopf algebra structure of f*f;K = g,¢*K is identified with the Hopf algebra

structure of thenIzp . The proof of this fact is probably standard but we include it for completeness. Let us

start with the algebra structure. Let us write G = G2, and consider the Cech nerve G® and G**! of the
maps * — [x/G] and G — [G/G] with respect to the left multiplication map, see Definition 3.1l Let
fo : G*T1 — G* be the natural map of simplicial spaces corresponding to the G-equivariant map G — *.
The boundary map d2 : [n — 1] — [n] defines a functor dJ : A? — A°P. Let Modm(G®) be the category
of quasi-coherent sheaves of the simplicial analytic space G®. The pullback of G* along d? is the simplicial
space G*T! and the associated map d0 : G*T! — G* is equal to f,. This shows that the co-unit forfo —1
is computed in a co-cartesian section (M )j;1ea € Modm(G®) as the co-unit

d ,d* My — M,.

This map is adjoint to the orbit or co-multiplication map M, — dg,*dg’*M . This proves that the algebra
structure of f*f,(K) is the dual of the coalgebra structure of ¢(G), which by definition is the algebra
structure of Etzerlrép . We now prove that the natural isomorphism f*f,K = Etzerlrép = qyq* K is as coalgebras,

namely, it arises from the diagonal map G%' — G%' x G%" (equivalently, from the comonad g,¢*), and this
map is dual to the multiplication map 0(G%'") ® O(G%') — 0(G%'), proving what we wanted. O

We now show the analogue of Proposition [£.4.8] for the weight space W.
Proposition 4.4.10. Let A be an animated Km-algebra. Then there are natural equivalences
Mod?cc. (AnSpec A x W) = Modjg ([AnSpec A/O;’la])
and
Modjcg (AnSpec A x Of’la) = Modjcg ([AnSpec A/W])

natural with respect to base change B®ﬁ —. In particular, the same statement hold for analytic spaces glued
from animated Km-algebras.

Proof. We just mention how to modify the main points of the proof of Proposition [£.4.8 Since W is a
smooth group over K, the only difference with the case of G is to find a replacement for G¥* C G%g . Let

D = DO}, K) be the distribution algebra over K. We claim that the pullback map j* : Modig(D) —
Modi¢_ (W) is an open localization as in [CS22, Proposition 6.5]. Indeed, by Theorems E17 and E3.3] j*
has a fully faithful left adjoint

i MOdq,CC. (W) — MOd]C- (D)
such that
(4.7) jii*M = RHomp (K, C'*(0F) ®ggq M) = C"(Of ,K) @ w™' @F u M.

where w is a suitable dualizing sheaf. This implies that j satisfies the projection formula and that j*
is indeed an open localization. Then, replacing K[T*'] with D and (&8) with (&7) the same proof of
Proposition £.4.8] holds in this situation. O
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Remark 4.4.11. The first equivalence of Proposition 410l for A = K is Theorem EI7 for G = Of. It
should be possible to give a proof of Theorem 1.7 using the more categorical approach of the Proposition

4.4.10

Remark 4.4.12. The flatness assumption in Proposition [1.4.6] can be dropped by using the same arguments
as in Proposition [£.4.8 Indeed, one considers the Cartesian square

/A
q J{f
f
x« —— [* /7],
then one computes that the Hopf algebra f* f, K is naturally isomorphic to K [T*1], and that the conditions

of the (co)monadicity theorem are satisfied.

We can finally move to the proof of the main result of this section.

Proof of Theorem [{.].4] We start with the proof of the first equivalence. By Propositions [4.4.6] and [4.4.10]
we have natural equivalences

Modf (W x Gif /Gf]) = Modis, (W x G x Z)

(
= Mod;lcc.([W X Z]7))
= Mod, (12/0)" x 7))
— Mod, ([Z/L*")).
Observe that, in the third equivalence, we used that
Modig (W x Z/Z]) = le Modyg(W x Z x Z")
[nJeA
= lim Modkg([Z x Z"/O}"))
[nJeA

= lim lim Modkg(Z x Z" x (O} *)™)
[n]eA [m]eA

= lim Modxg(Z x Z" x (O "))
[n]eA

= Modig([Z/O! x 7).

Analogously, Propositions [£.4.8] and [4.4.10] show that

Moquc.([W x Gpt/Ga) = Modqlcc. (W x G x ZtemP)
= Moquc.([W x ZtemP | 7temp))
= Mod{ ([Z'“™ /O x z'*"P))

= Modf ([ztm? /L tem)).

This finishes the proof of the first equivalences. The second equivalences follow from the exact same
arguments and Theorem [3.3] the fact that the functor defining the equivalence if given by 222“ follows
from construction and the adjunction of j; and j* in Theorem [Z.1.71 O

5. SOLID SMOOTH REPRESENTATIONS

Let G be a p-adic Lie group over a finite extension L of Q, and let £ = (K, K') be a complete non-
archimedean field extension of L. In this section we construct the co-category of smooth representations of
G on Km-vector spaces and study its main properties.
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5.1. Solid smooth representations. Let G be a p-adic Lie group, and let Mod(D,sg: (G,K)) be the derived
(0o-)category of D™ (G, K)-modules on Kg-vector spaces. In this paragraph we will define the category of
smooth representations of G on Km-vector spaces as a suitable full subcategory of Modyg(D*" (G, K)).

Definition 5.1.1.
(1) Let V € Modg. (D*™(G, K)), the smooth vectors of V' are defined by

Ve = lim VP = lim Hompen g, ) (Km[G/H], V)
HCG HCG
where H runs over all the open compact subgroups of G. We say that V' is a smooth representation
of G is the natural map V" — V is an isomorphism.
(2) We let (=)™ : Modyg(D*™(G,K)) — Modig(D*™(G, K)) be the functor of derived smooth
vectors
Vi = lig VI = lim RHomp.n q k) (Km[G/H], V).
HCG HCG
We say that an object in Modjg (D™ (G, K)) is smooth if the natural arrow V™ — V is an
equivalence. We let Repi'g (G) C Modycg (D*™ (G, K)) be the full subcategory consisting of smooth
objects.

Remark 5.1.2. In (1) of the previous definition we defined smooth vectors for a module over the smooth
distribution algebra. One can of course give a similar definition for a solid G representation, namely, if
V € Mod" (Km[G]) one defines

Vo = lim V7 = lim Homyey o (KmlG/H], V).
HCG HcCG

If V is in addition a D*™ (G, K') then both definitions are the same. However, at derived level it turns out that
the smooth distribution algebra is better suited to define derived smooth representations, e.g., the derived
smooth representations will embed fully faithfully into Modxg (D*™(G, K)), but not into Mod(Km[G]), see
g6l for a more concrete explanation of this fact.

We start by proving some basic facts on smooth representations.
Lemma 5.1.3. Let V € Modyg (P*™(G, K)), then
VRSm = hg RHom’Dsm(G/7K) (IC. [G//H], V)
HCG!

Rsm

for any open subgroup G' C G. Moreover, we have (V™) = VEs™ - In particular, the derived category

Repi'g (G) C Modcg (D™ (G, K)) is stable under all colimits.

Proof. Observe that, for V€ Mod(D*™ (G, K)), G' C G an open subgroup, Gy C G’ open compact and
H C Gy an open compact, since Km[G'/H] = D*"(G', K) ®2L)Sm(Go x) Ku[Go/H], by a base change we have

hﬂ RHomDsm(G/’K)(K.[G//H], V) = hA’l RHomDsm(G()’K)(/C.[GO/H], V)
HCG HCGy

This shows the first claim. For the second one, let Gy C G be a compact open subgroup. Then we have

(VRsm)Rsm — hﬂ RHomDsm(GO) (’C. [GO/H], hA’l RHom'Dsm(GmK) (’C. [G(]/H], V))

HCGyp H'CGo
HCGo H'CGy
= lim RHompem ) (Km[Go/H] @pem (g, 1) KmlGo/H], V)
HCGy
= ]ﬂ RHom’Dmn(GO)(IC. [GO/H], V)
HCGy

Rsm
=V ,
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where the first and last equalities follow from definition, the second one from the fact that Km[Go/H] is
a compact D*™(Gy, K )-module and the third one follows since Km[Go/H] is idempotent over D*™ (G, K)

(cf. Corollary 2.:2.0]).

Finally, for the last statement, let {V;};c; be a colimit diagram of smooth representations, to check that
hﬂi V; is smooth we can restrict to G compact, in this case we have that

(hﬂ%)}%sm = hi)n RHomesm(G,K)(K.[G/H],lLT)LV})

HCG
= llgl hg RHomDsm(GK) (IC. [G/H], ‘/2)
i HCG
— h&l ‘/;Rsm — hg Vi,
where in the second equality we used again the compacity of the D% (G, K)-module Ku[G(/H] O

The following two lemmas describe the smooth vectors in a similar way as we have previously defined
continuous and loclaly analytic vectors (cf. [RJRC21]).

Lemma 5.1.4. The functor V. — C*™(G,V) of smooth functions induces an exact functor of derived
categories

C*"(G, —) : Mod(Ka[G]) — Mod(Km[G?])
and

C*™(@G, —) : Modkg (D*™(G, K)) = Modig (D*™(G%, K))
where (91792,93) acts on a function f: G —V by ((91792,92) : f)(h) = 93f(91_1h92)-

Proof. Let V € Mod" (Km). If G is compact we have that C*" (G, V) = h_n)chGO Homg (Km|Go/H], V).
One deduces that the functor V' — C*™(Gy, V) is exact and that it is a D*™(G, K )-module for the left and
right regular actions. This implies the lemma for G = G compact. For general G and V' € Mon(IC.), by
definition we have that C*™(G, V) = [[ cq/q, €™ (9Go, V) = Hompem g, k) (D™ (G, K), C*(Go, V') for
both the left or right regular action of Gy on C*"(Gy, V). Therefore the functor V +— C*™(G, V) is exact
and the left and right regular actions of G are upgraded to left and right regular actions of D*"*(G, K),
proving the lemma. O

Lemma 5.1.5. Let V € Modig (P*™(G, K)). Then, for any open subgroup G' C G we have
V™ — RHompen (@ 10y (K, C¥™ (G, V )u1,3)-

Proof. We start by proving the result for a compact subgroup. Let now Gy C G be a compact open and
let V€ Modig (D*™(Go, K)). We recall that we have

(5.1) C*(Go,V) = lim C(Go/H,V) = lim RHom (Km[Go/H], V)

HCGo HCGo
where H runs over all the normal open compact subgroups. Notice that the x1 3 on the LHS translates to the
contragradient action of the RHS (heuristically we have g- f(z) = gf(g~'x) for f € RHom, (Km[Go/H],V)
and = € Ku[Go/H]). Taking Go-invariants in Equation (5.I)) (cf. Proposition (4)) and since K is a
direct summand of D*™(Gy, K), we obtain

RHOm'DSm(G()’K)(K, C*"(Go, V)1,3) :RHomDm(GmK)(K, higl RHom (Ka[Go/H],V))
HCGy
= lim RHompsm i, iy (K, RHomy (Km[Go/H], V)
HCGy
= hﬂ RHO—mDsm(GO,K)(Kl[GO/H]vV)
HCGy
— VRsm.

Let now G’ C G be an open subgroup and Gy C G be an open compact subgroup. Without loss of
generality we can assume G’ = G. First observe that for V € Mod,%. (D*™(G, K)) we have a natural
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isomorphism
Hompem (o 1) (D™ (G, K), C*™(Go, V)sy 5) = Hompem (o 1) ( @) D™ (Go, K) - g,C*™(Go, V)
9€Go\G
= I Hompemg, x) (D™ (Go, K) - g,C*™(Go, V)
g€Go\G
= H Csm(GO.g7V):Csm(G7V)*1,3
9€Go\G

where the G-action on the first term is induced by the right action on D*™(G, K). The inverse C*™(G, V)4 5 —
Hompsm (g, ) (D™ (G, K), C*"(Go, V )xy 5) 18 given by sending a smooth function f : G — V to the map
f:G — C*™(Gy,V) given by f(g) = (g*1.3 f)|c,- We deduce a natural equivalence

Csm(G’ V)*l,s :> RHO—mDsm(GO,K)(Dsm(Gv K)’ Osm(GO’ V)*1,3)
for all V' € Modig(D*™(G, K)), so that

RHompsm g, 10y (K, C*" (G, V) 5) = RHompsm 1y (K, RHOmpsm gy 1) (D" (G, K), C*™(Go, V )1 )
= RHomDsm(GO,K) (K, Csm(Gm V)*1,3)

proving the statement. O

Lemma 5.1.6. Let V € Modyg(D*™(G, K)), then H'(V)*™ = H{(VE™) for alli € Z, i.e., taking smooth
vectors is exact in the abelian category of solid D*™(G, K )-modules.

Proof. Taking smooth vectors is independent of the open subgroup of G, so we can assume that G is
compact. In this case we can write V" = ling . RHomq(Km[G/H],V) where H runs over all the

normal open compact subgroups of G, but Km[G/H] is a projective D*™(G, K )-algebra, the lemma follows
since taking filtered colimits is exact. O

Proposition 5.1.7. An object V € Modig(D*™(G, K)) is smooth if and only if H (V) is smooth for
all i € Z. Therefore, the natural t-structure of Modxg(D*™(G, K)) induces a t-structure on Repi'g(G).
Moreover, Repr":’O(G) is a Grothendieck abelian category and Repi'g (G) is the derived category of its heart.

Proof. An object V' € Modyg(D*™(G, K)) is smooth if and only if the natural map V™ — V is an
equivalence if and only if HY (V)™ = HY(VEs™) = H{V) for all i € Z. the fact that the category
Mod*™? (G, Km) is an abelian Grothendieck is clear, cf. [Man22b, Lemma 3.4.10]. Note that a system of
generators of the category is given by the objects Km[G/H]|®x g Km[S] where H runs over the open compact

sm,Q

subgroups of G and S over the (k-small) profinite sets. Let € be the derived category of Repyg (Q).
By [Lurl7, Proposition 1.3.3.7] we have a natural morphism ¢ — Repr":(G). To prove that this is an

equivalence it suffices to show that for V,W € Mod,(g. (D*™(G, K)) smooth representations we have that
RHOIHC(‘/, W) = RHOHID577L(G7K)(‘/, W)

Let I°® be an injective resolution of W as D*™ (G, K)-modules, then I*f™ = [*5™ is an injective resolution

of Win €% = Rep,scr:’@(G). We have that
RHompsm (k) (V, W) = Hompem i) (V, I°)
= Hompsm (g i) (V, [*°™)
= Homgo (V, I*5™)
= RHome(V, W),
finishing the proof of the result. O

Proposition 5.1.8. The inclusion Repxg(G) — Modig(D*™(G, K)) has a right adjoint given by the
smooth vectors functor V — V™,
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Proof. Assume first that G is compact. Let V' be a smooth representation of G and W € Modig (D*"(G, K)),
then

RHomp.m g 1) (V; W) = lim RHompam g 1) (VW)

HcG
HcG

= lim RHomp.m g, i) (V™ , RHompen g ) (Km[G/H], W)
HcG

= l&l RHOmDs'm(G’K)(VRH, WRH)
HcG

= I&Il RHom'Dsm(G’K)(VRH, (WRsm)RH)
HcG

= RHOIn'Dsm(G’K) (‘/, WRsm),

where in the first equality we used the fact that V' is (derived) smooth, the second follows from the fact
that VI is a KC[G/H]-module and that Km[G/H] is idempotent over D*™(G, K) (cf. Corollary EL1.6),
the third equality follows by adjunction, the fourth by definition, the fifth one is obvious, and the last one
follows by applying all the first four equalities in a reverse order with W replaced by Wsm,

Let G be a general p-adic Lie group and let V' € Repjg(G) and W € Modyg(D*™(G, K)). It suffices
to show the adjunction at the level of abelian categories (cf. [Sta22, Tag OFNC]), so we can assume
both V and W to be in degree 0. Moreover, since by Proposition 5.I.7 the abelian category of smooth
representations is generated by Km[G/H] ®iq Km[S] for H C G open compact and S profinite, we can
assume V = Km|G/H] ®xq Ku[S]. Moreover, since we are computing the internal Hom we can even
assume that V = Km[G/H]. But then we have that RHompsm ¢ ) (Km[G/H], W) = WHEH = WH are the
H-invariant vectors which coincide with the H-invariant vectors of W™ i.e.

proving what we wanted. O

5.2. Smooth representations as quasi-coherent D*" (G, K)-modules. In this section we will give two
alternative descriptions of the categories of solid smooth representations which are the analogue of those
appearing in Corollary

Definition 5.2.1. Let G be a compact p-adic Lie group, we define the category of solid quasi-coherent
modules over D*"(G, K) as
Mod?cc.(Dsm(G, K)) = &iﬂ Modyg(P*"(G/H, K)),
HcG
where H runs over all the normal open subgroups and the transision maps are base changes. We let

7* : Modkg(D*™(G, K)) — Mod{ (D*™(G, K)) be the pullback functor j*W = (D*"(G/H) ®éSM(G) W)m.

|
Proposition 5.2.2. The pullback functor j* : Modi(D*™(G, K)) — Mod;lcc. (D*™(G, K)) has a right ad-
joint 5.(Vi)g = Rlim Vg and a left adjoint jVig = (.V)E™. PFurthermore, j*5.V = j*5V =V for
V € Mod¥ (D*™(G, K)) and jij*W = W™ for W € Modig(D*™(G, K)). The functor is a fully faithful

"
embedding with essential image Repi'g (G).

Proof. Let V.= (Vy)n € Mod?cc. (D*™(G,K)) and W € Modxg(D*™(G, K)). One has
RHompsm g k) (W, 5 V) = Rlim RHompsm i) (W, Vi)
H
= Rlim RHompen g, 10 (K [G/H] @fom (i 10) Ws Vi)
H
where H runs over open compact subgroups of GG, proving that j,V is the right adjoint of j*. The other

statements of the proposition follow easily by unraveling the definitions, ®-Hom adjunction and using the
fact that K[G/H] is a direct summand of D*"*(G, K), so in particular compact and dualizable. O
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5.3. Smooth dualizing functors. The following result answers a question raised by Schneider and Teit-
elbaum in [STO05, p. 26| on the extension of the contragradient functor for smooth representation to the
category of locally analytic representations.

Proposition 5.3.1. Let V € Repiy (G). Then
(VV)Bsm — (yV)Ria,
In other words, there is a commutative diagram
Repig (G) — Repiy (G)
l((*)V)R”” l((—)v)ma
Repily (G) —— Replt, (C).

Proof. This is a consequence of Corollary [£.2.9] and the analogous calculation for smooth representations,
which follow from [ST05, Corollary 3.7]. Indeed these statements assert that both functors are given by
the same duality functor in the category Modyg (D'(@G, K)). But we give a direct proof. We can and do
assume that G is compact, or even a uniform pro-p-group. We have

(V¥) = lig RHompe ¢ ) (D"(G, K ), RHom  (V, K))
h

= lim RHom . (D"(G, K) @pia(g, i) D™ (G, K) @pem(c,i0) Vs K)

liny
h

= lim RHom (K [G/G")(L)] @pem G, i0) V; K)
h

- liTn)l RHompm ¢ ) (K[G/GH (L), V)

— (V\/)Rsm’
where the first, second and fourth equalities follow from definition and adjunction, and the third one follows
from the equality D"(G, K) Qpia(q, i) DG, K) = K[G/G")(L)] of Lemma Z27l The fifth one follows
since the groups G(h+)(L) form a cofinal system of open neighbourhoods of the identity in G. O

5.4. Smooth representations as comodules over C*(G, K). We now explain the analogue equivalence
of Theorem [4.3.3] for smooth representations.

Definition 5.4.1. Let G be a p-adic Lie group and Gy C G an open compact subgroup. We let
Mod?cc.(Gsm) = H Modig (C*"(9Go, K)).
g€G/Go
We define the quasi-coherent modules of [x/G*™] to be
Moquc-([*/Gsm]) =R l&n Mod;lcc.(G”’sm).
neA

Proposition 5.4.2. There is a natural equivalence of symmetric monoidal stable co-categories
Repig(G) = Modie_ ([+/G™™]).
In particular, if G is compact, we have natural equivalences of stable co-categories

Mod{s, (D*™(G, K)) = RepiZa(G) = Modf<, ([+/G*™).

Proof. This follows by the same proof of Theorem [£.3.3] the only thing to verify is that the abelian category
of smooth representations is naturally equivalent to the abelian category of comodules V' — C*™(G,V),
which is obvious. O
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5.5. Locally algebraic representations of reductive groups. In this last section we introduce a cate-
gory of solid locally algebraic representations for the L-points of a reductive group G/L. Let C*8(G, K) be
the ring of algebraic functions of G, i.e., the global sections of the affine group scheme Gg. For Go C G(L)
a compact open subgroup we define the space of locally algebraic functions of Gy (relative to G) to be
CHe(Gy, K) = C*™(Go, K) @ C¥8(G, K).
We let D'I8(Gy, K) = Homy (C'8(Gy, K), K) be the locally algebraic distribution algebra of G and for
any Gp C G C G(L) an open subgroup we denote
DME(G, K) = Ku[G] ©xqlco) D™*(Go, K)
the locally algebraic distribution algebra functions of G.

Definition 5.5.1. Let V € Modig (D'¥8(G, K)).

(1) We let C28(G, V) := [eec/c, (C™8(gGyo, K) ®,]€. V') be the space of locally algebraic functions of
G with values in V. The space C'38(G, V) has three commuting actions of D'¥&(G, K) given by
the left x; and right %o regular actions, and the action x3 on V.

(2) Define the functor of locally algebraic vectors (—)%1418 : Modycg (D'*8(G, K)) — Modxg (D8(G, K))
to be

ViR = RHompiag g 1) (K, C™8(G, V)., 5)

endowed with the xo-action of D'¥8(G, K).

(3) We say that an object V' € Modg (D™*8(G, K)) is locally algebraic if the natural map Vs — v/

is an equivalence. We let Rep}gl-g(G) C Modg (D"8(G, K)) be the full subcategory of locally
algebraic functions.

Lemma 5.5.2. Let G be a compact open subgroup of G(L). We have natural isomorphisms of D'8(G?, K)-
modules (for the actions x; and 2)

(G, K) = Pr @ V)., @ (ra VY,
™A
and
DG K) = [[(r @ V), @ (r @ V),
A
where ™ runs over all the smooth irreducible representations of G, and V> over all the irreducible represen-
tations of G.

Proof. This follows from Lemma and [GW09, Theorem 4.2.7] describing the algebra of functions of G
in terms of irreducible representations. O

Proposition 5.5.3. The following assertions hold.
(1) Let V € Modig(D8(G, K)), the natural map (VE1le)Rlale _ yRlale i qn equivalence.
(2) The functor (—)®128 commute with colimits.
(3) Let V,W € Modyg(D"8(G, K)), then (Va8 ®,LC. W)Rlale — 7 Rlale ®,LC. Whale - In particular,
Rep}gl.g(G) has a natural symmetric monoidal structure.
(4) The functor (—)?1218 is the right adjoint of the inclusion Rep}éﬂ.g(G) C Modcg (D"8(G, K)).

(5) The functor (—)71818 s exact in the abelian category Modg. (D"8(G, K)). In particular, Rep}gl.g(G)
has a natural t-structure.
(6) The oco-category Rep}él-g(G, K) is the derived category of its heart.

Proof. This follows the same arguments of Propositions [3.2.3] B.2.5] and 3.2.6] in the locally analytic case,
or the Propositions 5. 1.7 and 51,8 in the smooth case. We give a sketch for completeness. Let Gy C G be
an open compact subgroup, by adjunction we have that

W — RHompais o) (K, C*8(G, W)) = RHompuais g, 10y (K, C™€(Go, W),

then for (1)-(3) and (5) we can assume that G is compact. By Lemma [5.5.2] any finite dimensional rep-
resentation of G is a direct summand of D'8(@G, K), in particular they are projective. This implies that
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(—)F12le is an exact functor in the abelian category and that it commutes with colimits. Moreover, we have
that
WHRIE — RHompras g, 1) (K, (C"8(G, K) @k g W)y 5)
= lim RHompuais g, i) (K, (7 @ VR (r@ V)Y @W)i,)
™A
= lim RHompais () (7 ® VAWV W) @ (re V)Y,

T,

o

Then, to prove that the functor (—)2! is idempotent it suffices to prove it for the representations of the
form W = (m ® V*)¥, which follows from the previous formula and the irreducibility and projectiveness of
7 ® V* as D18(G, K)-modules. So far we have proven parts (1), (2) and (5). For part (3) we can assume
that W = C'¥8(@G, K) in which case we can untwist the diagonal action of C™®8(G, K)® C'*8(G, K)®V to
a representation where D'*8(G, K) acts trivially on the first factor. Taking invariants by D'8(G, K) one
gets that
(C«lalg(G’ K) ® W)Rlalg — Clalg(G’ K) ® WRlalg‘

Parts (4) and (6) follow the same lines of their analogues for smooth representations, see Propositions [5.1.7]

and 5.1.8] O

6. ADJUNCTIONS AND COHOMOLOGY

In this final section, we show how the cohomology comparison theorems of [RJRC21] §5.2] are explained
in terms of adjunctions.

6.1. Geometric solid representations. Following the interpretation of the categories of locally analytic
and smooth representations as quasi-coherent sheaves of “classifying stacks of G!* and G*™”, one can
introduce a different category of “continuous geometric” representations where now G is the analytic space
defined by the algebra of its continuous functions.

Definition 6.1.1. Let Gy C G be an open compact subgroup.
(1) Let V € Mod(Km), we define the space of “geometric continuous” functions of G on V' to be
(G V)= [[ (Cl9Go. K) ®ig V).
9€G/Go
(2) We define the category of quasi-coherent sheaves of the underlying profinite group GP™f to be
Modqc(Gpmf) = ngG/GO Modi g (C(gGo, K)).
(3) We define the category of “continuous geometric” representations of G to be the simplicial limit

RepgKG:(G) = Modqc([*/Gpmf]) = 1&11 Moqu(G;m“of,n).
neA

Lemma 6.1.2. Let V € Mod" (Km) and S a profinite set. Then the natural map C (S, K)@xgV — C(S,V)
18 an injection.

Proof. It is enough to take K = Q. Since any solid Q,-vector space is a colimit of quotients of com-
pact projective @, m-vector spaces, we can assume that V fits in a short exact sequence 0 — Q, m[S] —
Qpm[S’] = V — 0. Taking lattices 0 — Z,[S] — Z,[S"] = Q — 0 (after rescaling if necessary), it suffices
to show that the map

C(5.2,) 92, Q —+ C(5.Q)
is injective. But both objects are p-adically complete, so it suffices to show that their reduction modulo p”
are injective, i.e. that we have monomorphisms

(s, Q/p") = C(S,Q/p").
This is Lemma 3.4.8 (iii) of [Man22b]. O
Lemma 6.1.3. Let A be the category of comodules V. — C9°(G,V) with V € Mod"”(Km). Then A is

a Grothendieck abelian full subcategory of Mod%-(lC. [G]) with derived oo-category naturally equivalent to
Repig (G).
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Proof. The fact that A is an abelian category follows from the fact that V +— C9¢°(V,K) is an exact
functor. We have a natural functor A — Modg. (Km[G]) sending the comodule V' to the representation

defined by the orbit map V' — C9°°(G, V) — C(G,V). It is clear that for V, W € A one has Hom4(V, W) C
Homycg(q)(V, W). Conversely, let f: V' — W be a morphism of Km[G]-modules. We have a diagram whose
lower square is commutative

v— 1w
| |
C90(G, V) —— C9(G, V)

| !

CG, V) —— C(G,W)
and the such that lower vertical arrows are injective by Lemma [.1.2] then the upper square must be
commutative proving that Hom 4(V, W) = Homyg(c(V, W).
To prove that A is a Grothendieck abelian category, it is left to show that .4 has enough compact
generators. Using [Man22bl Proposition A.1.2|, one deduces that Repg,ce.o(G) is the derived category of A.
Let V € A, the orbit map gives a G-equivariant injection

V s 09°(G, V)

for the xg-action. Then, writing V as a colimit of quotients @ = coker(Km[S] — Km[S’]) of compact
projective generators, one sees that a family of generators are the subobjects of C9°°(G,Q) for @ as
before. O

We have a natural morphism of coalgebras C'*(G,K) — C(G, K) which heuristically should induce
a group homomorphism GP™/ — G! and as consequence a morphism of their classifying stacks f :
[x/GPrf] — [%/G'%]. We can define a pullback functor f* : Mod?([x/G!]) — Mod%([x/GP"°f/]) which
corresponds to a forgetful functor F' : Repfg.(G) — Repglce:(G) sending the co-module V' — C'*(G,V) to

the co-module V — C!(G, V) — C9°(G, V). The functor f* preserves colimits, so it admits a right adjoint
that we can call the pushforward f, : Mod?¢([x/GP"°f]) — Mod%([*/G']). At the level of representations

we can think of f, as a locally analytic vectors functor () : RepgKe:(G) — Repgg-(G).

Definition 6.1.4. We define the “continuous geometric” cohomology RI'9*°(G, —) : RepgKe:(G) — Mod(Km)
to be the right adjoint of the trivial representation functor Mod(Km) — Rep%e:(G).

We have the following proposition.

Proposition 6.1.5. The forgetful functor f* : Mod%([x/G'"]) — Mod%([x/GP"°f]) is fully faithful. The
right adjoint of f* on a geometric representation V can be computed as

f.V = RIY9°(G,C'(G, V)4, ).

Proof. By LemmalL.34]the category Rep%. (@) is the derived category of comodules of the functor C'*(G, —).
Similarly, by Lemma [6.1.3] the category RepgKe:(G) is the derived category of the abelian category of co-

modules of C9°°(G,—). Moreover, we have fully faithful inclusion of abelian categories Repﬁg’.@(G) C

RepgKe:’Q(G) C Mod”(Km[G]). This implies that the right adjoint of the first inclusion is given by the

Gy 3

locally anlaytic vectors functor that can be computed as C!*(G, V) . Taking right derived functors we

see that f.V = RI'9*°(G,C'*(G,V)) for any V € Repig[G].
It is left to show that the unit map 1 — f, f* is an equivalence. Let Gg C G be a compact open subgroup,
we have a commutative diagram of morphisms of stacks

[+ /Gl L [+ Gl

J2 Js

[+ jGrrof] —Ls [+ /Gl
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The pullback functors correspond to forgetful functors, and the vertical pushforward functions are given by
inductions. Indeed, we can check this at the level of abelian categories where the right adjoint of a forgetful
functor is clearly an induction. As a consequence one deduces that

RI¥*°(G, C'*(G, V) = RT9(Go, C'**(Go, V).

Thus, we can assume without loss of generality that G is compact. In this case C'*(G, V) = C(G, K) LV
and C9°(G,V) = C(G,K) @& V.

Notice that for V € Repﬁ‘é. (G) we have a natural equivalence of representations C'%(G,V),,, =
C'*(@G,V),,. Thus, it suffices to show that for a trivial representation V one has RI'9°°(G, C'*(G,V),,) =V,
equivalently, that RI'9°°(G,C'*(G,V),,) = V. Writing V as limit of canonical and stupid truncations we
can assume that V is a solid Km-vector space in degree 0. But by Proposition down below one can
compute this geometric cohomology using geometric cochains, i.e. RI'9°°(G, C'*(G,V),,) is represented by
the bar complex of geometric cochains

[Cla(G, V) N CgeO(G’ Cla(G, V)) N 0960(G2’ Cla(G, V)) .. ],
which is the same as the tensor product of the bar complex
[C'(G,K) = C(G,K) ®f C'(G,K) — -] @1 V-

But C'*(G, K) is a nuclear Km-vector space, so that the geometric bar complex of C'%(G, K) is equal to
the solid bar complex which computes RHomg(q (K, C'"(G, K)) = K proving what we wanted. O

Remark 6.1.6. Under the hypothesis of a formalism of six functor for analytic stacks, the previous proof
simplifies a lot. Let f : [*/G9°°] — [*/G'] be the natural map of stacks, it suffices to prove that the natural
map id — f.f* is an equivalence. The map f is going to be a cohomologically proper map as the fibers are
isomorphic to [Gf)“ /GE%] for Gy any compact open subgroup, so f. = fi and by projection formula we only
need to prove that 11, jqia) = filjs/geeo) 1s an equivalence, this follows from the explicit computation using
the bar complexes and the description of f,.

6.2. Adjunctions. Let G be as always a p-adic Lie group defined over a finite extension L of Q,, Km =
(K, K™) a complete non-achimedean extension of L and Km = (K, K™ )m. To avoid any confusion, when
talking about locally analytic representations, in this section we will note Gy, = G to stress that we see
the group G defined over L and we denote by Gq, the p-adic Lie group G viewed over Q,. For continuous
and smooth representations this disctinction is unnecessary since their definition is independent of the Lie
group structures, and we will simply use the notation G. We have the following diagram of categories.

sm F a F a F
(6.1) Repj” (G) = Repjéy (GL) = Repjéy (Gq,) = Repxy (G),

where Repy,(G) = Modxg(Km[G]) denotes the category of solid representations of G, and where the
natural functors F; are just the forgetful functors. Since all these functors commute with colimits, they all
have right adjoints and the purpose of this first section is to calculate each of them.

Proposition 6.2.1.
(1) The right adjoint of Fy is given by Lie algebra cohomology RT'(gr,—) := RHomy; (4, ) (K, —).

(2) The right adjoint of F» is given by RI'(¢, —) := RHomyp (K, —), where € = ker(gq, ®q, L — 91)-

(3) The right adjoint of Fy is given by the functor of locally analytic vectors (—)fe.

Proof. Let V € Rep®(G1) and W € Rep'®(Gq,). Then
RHompie(gq 1) (Vs W) = RHompin g 1) (D" (GL, K) @ia(g, 1) Vs W)
= RHompua(q, i) (V, RHompie (g, | 1) (DG, K), W)
= RHompa (g, )(V, RHomy p (K, W)),

where the first two equalities are trivial and the last one follows from adjunction via Lemma 2.2.81 This
proves (2).
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Recall from Proposition 225 that D" (G, K) = K ®é“‘(gL K) D!(G, K). Then, using the exact same

argument as in the proof of (2), we have, for V' € Repi'g (G) and W € Repﬁg.(GL),
RHosza(GLvK)(V, W) = RHomesm(GbK)(V, RHosza(ghK) (K, W)),

proving (1).

By point (1) of Proposition B.25, the right adjoint to the fully faithful inclusion Rep%. (Go,) —
Modjcg (D' (Gq,, L)) is given by the functor (—)f@. Since the (fully faithful) inclusion Modxg(P'*(Gg,, K)) —
Modg (Km[G]) has a right adjoint given by RHomy g (D'*(Gg,, K),—), the third assertion follows since

we know that (RHomyg (D (Gg,, K), W)™ = whie, O

Remark 6.2.2. Consider the following sequence of adjunctions

Repig(G) —— Repg(Gr) — Repy(Gq,) — Repig(G).
RI(gr,—) RI'(t,—) (—)ftta

One can define functors of smooth or locally analytic vectors from different categories of representations
as right adjoint of forgetful functors. For example, let F' be the composite forgetful functor Repfc’ﬁ(G) —
RepK-(G), then its right adjoint can be computed as the composite of the right adjoints of the forgetful
functors

Repi'g (G) = Modig (D*™(G, K)) — Modxg (Km[G]) = Repyg (G).

This can be computed by applying simple adjunctions as follows: if V' € Repgy(G) and W € Repyg (G),
then

RHomK. [G] (‘/, W) = RHom'Dsm(G’K) (‘/, RHOH]K. [G] (Dsm(G, K), W))
sm Rsm
= RHompsm g x)(V, (RHomK.[G} (D™(G,K),W))™™)

where the first equality follows using the fact that V is a D*"(G, K)-module and adjunction, the second
one by Proposition [B.1.8] Thus, the right adjoint of F' is

sm sm Rsm
W™ .= (RHomy gy (D*™(G, K), W)
= hA’l RHomDsm(G,K) (IC. [G/H], RHomK- [G] (Dsm(G, K), W))
HcG
= 11&1 RHom,C.[G](lC.[G/H], W)
HcG

6.3. Cohomology and comparison theorems. We now introduce all the cohomology theories we are
interested in, namely, Lie algebra, smooth, locally L and Qp-analytic, and solid group cohomologies. We
will first define them and show that these definitions recover the usual ones at abelian level. Finally, we
will show how they compare to each other by some formal adjunctions.

There is a natural map from the category Mod(Km) to each of the categories appearing in (6.1]) given by
trivial representations.

Definition 6.3.1. We define
e Solid group cohomology RI'(G,—) : Repyg(G) — Mod(Knm),
e (Qp-)Locally analytic group cohomology RI'*(Gq,,—) : Repf‘é. (Gq,) — Mod(Knm),
e (L-)Locally analytic group cohomology RI'*(Gp,—) : Repﬁg.(GL) — Mod(Km),
e Smooth group cohomology RI*™(G, —) : Repig (G) — Mod(Km)
e Lie algebra cohomology RI'(g,—) : Modxg(U(g)) — Mod(Kn),

as the right adjoint functor of the map from Mod(Km) to the corresponding category.

Remark 6.3.2. As the categories Repiyg (G), Repfg. (Gr) and Repfg.(GQp) embed fully faithfully, respec-
tively, in the categories Modyg (D*™(G, K)), Modicg (D'%(GL, K)) and Modicg(D'*(Gq,, K)), we also have
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that

RI'(Gq,,V) = RHompie(gq, k) (K, V),

RT'(G, V) = RHompua (g, 10)(K, V),
Rrsm(G, V) — RHom'Dsm(G’K) (K, V)

Moreover, since the categories Repy’y (G) and Rep%.(G 1) are the derived categories of their heart, the
smooth and locally analytic cohomology functors can be computed as the right derived functors of the
G-invariants of their respective representation categories.

By [Man22bl, Corollary 3.4.17], smooth cohomology can be computed using smooth cochains. We prove
the same for geometric, solid and locally analytic representations.

Proposition 6.3.3. Let Rep;C.(G) denote the category of smooth, L-locally analytic, geometric or solid
representations of G, and let RT'? (G, —) denote their corresponding cohomology functor. Let V € Rep;éf(G)

be a representation in degree 0 and let [C*(G*,V),d"] be the bar complex in Mod(Km) with n-th term
C*(G™, V) and n-th boundary map

d"(F)(G1s- - nt1) = 91F (G2 gne) + D (=1 F (g1, Gim1:GiGir1s -2 Gnr1) + (=1 F (g1, gn)-
=1

Then there is a natural equivalence
RTY(G,V) = [C*(G*,V),d"].

Proof. We follow the same proof of [Man22bl Lemma 3.4.15]. Let ? — Ind : Mod(Km) — Rep,?c.(G) be the
right adjoint of the forgetful functor, and let r denote the composition of the forgetful functor of Rep}’c. (G)
with 7 — Ind, for n > 0 we let r™(—) denote the application of n-times r. By adjunction, we have natural
transformations r"(—) — r"*1(—) for all n > 0. For M € Rep;c’(:(G), we claim that the complex

(6:2) 0— M — (M) = r2(M) — -

is exact and that (M) = C*(G™, M). First, we claim that for any W € Mod(Km) one has ? — Ind(W) =
C*(G,W). It suffices to take W € Mod”(Km), in which case we need to compute the right adjoint of
the forgetful functor of abelian categories Rep;é:?(G) — Mod"(Km). For ? solid one has Rep;c-(G) =

Mod” (Km[G]) and the induction is just C(G, V). For ? being smooth, locally analytic or geometric, the
category Rep?c’:?(G) is the category of comodules of the exact functor C*(G, —), and one easily checks that

the right adjoint of the forgetful functor is simply V + C*(G, V) proving the claim.

Now, unraveling the definitions, one has that the sequence (6.2]) is given by the usual bar complex
of the respective representation category, which is an exact complex as they are constructed functorially
from the augmented cosimplicial object (G™1),caop %5 . To conclude the proof we need to show that
RT?(G,? — Ind(W)) = W for any W € Mod(Km), but the functor RT'*(G,? — Ind(—)) is the right adjoint
of the composite of the trivial representation and the forgetful functor which is the identity on Mod(Km),
so it is equivalent to the identity. This finishes the proof. O

All our comparison results are subsumed in the following statement, which generalizes in particular our
main results [RJRC21, Theorem 5.3 and Theorem 5.5| from the case of a compact p-adic Lie group defined
over Q,, to that of a (non-necessarily compact) p-adic Lie group defined over a finite extension of Q,, .
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Theorem 6.3.4. We have the following commutative diagram:

RF&f)
()Rm Ralfy(Ga) Rl er,—)
RT'(Gq,,—)  RI(Gp,—
Repzc.(G) Rep a(G)
RT™(G,—
Mod(Km)

Moreover, since the embedding Repf‘é. (Gq,) in Repyg(G) is fully faithful then, for any V € Repxg(G), we
have RT(G,V) = RT(G,VE). In particular, if G is defined over Qp, we have

RI(G,V) = RI(G, VRla) _ RFIQ(G, VRla) = RI*™(G, RF(Q,VRIQ)).
Proof. Tt follows by the adjunctions of Proposition [6.2.11 0O

6.4. Homology and duality. We conclude with some applications to duality between cohomology and
homology. The following result is the infinitesimal analoge of [RJRC21, Theorem 5.19].

Proposition 6.4.1. Let V € Modxg(U(g)). Then we have
RI(g, V) = K(Q)[~d] 9k ) V-
In particular, if V€ Repyg(G), then
RI(G,V) = RT*"™G, K (x)[—d] @y V).

Proof. This follows exactly the same argument as in [RJRC21, Theorem 5.19] replacing the Lazard-Serre
resolution by Chevalley-Eilenberg resolution to calculate cohomology. The last assertion follows from the
first one and Theorem O

The problem for showing a global result when G is not compact is that the trivial object K might not
be a perfect Km[G]-module. Nevertheless, this is indeed the case when either G = G(Q,) arises as the
Q,-points of a connected reductive group over Q, by [Kohlll Theorem 6.6] or G is solvable by [Kohlll
Theorem 6.5]. From these facts, one immediately deduces the following:

Corollary 6.4.2. Let G be either given by the Qp,-point of a connected reductive group G defined over Q)
or solvable and let V' € Repyg(G). Then

RI(G, V) = RHompa (g, ) (K, D'(G, K)) © a1y V'
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