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Abstract 

Arctic wetlands play a critical role in the global carbon cycle. Although they 

account for only small parts of the global terrestrial areas, wetlands, in particular 

peatlands store large amounts of CO2 while they are also severely affected by 

climate change at the same time. Rising temperatures can lead to the degradation 

and drying out of wetlands releasing CO2 to the atmosphere and hence contribute 

to global warming. Furthermore, arctic ecosystems including vegetation, soil 

and hydrodynamics that are known for their complex relation towards CO2 

fluxes, are also experiencing a high impact of global climate change. Therefore, 

it is important to understand the dynamics between CO2 and its response to 

environmental changes in these complex arctic ecosystems. This study 

investigates CO2 flux dynamics in polygonal mires, focusing on how 

environmental parameters like thaw depth, soil temperature, soil moisture, soil 

pH, vegetation and NDVI influence CO2 in the Northwest Territories, Canada. 

To do so, closed chamber measurements, which are a common approach for 

measuring NEE and ER fluxes were conducted at two polygonal mires close to 

the Trail Valley Creek (TVC) research camp in July.  GPP was calculated using 

NEE and ER determined in the field. To investigate the influence of various 

environmental parameters collected during measurements, a statistical analysis 

was applied using linear regression, R2, RMSE, MAE and a GAM model. The 

results showed that the relations are very complex and non-linear, highlighting 

the need for nuanced and careful interpretation. NDVI influenced CO2 fluxes, 

with stronger correlations observed in certain vegetation compositions and 

moisture conditions. Surprisingly, correlations with PAR and air temperature 

were not significant, possibly due to data limitations and constant temperature 

conditions during the measurement period. Environmental parameters like soil 

moisture or pH interact in intricate ways to influence carbon dynamics. This 

study enhances our understanding of CO2 flux dynamics in polygonal mires, 

providing valuable insights into the role of environmental parameters. Further 

research incorporating longer study durations and more comprehensive data 

collection could deepen our understanding of these complex ecosystems and 

their contribution to the global carbon cycle. 
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1 Introduction 

1.1 The Arctic and global climate change 

The Arctic, delimited by the Arctic Circle 66 ° 33'N in the South, describes the 

region spreading across the North Pole and covers only 5% of the Earth’s land 

surface.  Low temperatures (< 10°C) and permafrost soils are characteristic of 

this region (UNIVERSITY OF LAPLAND, 2024). Permafrost describes frozen 

ground with temperatures that stay below zero degrees for at least two 

consecutive years.  This soil is typically covered by an active layer, that thaws 

every summer. Most of the biochemical and biological processes occur in this 

uppermost layer of permafrost soils (AWI, 2024). Due to the inhibition of 

mineralization, permafrost is also responsible for the carbon sink that arctic 

ecosystems provide (KWON et al., 2016).  About 50% of the global soil organic 

carbon (SOC) is retained in these permafrost soils (LI et al., 2021). HUGELIUS et 

al. (2014) estimated that approximately 1307 Pg of SOC are stored in the first 0 

to 3 m of permafrost soils and around 272 Pg below 3 m depth. CO2 exchange 

between biosphere and atmosphere plays an important role in regulating these 

stocks and the carbon balance in general, whereby the process of photosynthesis 

and respiration is from great importance (VIRKKALA et al., 2018). During 

photosynthesis, light energy, CO2 and H2O are used by plants, algae and 

cyanobacteria to release oxygen (O2) and to generate glucose (C6H12O6, STIRBET 

et al., 2020). In contrast, respiration describes the process in reverse when CO2 

is released and O2 is reduced to H2O (HUNT, 2003; MILLAR et al., 2011). While 

the uptake of CO2 during photosynthesis is called gross primary production 

(GPP), ecosystem respiration (ER) describes the release of CO2 to the 

atmosphere due to plant but also microbial respiratory losses. The net ecosystem 

exchange (NEE) represents the balance between these two fluxes (VIRKKALA et 

al., 2018).  

Global warming and climate change can impact these fluxes in various ways. 

Due to arctic surface temperatures, which have doubled more than the average 

worldwide over the last 20 years and increasing permafrost soil temperatures 

(IPCC, 2022), permafrost regions are severely affected by global climate 

change.  The observed warming trends result in rapid thawing and with that 
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increasing mineralization and decomposition of the carbon stored in permafrost 

soils (KWON et al., 2016; VIRKKALA et al., 2018). This can lead to the increased 

release of greenhouse gases, such as carbon dioxide, causing a positive feedback 

loop between global warming and permafrost thawing, contributing to rising 

carbon concentrations in the atmosphere (LINDGREN et al., 2016). Consequently, 

the previously existing tendency of arctic ecosystems to store more CO2 than 

releasing it changes, turning permafrost soils and the Arctic to a carbon source 

(KWON et al., 2016). Former studies investigating flux measurements in arctic 

environments confirmed this assumption that arctic tundra ecosystems provide 

a source to atmospheric carbon (BIASI et al., 2014; NATALI et al., 2019; OECHEL 

et al., 2014). However, other studies found that these ecosystems can also serve 

as sink and source (BRUHWILER et al., 2021; KITTLER et al., 2017).  

Due to the harsh arctic conditions, data collection in these extreme and remote 

environments is more complicated and currently leads to a scarcity of data 

limiting the ability to assess CO2 fluxes.  (OECHEL et al., 2014; SCHUUR & 

ABBOTT, 2011). While commonly used Eddy Covariance (EC) towers measure 

carbon fluxes continuously, these technique averages over fine-scale 

heterogeneity and requires technical knowledge, high costs and maintenance as 

well as logistical challenges such as access to electricity. In contrast, chamber 

measurements, which are further explained in chapter 2.2, are very labour-

intensive and time-consuming but cost-efficient and allow to capture fine-scale 

spatial-variability (VIRKKALA et al., 2018). However, models for estimating 

carbon release usually do not consider important processes like rapid permafrost 

thawing as they only focus on rising air temperature leading to uncertainties in 

the estimation of carbon fluxes  (BRUHWILER et al., 2021; SCHUUR & ABBOTT, 

2011).    
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1.2 CO2 emissions of polygon mires in the Arctic tundra 

Arctic wetlands play an important ecological role in filtering drinking water, 

buffering heavy rainfall and contributing to biodiversity by providing habitats 

and breeding areas for e.g. birds and fish (CAFF, 2021). Almost half of the 

world's wetlands are concentrated in the Arctic, where they account for 

approximately 60% of the Arctic ecosystems and include a mix of peatlands, 

wet tundra, open water and seashore areas. Despite covering only a small 

fraction of the world's terrestrial area, wetlands store with 20% more terrestrial 

carbon than forests (CAFF, 2021).  Canada comprises about a quarter of the 

world's wetlands with about 1,29 km2 (GOVERNMENT OF CANADA, 2016).  At 

the same time, Canadas peatlands store about 147 Gt soil organic carbon 

(TARNOCAI, 2009). 

Wetlands are defined as areas, that experiences regular inundation or saturation 

by water, sustaining emergent plant life adapted to such conditions. 

Additionally, the Ramsar Convention, an international Convention on Wetlands 

providing a framework for the conservation of wetlands, extends this definition 

to open freshwaters as well as marine waters up to a depth of six meters at low 

tide (BARTHELMES et al., 2015; THE RAMSAR CONVENTION, 2024). There are 

many different approaches to the classification of wetlands and their 

subcategories around the world (JOOSTEN & CLARKE, 2002). Polygonal mires 

are a complex form of peatlands, that describe a wetland area with an 

accumulated peat layer at the surface. Peat is an accumulated material consisting 

of a minimum of 30 % dead organic material. A peatland in a state in which peat 

is currently being formed is called a mire. Polygon mires can be found in arctic 

environments with continuous permafrost (JOOSTEN & CLARKE, 2002). These 

wetlands are caused by thermal contraction and expansion in the active layer 

when tension cracks spread through the frozen active layer into the deeper 

permafrost layer during the winter months. During summer, water from snow 

melt runs in these open cracks and freezes before they close leading to an 

expansion of the vertical ice veins to ice wedges due to the annually repeating 

circle. While these ice wedges grow, they force the surrounding soil upward 

resulting in polygonal structures. This effect is intensified when occurring in 
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peat, leading to deep, ice-filled cracks which provide water sources that maintain 

the mire and peat formation (MINAYEVA et al., 2016). In addition to low-centre 

polygons, which represent the early stages of polygon development, high-centre 

polygons signify the matured forms of polygonal mires with domes that rise 

from the polygonal trenches (Figure 1). In Canadian wetland terminology, low-

centre polygons are classified as fens, while high-centre polygons correspond to 

bogs (CANADA COMMITTEE ON ECOLOGICAL (BIOPHYSICAL) LAND 

CLASSIFICATION, 1988). 

  

Figure 1: Cross-section of a high-centre polygonal mire (a) and a low-centre 
polygon mire (b) showing the different component and development stages of 
polygon mires (MINAYEVA et al., 2016).  
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While they are important for preventing permafrost thaw, wetlands are also 

influenced by climate change and global warming resulting in the degradation 

of arctic wetland ecosystems (CAFF, 2021). A peat sensitivity model run by 

TARNOCAI (2009) confirmed that 675.540 km2 will experience an extreme 

impact of climate change affecting approximately 75.05 Gt of organic carbon. 

While these wetlands are expected to become drier due to climate change, the 

number of wildfires is also likely to increase as a result. Consequently, peatlands 

could release large amounts of carbon into the atmosphere. Moreover, the 

degradation of SOC in wetlands, especially peatlands, can also lead to strong 

feedback mechanisms that further support the process of climate change 

(TARNOCAI, 2009). 

 

1.3 Impact of global warming on CO2 and environmental parameters 
in arctic ecosystems 

In the context of climate change, the Arctic is experiencing a warming trend 

effecting environmental conditions in various ways (CALVIN et al., 2023). The 

terrestrial warming trend leads to rising ground temperatures (KOKELJ et al., 

2017; KOVEN et al., 2015) that initiate thawing of permafrost soils and change 

the hydrology of arctic ecosystems like peatlands at the same time (ANDRESEN 

et al., 2020; TARNOCAI, 2009). Hydrology plays a crucial role in permafrost 

landscapes as it controls the complex interactions between e.g. biogeochemical 

cycles. Permafrost significantly impacts hydrology by determining water 

distribution, storage and flow patterns both on the surface and subsurface. It 

inhibits vertical water movement, leading to saturated ground conditions in 

continuous permafrost areas, while in discontinuous permafrost areas it 

constrains subsurface flow through unfrozen layers. However, with the observed 

and predicted thawing of permafrost, considerable uncertainties arise regarding 

future hydrological conditions and their impacts, including the carbon-climate 

feedback of permafrost. Changes in surface hydrology, particularly influenced 

by soil moisture, play a critical role in determining the nature and extent of 

carbon emissions from thawing soils and microbial decomposition, which 

affects CO2 dynamics (ANDRESEN et al., 2020). By using the Community Land 
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Model, Lawrence et al. (2020) found that drying of the landscape due to 

permafrost thaw significantly increases CO2 emissions and soil respiration rates. 

At the same time, when ice-rich peat soils thaw, water-saturated conditions 

occur in permafrost soils, which, together with higher temperatures, intensify 

anaerobic decomposition (TARNOCAI, 2009).  

Changes in temperatures also enhance Arctic greening, which is determined via 

the Normalized Difference Vegetation Index (NDVI, MCPARTLAND et al., 

2019). This Index measures the difference between the surface reflection of 

near-infrared light by vegetation and red light absorbed by vegetation. Due to 

warming temperatures and changes in the hydrology, maximum summer NDVI 

increases in Arctic regions resulting in the expansion of shrub cover (BERNER et 

al., 2020; BRUHWILER et al., 2021). However, while some studies show that the 

drying out of peatlands leads to a reduction in GPP fluxes (CHURCHILL et al., 

2015), other studies indicate that carbon uptake can increase with a positive 

greening trend (ANDRESEN et al., 2020). 

 

1.4 Research objective and motivation 

Given the complexity of parameters that contribute to the changes in the Arctic 

environment und associated uncertainties in the response like the permafrost 

carbon-climate-feedback (ANDRESEN et al., 2020; BRUHWILER et al., 2021), this 

study aims to investigate the influence of soil- and vegetation-related 

environmental parameters on NEE, ER and GPP on a small-scale by using 

chamber measurements at two polygonal mires close to Trail Valley Creek 

(TVC) Research Station in the Northwest Territories (NWT) Canada. Soil 

temperature, soil moisture, soil pH, thaw depth, NDVI as well as air temperature 

and photosynthetically active radiation (PAR) are also assessed at the different 

study sites. We hypothesize that soil temperature and soil moisture have a 

positive impact on CO2 fluxes. Furthermore, thaw depth is expected to have a 

positive effect on ecosystem respiration while negatively influencing carbon 

uptake. The relation between CO2 fluxes and NDVI is expected to depend on 

vegetation composition. However, the study is limited due to the reasonable 
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working and the remoteness of the study areas. Further limitation due to missing 

investigation during spring, autumn and winter periods contribute to the missing 

requirements for a comprehensive study. 

While chamber flux studies are mainly concentrated in Alaska, Fenoscandinavia 

or Russia, Canada has not received much consideration until a few years ago 

(VIRKKALA et al., 2018). Studies regarding carbon emissions of polygonal mires 

are often found in regions of the Siberian Arctic (ECKHARDT et al., 2019, 2019; 

KITTLER et al., 2017; KWON et al., 2016; VIRTANEN et al., 2016). Other studies 

that were conducted in Canada focus on the Hudson Bay Lowland (HARRIS et 

al., 2020; HELBIG et al., 2019; HUMPHREYS et al., 2014). This study concentrates 

on polygonal mires in the Northwest Territories aiming to contribute to a better 

understanding on CO2 dynamics in the Arctic ecosystems of northern Canada. 
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2 Methodology 

2.1 Study Area 

2.1.1 Trail Valley Creek 

The study area is located in the Trail Valley Creek (TVC) research basin 

(68°45’N, 133°30’W) approximately 55 km north of Inuvik, the Northwest 

Territories (Figure 2) and east of the Mackenzie River Delta (MARSH & 

POMEROY, 1996). The studied transects 2 and 5 are located in two polygonal 

mires to the east and north-west of the TVC camp (Figure 2). 

TVC has an area of about 57 km2 and is in the zone of low Arctic climate with 

continuous permafrost including deeply incised river valleys, gently rolling hills 

and elevations that range from 9 to 187 m.a.s.l. (MARSH et al., 2010; POHL et 

al., 2005; POMEROY et al., 1998).  

The mean annual air temperature and precipitation for Inuvik in the period from 

1991 – 2020 was -7.6 °C and around 249.8 mm respectively, with mean 

temperatures in Canada continuing to rise especially in the north of the country 

(A1; GOVERNMENT OF CANADA, 2024a, 2024b). While the inland is 

characterized by warmer and wetter conditions, climate gets colder and drier 

with increasing proximity to the coast resulting in a steep climate gradient for 

the region (KOKELJ et al., 2017). The highest temperatures and precipitation in 

Inuvik are in July and August (A1) with the highest temperature of 33°C 

measured on July 4th, 2023 (Government of Canada, 2024c). The snow cover 

lasts from September to May with decreasing precipitation in winter and the 

lowest temperatures in January (A1; Pomeroy et al., 1998). During 

measurements, air temperature did not fall below 20°C (A2). 
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About 25,000 to 30,000 years ago, the study region east of the Mackenzie River 

delta was covered by Wisconsin glacial ice and, together with later lake drainage 

during the Holocene, left behind polygonal peat plateaus that are characteristic 

of the landscape today (KOKELJ et al., 2017). Hence, different polygonal 

structures including high- and low-centre polygons can be found in the study 

Figure 2: Location of the TVC study site. The study site is located appr. 55 
km north of Inuvik (68°45’N, 133°30’W). Transects 2 and 5 are in close 
distance to TVC camp. 



 10 

area (CANADA COMMITTEE ON ECOLOGICAL (BIOPHYSICAL) LAND 

CLASSIFICATION, 1988). Furthermore, the investigated area is characterized by 

mineral earth hummocks with diameters ranging from 0.4 to 1 meter and crests 

varying from 0.1 to 0.4 cm in height. Overall, peat thickness in the inter-

hummock areas ranges between 0.3 and 0.5 meters, with living vegetation and 

lightly decomposed peat in the upper 0.2 meters, followed by highly 

decomposed peat below this layer. In addition, the fine-grained material varies 

only slightly in particle size distribution with depth, but has large clay-

containing fractions (QUINTON et al., 2000). This landscape in the forest-tundra 

transition zone consists of many different types of tundra vegetation, with forest 

patches still to be found in some locations. Prevailing vegetation types include 

trees, tall shrub tundra, dwarf shrubs, riparian shrubs, tussocks and lichen 

(Figure 3; Grünberg et al., 2020; Marsh et al., 2010).  

Tree patches consist mainly of white and black spruce (Picea glauca and P. 

mariana) with an undergrowth of dwarf-birch (Betula glandulosa) and green 

alder (Alnus crispa; Palmer et al., 2012). These small forest areas are located 

near river channels, but also grow in isolated patches, which can reach a height 

of up to 10 m or between 0.5 m and 2 m respectively (ANTONOVA et al., 2019; 

GRÜNBERG et al., 2020). With regard to the study area, these patches account 

for approximately 2% of the TVC landscape. Dwarf shrubs growing on hilltops 

and slopes, and tussocks represent the most common types of vegetation, 

covering approximately 24% and 37% of the TVC area, respectively. With a 

height ranging from 0.2 to 0.5 m dominant species like the dwarf birch form a 

dense canopy. Other vegetation species also found in dwarf shrub tundra are 

shorter dwarf shrubs such as Labrador tea (Ledum palustre) and mountain 

cranberry (Vaccinium vitis-idaea), forbs (e.g. sweet coltsfoot, Petasites frigidus) 

and lichen. Tussock tundra grows mostly in flat and poorly drained areas. Cotton 

grasses (Eriophorum spp.) and sedges (Carex spp.) dominate forming the 

tussocks often grow with mosses between the tussocks as well as other species 

such as dwarf shrubs, willows (Salix spp.), Labrador tea, mountain cranberry, 

bilberry (Vaccinium uliginosum), crowberry (Empetrum nigrum) and cloudberry 

(Rubus chamaemorus). Tall shrub tundra covers around 11% of the area and 

consists of green alder (Alnus viridis), dwarf birch (Betula glandulosa Michx., 
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B.) as well as Salix species. Close to streams, vegetation species like Willows 

(Salix spp.) are part of the riparian shrub tundra, which accounts for about 14 % 

of the TVC area. Lichen-dominated vegetation covers approximately 10% of the 

TVC landscape with further occurrence of Labrador tea, mountain cranberry, 

crowberry, bearberry, and cloudberry (GRÜNBERG et al., 2020; GRÜNBERG & 

BOIKE, 2019; STREET et al., 2018).  

 

 

2.1.2 Transect 2 

Transect 2, located east of the TVC camp (Figure 2), is a polygonal complex 

measuring 120 to 320 m in size. The polygon has a wet degraded center that 

extends for approximately 30 to 70 m (Figure 4). In addition to flat, mainly 

quadrangular lichen polygons, which cover most of this area, there are also 

trenches with different soil moisture levels found in this polygon (A4).  

 

Figure 3: Vegetation of TVC (GRÜNBERG AND BOIKE, 2019). 



 12 

 

As polygonal centers are mostly flat, the surrounding rims are not clearly 

distinct. Measurement site 2.8 is located outside the polygonal complex on a 

drier upslope position within the upland tundra (Figure 4). Vegetation in this 

collar consists of dwarf shrubs like Labrador tea, crowberry bilberry, mosses as 

well as sedges and lichens (A3), which are considered indicators for drier 

conditions (CHESTER, 2016). Site 2.7 was installed inside a minor depression in 

the flat center of a polygon (Figure 4) showing wetter conditions than the 

surrounding lichen community (A4). Sphagnum squarrosum and Sphagnum 

russowi cover most of the collar followed by a small proportion of dwarf shrubs 

(A3). The flat degraded wet center contains collars 2.4 and 2.5, which show 
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Figure 4: a) Overview of the collar locations of Transect 2. The red hatched 
area symbolizes the wet degraded center of the polygonal mire b) Profile of 
transect 2 and position of the sites in the sections of the polygon complex: 
Outside (O), Polygon (P), Trench (T) and wet degraded center (WDC). 
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characteristics of wet tussock tundra including high tussocks and wet inter-

tussock areas. However, moisture conditions and vegetation indicate drier 

conditions with green mosses covering large parts of these sites followed by few 

dwarf shrubs. The wettest sites are collars 2.2, 2.3 and 2.6 (A4), whereby the 

last two sites are permanently waterlogged and located in trenches surrounding 

the flat lichen centers. Moss layers consisting of Hypnum species as well as 

Carex tufts and Betula nana are the prevailing vegetation at these sites (A3). In 

contrast, site 2.2 shows wet conditions with green mosses forming the main 

vegetation followed by several dwarf shrubs and different Carex tufts (A3; A4).  

 

2.1.3 Transect 5 

Transect 5 was set up to the north-west of the TVC research camp. In contrast 

to transect 2, this polygonal mire does not have a wet degraded center and is 

located in a gully with proximity to the closest lake (Figure 2). The complex is 

approximately 50 to 400 m with the polygon elements clearly visible due to its 

low stage of degradation (Figure 5). 

Sites 5.1, 5.2 and 5.3 are located in a trench that slightly slopes downward 

towards a waterfilled gulley (Figure 5), whereby 5.1 is placed furthest away 

from the water and 5.2 and 5.3. getting progressively wetter (A5). Compared to 

the other sites in this trench, which all are mainly covered by Sphagnum mosses, 

green mosses and Carex spp., collar 5.1 shows a higher occurrence of e.g. Rubus 

chamaemorus and Vaccinium vitis-idaea (A3). The other locations are placed in 

different polygonal centers of the complex (Figure 5) showing different degrees 

of wetness (A5). Sites 5.4, 5.5 and 5.6 are located in a low-centered polygon 

with a wet center.  Collar 5.4 is close to the rim of the polygon and shows a 

vegetation composition with high proportion of lichen. Due to its closer 

proximity to the wet center, the vegetation of collar 6 includes mainly Sphagnum 

balticum (A3). Sites 5.9 and 5.10 are placed at the outer margins of this 

polygonal complex with 5.9 further away from the wet center (Figure 5). 
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2.2 Chamber installation and chamber measurements 

The chamber measuring method used in this study is based on a closed dynamic 

chamber consisting of a collar that is installed into the ground and a portable 

chamber which is placed on top of the collar during each measurement. 

Operating in a fully closed mode, air is continuously sampled from the chamber 

air space. At the same time, this air is drawn to a gas analyzer and then returned 

to the chamber measuring changes in CO2 concentrations over a short time 

period. The calculate the fluxes from these changes, a linear fitting model is 

used. The collar provides stability for the chamber and ensures an airtight 
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Figure 5: a) Overview of the collar locations of Transect 5 b) Profile of 
transect 2 and position of the sites in the sections of this polygon 
complex: Trench (T), Polygon (P). 
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sealing during flux measurements. The chamber is further equipped with sensors 

that allow measurements of parameters like air and soil temperature, soil 

moisture or PAR (PAVELKA et al., 2018). 

To measure CO2 fluxes in different study areas of Trail Valley Creek in July, a 

setup of closed chambers, a portable Licor LI-7810 gas analyzer as well as a 

Datalogger CR1000X and various sensors were used (Table 1). The chamber 

system consisted of a UV-resistant circular plastic glass tube, 25 cm in diameter 

and 25 cm in height, and a PVC collar, also 25 cm in diameter. An amount of 5 

mm was subtracted from the diameter to take into account the thickness of the 

walls. The soil collars were set up in 2022 and were installed at least 0.09 cm 

into the ground and extend no more than 0.30 cm above the soil surface (Figure 

6).  

 

 

Further instruments included in the chamber measurement system involve an air 

temperature and humidity sensor, an air pressure transmitter and a fan for mixing 

the air inside the chamber.  Photosynthetically active radiation and other 

supporting measurements like thaw depth, soil moisture and temperature, soil 

pH and vegetation analysis (Table 1) were conducted close to each chamber 

setup.  All instruments and the gas analyzer were connected to the data logger 

Figure 6: Dimensions (left) of the chamber system and setup for light (middle) 
and dark (right) measurements in the field (photos: KÜCHENMEISTER, 2023). 
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(A6), which used a WIFI connection to send all collected data to one tablet for 

further processing. 

 

Table 1: Supporting measurements and instruments in addition to the 

chamber measurements. 

Method Parameter Range of value Precision 

Portable gas analyser LI-

7810 

CO2 1 – 10000 ppm 3,5 ppm /1 s 

Datalogger CR1000X Data storage   

Temperature and 

humidity sensor 

KPK1_9-ME 

Relative 

humidity 

air temperature 

0 – 100% 

-30 – 70 ℃ 

2% 

0,2℃ 

Air pressure transmitter 

61402V 

Air pressure 500 – 1100 hPa 0,2 hPa 

Sensor for 

photosynthetically active 

radiation (PAR) PQS1 

Irradiance 0 – 10000 

mmol/m2/s 

1 mmol/m2/s 

Soil temperature profile 

probe CS230 

Soil 

temperature: 

-55 – 85℃ 0,2℃ 

Soil moisture probe 

CS655-DS, 

CS650-DS 

Volumetric 

water content 12 

and 30 cm 

0 – 100% 3% 

pH logger PCE-

228SLUR-ICA 

Soil pH  0 – 14 0,02 

GPS 16X-HVS Geographic 

position 

 
15 m 

Steel rod with calibrated 

markings 

Thaw depth 0 – 50 cm 1 cm 
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After all instruments were installed close around the chamber system, three light 

and two dark measurements were conducted. Each measurement took two 

minutes with a 30 to 60 seconds break to ventilate the chamber and remove all 

water vapor inside. While conducting dark measurements to investigate ER, the 

PAR level was reduced close to 0 by using an opaque cover sheet (A6; Figure 

6). Following the light and dark measurements at each chamber, the minimum 

and maximum height of the collar inside was measured for later chamber and 

collar volume calculations (Figure 7). NDVI was determined using the bands of 

the aerial imagery dataset provided by (RETTELBACH et al., 2018. It was 

calculated by using the reflectance of the red and near-infrared spectral bands 

and applying the formula (JESPERSEN et al., 2023) : 

 

𝑁𝐷𝑉𝐼 =
𝑅!"#	 −	𝑅#%&
𝑅!"# + 𝑅#%&

 (1) 

 

Furthermore, pictures were taken vertically above the collar and samples of 

mosses and shrubs were also collected for the identification of the vegetation in 

the collar. 

Truncated Cylinder 

Collar volume (Vcollar) 

Chamber volume (Vchamber) 

 

Hmax 

Hmin Vcollar 

Vchamber 

Figure 7: Minimum (Hmax) and maximum (Hmin) height within the collar 

and the subsequently calculated volume fractions of chamber and collar 

relevant for calculating the CO2 fluxes. 
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2.2.1 Collar volume and chamber surface area 

In order to determine the CO2 fluxes, the chamber volume Vchamber and the collar 

volume Vcollar as well as the surface area A of the chamber inside the collar had 

to be calculated based on the previous height measurements of each collar. 

While the chamber has a constant volume of Vchamber = 0.01414 m3 due to its 

fixed dimensions, the volume of the collar and surface area were calculated for 

each individual location. As the vegetation and wetness inside the collar vary 

spatially, it could not be assumed that the ground is completely horizontal. 

Therefore, a truncated cylinder was assumed for calculating the collar volume 

(Figure 7), using the measurements of Hmin and Hmax at each location and a radius 

r of 12.25 cm (HARRIS, 1998): 

 

𝑉'())*# =	
𝜋	𝑟+

2
	×	(𝐻,"! + 𝐻,*-) (2) 

 

By adding both volumes, the total volume of the chamber system can be 

determined. The calculation of the chamber surface area is based on the lateral 

surface area formula of an truncated cylinder (HARRIS, 1998) using again Hmin 

and Hmax as well as an radius of 12.25 cm which is converted to m2 by dividing 

the difference of Hmin and Hmax by 100: 

 

𝐴 = 	𝜋𝑟	

⎣
⎢
⎢
⎢
⎡
5𝑟+ + 6

𝐻,"! − 𝐻,*-
100
2

9

+

⎦
⎥
⎥
⎥
⎤
 (3) 

 

 

2.3 Data processing 

After all the data was collected and stored in one file by the datalogger, it got 

prepared for further processing using a routine run in R Studio. In a first step, 

after reading the raw output file the time series was cut into segments 
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representing the individual measurements. In the next step the script analyzed 

the input data from each single file for a stable gradient of concentration change 

over time while fitting a mean slope. Since the gradient fitting did not work well 

in all cases, the script generated not only numerical output but also panel plots 

for each measurement. In case the time period for gradient fitting did not fit, 

each plot was checked individually whereby the time period was manually 

adjusted when necessary.  

The final step involves the processing of the gradients for each timestamp by 

repeating the previous steps of the script, taking into account the changes made 

for some of the gradient time windows. This process aggregates the data points 

and calculates the flux component slopes, which were then used to compute net 

ecosystem exchange and ecosystem respiration. 

 

2.3.1 Calculating Net Ecosystem Exchange and Ecosystem Respiration 

After processing the field data and calculating different volumes of the chamber 

system, CO2 fluxes were determined using a general formula for flux 

calculations that includes the mean slope of gas concentration change over time:  

 

𝐶𝑂+	𝑓𝑙𝑢𝑥 = 	𝑠𝑙𝑜𝑝𝑒	

𝑉'.
𝐴'.

𝑝*"#
𝑅𝑇*"#

 (4) 

 

Vch (m3) and Ach (m2) are the volume of the whole chamber system and the 

surface area of the chamber, respectively. Tair and pair denote the mean air 

temperature (K) and pressure (Pa) within the previous defined time windows. R 

is the universal gas constant with 8.3144 JK- 1mol-1. All fluxes are expressed in 

μg C m-2 s-1.  

NEE and ER fluxes were calculated using the respective light and dark chamber 

measurements. However, to calculate GPP, the portion of photosynthetic uptake 

of the CO2 flux, the daily mean of ER was calculated for each specific collar. 

To determine the GPP in the next step, the daily mean value of ER was added 
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to the negative NEE value of each of the three light measurements on the 

respective day. This was done for each site and each date. 

 

2.4 Grouping of the data 

In order to compare the influence of various environmental parameters, results 

were subdivided into Groups representing different moisture categories. The 

separation of Groups was performed using the coverage fractions of plant 

species as a proxy for the prevailing hydrologic status (Virkkala et al., 2018). 

To do so, grasses, shrubs, lichens and mosses inside the different collars were 

identified (Kseniia Ivanova, personal communication) based on vegetation 

family and species using the samples collected during field measurements. The 

identification process was based on several key morphological features such as 

size and shape of stem and branch leaves, visual characteristics of the mosses, 

habitat, coloration of the stems, specific pattern of leaf arrangement, and type of 

capitulum (GOVERNMENT OF NORTHWEST TERRITORIES, 2024; NOSKOVA, 

2016). In the subsequent grouping of the different collars, the coverage of a 

particular vegetation family or species was estimated and assigned a scale 

number from 1 to 5 (Table 2). This was done by analyzing the photos taken in 

the field with close reference to the Braun-Blanquet scale for estimating species 

richness for plant populations (KALUSCHE, 2016).  

 

Table 2: Estimation of the coverage of vegetation families and species in 

order to Group the collars (KALUSCHE, 2016). 

Scale Frequency of Occurrence [%] 

1 < 5  

2 5 – 25  

3 25 - 50 

4 50 - 75 

5 75 - 100 
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In this way, the collars of transects 2 and 5 were assigned to specific Groups 

based on their vegetation composition and richness (A3), which were named as 

follows: Group 1, Group 2, Group 3 and Group 4. Overall, due to the limited 

quantity of data from Group 1 and the lack of significant differences in soil 

properties between Groups 1 and 2, the data were merged based on similarities 

in soil moisture and vegetation conditions to facilitate later statistical analysis. 

 

2.5 Statistical Analysis 

For visualizing and comparing the CO2 fluxes with soil moisture, soil 

temperature, NDVI, pH, thaw depth and PAR, a linear regression model was 

fitted using the “lm” function of the package “stats” in R Studio (R CORE TEAM, 

2023), which estimates the relationship between each parameter and the 

different fluxes. The p values were corrected using Holm’s method (FISCHER et 

al., 2022) and were considered significant when p < 0.05. To support the analysis 

and the model’s predictive accuracy, further metrics were included such as the 

coefficient of determination (R2), Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE). As some of the data showed more complex patterns, a 

non-linear approach in the form of a general additive model was also applied. 

The GAM model was executed using the “mgcv” function in R Studio (R CORE 

TEAM, 2023). 

 

2.5.1 Coefficient of Determination  

The coefficient of determination (R²) is a fundamental indicator in statistical 

analysis that illustrates the extent of agreement between the observed data and 

the model predictions. Its formula, as explained by Krause et al. (2005), involves 

the comparison of observed values x and predicted values y with their respective 

means x̅ and y̅. The equation is expressed as follows (KRAUSE et al., 2005): 

𝑅+ =	

⎝

⎛ ∑ (𝑥" − �̅�)(𝑦" − 𝑦M)!
"/0

N∑ (𝑥" − �̅�)²!
"/0 N∑ (𝑦" − 𝑦M)²!

"/0 ⎠

⎞

+

 (5) 
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R² values range from 0 to 1, representing the strength of correlation between 

predicted and observed time series. A score of 1 indicates perfect alignment, 

while 0 signifies no correlation. However, relying solely on R² to assess model 

performance has limitations, as it predominantly captures dispersion without 

discerning between over- or underestimation by the model (KRAUSE et al., 

2005). 

 

2.5.2 Root Mean Square Error 

The Root Mean Square Error (RMSE) is defined as the square root of the mean 

squared error, serving as a ubiquitous metric in assessing model performance. 

Its computation involves utilizing observations y and corresponding predictions 

across a sample size n (HODSON, 2022): 

 

𝑅𝑀𝑆𝐸 = 5
1
𝑛
V(𝑦" − 𝑦1W)²
!

0

 (6) 

 

2.5.3 Mean Absolute Error 

The Mean Absolute Error (MAE) is calculated as the average of the absolute 

differences between independent values y and predicted values ŷ (WILLMOTT et 

al., 2009): 

 

𝑀𝐴𝐸 = 	
1
𝑛
V|𝑥" − 𝑦Y"|
!

"/0

 (7) 

 

In contrast to RMSE, MAE is independent of sample size and equally weighs 

the variance in the errors (CHAI & DRAXLER, 2014). 
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2.5.4 General Additive Model 

In a generalized additive model, the relationship between the dependent variable 

and the predictor variables is modeled as a sum of smooth functions of the 

predictors, rather than assuming a linear relationship between the variables. 

Each function represents the effect of a predictor variable on the dependent 

variable, allowing for more flexible modeling of nonlinear relationships. 

(HASTIE et al., 2009): 

 

E(Y |X1,X2, . . . , Xp) = α + f1(X1) + f2(X2) + · · · + fp(Xp) (8) 

 

While α represents the intercept term when all predictor variables are 0, X1, X2, 

…, Xp act as predictors, Y represents the continuous response and f1(.) + f2(.) + 

…+ fp(Xp) are unspecified smooth functions. GAMs are particularly useful 

when the relationships between the variables are complex and nonlinear, as they 

can capture these relationships more effectively than traditional linear regression 

models (AMIN et al., 2024; HASTIE et al., 2009). 
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3 Results 

3.1 Environmental characteristics of the different Groups 

Grouping the flux data into moisture categories according to vegetation type as 

described in Section 2.4 resulted in four Groups, which in many cases showed 

differences in each environmental parameter investigated. However, based on 

this classification, Groups 1 and 2 indicated no significant differences regarding 

the presence of lichens (A3) and also had much lower soil moisture values than 

Groups 3 and 4 (A7). Due to the small amount of data in Group 1 and the 

similarities to Group 2 in terms of vegetation composition while also taking 

other parameters like soil moisture, soil temperature, thaw depth or NDVI into 

account (A7), the Groups were merged (now called Group 1) resulting in three 

Groups with varying environmental characteristics (Figure 8). Hence, for further 

analysis, Group 1 and 2 are now called Group 1, while Group 3 and 4 retain their 

names (A3). 

The overall vegetation composition of Group 1 includes a high occurrence of 

lichens and mosses of the species Pleurozium schreberi, Polytrichum and the 

genus Tomentypnum as well as other green mosses. Group 2 inhabits large 

proportions of Sphagnum mosses as well as grasses and shrubs such as 

Empetrum nigrum, Rubus chamaemorus, Eriophorum sp., Sphagnum 

capillifolium or Sphagnum squarrosum. Contrasting with Groups 1 and 2, Group 

3 shows the occurrence of different plant species such as Carex aquatilis, 

Hypnum sp., and Sphagnum inundatum, which could not be found in Groups 1 

and 2 (A3). 

A comparison of environmental conditions across different Groups reveals 

significant variations in moisture levels, soil temperature, thaw depth, pH, and 

NDVI. The above-mentioned moisture gradient is clearly visible at both 12 and 

30 cm. Group 1 shows the driest moisture level and Group 3, in contrast, the 

wettest moisture characteristics with a difference of almost 52%. All Groups 

demonstrate significant differences in moisture content. A small gradient from 

warmer to colder soil temperature conditions can be seen at 5 cm depth, with 

Group 1 exhibiting the warmest conditions (�̂� = 14.75℃). However, it should 
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be mentioned that the temperature differences are small. In 10 cm depth, Group 

2 shows the highest soil temperature (�̂� = 10.5℃). Similar conditions can be 

found at 20 cm and 30 cm depth. No significant differences are observed at 10 

cm depth among the Groups. Apart from 10 cm depth, significant differences 

could be found between Groups 1 and 3 in the remaining depths, whereby 

Groups 2 and 3 only showed significant differences in 5 cm. Thaw depth shows 

a similar gradient as soil moisture with Group 3 having the deepest TD at �̂� =

30.00 cm. Significant differences between the Groups can be found between 

Groups 1 and 2 and Groups 1 and 3. Furthermore, pH shows very acidic 

conditions in Group 2 (�̂� = 3.79) and thus differs significantly from the other 

Groups. In the case of NDVI all Groups reveal significant differences exhibiting 

the lowest value with the highest variability in Group 2 (Figure 8). 

  

Figure 8: Differences in environmental conditions between Group 1,2 and 
3. The plots show the median value and variance of each environmental 
parameter according to each Group. Moreover, statistically significant 
differences between the Groups are shown in the bars above the violin plots. 



 26 

 

In summary, the clustering of the data resulted in 3 different groups, that are 

mainly separated by moisture conditions and related effects on e.g. soil 

temperature or TD. Significant variations exist among the groups in terms of 

moisture levels, soil temperature, thaw depth, pH and NDVI highlighting the 

varying environmental conditions across the study area. Above all, soil moisture 

and NDVI show the greatest differences between the three Groups (Figure 8). 

Continuing plot figure 8: Differences in environmental conditions between 
Group 1,2 and 3. The plots show the median value and variance of each 
environmental parameter according to each group. Moreover, statistically 
significant differences between the groups are shown in the bars above the violin 
plots. 
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Furthermore, air temperature and PAR show relatively constant conditions 

during the 2023 measurement period with no significant differences between the 

Groups. However, a wide range of PAR values was recorded during the 

measurements, varying between approximately 350 and 2077 mmol/m2/s 

(Figure 9). This shows that, despite sampling on different measurement days, 

the average conditions for the different categories were equal when the fluxes 

were sampled. 

 

3.2 CO2 fluxes of the different Groups 

Mean flux values for NEE, ER, and GPP of the different ecosystem Groups were 

calculated to represent the overall carbon exchange dynamics (Figure 10, 

Table 3). 

Figure 10: Mean NEE, ER and GPP fluxes of each Group for the measuring 
period 2023. 

Group 

Figure 9: Median air temperature and PAR for each Group. The violin plots 
show the conditions and variability during the measuring period 2023. 
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In this study, negative NEE values are considered as carbon uptake by the 

ecosystem. Group 1 exhibited the most negative mean NEE 

value (- 10.86 μg C m-2 s-1), indicating a substantial carbon sink capacity. Group 

3 showed a higher mean NEE value (-2.1 μg C m-2 s-1) compared to Group 1 and 

2, suggesting the smallest carbon uptake by the ecosystem. However, this Group 

also demonstrates a balance between carbon release through ecosystem 

respiration (mean ER: 34.04 μg C m-2 s-1) and carbon uptake through gross 

primary productivity (mean GPP: 36.1 μg C m-2 s-1), highlighting their carbon 

exchange dynamics. All groups demonstrated carbon sequestration potential, 

with mean GPP exceeding mean ER. Lookin at ER fluxes, it can be seen that 

ER was quite constant during the measuring period (Figure 10; Table 3). 

 

Table 3: Mean flux values and standard deviation of NEE, ER and GPP 
[μg C m-2 s-1] for the whole measuring period 2023. 
 

 

The timeline of CO2 fluxes showed similar curve progressions for NEE, ER and 

GPP across all three Groups. The fluxes stayed quite constant during the 

measuring period. Group 1 showed an increase in NEE, ER and GPP at the 

beginning of the study which decreases later on. GPP exhibits an increase in 

fluxes at the end of the measuring period. The highest variability shows Group 

3 with a peak in fluxes in mid July (A8; A9; A10). 

The carbon exchange dynamics reveals variations in NEE, ER as well as GPP 

fluxes between the different Groups. Group 1 demonstrates the lowest mean 

NEE value, indicating a noticeable tendency towards a carbon sink. Group 2 and 

3 showed a tendency towards higher NEE values. However, ER generally 

 NEE ER GPP 

Group 1 -10.9(+/-30.3) 37.1 (+/- 22.2) 47.9 (+/- 44.0) 

Group 2 - 4.6 (+/- 22.1) 36.3 (+/- 13.7) 40.9 (+/- 32.0) 

Group 3 - 2.1 (+/- 19.33) 34.04 (+/- 10.0) 36.1 (+/- 26.4) 
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reveals higher values than NEE in all groups, albeit it is balanced out by GPP 

(Figure 10). 

 

3.3 Statistical Analysis of environmental parameters and CO2 fluxes 

The statistical analysis, which includes linear regression analysis, a General 

Additive Model as well as R2, RMSE, and MAE, shows different relationships 

between the individual CO2 fluxes and environmental parameters based on their 

Groups, which are determined mainly by vegetation composition but also 

moisture conditions.  

 

3.3.1 Soil parameters 

3.3.1.1 Soil temperature 

The analysis between NEE and soil temperature demonstrates weak correlations 

in the linear regression analysis (A14). Only at 20 cm depth, a significant 

relation was modelled by both, the linear and the GAM model, whereby the 

GAM model showed higher explanatory power (R2 = 0.11), albeit only weak. 

The linear model fit and the corresponding significance of the relations between 

soil temperature and NEE improves in Group 2 with a p-value below 0.05 at and 

the highest R2 of 0.34 at 20 cm depth. Notably, in Group 3, the GAM model 

shows a significant improvement, with R2 values exceeding 0.5 for soil 

temperature at 30 cm depth while also showing a better model fit than the linear 

regression model. Hence, the significance of relationships varies across groups 

and soil depths, with Group 3 showing the most consistent and significant 

results. Furthermore, RMSE and MAE values are relatively high especially in 

Group 1 and 2, suggesting modest predictive accuracy despite some 

improvements with the GAM model (A14). GPP exhibits slightly stronger 

correlations with soil temperature compared to NEE, particularly in Group 2. In 

Group 1, the GAM model produced a moderate R2 values at 10 cm, 20 cm and 

30 cm depth, although significant differences were found in both models. 

Significance and explanatory power of both models improve in Group 2 and 3. 

The GAM model further enhances the fit, particularly evident in Group 3, with 
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R2 values surpassing 0.73 for soil temperature at 30 cm depth. Equivalent to 

NEE, GPP shows significant relations in all depths with the GAM model 

representing the better model fit. The highest values could be found in 20 cm 

depth and 30 cm depth. However, high RMSE and MAE values especially in 

Group 1 and in shallower depths indicate limited predictive accuracy even with 

the GAM model (A16). The linear regression analysis for ER and soil 

temperature resulted in low R2 values in all soil depths and Groups, none of 

which exceeded 0.2. In Group 1, only the relationship between ER and soil 

temperature at 30 cm depth is significant, indicating a stronger influence of 

deeper soil temperatures on ER. However, the R2 value shows only weak 

significance with an explanatory power of 0.44. Despite some improvements, 

both linear and GAM models show high RMSE and MAE values, indicating 

limited predictive accuracy for ER. However, the values slightly improve in 

Group 3 (A15). 

The GAM plots reveal a general carbon uptake with rising soil temperatures 

across all depths and groups. Photosynthetic activity increases with increasing 

temperatures especially in Group 3, while ER shows an increase in 30 cm depth 

in Group 1 (Figure 11). Furthermore, in Group 1 a decrease in GPP and increase 

in NEE could be observed with rising soil temperatures in 10 cm depth. 

In general, the linear regression analysis of ER, NEE, and GPP with soil 

temperature at various depths reveals generally low R2 values, with only 

occasional significant correlations, particularly in Group 3 and in deeper soil 

layers. This is also confirmed by the regression plots A36 to A44 in the 

Appendix. However, GAM models tend to exhibit slightly higher R2 values and 

lower RMSE and MAE values indicating a potentially better fit, although 

significance varies. In some cases, such as NEE and GPP in Group 3, GAM 

models show strong correlations. Nonetheless, both linear and GAM models 

demonstrate relatively high RMSE and MAE values across all Groups, 

suggesting limited predictive accuracy. However, RMSE and MAE are lower in 

the GAM model for NEE as well as GPP. 
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Figure 11: Significant non-linear relations in all groups between soil 
temperature across all depths and CO2 fluxes produced by the GAM model 
for the measuring period 2023. 

Group 2 

Group 1 
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3.3.1.2 Soil moisture 

Using linear regression models and GAM model, the statistical analysis for the 

relation between soil moisture in 12 cm and 30 cm depths is characterized by 

minimal correlations and non-significant p-values (> 0.05) across both soil 

moisture depths especially in Groups 1 and 2. The interaction between soil 

moisture, ER, NEE and GPP remains unclear, with many R2 values below 0.1 

Group 3 

Continuing plot Figure 11: Significant non-linear relations between soil 
temperature across all depths and CO2 fluxes produced by the GAM model 
for the measuring period 2023. 
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indicating a limited explanatory power of the linear regression in Group 1 and 

2. However, in most cases the GAM model showed a better fit with higher R2 

values than determined in the linear model (A11, A12, A13). For example, NEE 

and soil moisture at a depth of 30 cm show an R2 of 0.77 and a significant 

correlation of > 0.05 in Group 1, while the linear model shows no explanatory 

power in Group 1 or 2 (A11; Figure 12). A similar pattern could be observed in 

Group 2 as well as for GPP in Group 1 indicating non-linear relations between 

these fluxes and soil moisture in 30 cm depth (A13, Figure 12). In contrast, ER 

contains limited explanatory power of soil moisture on ER variation in Group 1 

and 2, as evidenced by negligible R-squared values (< 0.1) in the linear 

regression models and GAM model. Moreover, non-significant p-values further 

underscore the absence of statistically significant relationships between soil 

moisture and ER (A12). In contrast, GPP and NEE showed much stronger 

correlations emphasized by much higher R2 values and significant p-values 

highlighted in the GAM models and the linear model in Group 3. Looking at 

NEE and soil moisture in 12 cm depth, R2 is 0.17 and 0.37 for the linear model 

and the GAM model, respectively. In 30 cm depth, the values include 0.75 for 

the linear model and 0.76 for the GAM model. GPP contains higher R2 values 

in 30 cm depth of 0.55 produced by the GAM model. ER showed only 

significant results but with little explanatory power for soil moisture at 30 cm 

depth modelled by the GAM model indicating that the relationship between soil 

moisture and ER appears to be weak in all Groups, as only the GAM model in 

Group 3 produced statistically significant results. In addition, the models have 

relatively high MAE and RMSE suggesting limited predictive accuracy. 

However, smaller MAE and RMSE of the GAM model indicate a better fit than 

the linear model and a tendency towards a non-linear relationship between soil 

moisture and ER. This was also observed for RMSE and MAE of GPP and NEE 

in Group 1 to Group 3. In general, a gradient from higher to lower RMSE and 

MAE at 30 cm depth than at 12 cm depth could be observed (A11; A12, A13). 
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Group 1 

Group 2 

Group 3 

Figure 12: Significant non-linear relations in all groups between soil moisture 
across all depths and CO2 fluxes produced by the GAM model for the 
measuring period 2023. 
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While minimal correlations and non-significant p-values are observed in most 

cases, especially in Groups 1 and 2, the GAM models generally show higher R-

squared values and a better fit, indicating potential non-linear relationships 

between soil moisture and ecosystem processes. Despite the higher predictive 

accuracy of the GAM models, the RMSE and MAE remain relatively high in 

Groups 1 and 2, while they show better values in Group 3 for all three fluxes. In 

general, Group 3 shows the highest correlation between NEE, GPP and soil 

moisture, with soil moisture at 30 cm standing out in both cases. Furthermore, 

higher soil moisture led to carbon uptake in the GAM plots (Figure 12). Contrary 

to NEE and GPP, both models produced only weak to no relations between ER 

and soil moisture. 

 

3.3.1.3 Soil pH 

Considering the relation between soil pH, NEE, ER and GPP the statistical 

analysis revealed different findings similar to soil temperature and soil moisture. 

Looking at NEE, both the linear and GAM models revealed a significant 

correlation between pH and NEE in Group 1. The linear model demonstrated a 

moderate R2 value (0.24) and significant p-value, while the GAM model showed 

an even better model fit with a high relation of 0.79 and highly significant p-

value. With that, Group 1 shows the highest correlation between pH and NEE. 

Similarly, in Group 2, pH showed a significant correlation with NEE in both 

models, with the GAM model computing a weaker R2 of 0.38 but also a 

significant relation between pH and NEE. In Group 3, pH also demonstrated a 

significant correlation with NEE, with both linear and GAM models producing 

significant but moderate R2 values of 0.39 and 0.62, respectively. However, just 

as Groups 1 and 2, the GAM model represents a better model fit than the linear 

model taking R2 as well as RMSE and MAE into account (A17). Similar to 

NEE, the GAM model represented a better model fit than the linear regression 

model for GPP showing significant correlations across all groups. However, in 

this case Group 2 showed the weakest relation with an R2 value of 0.15. The 

strongest relation could be observed in Group 3 with an R2 of 0.52 an RMSE of 

10.42 and MAE of 8.32 produced by the GAM model (A19). The investigation 
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of ER and soil pH revealed that in Group 1, neither the linear nor the GAM 

model exhibited significant correlations. Similar non-significant relationships 

were observed in Group 2. Despite a slight improvement in Group 3, the 

correlation between pH and ER remained weak and statistically non-significant. 

As with NEE and GPP, the GAM model produces a better model fit than the 

linear model (A18).  

In general, higher pH values resulted in an increase in NEE. Only in group 2, a 

decrease after a threshold of 5.5 could be observed. However, in Group 1 rising 

pH values resulted in declining carbon uptake capacity. GPP values tend to 

decrease with increasing pH, but increases in Group 3 after a threshold of 5.5 

(Figure 13). 

 

Group 1 

Group 2 

Group 3 

Figure 13: Significant non-linear relations in all groups between pH and 
CO2 fluxes produced by the GAM model for the measuring period 2023.  
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In conclusion, the analysis unveiled varying relationships between soil pH and 

ecosystem fluxes across different groups. While ER exhibited no correlations 

with pH, NEE and GPP demonstrated more pronounced correlations, 

particularly in Groups 1 and 2. The overall stronger statistical values produced 

by the GAM model suggest a non-linear relation between NEE, GPP and soil 

pH.  

  

 

3.3.2 Thaw depth (TD) 

The statistical analysis revealed significant correlations between NEE, GPP and 

TD across all groups (A17). Notably, the linear model shows a moderate relation 

and p-values of less than 0.05, indicating a strong correlation for NEE. However, 

the GAM model presents a substantially higher R2 of 0.79 with a significant p-

value, suggesting an even better fit. MAE and RMSE of the GAM model are 

lower compared to the linear model emphasizing the better model fit produced 

by the GAM model. The values improve in Group 2 and 3, whereby in Group 2 

the linear model shows a higher R2 od 0.27. In both cases a significant relation 

exists. In Group 3 a strong and significant correlation could be observed for both 

models, albeit the GAM model showed a higher significant correlation with an 

R2 of 0.62 and lower RMSE and MAE values of 13.82 and 11.03 respectively. 

Looking at GPP, the models indicate significant relations and moderate 

explanatory power produced by both models (A19). The GAM model exhibits 

slightly lower RMSE and MAE values in Group 1, suggesting better predictive 

accuracy. In Group 3, GAM model and linear model show similar predictive 

power and a significant correlation, whereby the linear model demonstrates a 

slightly higher significance than the GAM model. RMSE and MAE values are 

comparable between the two models, indicating similar predictive accuracy. In 

contrast, both models produced no significant relation for ER across all three 

groups (A18). However, a better model fit is represented by the GAM model, 

showing higher R2 and lower RMSE and MAE values than the linear regression 

model. The best R2 of 0.65 could be found in Group 1, although no significance 
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was determined. As for NEE and GPP lower RMSE and MAE values in all 

groups imply a better fit by the GAM model.  

Considering the modelled relation visualized by the GAM plots, NEE showed 

overall carbon uptake in all groups, while photosynthetic activity increased with 

deeper thaw depth (Figure 14). 

Overall, NEE demonstrates significant correlations across all groups, with the 

GAM model outperforming the linear model, as emphasized by lower RMSE 

and MAE values. Similarly, GPP exhibits significant relationships in Group 1 

to 3, with the GAM model showing similar results to the linear model. In 

contrast, ER shows limited explanatory power, with non-significant results in 

most groups, highlighting the complexity of its relationship with environmental 

factors. 

Group 1 

Group 2 

Group 3 

Figure 14: Significant non-linear relations in all groups between TD and 
CO2 fluxes produced by the GAM model for the measuring period 2023. 
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3.3.3 NDVI  

In the analysis of NEE, significant correlations were observed between NEE and 

NDVI, particularly across all Groups (A20). The GAM model exhibited higher 

explanatory power than the linear model, as indicated by higher R2 values. 

Notably, in Group 1, the GAM model produced a moderate R2 of 0.36, with a 

highly significant p-value. The highest significant R2 of 0.58 could be found in 

Group 2. Additionally, RMSE and MAE were considerably lower in the GAM 

model compared to the linear model across all Groups, suggesting higher 

predictive accuracy. For GPP, the analysis revealed a similar trend, with the 

GAM model outperforming the linear model (A22). In Group 3, the GAM model 

shows the highest R2 of 0.64, indicating a strong relationship between GPP and 

NDVI. Furthermore, the p-values for the GAM model were highly significant 

across all Groups, underscoring the robustness of the observed correlations. In 

Group 1, the GAM model also achieved a substantially higher R2 than the linear 

model with a value of 0.15, demonstrating the better fit of the model and 

implying a non-linear relation between GPP and NDVI.  ER exhibited varying 

degrees of correlation with NDVI across different Groups (A21). In Group 1 

and 2, the linear model yielded no correlation, indicating no relation between 

ER and NDVI, with a non-significant p-value. However, in Group 2, while the 

linear model showed no improvement, the GAM model produced a weak but 

significant relation between ER and NDVI with an R2 value of 0.19. Conversely 

to NEE and GPP, Group 3 shows no improvement by the GAM model. The 

linear model produces significant results, albeit the explanatory power is non-

existent.  

The visualization of the GAM model revealed increasing photosynthetic activity 

with increasing NDVI in Group 1 and 3, but also declining ER. In general, the 

groups show an increase in carbon uptake with increasing NDVI values (Figure 

15). 

Overall, the analysis reveals significant correlations between NDVI and 

ecosystem processes across all Groups. NDVI influences GPP and NEE by 

showing significant correlations with NDVI especially in Groups 2 and 3. 
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Although ER exhibits weaker elations, NDVI still influences it, particularly in 

Group 2. 

 

 

3.3.4 PAR & Air Temperature 

For all three fluxes, neither the linear regression model nor the GAM model 

showed significant correlations between PAR and air temperature (A23; A24; 

A25). This could also be seen in the regression plots A54, A55 and A56 as well 

as A57, A58 and A59 in the Appendix. Only Group 2 showed significant 

relations between air temperature, NEE, ER and GPP as well as GPP and PAR 

(Figure 16), albeit the explanatory power of the models is very weak. Both 

models showed almost no capability of predicting air temperature or PAR based 

on very low R2 and high RMSE and MAE values. However, as the values in the 

GAM model improved slightly, suggesting a non-linear relationship between the 

fluxes, air temperature and PAR, NEE and ER showed stronger significance 

values of 0.03 and 0.04, respectively, compared to GPP (0.05). 

Group 1 

Group 2 

Group 3 

Figure 15: Significant non-linear relations in all groups between NDVI and 
CO2 fluxes produced by the GAM model for the measuring period 2023. 
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3.4 Similarities and Differences between different Groups 

In the analysis of the relationship between CO2 fluxes and environmental 

parameters across different Groups, several similarities and differences between 

the Groups emerge. 

Across various environmental parameters, the GAM model in most cases 

demonstrates better performance in terms of explanatory power, RMSE and 

MAE compared to the linear regression model. A visual representation of the 

regression analysis in the form of regression models can be found in the 

Appendix A33 to A59. The better performance by the GAM model is mainly 

observed in soil temperature, soil moisture, soil pH, thaw depth indicating a non-

linear relation between these parameters, NEE and GPP across all three Groups. 

Significance levels of the relationships between CO2 fluxes and environmental 

parameters also vary across different Groups. In some cases, significant 

correlations are observed across all Groups e.g. between NEE and pH as well as 

TD, while in others, significance is limited to specific Groups or not observed 

at all. For example, in the analysis of soil temperature, soil moisture, and soil 

pH, Group 3 mostly exhibits stronger and more significant correlations 

Figure 16: Significant non-linear relations in Group 2 between air 
temperature, PAR and CO2 fluxes produced by the GAM model for the 
measuring period 2023. The plots are sorted by CO2 fluxes (NEE, ER, GPP). 
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compared to Groups 1 and 2. While linear regression models often demonstrate 

weak correlations, the GAM model suggests non-linear relationships between 

CO2 fluxes especially for NEE, GPP and environmental parameters, particularly 

evident in Group 3. This non-linear relation is more pronounced for certain 

parameters such as soil moisture and soil pH, but also between NEE, GPP and 

soil moisture in Groups 1 and 3. 

The analysis revealed that while linear regression models often yielded weak 

correlations, the GAM model mostly suggested non-linear relationships between 

CO2 fluxes and environmental parameters, particularly pronounced in Group 2 

and 3. This non-linear relationship was particularly notable for parameters such 

as soil moisture, soil pH, TD, NDVI and soil temperature underscoring the 

complexity of their interactions with NEE, ER and GPP. 
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4 Discussion 

4.1 Challenges with CO2 flux measurements 

Using closed flux chambers is a common approach to assess CO2 fluxes and to 

quantify their interactions between soil and atmosphere. However, this common 

measuring method involves also several limitations, that have been reviewed 

and summarized by KUTZBACH et al. (2007). When performing chamber 

measurements, driving parameters including soil and vegetation can be 

disturbed and are therefore not constant during data collection. By closing the 

chamber, concentrations gradients between the overlying air, soil or vegetation 

can be altered leading to uncertainties in the flux measurements due to 

inconsistent conditions during the experiments. Furthermore, leaks during the 

measurements can be caused by the chamber setup itself or by the space in soil 

pores. Air and soil temperature changes underneath the chamber can further alter 

the conditions during measurements and prevent consistency. Additionally, soil 

compression or insufficient pressure relief during the experiment can disturb 

pressure gradients between the soil and atmosphere. Also, suppressing the 

natural pressure fluctuation or eliminating advection and turbulence and modify 

diffusion resistance of the soil-or plant-atmosphere boundary layer. Errors in 

calculating the volume of the chamber should also be considered. However, 

unless they can be quantified, calculations are based on the assumption that these 

sources of error do not influence the CO2 fluxes (KUTZBACH et al., 2007). 

However, it should also be noted that these uncertainties cannot be eliminated 

either. 

To take these problems in this study into account and to avoid large temperature 

and pressure changes, closing times of the chamber were not longer than 2 

minutes. Furthermore, breaks between measurements were at least 1 minute to 

prevent and reduce condensation inside the chamber. A fan and valve were used 

to mix the air inside the chamber during measurements and to prevent pressure 

effects when placing the chamber on the collar. To prevent ground disturbances, 

especially at collars with wetter conditions, a board next to the collar was used 

to avoid sinking into the ground.  For chamber volume calculations, the concept 

and formula of a truncated cylinder was used to consider the surface condition 
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in the collar as accurately as possible. But despite taking care to always measure 

at the same point, variability in the minimum and maximum height 

measurements due to measurements at different points on the collar during the 

experiment cannot be excluded. 

It should be mentioned, that is also very common that study sites are considered 

homogenous when they are heterogenous. Hence fluxes may vary between a few 

meters, pointing out the importance of considering the number of chambers that 

is needed to capture the variance and mean at the selected sites. Often the 

variation is at the scale of centimetres, reflecting e.g. disturbances by soil fauna 

or pockets of fine root proliferation.  Chamber measurements can contribute to 

resolve these differences as they measure on a small-scale. However, when 

averaging over several chambers under the assumption of homogeneity, the 

previously mentioned problems can occur (DAVIDSON et al., 2002; VIRKKALA 

et al., 2018). These small-scale heterogeneity is common for the Arctic and 

tundra environments and may be caused by microtopographical conditions, soil 

properties or vegetation characteristics (AALTO et al., 2013; ZONA et al., 2011). 

In this study, we grouped the data based on vegetation while considering soil 

moisture conditions in order to account for heterogeneity and combine sites with 

similar conditions. 

 

4.2 CO2 fluxes in similar ecosystems 

Comparing the fluxes assessed in this study to studies in similar environments, 

the values are within the range of the fluxes listed in Table 4. However, when 

comparing the fluxes, inter- and intra-annual variability typical for CO2 fluxes 

as well as variations of environmental conditions should be taken into 

consideration. Also the presentation and timescales complicate the comparison 

between studies, because most studies cover larger time periods (CALVIN et al., 

2023; LÓPEZ-BLANCO et al., 2017). Values assessed by HUMPHREYS et al. 

(2014) are from the period from 01st November, 2011 to 31st October, 2012, 

covering a timeframe of a year. Also the study conducted by LUND et al. (2010) 

investigates data from 12 different peatland ranging from wet tundra sites to 
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northern peatlands. Therefore, careful interpretation is important when 

comparing fluxes from this study directly with fluxes from other sources that 

might use different processing and representation methods in differing 

environmental conditions.  

 

Table 4: Comparison of mean NEE, ER and GPP fluxes of different studies 

[μg C/m²/s]. Differing units were converted to the units used in this study. 

 NEE ER GPP Ecotype 

This study 

Group 1 

-10.9(+/-30.3) 37.1 (+/- 22.2) 47.9 (+/- 44.0) Polygonal 

mire 

This study 

Group 2 

- 4.6 (+/- 22.1) 36.3 (+/- 13.7) 40.9 (+/- 32.0) Polygonal 

mire 

This study 

Group 3 

- 2.1 (+/- 19.33) 34.04 (+/- 10.0) 36.1 (+/- 26.4) Polygonal 

mire 

Lund et al. 

(2010) 

- 3.3 (+/- 3.26) 13.0 (+/- 4.1) 16.3 (+/- 6.5) Arctic wet 

tundra, 

Sub-arctic 

fen, 

temperate 

and boreal 

bog 

Eckhardt 

et al. (2019) 

- 26 (+/- 19) 35 (+/- 9) 61 (+/- 17) Polygonal 

tundra 

Humphreys 

et al. (2014) 

- 5.61 (+/- 0.3) 21.3 (+/- 0.4) 26.9 (+/- 0.5) Temperate 

bog 
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4.3 Influence of environmental parameters on CO2 fluxes in 
polygonal mires 

When discussing the various environmental parameters and their influence on 

CO2 fluxes among different groups, it's noteworthy that soil temperatures 

measured at 30 cm depth often exceeded 0°C, while thaw depth were sometimes 

assessed at shallower depths. This suggests that the manually measured thaw 

depth does not always match the depth of the temperature sensor. Moreover, 

since thaw depth, soil temperature and soil moisture are measured right next to 

the chamber setup, they do not reflect the exact conditions below the collar. 

 

4.3.1 Soil parameters 

4.3.1.1 Soil moisture and soil temperature 

The results for soil moisture show gradually increasing moisture levels from 

group 1 to group 3 (Figure 8). Group 3 contains the highest occurrence of 

Sphagnum mosses as well as Hypnum species at sites 2.6 and 5.3 (A3). These 

mosses tend to promote water retention leading to a higher moisture content in 

the soil (GORNALL et al., 2007; RIXEN & MULDER, 2005), which could be 

observed especially in Group 3 (Figure 8). Soil moisture plays a crucial role in 

CO2 and soil dynamics (ECKHARDT et al., 2019; LAWRENCE et al., 2015). 

Particularly in Group 3, a significant influence of soil moisture in 12 cm depth 

as well as in 30 cm depth could be found showing that moisture conditions have 

a notable impact especially on NEE and GPP in deeper layers. NEE showed a 

non-linear decrease in Group 2 and 3 indicating carbon uptake when soil 

moisture increases. In Group 1, carbon uptake only sets in after soil moisture is 

higher than 55%.  In addition, Group 1 showed a decrease in GPP and an 

increase after 55%, while Group 3, exhibiting generally higher soil moisture 

content, shows increasing GPP together with still decreasing NEE (Figure 12). 

The authors MAURITZ et al. (2017) stated that higher soil moisture can stimulate 

decomposition but also increase carbon uptake in response to reduced water 

stress experienced by vegetation when the soil is not fully saturated. Together 

with declining ER and increasing moisture content in Group 3, an overall carbon 

uptake in connection with rising soil moisture could be observed especially in 
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30 cm depth (Figure 12). In a study by ECKHARDT et al. (2019), who also 

investigated the differences in CO2 fluxes at a wet polygonal center and a dry 

polygonal rim, the authors found that mean GPP and carbon uptake was higher 

at the sites with higher soil moisture content than at the drier locations. At the 

same time, waterlogged conditions together with colder soil temperature, which 

could also be found in Group 2 but especially 3 in the topsoil (Figure 8), lead to 

slower decomposition rates and hence to reduced respiration (ECKHARDT et al., 

2019). However, in this study, mean GPP and mean carbon uptake is higher at 

the sites with drier conditions (Figure 10; Figure 8). Furthermore, a significant 

non-linear response of ER on soil moisture changes could only be detected in 30 

cm depth indicating a stronger influence of soil moisture on NEE and GPP, 

which is further supported by a very poor model quality fit (A12). This is 

contradictory to other studies like SJÖGERSTEN et al. (2006), ECKHARDT et al. 

(2019) and ILLERIS et al. (2004) who found significant relations between 

ecosystem respiration and soil water content. The study by ILLERIS et al. (2004) 

found, that soil moisture levels significantly influence GPP and ER, whereby 

GPP is more sensitive to soil moisture changes than ER. In general, GPP fluxes 

and carbon uptake in this study tend to increase with higher moisture content, 

which is similar to the results of the study by MAURITZ et al. (2017) and is 

probably related to the reduction in water stress in connection with the plant 

community composition. 

Additionally, the authors ILLERIS et al. (2004) found a soil temperature 

dependency on soil moisture for GPP and ER with stronger relations in wetter 

conditions. In this study, soil temperature sensitivity also increased with wetter 

conditions which is represented by stronger significance and explanatory power 

in Group 3 indicating that soil moisture could impact soil temperature sensitivity 

and hence GPP flux in this study. However, the lack of correlation could be due 

to other influencing factors, but also to the lack of data caused by a short 

measurement period in July and quite constant air temperature conditions, which 

exceeded 20°C during most measurements. Also soil temperature was found to 

be no predictor of ER in this study which is also contrary to findings of other 

studies (HELBIG et al., 2019; LIU et al., 2019). In a study conducted by HELBIG et 

al. (2019) in peatlands of the Hudson Bay Lowlands, the authors found that 
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increasing soil temperatures in response to warming air temperatures result in a 

significant increase in ER and a decline in CO2 uptake as well as photosynthetic 

activity. Although, only in Group 1 at 30 cm depth a very weak and positive 

significant influence of soil temperature on ER could be observed in this study 

indicating a stronger relation between ER and soil temperature in deeper soil 

layers. In contrast, soil temperature proved to be an important predictor with 

similar significance for NEE as well as GPP in all groups. These results 

generally correspond to the study by LIU et al. (2019), which also determined 

non-linear relations between NEE, GPP and soil temperature. In this study, GPP 

was found to increase with increasing soil temperature in all groups, which was 

also observed in the study by NATALI et al. (2015) who concluded that carbon 

uptake can increase when GPP exceeds ER under drier conditions. KWON et al. 

(2016) also found increasing carbon uptake in 2013, when they investigated the 

effect of long-term drainage on CO2 uptake and emissions. They further 

highlight, that the responses of CO2 fluxes to changing moisture conditions can 

differ between ecosystems.  In general, the results of this study show, that 

increasing soil temperature leads to decreasing NEE indicating a general carbon 

uptake by the ecosystem (Figure 11).  

 

4.3.1.2 Thaw depth 

Additionally, CO2 fluxes as well as soil temperature and moisture are strongly 

affected by thawing of the permafrost (MINER et al., 2022), which is recognized 

in several studies  (VIRKKALA et al., 2018). A study by VOGEL et al. (2009) 

which investigated permafrost thaw in a tussock tundra in Alaska found 

significant relations between active layer depth and NEE, GPP as well as ER. 

The authors found that GPP and ER will increase with thawing of the soil with 

NEE also positively related to increasing TD.  Rising CO2 emissions due to 

thawing permafrost is linked to drying out of the soils due to increased 

heterotrophic respiration rates (ANDRESEN et al., 2020). However, LAWRENCE 

et al. (2015) who investigated the effect of permafrost-thaw induced soil drying 

on CO2 fluxes, found an positive drying impact on decomposition rates starting 

from 0.5 m thawing depth. In this study TD does not exceed a depth over 0.5 m 
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indicating that this drying effect on carbon fluxes is not as extensive. 

Furthermore, NEE shows a non-linear decrease indicating carbon uptake, which 

is comparable to the results from MAURITZ et al. (2017), who showed that in 

deeper thawed soils moisture content is usually highest, which was also 

observed in this study (Figure 8). As already mentioned above, these non-

saturated soil conditions can stimulate CO2 uptake as a result (MAURITZ et al., 

2017). TD influenced GPP only in Group 3 further supporting possible 

connections to soil moisture or vegetation composition. Moreover, GPP 

increases non-linearly with increasing TD values, which corresponds to the 

findings by MAURITZ et al., 2017 who found greater GPP values with deeper 

thaw depth depending on plant community composition. But since ER did not 

show any significant influence by TD, which was not expected in this study and 

is unusual compared to other studies (ANDRESEN et al., 2020; MAURITZ et al., 

2017; VOGEL et al., 2009), final conclusions on CO2 uptake or release due to 

deeper thawing soils cannot be made with certainty. However, decreasing NEE 

fluxes in response to deeper TD suggests a carbon uptake by the ecosystem 

probably due to the counteracting effect of water stress and higher moisture 

availability (MAURITZ et al., 2017). 

 

4.3.1.3 Soil pH 

PH was found to be an important parameter in explaining CO2  fluxes (LUND et 

al., 2010). Values of pH were lowest at Group 2 and generally highest at sites of 

Group 3 (Figure 8). Group 2 shows the highest abundance of Sphagnum species 

compared to the other Groups (A3). The abundance of Sphagnum mosses can 

lead to increases in pH and impact CO2 fluxes (MALHOTRA & ROULET, 2015). 

In this study, Group 3 exhibiting the highest pH also shows the lowest carbon 

uptake capacity compared to the Groups with lower pH and higher Sphagnum 

abundance (Figure 8; Figure 10; A3). In the study conducted by LUND et al., 

2010, pH showed a significant influence on GPP and NEE. The authors 

investigated 12 different peatlands and tried to find out how differences in CO2 

fluxes can be explained by climatic and environmental variables. In this context, 

higher values of pH lead to increasing CO2 uptake, whereby ER showed no 
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correlation with soil pH. This study supports these results only in some extend, 

albeit the relation between NEE, GPP and pH are non-linear. However, higher 

pH first lead to an increase of NEE while tend to sequester CO2 after a threshold 

of 5 in Group 2. In contrast, GPP decreases with higher soil pH in all groups. 

Both results underline the non-linear relation of pH, GPP and NEE (Figure 13). 

In general, increasing pH values are connected to an increase of NEE flux, 

suggesting a promotion of CO2 release at sites with higher pH conditions. LUND 

et al., 2010 observed, that higher pH values lead to carbon uptake in the 

ecosystems, which was only observed to a limited extent in Group 2 of this 

study. It should also be noted, that pH was only measured once at each side 

leading to a limited amount of data, which is why these results should be 

interpreted with caution. 

 

4.3.2 NDVI 

According to several studies that also investigated which environmental 

parameters drive CO2 fluxes, NDVI was additionally considered as an important 

influencing factor (BRUHWILER et al., 2021; JESPERSEN et al., 2023; 

MCPARTLAND et al., 2019; POYATOS et al., 2014; VIRKKALA et al., 2018). The 

authors JESPERSEN et al. (2023) conducted a study in northern Alaska, where 

they investigated the impact of NDVI changes on CO2 fluxes based on chamber 

measurements of vegetation structure and ecosystem functioning. They found 

significant relations between NEE, GPP and ER, whereby NEE negatively and 

GPP as well as ER positively correlated with NDVI. Furthermore, higher shrub 

abundance improved the correlation between fluxes and NDVI. POYATOS et al. 

(2014) also observed significant relations between NDVI, GPP, NEE and ER in 

a sub-arctic forest-mire in northern Finland, albeit they found a positive relation 

between ER and NDVI. They stated that autotrophic respiration might have 

contributed greatly to ecosystem respiration leading to a positive correlation 

with NDVI. In this study a significant influence of NDVI on NEE, GPP and ER 

could also be observed, albeit the GAM model showed the better predictability 

compared to the linear model, which suggests more complex non-linear relations 

between CO2 fluxes and NDVI. The relation between NDVI and NEE was found 
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to be strongest in Group 2, where grasses and shrubs are part of the vegetation 

composition. This observation is similar to the stronger correlation in higher 

shrub abundance observed by JESPERSEN et al. (2023). In Group 1 and 3 a carbon 

uptake by NEE with increasing NDVI could be observed with mainly decreasing 

values of ER (Figure 15), which was expected. Furthermore, GPP increased with 

increasing NDVI in Group 1 and 3, which also corresponds to the studies 

mentioned above. However, decreasing GPP with rising NDVI values like it 

could be observed in Group 2 is rather unexpected and contrary to previous 

studies (JESPERSEN et al., 2023; POYATOS et al., 2014). However, the results 

underline the non-linear and complex relation between NDVI and these fluxes. 

NDVI relations vary between Groups indicating the dependence of NDVI on 

vegetation composition but also moisture conditions, which was also found in 

other studies (JESPERSEN et al., 2023; MCPARTLAND et al., 2019). However, it 

should be noted that changes in GPP and hence NDVI are more prominent at 

sites with higher moss abundance based on varying photosynthesis rates 

between vascular plants and mosses leading to higher NDVI results and possible 

misinterpretations additionally contributing to the uncertainties in CO2 

dynamics (MAY et al., 2018). This should be considered when interpreting the 

results especially of Group 3, which contains the highest NDVI but also the 

highest moss abundance (A3; Figure 8).  

 

4.3.3 Problems in determining relations with PAR, air temperature and 
ER 

PAR and air temperature are considered driving factors of NEE, GPP and ER 

(VIRKKALA et al., 2018). Especially NEE and GPP usually show highly 

significant relations with PAR and air temperature as shown by many studies 

(KARELIN et al., 2013; LIU et al., 2019; VOGEL et al., 2009). LIU et al., 2019 

identified linear and non-linear relations between PAR, air temperature and CO2 

fluxes in a peatland in Zoige. KARELIN et al. (2013) found significant positive 

correlations of PAR with temperature, TD and CO2 fluxes in a tundra ecosystem 

in Vorkuta, Russia. These findings are in line with several other studies showing 

the same positive correlated relations (MALHOTRA & ROULET, 2015; VIRKKALA 

et al., 2018). However, in this study no correlation or non-linear relation could 
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be determined between PAR, air temperature and CO2 fluxes. In particular, ER 

showed no correlations with PAR and air temperature, nor with various 

parameters such as soil temperature and soil moisture. This was very surprising 

and does not correspond to the results of the studies already mentioned above. 

Only Group 2 showed a very weak influence of soil temperature and a very weak 

relation between PAR and GPP, which shows a potential of the ecosystem to 

respond to changes in air temperature and PAR.  

However, model quality and explanatory power are not very meaningful (A23; 

A24; A25). During the study period air temperatures during measuring times 

were usually above 20°C while the lowest mean air temperature was not below 

24.78°C determined for Group 3 (Figure 9). Furthermore, GPP was calculated 

for each site from the respective daily mean value of NEE and ER, which 

resulted in very few data points for the entire measurement period. This also 

accounts for NEE and ER, albeit these fluxes included more data since they were 

measured directly. However, ER showed constant fluxes without much 

variability during the whole measuring period. Additionally, the lack of data 

together with data gaps, which occur in the data for several parameters together 

with quite constant temperature conditions and a short measuring period only in 

July could result in insufficient correlations between different environmental 

parameters and CO2 across the groups. Further data collection over longer 

periods could help to complete the data set and might allow comparison between 

different years and seasons while also allow to capture the relation between PAR 

and air temperature. 
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5 Conclusion 

In conclusion, the discussion highlights the complexities and challenges 

associated with measuring CO2 fluxes in ecosystems, particularly in polygonal 

mires. Using closed flux chambers is a common approach and presents 

limitations due to disturbances in driving parameters such as soil and vegetation, 

leaks, and temperature changes. Despite efforts to mitigate these challenges, 

uncertainties persist, emphasizing the need for careful interpretation of results. 

The study found that  the investigated environment mainly acts as a carbon sink 

whose carbon uptake capacity depends on several environmental parameters like 

soil moisture, soil temperature or vegetation underlining the complexity of 

Arctic ecosystems found also in other studies as well as the importance of 

including several microtopographical and micrometerological parameters 

(BRUHWILER et al., 2021; POYATOS et al., 2014). 

Regarding the influence of environmental parameters on CO2 fluxes, soil 

moisture emerges as a critical factor, impacting NEE and GPP significantly, 

particularly in deeper soil layers. The study underscores the non-linear 

relationship between soil moisture as well as soil temperature and CO2 fluxes, 

with varying responses observed across different vegetation groups. Thaw depth 

also influences CO2 fluxes, with deeper thawing soils potentially leading to 

carbon uptake by the ecosystem in this study, albeit these result exhibit great 

uncertainties because increasing thaw depth is usually linked to CO2 emissions 

(MAURITZ et al., 2017). PH levels and NDVI are identified as important 

parameters affecting CO2 fluxes, with higher pH promoting carbon release in 

most cases, and NDVI showing complex, non-linear relationships with fluxes, 

influenced by vegetation composition and moisture conditions. However, 

limitations in data collection and analysis underscore the need for cautious 

interpretation of these findings. Furthermore, while PAR and air temperature are 

typically considered driving factors for CO2 fluxes, this study finds limited 

correlations, particularly with ER. Data gaps and short measurement periods 

contribute to uncertainties, highlighting the importance of long-term data 

collection for comprehensive understanding. 
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Looking ahead, future research in the field of CO2 flux measurement in 

polygonal mires holds promise for advancing our understanding of carbon 

dynamics and ecosystem responses to environmental changes. Continued 

advancements in measurement techniques, long-term monitoring efforts, 

integration of remote sensing technologies, refinement of modeling approaches, 

collaborative multi-disciplinary studies, and assessments of climate change 

impacts are key priorities. By addressing these further, the knowledge of CO2 

dynamics in polygonal mires can be improved contributing to more accurate 

carbon budget assessments while providing strategies that aim at mitigating the 

impacts of climate change on these valuable ecosystems. 
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A 1: Mean monthly precipitation and temperature for Inuvik in the period 
from 1991-2020 (GOVERNMENT OF CANADA, 2024a). 

A 2: Mean temperature [°C] at the study sites during the measuring period 
in July 2023. 
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A 3: Vegetation groups of the collars from transect 2 and 5. The groups are 
based on the Braun-Blanquet scale for estimating species richness for plant 
populations (KALUSCHE, 2016). Collars with similar vegetation compositions 
were combined in one group. The groups written in light gray (1 to 4) are the 
groups assigned at the beginning. The groups in bold (1 to 3) are the merged 
groups that are used for the further analysis. 
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A 5: Average soil moisture in 12 cm [%] of transect 5 for the whole measuring 
period 2023. 
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A 7: Differences in environmental conditions between Group 1,2, 3 and 4. 
The plots show the median value and variance of each environmental parameter 
according to each Group. Moreover, statistically significant differences between 
the Groups are shown in the bars above the violin plots. 

A 6: Setup for CO2 chamber measurements. The 1) gas analyser is connected to 
the 2) chamber via various tubes and the 3) data logger via WiFi. Additional 
instruments used for the measurements are the 4) collar 5) cover sheet for dark 
measurements 6) steel rod for thawing depth 7) PAR sensor 8) soil moisture probe 
9) soil temperature sensors (5, 10, 20, 30 cm) and 10) pH logger (photos: 
KÜCHENMEISTER, 2023; PCE INSTRUMENTS, 2024). 
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Continuing plots of A7: Differences in environmental parameters by 
groups 1, 2, 3 and 4. 
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A 8: Timeline of NEE, ER and GPP fluxes of group 1 during the measuring 
period 2023. The plots show the different sites of each group (colored). The black 
line represents the mean flux of the whole group. 
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A 9: Timeline of NEE, ER and GPP fluxes of group 2 during the measuring 
period 2023. The plots show the different sites of each group (coloured). The 
black line represents the mean flux of the whole group. 
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A 10: Timeline of NEE, ER and GPP fluxes of group 3 during the measuring 
period 2023. The plots show the different sites of each group (colored). The black 
line represents the mean flux of the whole group. 
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A 11: Statistical values of the linear model and the GAM model for soil 
moisture in 12 cm and 30 cm depth and NEE. 
 
NEE Soil Moisture, 12 cm [%] Soil Moisture, 30 cm [%] 
Group 1 

  

Linear model 
R2  0.01 0.05 
p-value < 0.05 3.5E-01 1.7E-01 

p-value < 0.05 corrected 1.4E-01 7.0E-01 
Significance No No 
RMSE  30.01 31.09 
MAE 23.97 23.01 
GAM model 
R2  0.48 0.77 
p-value  3.5E-01 2.0E-16 
RMSE  30.01 11.06 
MAE  23.97 8.63 
Group 2 

  

Linear model 
R2 0.00 0.02 
p-value < 0.05 8.6E-01 2.8E-01 
p-value < 0.05 corrected 2.6E-02 8.6E-01 
Significance yes No 
RMSE  21.93 22.11 
MAE 18.43 17.44 
GAM model 
R2 0.13 0.01 
p-value  3.4E-01 8.8E-02 
RMSE  21.64 20.75 
MAE  18.40 17.34 
Group 3 

  

Linear model 
R2  0.17 0.75 
p-value < 0.05 8.3E-03 7.6E-12 
p-value < 0.05 corrected 3.4E-06 1.7E-02 
Significance Yes Yes 
RMSE  17.35 15.40 
MAE 12.91 9.93 
GAM model 
R2 0.37 0.76 
p-value  8.3E-03 2.0E-16 
RMSE  17.35 9.01 
MAE  12.91 6.95 
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A 12: Statistical values of the linear model and the GAM model for soil 
moisture in 12 cm and 30 cm depth and ER. 
 
ER Soil Moisture, 12 cm [%] Soil Moisture, 30 cm [%] 
Group 1 

  

Linear model 
R2 0.02 0.01 
p-value < 0.05 2.8E-01 7.0E-01 

p-value < 0.05 corrected 3.1E-02 2.8E-01 
Significance No No 
RMSE  21.73 22.21 
MAE 15.31 14.50 
GAM model 
R2 -0.07 -0.02 
p-value  3.2E-01 7.0E-01 
RMSE  12.02 21.69 
MAE  9.60 15.25 
Group 2 

  

Linear model 
R2 0.06 0.00 
p-value < 0.05 1.2E-01 8.6E-01 
p-value < 0.05 corrected 7.5E-01 1.2E-01 
Significance No No 
RMSE  13.14 13.62 
MAE 10.96 10.10 
GAM model 
R2 0.07 -0.08 
p-value  1.2E-01 8.6E-01 
RMSE  13.14 12.63 
MAE  10.96 8.96 
Group 3 

  

Linear model 
R2   0.09 0.21 
p-value < 0.05 1.3E-01 2.9E-02 
p-value < 0.05 corrected 6.6E-01 1.3E-01 
Significance No No 
RMSE  9.37 9.71 
MAE 7.38 7.81 
GAM model 
R2 0.44 0.01 
p-value 1.0E-01 2.9E-02 
RMSE  8.81 9.42 
MAE  7.25 7.51 
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A 13: Statistical values of the linear model and the GAM model for soil 
moisture in 12 and 30 cm depth and GPP. 
 
GPP Soil Moisture, 12 cm [%] Soil Moisture, 30 cm [%] 
Group 1 

  

Linear model 
R2  0.00 0.00 
p-value < 0.05 6.6E-01 6.6E-01 

p-value < 0.05 corrected 1.8E-02 6.6E-01 
Significance No No 
RMSE  22.47 22.87 
MAE 19.06 19.22 
GAM model 
R2 0.06 0.32 
p-value  5.1E-02 2.7E-04 
RMSE  21.58 20.30 
MAE  18.10 15.53 
Group 2 

  

Linear model 
R2  0.01 0.03 
p-value < 0.05 3.2E-01 2.0E-01 
p-value < 0.05 corrected 2.1E-03 3.2E-01 
Significance Yes No 
RMSE  17.04 17.68 
MAE 13.77 14.37 
GAM model 
R2 0.04 0.07 
p-value  1.6E-01 1.1E-01 
RMSE  16.91 14.15 
MAE  13.48 12.35 
Group 3 

  

Linear model 
R2 0.11 0.55 
p-value < 0.05 4.4E-02 2.1E-07 
p-value < 0.05 corrected 1.5E-09 8.8E-02 
Significance Yes Yes 
RMSE  14.62 12.17 
MAE 12.70 10.12 
GAM model 
R2 0.08 0.55 
p-value  4.4E-02 1.4E-06 
RMSE  14.62 10.32 
MAE  12.70 8.15 
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A 14: Statistical values of the linear model and the GAM model for soil 
temperature (Tsoil) in 5, 10, 20 and 30 cm depth and NEE. 
 
NEE Tsoil, 5cm Tsoil, 10 cm Tsoil, 20 cm Tsoil, 30 cm 
Group 1 

    

Linear model 
R2 0.01 0.03 0.05 0.08 
p-value < 0.05 3.3E-01 1.2E-01 3.9E-02 6.9E-02 
p-value < 0.05 corrected 1.0E+00 5.0E-01 2.3E-01 7.7E-02 
Significance No No Yes No 
RMSE  30.50 29.06 29.86 32.88 
MAE 24.07 21.92 22.40 23.45 
GAM model 
R2 0.07 0.33 0.11 0.10 
p-value  3.3E-01 8.9E-03 3.9E-02 8.0E-02 
RMSE  30.06 28.54 25.28 17.58 
MAE  23.85 21.11 19.93 15.42 
Group 2 

    

Linear model 
R2 0.01 0.21 0.34 0.11 
p-value < 0.05 3.7E-01 6.3E-05 1.1E-07 2.6E-02 
p-value < 0.05 corrected 5.7E-01 7.4E-01 1.3E-04 2.3E-07 
Significance No no Yes Yes 
RMSE  22.08 21.75 18.74 24.75 
MAE 18.06 17.18 15.22 19.13 
GAM model 
R2 0.08 0.05 0.06 0.10 
p-value  1.9E-02 1.8E-04 1.7E-06 2.6E-02 
RMSE  19.20 17.80 16.45 15.78 
MAE  15.53 14.59 13.72 12.68 
Group 3 

    

Linear model 
R2 0.37 0.42 0.39 0.55 
p-value < 0.05 1.25E-04 3.08E-05 8.03E-05 1.70E-06 
p-value < 0.05 corrected 1.00E+00 2.49E-04 6.15E-05 1.61E-04 
Significance Yes Yes Yes Yes 
RMSE  17.71 18.98 18.73 19.91 
MAE 14.84 15.17 15.60 16.89 
GAM model 
R2 0.41 0.51 0.69 0.57 
p-value  2.7E-04 1.1E-04 1.7E-05 6.7E-06 
RMSE  13.07 12.48 11.50 10.78 
MAE  10.96 10.23 9.17 9.27 
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A 15: Statistical values of the linear model and the GAM model for soil 
temperature (Tsoil) in 5, 10, 20 and 30 cm depth and ER. 
 
ER Tsoil, 5cm Tsoil, 10 cm Tsoil, 20 cm Tsoil, 30 cm 
Group 1 

    

Linear model 
R2  0.01 0.01 0.03 0.17 
p-value < 0.05 5.8E-01 4.3E-01 2.6E-01 3.1E-02 
p-value < 0.05 corrected 2.5E-01 5.8E-01 4.3E-01 2.6E-01 
Significance No No No Yes 
RMSE  22.19 22.10 21.40 23.67 
MAE 15.22 14.97 14.20 16.60 
GAM model 
R2 0.09 0.13 0.53 0.44 
p-value  2.1E-01 4.3E-01 2.6E-01 5.2E-02 
RMSE  21.66 22.42 15.61 12.02 
MAE  14.89 16.15 11.54 9.60 
Group 2 

    

Linear model 
R2 0.02 0.07 0.04 0.00 
p-value < 0.05 4.0E-01 9.7E-02 2.0E-01 7.5E-01 
p-value < 0.05 corrected 6.7E-02 4.0E-01 9.7E-02 2.0E-01 
Significance No No No No 
RMSE  14.00 12.82 13.10 14.00 
MAE 10.42 9.65 9.95 10.04 
GAM model 
R2 0.01 -0.08 -0.08 -0.08 
p-value  4.0E-01 9.7E-02 2.8E-01 7.5E-01 
RMSE  11.66 11.35 11.42 9.00 
MAE  9.13 8.71 8.82 6.55 
Group 3 

    

Linear model 
R2 0.07 0.08 0.00 0.01 
p-value < 0.05 1.99E-01 1.58E-01 8.49E-01 6.56E-01 
p-value < 0.05 corrected 4.91E-01 1.99E-01 1.58E-01 8.49E-01 
Significance No No No No 
RMSE  9.61 9.43 9.81 9.98 
MAE 7.47 7.37 7.88 7.96 
GAM model 
R2 -0.10 -0.11 0.18 0.00 
p-value  2.0E-01 1.6E-01 4.5E-01 4.9E-01 
RMSE  9.37 9.43 9.37 10.06 
MAE  7.23 7.37 7.61 8.34 
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A 16: Statistical values of the linear model and the GAM model for soil 
temperature (Tsoil) in 5, 10, 20 and 30 cm depth and GPP. 
 
GPP Tsoil, 5cm Tsoil, 10 cm Tsoil, 20 cm Tsoil, 30 cm 
Group 1 

    

Linear model 
R2  0.01 0.06 0.14 0.14 
p-value < 0.05 3.5E-01 2.7E-02 5.4E-04 1.8E-02 
p-value < 0.05 corrected 7.5E-02 3.5E-01 2.7E-02 5.4E-04 
Significance No Yes Yes Yes 
RMSE  22.63 23.12 22.35 24.35 
MAE 19.18 19.21 18.76 19.95 
GAM model 
R2  0.01 0.18 0.13 0.12 
p-value  4.5E-01 1.8E-04 5.4E-04 1.8E-02 
RMSE  22.14 20.00 21.03 23.23 
MAE  18.72 14.49 17.51 19.02 
Group 2 

    

Linear model 
R2  0.00 0.13 0.30 0.19 
p-value < 0.05 7.5E-01 2.1E-03 1.1E-06 2.1E-03 
p-value < 0.05 corrected 7.0E-04 7.5E-01 2.1E-03 1.1E-06 
Significance No Yes Yes Yes 
RMSE  17.47 16.99 15.92 19.63 
MAE 14.03 13.49 13.11 15.85 
GAM model 
R2 0.07 0.15 0.29 0.17 
p-value  6.3E-02 3.5E-03 1.3E-06 2.1E-03 
RMSE  16.94 16.17 14.90 13.05 
MAE  13.48 12.85 12.47 10.76 
Group 3 

    

Linear model 
R2  0.40 0.49 0.56 0.73 
p-value < 0.05 5.5E-05 4.2E-06 3.1E-07 7.5E-10 
p-value < 0.05 corrected 4.0E-01 1.1E-04 8.3E-06 6.2E-07 
Significance Yes Yes Yes Yes 
RMSE  11.88 12.46 14.27 18.51 
MAE 9.65 9.77 10.51 13.20 
GAM model 
R2  0.39 0.50 0.55 0.73 
p-value  1.4E-04 1.9E-05 3.8E-07 2.0E-16 
RMSE  11.75 10.56 10.11 8.06 
MAE  9.58 8.78 8.01 6.64 
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 A 17: Statistical values of the linear model and the GAM model for pH, TD 
and NEE. 
 
NEE pH TD 
Group 1 

 

Linear model 
 

R2 0.24 0.09 
p-value < 0.05 5.0E-06 5.5E-03 
p-value < 0.05 corrected 2.2E-02 1.0E-05 
Significance Yes Yes 
RMSE  29.37 31.13 
MAE 20.84 25.22 
GAM model 
R2 0.79 0.17 
p-value  2.7E-05 5.5E-03 
RMSE  26.41 26.74 
MAE  17.62 21.09 
Group 2 

  

Linear model 
R2 0.31 0.27 
p-value < 0.05 2.2E-07 2.0E-06 
p-value < 0.05 corrected 3.1E-05 2.2E-07 
Significance Yes Yes 
RMSE  18.25 18.79 
MAE 13.53 14.64 
GAM model 
R2 0.38 0.19 
p-value  2.0E-16 1.6E-05 
RMSE  15.95 18.68 
MAE  12.20 14.53 
Group 3 

  

Linear model 
R2 0.32 0.43 
p-value < 0.05 1.8E-04 5.8E-06 
p-value < 0.05 corrected 1.2E-01 3.2E-04 
Significance Yes Yes 
RMSE  15.76 14.41 
MAE 13.73 11.66 
GAM model 
R2 0.39 0.62 
p-value  5.5E-04 1.8E-05 
RMSE  15.25 13.82 
MAE  13.20 11.03 
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A 18: Statistical values of the linear model and the GAM model for pH, TD 
and ER. 
 
ER pH TD 
Group 1 

  

Linear model 
R2 0.00 0.00 
p-value < 0.05 7.3E-01 9.6E-01 
p-value < 0.05 corrected 3.4E-01 7.3E-01 
Significance No No 
RMSE  21.89 21.95 
MAE 14.61 14.90 
GAM model 
R2 0.10 0.65 
p-value GAM 5.0E-01 7.7E-01 
RMSE  21.68 22.14 
MAE  14.10 15.21 
Group 2 

  

Linear model 
R2  0.00 0.02 
p-value < 0.05 7.3E-01 3.7E-01 
p-value < 0.05 corrected 3.4E-01 3.7E-02 
Significance No No 
RMSE  21.89 13.40 
MAE 14.61 10.28 
GAM model 
R2 0.10 -0.08 
p-value  5.0E-01 3.7E-01 
RMSE  21.68 13.40 
MAE  14.10 10.28 
Group 3 

  

Linear model 
R2 0.04 0.03 
p-value < 0.05 3.1E-01 4.0E-01 
p-value < 0.05 corrected 1.6E-01 6.3E-01 
Significance No No 
RMSE  9.62 10.09 
MAE 7.54 7.98 
GAM model 
R2 0.04 -0.12 
p-value  3.4E-01 4.0E-01 
RMSE  9.28 9.86 
MAE  7.36 7.71 
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A 19: Statistical values of the linear model and the GAM model for pH, TD 
and GPP. 
 
GPP pH TD 
Group 1 

  

Linear model 
R2  0.23 0.17 
p-value < 0.05 0.06 1.2E-05 
p-value < 0.05 corrected 0.05 0.03 
Significance Yes Yes 
RMSE  22.85 20.55 
MAE 19.39 17.45 
GAM model 

 

R2  0.42 0.17 
p-value  2.0E-16 5E-04 
RMSE  15.61 20.30 
MAE  12.52 17.51 
Group 2 

  

Linear model 
R2 0.17 0.30 
p-value < 0.05 2.9E-04 3.7E-07 
p-value < 0.05 corrected 3.9E-06 2.9E-04 
Significance Yes Yes 
RMSE  15.92 14.59 
MAE 12.35 11.76 
GAM model 
R2  0.15 0.29 
p-value  2.9E-04 5.2E-07 
RMSE  15.92 14.59 
MAE  12.35 11.76 
Group 3 

  

Linear model 
R2 0.35 0.53 
p-value < 0.05 8.3E-05 1.6E-07 
p-value < 0.05 corrected 6.2E-03 8.3E-05 
Significance Yes Yes 
RMSE  12.50 10.60 
MAE 10.89 7.56 
GAM model 
R2  0.52 0.53 
p-value  1.1E-06 1.4E-06 
RMSE  10.42 10.40 
MAE  8.32 7.55 
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 A 20: Statistical values of the linear model and the GAM model for NDVI 
and NEE. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

NEE NDVI 
Group 1 

 

Linear model 
R2 0.07 
p-value < 0.05 1.1E-02 
p-value < 0.05 corrected 1.7E-01 
Significance Yes 
RMSE  29.05 
MAE 21.87 
GAM model 
R2 0.36 
p-value  1.1E-02 
RMSE  28.43 
MAE  20.74 
Group 2 

 

Linear model 
R2 0.21 
p-value < 0.05 3.1E-05 
p-value < 0.05 corrected 5.5E-01 
Significance No 
RMSE  19.48 
MAE 15.29 
GAM model 
R2 0.58 
p-value  2.0E-16 
RMSE  17.13 
MAE  12.99 
Group 3 

 

Linear model 
R2   0.25 
p-value < 0.05 1.1E-03 
p-value < 0.05 corrected 1.5E-11 
Significance Yes 
RMSE  16.51 
MAE 14.23 
GAM model 
R2 0.40 
p-value  5.2E-05 
RMSE  14.36 
MAE  11.98 
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A 21: Statistical values of the linear model and the GAM model for NDVI 
and ER. 
 
ER NDVI 
Group 1 

 

Linear model 
R2 0.02 
p-value < 0.05 3.4E-01 
p-value < 0.05 corrected 7.0E-01 
Significance No 
RMSE  21.79 
MAE 15.48 
GAM model 
R2 0.07 
p-value  4.3E-01 
RMSE  21.70 
MAE  15.44 
Group 2 

 

Linear model 
R2 0.01 
p-value < 0.05 8.6E-01 
p-value < 0.05 corrected 1.5E-03 
Significance yes 
RMSE  13.49 
MAE 10.43 
GAM model 
R2 0.19 
p-value  4.9E-03 
RMSE  11.74 
MAE  9.13 
Group 3 

 

Linear model 
R2 0.08 
p-value < 0.05 1.6E-01 
p-value < 0.05 corrected 2.9E-02 
Significance yes 
RMSE  9.44 
MAE 7.50 
GAM model 
R2 0.04 
p-value  2.25E-01 
RMSE  9.35 
MAE  7.44 
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A 22: Statistical values of the linear model and the GAM model for NDVI 
and GPP. 
 
GPP NDVI 
Group 1 

 

Linear model 
R2  0.06 
p-value < 0.05 3.0E-02 
p-value < 0.05 corrected 6.6E-01 
Significance Yes 
RMSE  21.86 
MAE 18.85 
GAM model 
R2  0.15 
p-value  0.00 
RMSE  20.49 
MAE  17.69 
Group 2 

 

Linear model 
R2  0.25 
p-value < 0.05 3.9E-06 
p-value < 0.05 corrected 2.0E-01 
Significance Yes 
RMSE  15.05 
MAE 11.51 
GAM model 
R2  0.24 
p-value  4E-06 
RMSE  15.05 
MAE  11.51 
Group 3 

 

Linear model 
R2  0.21 
p-value < 0.05 3.1E-03 
p-value < 0.05 corrected 4.3E-07 
Significance Yes 
RMSE  13.71 
MAE 11.86 
GAM model 
R2  0.64 
p-value  2.0E-16 
RMSE  9.02 
MAE  7.07 
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A 23: Statistical values of the linear model and the GAM model for air 
temperature, PAR and NEE. 
 
NEE Air temperature PAR 
Group 1 

  

Linear model 
R2 0.00 0.00 
p-value < 0.05 0.90 0.87 
p-value < 0.05 corrected 1.00 1.00 
Significance No No 
RMSE  30.16 30.16 
MAE 23.34 23.39 
GAM model 
R2 -0.01 0.13 
p-value  0.90 0.87 
RMSE  30.16 30.16 
MAE  23.34 23.39 
Group 2 

  

Linear model 
R2 0.01 0.02 
p-value < 0.05 0.45 0.29 
p-value < 0.05 corrected 0.00 0.45 
Significance yes No 
RMSE  21.87 21.79 
MAE 18.36 18.20 
GAM model 
R2 0.08 0.08 
p-value  0.03 0.29 
RMSE  20.79 21.79 
MAE  16.87 18.20 
Group 3 

  

Linear model 
R2 0.01 0.00 
p-value < 0.05 0.56 0.82 
p-value < 0.05 corrected 0.63 1.00 
Significance No No 
RMSE  19.00 19.07 
MAE 15.84 15.82 
GAM model 
R2 0.02 0.01 
p-value  0.45 0.48 
RMSE  18.50 18.54 
MAE  15.64 15.31 
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A 24: Statistical values of the linear model and the GAM model for air 
temperature, PAR and ER. 
 

 
 
 
 
 
 
  

ER Air temperature PAR 
Group 1 

  

Linear model 
R2 0.01 0.03 
p-value < 0.05 0.57 0.25 
p-value < 0.05 corrected 0.57 0.57 
Significance No No 
RMSE  21.91 21.70 
MAE 14.63 14.88 
GAM model 
R2 0.01 -0.05 
p-value  0.50 0.25 
RMSE  21.56 21.70 
MAE  14.72 14.88 
Group 2 

  

Linear model 
R2 0.10 0.08 
p-value < 0.05 0.04 0.07 
p-value < 0.05 corrected 0.52 0.08 
Significance no No 
RMSE  12.85 12.99 
MAE 10.17 10.43 
GAM model 
R2 0.08 -0.01 
p-value  0.04 0.07 
RMSE  12.84 12.99 
MAE  10.16 10.43 
Group 3 

  

Linear model 
R2  0.04 0.02 
p-value < 0.05 0.35 0.49 
p-value < 0.05 corrected 0.35 0.35 
Significance No No 
RMSE  9.65 9.73 
MAE 7.84 7.77 
GAM model 
R2 0.01 0.46 
p-value  0.46 0.61 
RMSE  9.55 9.64 
MAE  7.79 7.77 
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A 25: Statistical values of the linear model and the GAM model for air 
temperature, PAR and GPP. 
 
GPP Air temperature PAR 
Group 1 

  

Linear model 
R2  0.01 0.04 
p-value < 0.05 3.8E-01 7.5E-02 
p-value < 0.05 corrected 6.4E-01 3.8E-01 
Significance No No 
RMSE  22.39 22.06 
MAE 18.94 18.39 
GAM model 
R2 0.00 0.04 
p-value  3.8E-01 1.3E-01 
RMSE  22.39 21.90 
MAE  18.94 18.30 
Group 2 

  

Linear model 
R2 0.02 0.15 
p-value < 0.05 2.7E-01 7.0E-04 
p-value < 0.05 corrected 8.5E-01 2.7E-01 
Significance No Yes 
RMSE  17.29 16.10 
MAE 13.92 12.48 
GAM model 
R2 0.07 0.13 
p-value  5E-02 7E-04 
RMSE  16.63 16.10 
MAE  13.07 12.48 
Group 3 

  

Linear model 
R2 0.04 0.02 
p-value < 0.05 2.2E-01 4.0E-01 
p-value < 0.05 corrected 6.4E-01 4.4E-01 
Significance No No 
RMSE  15.14 15.30 
MAE 13.19 13.59 
GAM model 
R2 0.11 0.01 
p-value  8.4E-02 4.8E-01 
RMSE  14.26 15.05 
MAE  12.62 13.57 
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Group 1 

Group 2 

Group 3 

A 26: Non-significant non-linear relations in all groups between soil moisture 
across all depths and CO2 fluxes produced by the GAM model for the 
measuring period 2023. The plots are sorted by CO2 fluxes in the respective 
groups. 
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A 27: Non-significant non-linear relations in all groups between soil 
temperature across all depths and CO2 fluxes produced by the GAM model 
for the measuring period 2023. The plots are sorted by CO2 fluxes in the 
respective groups. 

Group 1 

Group 2 
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Group 3 

Continuing plot of A27: Non-significant non-linear relations in all groups 
between soil temperature across all depths and CO2 fluxes produced by 
the GAM model for the measuring period 2023. The plots are sorted by CO2 
fluxes in the respective groups. 
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Group 1 Group 2 

Group 3 

A 29: Non-significant non-linear relations in all groups between pH and ER 
flux produced by the GAM model for the measuring period 2023. 

Group 1 Group 2 

Group 3 

A 28: Non-significant non-linear relations in all groups between TD and CO2 
fluxes produced by the GAM model for the measuring period 2023. The plots 
are sorted by CO2 fluxes in the respective groups. 
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A 30: Non-significant non-linear relations in all groups between NDVI and 
CO2 fluxes produced by the GAM model for the measuring period 2023. 
The plots are sorted by CO2 fluxes in the respective groups. 

Group 3 Group 1 

Group 1 

Group 2 

Group 3 

A 31: Non-significant non-linear relations in all groups between PAR and CO2 
fluxes produced by the GAM model for the measuring period 2023. The plots 
are sorted by CO2 fluxes (NEE, ER, GPP) in the respective groups. 
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Group 1 

Group 3 

A 32: Non-significant non-linear relations in all groups between air 
temperature and CO2 fluxes produced by the GAM model for the measuring 
period 2023. The plots are sorted by CO2 fluxes (NEE, ER, GPP) in the respective 
groups. 
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Group 1 

Group 2 

A 33: Linear regression plots with equation and corresponding p-value 
between NEE and soil moisture in 12 cm as well as 30 cm depth. The blue 
line represents the regression line and the dark grey area the confidence interval. 

Group 3 
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A 34: Linear regression plots with equation and corresponding p-value 
between ER and soil moisture in 12 cm as well as 30 cm depth. The blue line 
represents the regression line and the dark grey area the confidence interval. 

Group 1 

Group 3 

Group 2 
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A 35: Linear regression plots with equation and corresponding p-value 
between GPP and soil moisture in 12 cm as well as 30 cm depth of the groups 
1, 2 and 3. The blue line represents the regression line and the dark grey area the 
confidence interval. 

Group 1 

Group 2 

Group 3 



  96 

 

A 37: Linear regression plots with equation and corresponding p-value 
between NEE and soil temperature across all depths of Group 2. The blue line 
represents the regression line and the dark grey area the confidence interval. 

A 36: Linear regression plots with equation and corresponding p-value 
between NEE and soil temperature across all depths of Group 1. The blue line 
represents the regression line and the dark grey area the confidence interval. 
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A 39: Linear regression plots with equation and corresponding p-value 
between ER and soil temperature across all depths of Group 1. The blue line 
represents the regression line and the dark grey area the confidence interval. 

A 38: Linear regression plots with equation and corresponding p-value 
between NEE and soil temperature across all depths of Group 3. The blue line 
represents the regression line and the dark grey area the confidence interval. 
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A 41: Linear regression plots with equation and corresponding p-value 
between ER and soil temperature across all depths of Group 3. The blue line 
represents the regression line and the dark grey area the confidence interval. 

A 40: Linear regression plots with equation and corresponding p-value 
between ER and soil temperature across all depths of Group 2. The blue line 
represents the regression line and the dark grey area the confidence interval. 
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A 42: Linear regression plots with equation and corresponding p-value 
between GPP and soil temperature across all depths of Group 1. The blue line 
represents the regression line and the dark grey area the confidence interval. 

A 43: Linear regression plots with equation and corresponding p-value 
between GPP and soil temperature across all depths of Group 2. The blue line 
represents the regression line and the dark grey area the confidence interval. 
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A 45: Linear regression plots with equation and corresponding p-value 
between NEE and TD of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 

Group 3 

Group 1 Group 2 

A 44: Linear regression plots with equation and corresponding p-value 
between GPP and soil temperature across all depths of Group 3. The blue line 
represents the regression line and the dark grey area the confidence interval. 
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Group 1 Group 2 

Group 3 

A 46: Linear regression plots with equation and corresponding p-value 
between ER and TD of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 

Group 2 

A 47: Linear regression plots with equation and corresponding p-value 
between GPP and TD of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 

Group 1 Group 2 

Group 3 
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Group 1 Group 2 

Group 3 

A 49: Linear regression plots with equation and corresponding p-value 
between ER and pH of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 

Group 1 Group 2 

Group 3 

A 48: Linear regression plots with equation and corresponding p-value 
between NEE and pH of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 
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Group 1 Group 2 

Group 3 

A 51: Linear regression plots with equation and corresponding p-value 
between NEE and NDVI of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 

A 50: Linear regression plots with equation and corresponding p-value 
between GPP and pH of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval.  

Group 1 Group 2 

Group 3 



  104 

 

Group 1 Group 2 

Group 3 

A 52: Linear regression plots with equation and corresponding p-value 
between ER and NDVI of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 

A 53: Linear regression plots with equation and corresponding p-value 
between GPP and NDVI of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 

Group 1 Group 2 

Group 3 
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A 55: Linear regression plots with equation and corresponding p-value 
between ER and PAR of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 

Group 1 Group 2 

Group 3 

Group 1 Group 2 

Group 3 

A 54: Linear regression plots with equation and corresponding p-value 
between NEE and PAR of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 
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Group 1 Group 2 

Group 3 

A 57: Linear regression plots with equation and corresponding p-value 
between NEE and air temperature of the groups 1, 2 and 3. The blue line 
represents the regression line and the dark grey area the confidence interval. 

A 56: Linear regression plots with equation and corresponding p-value 
between GPP and PAR of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 

Group 1 Group 2 

Group 3 
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Group 1 Group 2 

Group 3 

A 58: Linear regression plots with equation and corresponding p-value between 
ER and air temperature of the groups 1, 2 and 3. The blue line represents the 
regression line and the dark grey area the confidence interval. 

A 59: Linear regression plots with equation and corresponding p-value 
between GPP and air temperature of the groups 1, 2 and 3. The blue line 
represents the regression line and the dark grey area the confidence interval. 

Group 1 Group 2 

Group 3 

Group 1 Group 2 

Group 3 
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