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Abstract: We report on the synthesis of two fluorescent probes which can be activated by β-
Galactosidase (β-Gal) enzymes and/or light. The probes contained 2-nitro-4-oxybenzyl and 3-
nitro-4-oxybenzyl fragments, with β-Gal residues linked to C-4. We performed the enzymatic and
photoactivation of the probes in a cuvette and compared them, prior to the labeling of Vimentin–Halo
fusion protein in live cells with overexpressed β-galactosidase. The dye fluorescence afforded the
observation of enzyme activity by means of confocal and super-resolution optical microscopy based
on stimulated emission depletion (STED). The tracing of enzymatic activity with the retention of
activated fluorescent products inside cells was combined with super-resolution imaging as a tool for
use in biomedicine and life science.

Keywords: fluorescence; photoactivation; enzyme activation; STED microscopy; organic synthesis;
fluorescent dyes

1. Introduction

Owing to high detection sensitivity, spatiotemporal resolution, and non-invasive real-
time read-out, fluorescence techniques provide a powerful tool with which to visualize
the dynamic processes in living specimens [1–3]. Many human diseases, especially cancer,
have proven to be strongly associated with enzyme activities. Enzymes play a fundamental
and often crucial role in the clinical diagnosis and treatment of diseases [3–9], and their
activities are measured by means of fluorescence read-out [10–12]. Responsive fluorescent
probes stay in an off state until they are turned on by interacting with a specific biological
target (e.g., enzyme). Nowadays, STED microscopy has become a routine super-resolution
technique, but it has not yet become widely used in experiments involving enzymatically
activatable probes.

β-Galactosidase (β-Gal), a typical glycoside hydrolase enzyme, is involved in the
catalytic hydrolysis of glycosidic bonds; it converts lactose into galactose [6,13]. Previous
studies have shown that levels of β-galactosidase are upregulated in cancer, particularly
ovarian cancer [5,13,14]. In addition, the senescence-associated β-galactosidase (SA-β-Gal)
expressed in lysosomes is commonly used as a biomarker that identifies senescent cells and
aging tissues [15,16], and these cells exhibit a higher level of β-Gal activity compared to
normal human cells [17]. The development of accurate, rapid, and efficient methods for
visualizing, monitoring, and tracking the activity of β-Gal is important for early cancer
diagnosis. Various fluorescent probes have been developed to assess activity and visualize
β-Gal distribution in cancer and senescent cells [5,6,13,18–21].

One of the drawbacks of the reported probes is their poor retention of activated
fluorescent products within cells. To prevent diffusion out of cells, biorthogonal reaction-
based strategies, like click reaction and quinone methide chemistry, were applied [18,22].
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The covalent attachment of fluorophores to an enzyme as a tool with which to retain dyes
within cells possibly causes enzyme dysfunction and leads to its inactivation [23,24]. Some
existing probes are membrane-impermeable and show low responses [5]. Hence, there is a
need for new fluorogenic probes to provide the on-site and long-term visualization of β-Gal
activity in living cells and retain fluorescent products inside cells. Addressing this challenge,
we prepared two structurally related fluorescent probes used to target β-Gal in living cells.
For that, we selected a bright, photostable and bio-compatible fluorophore (Scheme 1) and
masked (“caged”) its fluorescence emission by the addition of two enzymatically cleavable
groups connected with photocleavable units. Both probes are dual-responsive and can
be activated using enzymes and/or light. We found that a slight change in the structure
of the caging group (at the position of the nitro group in the phenyl ring) resulted in
sharp variation in the activation profile. The first probe (Scheme 1) is more responsive
to β-Gal than the second one, while the second one is more responsive to violet and UV
light (365–405 nm) than the first one. The dual response (enzyme + light) may be used in
experiments when the enzymatic activity is low, and the probe localization, distribution or
dynamics may be revealed or tracked by “light injections” (photolysis).
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activation).
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2. Results and Discussion
2.1. Design and Synthesis

As a dye, we selected carborhodamine 580CP, which emits at 607 nm (emission
maxima). The dye 580CP is bright and photostable with a very good imaging performance
in conventional (widefield, confocal) and super-resolution STED microscopy [25]. In our
previous reports, we incorporated 580CP into the structure of actin and nucleopore probes
for STED and MINFLUX nanoscopy [26]. Apart from the dye, two galactose residues were
incorporated as enzyme recognition units and connected with two photocleavable caging
groups to fully eliminate the emission of the dye by keeping it in a spirolactone (masked)
form (Scheme 1).

The activatable probes shown in Scheme 1 contain two enzymatically cleavable galac-
tose units, bound with two “self-immolative” [27] groups (3- or 2-nitrobenzyl) through
glycosidic bonds (at C-4 in benzyl). The carbamate groups are attached to methylene
carbons and keep the dye in a non-fluorescent “closed-ring” form, which can be subse-
quently activated upon detaching the sugar units using a β-Gal enzyme or photolysis.
The structure of the cleavable group in compound 1 [(3-nitro-4-oxybenzyl)oxycarbonyl]
is quite similar to the structure of the photocleavable (2-nitro-4-oxybenzyl)oxycarbonyl
group in compound 2 [26,28,29]. However, the cleavage mechanisms for enzyme reac-
tions and photoreactions are different. The β-Gal-responsive unit is attached to C-4 in
benzyl using an oxygen atom. Upon the detachment of the sugar units, caused by the
action of β-Gal, the caging groups are cleaved via “self-immolation”. The functionality of
2-nitrophenyl-β-D-galactopyranoside is due to its high affinity for β-Gal enzyme [30].

Activatable probes (compounds 1 and 2 in Scheme 1) contain a free COOH group for
attaching a HaloTag ligand (in our case; see Scheme 2) or preparing bioconjugates. We
wanted to create cell-permeable probes. The spirolactone form of the fluorophore has a
zero net charge (in conjugates when carboxylate is derivatized). The absence of negative
charge favors cell permeability. On the other hand, the molecular mass and molecular
size could not be reduced due to the presence of fluorophore and two caging groups.
These factors and the polycyclic structure reduce solubility in water and cell permeability.
Fortunately, the use of two sugar residues with eight hydroxyl groups would increase the
probe polarity and hydrophilic properties (compared to analogues with unsubstituted or
methoxy-substituted (2-nitrobenzyl)oxycarbonyl groups) [26,29]. Upon decoration with
a HaloTag ligand (Scheme 2), the probe is expected to be retained within cells containing
HaloTag constructs (in our case, Vimentin–Halo fusion). Thus, intracellular capture is
considered to be important in observing the activity of β-Gal in living cells for longer times
without the back-diffusion of the probe through the cell membrane. Dye fluorescence is
expected enable the assessment and visualization of enzyme activity (and its evolution in
time) by means of confocal and super-resolution STED microscopy.

In addition to probe 1 (Scheme 1), we planned to prepare its analog (compound 2),
which is also dual-responsive: it can be activated by β-Gal or light (Scheme 1). The dual-
responsive probes may be used in experiments when the enzymatic activity is low. In
these cases, the maximal level of observable emission can be assessed by photolysis. By
changing the position of the nitro group in the 3-nitro-4-oxybenzyl residue in compound 1,
we prepared the 2-nitrobenzyl analog (compound 2), which undergoes photolysis much
more readily than compound 1.

For probe 2, enzyme activation proceeds similarly to that in probe 1, while UV light
irradiation is supposed to involve proton transfer from CH2 to NO2 and the cleavage of
C-O bond between benzyl and the carbamate residue, liberating the substituted nitroso
benzaldehyde, CO2, and the activated dye. This is shown in Scheme 1 [31]. The pendant
COOH groups in probes 1, 2 can be used to attach any functionality (Scheme 2) required
for the labeling of biomacromolecules or other objects of interest.
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Scheme 2. The synthesis of carboxylic acids 1 and 2 with the various positions of the nitro group
(R1, R2) in the enzymatically and/or photocleavable caging groups (shown in frames), as well
as their analogs 5-H-HT and 7-H-HT, decorated with a HaloTagTM ligand. Reagents and condi-
tions: (a) CF3CO2H, CH2Cl2, rt, 16 h; (b) LiOH, aq. MeOH, rt, 1.5 h; (c) PyBOP, DIPEA, DMF,
H2N(CH2CH2O)2(CH2)6Cl, rt, 2 h; (d) LiOH, H2O, MeOH, rt, 6 h.

2.2. Synthesis of Probes 1 and 2

The syntheses of carboxylic acids 1 and 2 with the various positions of the nitro
group (R1, R2) in the enzymatically and/or photocleavable caging groups (shown in
frames in Scheme 2), as well as their analogs 5-H-HT and 7-H-HT—decorated with a
HaloTagTM ligand—are shown in Scheme 2. Compounds 4 and 6—sugar-substituted (at
C-4) 3- and 2-nitrobenzyl carbamates [32]—were prepared and combined in a Buchwald-
Hartwig amidation reaction (catalyzed by Pd-JackiePhos) [33] with compound 3 [6′-(tert-
butoxycarbonyl) carbofluorescein bis-triflate] [26] to produce esters 5-Ac-tBuO and 7-Ac-
tBuO, the desired caged 580CP dye derivatives with protecting groups. The deprotection
of 6′-tert-butyl carboxylates gave masked dyes 5-Ac-OH and 7-Ac-OH. The sugar moieties
in these dye-carboxylic acid derivatives were still acetylated and could be deprotected via
mild basic hydrolysis (or acetyl transfer in methanol) to obtain the target carboxylic acids 1
and 2 (Scheme 2).

Finally, we prepared activatable probes with a group (ligand), enabling the selective
and irreversible (covalent) labeling of HaloTag [34] fusion proteins in living cells. For that,
compounds 5-Ac-OH and 7-Ac-OH were reacted with the HaloTag amine (O2) to obtain
amides 5-Ac-HT and 7-Ac-HT, and after the cleavage of acetyl groups from sugar moieties, the
probes 5-H-HT and 7-H-HT were obtained (Scheme 2). The detailed synthetic procedures are
given in the Supporting Information (Schemes S3 and S6). As a target protein in living cells,
we used Vimentin–HaloTag fusion, which provides fast reaction [35,36]. There are several
stable cell lines that have this protein tag, which is fused with Vimentin, proteins in nuclear
pore complexes, and other targets [37]. The structures of all compounds were confirmed via
NMR spectra. The copies of 1H- and 13C-NMR spectra are given in Supporting Information.
The constitution and purity degrees of probes 1 and 2 were determined via HR-MS and HPLC
analyses, respectively. The transformations (enzymatic, (photo)chemical) of probes 1 and
2 were monitored by UV-Vis and fluorescence spectroscopy, as well as HPLC and LCMS
analysis.
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2.3. Activation and Optical Characterization

The activation of the probes 1 and 2 and their response towards β-Gal was tested using
absorption and fluorescence spectroscopy. First, we investigated the enzymatic activation
of carboxylic acid 1 by β-Gal in a cuvette experiment. For that, we confirmed the enzyme
activity in a control run with o-nitrophenyl-β-D-galactopyranoside (ONPG) (see Scheme S1
and Figure S1 in Supporting Information). With low concentrations of a model substrate
(ONPG), the reaction kinetics can be approximated with a simple monoexponential function
(see Figure S1). Then, we determined the response of carboxylic acid 1 (with NO2 group in
the ortho-position to galactose residue) to β-Gal enzyme by monitoring the absorption and
fluorescence spectra in an aqueous phosphate buffer (100 mM, pH = 7) at 37 ◦C (Figure 1).
A remarkable increase in the emission intensity was observed, and thus the workability of
this assay was demonstrated.
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Figure 1. Activation of carboxylic acid 1. (A) Absorption (left) and emission (right) increases in a
1.3 µM solution of compound 1 in aqueous phosphate buffer (pH = 7) at 37 ◦C, recorded upon stepwise
addition of β-galactosidase (3 units/mL). (B) Absorption (filled circles, left axis) and emission (hollow
circles, right axis) increases at the corresponding maxima, fitted to a double exponential function
(red and purple lines) and monitored in real time (0–5 min). The inset shows the enhancement of the
emission signal (black baseline: emission intensity before the enzyme addition; red line: emission
intensity upon saturation observed in the enzymatic cleavage of caging groups).

The sigmoidal shape of the absorption and emission responses was consistent with
two consecutive steps involving a non-emissive and colorless intermediate. Unsurprisingly,
only the final product absorbed and emitted light in the visible range. For compound
1, a reasonable fit was obtained for a double exponential function with the same kinetic
constant for both consecutive steps. Similar values of the pseudo-first-order rates were
observed for ONPG (0.046 s−1) and compound 1 (0.031 s−1) under identical conditions
(Figure S1). Thus, the enzymatic cleavage of each of the two glycosidic bonds proceeds
independently, within the uncertainty level, and at the studied range of substrate and
enzyme concentrations (Figure S2). For the reaction of compound 1, we found that the
absorption changes at 450 nm, dominated by the o-nitroso benzaldehyde byproduct, follow
a similar trend to that of the model substrate ONPG (i.e., a pseudo-monoexponential
behavior). This enabled the calculation of initial rates and the estimation of the Michaelis–
Menten constant KM (Figure S3). At 37 ◦C and pH = 7, we obtained a value of 0.115 mM
for compound 1, which was about half of the value found for the reference ONPG standard
(0.240 mM). Overall, compound 1 possesses an efficient double enzymatic “cage” that
minimizes the background emissions and produces an increase in the fluorescence signal
of at least 2 orders of magnitude upon activation (Figure 1B).
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2.4. Comparison of Enzymatic activation and Photoactivation of Probes 1 and 2

Both probes (1 and 2, Scheme 1) have linked β-galactose moieties and are activatable
by the action of β-Gal enzyme. In a comparative study of enzymatic activation, we observed
that under similar conditions, probe 1 underwent ca. ~10 times faster activation than probe
2 (Figure 2A). The main reason for this difference is that the para-quinone methide residue
(leaving group) in probe 1 is stabilized by the electron-acceptor nitro group. The two
structures of para-quinone methides that were based on 3- or 2-nitro-4-oxybenzyl groups
are shown in blue frames in Scheme 1. The parent para-quinone methide O=C6H4=CH2 ↔
−O–C6H4–CH2

+ has a negative charge for the oxygen atom and a positive one for the CH2
group. Thus, the nitro group in the ortho position to oxygen has a stabilizing effect, and the
same group in the ortho position to CH2 destabilizes the leaving group. Therefore, probe 1
has a better leaving group than probe 2 and possesses higher affinity for β-Gal [32]. This
explanation is appropriate if we assume that the hydrolytic cleavage of a glycosidic bond
by β-Gal is the rate-limiting step, and that the stability of the leaving group correlates with
the activation energy.
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enzymatic activation) in Scheme 1.

We compared the photoactivation and enzyme activation rates of compounds (1 and
2) under identical conditions (Figure 2A,B and Figure S4). To our surprise, the enzymatic
probe 1 could also be activated by light, though the activation rate was found to be 10 times
lower in comparison to that of probe 2 (Figure 2B). This was fitted to two consecutive
steps of photoinduced reaction models (Figure 2B), yielding uncaging quantum yields of
9.2 × 10−4 and 8.7 × 10−3 for compound 1, and of 7.5 × 10−3 and 7.4 × 10−2 for compound
2. An LCMS analysis of the irradiated solution showed a clean reaction to the expected
product (580CP) in both cases (Figure S5).

2.5. Labeling and Bio-Imaging
Confocal and STED Imaging with Probe 5-H-HT

After confirming the performance of probe 1 in cuvette experiments, we studied its
ability to trace β-galactosidase activity in living cells. We selected U-2 OS cells expressing
Vimentin–HaloTag fusion as a model. Vimentin is a type III intermediate filament protein
involved in various cellular functions, such as maintaining cell shape, stabilizing cytoskele-
tal interactions, and regulating cell division and migration [38–40]. Vimentin can also
modulate immune responses, extracellular matrix adhesions, cellular contractility, and
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biomechanics [40]. Changes in Vimentin morphology are associated with many pathologies,
such as cataracts, Crohn’s disease, rheumatoid arthritis, HIV, and cancer [38–41]. Vimentin
can act as a biomarker and a drug target for some of these conditions [41].

In order to overexpress β-galactosidase in U-2 OS cells, the commercially available
plasmid pSV-β-galactosidase control vector (Promega, Fitchburg, WI, USA, Cat.Nr. E1081)
was used for transfection. Here, the expression of the lacZ gene, which encodes the β-Gal,
is driven by the simian virus 40 (SV40) as an early promoter and enhancer. Cells with
and without overexpressed β-Gal were incubated with compound 5-H-HT (1 µM) for
30 min and then washed for 30 min. As expected, compound 5-H-HT showed a significant
fluorescence in live cells, with a stronger signal in cells overexpressing β-Gal than in
control cells (Figure 3). Probe 5-H-HT was shown to stay in an OFF state prior to β-Gal
activation and did not show any (photo)cytotoxicity. As expected, a high β-Gal level in
U-2 OS cells upon overexpression initiates the hydrolysis of glycosidic linkage between
β-D-galactopyranose and the phenyl group of the masking unit, which leads to the reaction
cascade (elimination of para-quinone methide, hydrolysis of urethane, opening of the
spiro-lactone ring) and the release of the highly emissive uncaged dye.
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Figure 3. Compound 5-H-HT in confocal fluorescence microscopy in living cells. Confocal maximum
projections of U-2 OS cells with Vimentin–Halo fusion from the endogenous locus without (A) and with
(B) overexpression of β-galactosidase from a plasmid. Cells were labeled with 1 µM of compound
5-H-HT. Scale bars: (A,B) 10 µm.

Compound 5-H-HT was demonstrated to be cell-permeable and to specifically label
Vimentin–Halo fusion proteins in living U-2 OS cells. By means of confocal microscopy,
we observed its transformation from a non-emissive to fluorescent state in the presence of
β-galactosidase. Due to its covalent binding with the HaloTag, the activated dye did not
diffuse from the cells. Due to the red emission of the dye, we planned to use the probe in
super-resolution STED imaging.

We tested this assumption by using living U-2 OS cells that displayed the Vimentin–
Halo fusion protein and overexpressed β-galactosidase from a plasmid. Labeling was
performed as described above, employing 1 µM of compound 5-H-HT for 30 min followed
by a washing step. Subsequently, the living cells were imaged in a STED microscope
(Figure 4). The excitation of the dye was performed with a 561 nm laser, and the super-
resolution effect was achieved by using a very powerful 775 nm STED laser and detection
in the 580–630 nm range. It became apparent that enzymatically activated compound
5-H-HT clearly produces Vimentin–Halo fusions with improved optical resolutions and
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excellent signal-to-noise ratios, providing diffraction-unlimited images, in comparison with
its confocal counterpart (Figure 4B).
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Figure 4. Compound 5-H-HT in live cell STED microscopy. Confocal and STED images of a U-2 OS
cell with Vimentin–Halo fusion from the endogenous locus, and overexpressing β-galactosidase from
a plasmid. Cells were labeled with 1 µM of compound 5-H-HT. (A) STED image, (B) inset from A
with Conf. and STED. Scale bars: (A) 5 µm; inset (B) 500 nm.

2.6. Confocal and STED Super-Resolution Imaging with Probe 7-H-HT

After proving the enzymatic and photoactivation ability of probe 2 in cuvette experi-
ments (Figure 2), we studied the behavior of probe 2 in live cell experiments and its ability
to sense β-Gal. We expect that the dual-responsive probe 7-H-HT should also perform
well in live cells in terms of labeling, β-Gal sensing, and bio-imaging. For this, U-2 OS
cells expressing Vimentin–Halo and overexpressing β-Gal were incubated with compound
7-H-HT (1 µM) for 30 min and then washed for 30 min. As expected, a high β-Gal level
in U-2 OS cells led to hydrolysis of the glycosidic linkage between β-D-galactopyranose
and the phenyl group of the masking unit, the release of free dye, and thus the detection of
β-Gal activity (Figure 5).

By means of confocal microscopy, we observed that compound 7-H-HT was cell-
permeable and specifically labeled U2OS cells that were stably expressing Vimentin–
HaloTag fusion protein. Due to covalent labeling of the HaloTag, the activated dye was
retained at the site of labeling inside the cells. The U-2 OS cells incubated with the probe
7-H-HT were imaged in a STED microscope under conditions similar to those of probe 5-H-
HT. The enzymatically activated dye produced good-quality STED images of Vimentin–Halo
fusions (Figure 5).
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3. Conclusions

Biocompatible, water-soluble, and cell-permeable fluorescent probes for detection
and imaging enzyme activities in organelles and tissues are in high demand in biomedical
research. When assessing and tracking enzyme activities in living cells over time, it is
important to retain fluorescent reporters inside cell. There are studies [18,22] addressing
this challenge, but they have restrictions and drawbacks [23,24]. Our approach is based
on the covalent attachment of the probe (non-activated fluorescent reporter) to the target
(a certain protein in a living cell). Therefore, this precludes the undesired diffusion of the
probe (non-activated and activated) out of the cell and can enable the placid observation of
cellular processes, with an option of super-resolution microscopy.

We designed and prepared β-Gal-responsive “caged” fluorescent probes 1 and 2 along
the straightforward, short, and high-yielding synthesis routes. The probes are structurally
similar; they differ only in the position of the nitro group in the phenyl ring of the cleavable
group. We compared photoactivation and enzyme activation rates of compounds (1 and
2) under identical conditions. The relative activation rates depend on the position of the
acceptor (nitro) group in para-quinone methide O=C6H4=CH2 ↔ −O–C6H4–CH2

+, and
these regularities may be used in the structural design of other enzyme and photoactivatable
probes. Both probes displayed a strong increase in emission intensity (from orange to
red) upon enzymatic activation with β-galactosidase in an aqueous buffer solution. The
conjugation of the probes with a HaloTagTM ligand enabled the specific labeling of a
Vimentin–HaloTag fusion protein in live cells. In a more general sense, this approach
may be used in designing photoactivatable and/or enzyme-responsive fluorescent probes
comprising bright and photostable dyes and targeting enzyme in living system by means
of super-resolution microscopy (with variable caging groups based on urethane protection).
Importantly, the probes 1 and 2 were found to be biocompatible and cell-permeable. Probe
2 is more responsive to light than probe 1. Therefore, it is used as a reference in experiments
when the enzymatic activity is lower, but a maximal level of observable emission is required
for quantitation. We believe that the modular approach presented in this work is suitable
for the development of other probes targeting various proteins of interest (by incorporating
suitable tags) and for detecting and measuring the levels of enzyme activities, other than
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those of β-galactosidase. For that, the cage groups may be modified (e.g., sugar structures
changed). The enzymatic response can be traced by means of confocal and super-resolution
fluorescence microscopy, thereby providing sensitive diagnostic tools for the diseases and
pathological states.

4. Materials and Methods
4.1. General

NMR spectra were recorded at 25 ◦C with an Agilent 400-MR spectrometer at 400 MHz
(1H), and 100.6 MHz (13C). 13C NMR spectra (125 MHz) were also acquired using a Bruker
Avance III HD 500 MHz (BBO Prodigy probe) instrument. Chemical shifts (δ) are reported
in ppm. All 1H-NMR spectra are referenced to tetramethylsilane (TMS; δ = 0 ppm) using
the signals of added TMS (0.03% v/v) or the residual proton signal of CHCl3 (7.26 ppm) in
CDCl3, CHD2OD (3.31 ppm) in CD3OD, CHD2CN (1.94 ppm) in CD3CN, and DMSO-d5
(2.50 ppm) in DMSO-d6. 13C NMR spectra are referenced to TMS (δ = 0 ppm) using the
signals of added TMS (0.03% v/v) or the solvent: CDCl3 (77.16 ppm), CD3OD (49.00 ppm),
or DMSO-d6 (39.52 ppm). Multiplicities of signals are described as follows: s = singlet; d
= doublet; t = triplet; q = quartet; p = pentet; m = multiplet or overlap of non-equivalent
resonances; and br. = broad signal. Coupling constants (J) are given in Hz.

ESI-MS were recorded on a Varian 500-MS spectrometer (Agilent, Santa Clara, CA,
USA). ESI-HRMS were recorded on a MICROTOF spectrometer (Bruker, Billerica, MA,
USA) equipped with an ESI ion source (Apollo, Chennai, India) and a direct injector with
an LC autosampler known as Agilent RR 1200.

High-performance liquid chromatography: Analytical HPLC was performed on a
Knauer Azura liquid chromatography system with a binary P6.1L pump, UV diode array
detector DAD 6.1L, an injection valve with a 20 µL loop, and two electrical switching valves
V2.1S with 6-port multiposition valve heads. Analytical columns: Knauer Eurospher II 100-
5 C18, 5 µm, 150 × 4 mm or Interchim Uptisphere Strategy C18-HQ, 10 µm, 250 × 4.6 mm,
and flow rate 1.2 mL/min, unless stated otherwise.

The preparative HPLC reverse phase was performed on an Interchim puriFlash
4250 2X preparative HPLC/Flash hybrid system (Advion-Interchim Scientific, Montluçon,
France) with a 2 mL or 5 mL injection loop, a 200–800 nm UV-Vis detector, and an integrated
ELSD detector. Preparative columns: Interchim Eurosphere II C18H 5 µm, 250 × 16 mm,
flow rate 10 mL/min; and Eurosphere II C18, 5 µm, 250 × 20 mm, and flow rate 20 mL/min,
unless specified otherwise.

Preparative flash column chromatography: Automated flash column chromatography
was performed in the normal phase with an Isolera One system (Biotage AG, Stockholm,
Sweden) using commercially available cartridges (RediSep Rf series from Teledyne ISCO,
Puriflash Silica HP 30 µm series from Interchim and Biotage Sfaer silica HC) and the solvent
gradient was indicated.

4.2. Synthetic Procedures

The intermediate compound 3 was prepared according to a procedure described
previously [26]. Synthetic protocols for carbamate 4 (Scheme S2), compound 5-H-HT
(Scheme 2), and carbamate 6 (Scheme S4), as well as the complete synthesis results of probe
2 and 7-HT (Scheme 2), are provided in the Supporting Information (Schemes S5 and S6).

4.3. Probe 1

4.3.1. Compound 5-Ac-tBuO

A mixture of compound 3 (20 mg, 28 µmol, 1 eq), compound 4 (38 mg, 66 µmol, 2.4 eq),
Jackie Phos Pd G3 (4.8 mg, 4.1 µmol, 15 mol%), Jackie Phos Ligand (3.3 mg, 4.1 µmol,
15 mol%), Cs2CO3 (25.5 mg, 80 µmol, 2.8 eq), and freshly dried 3A MS (7 beads) were taken
in a microwave vial (5 mL) and flushed with argon. Degassed dry toluene (1 mL) was
added; the vial was sealed and heated at 110 ◦C for 16 h in an oil bath. Upon cooling, the
resulting mixture was filtered on celite and washed with EtOAc (5×), and the filtrate was
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evaporated. The residue was purified via flash column chromatography on silica gel using
0–100% ethyl acetate in n-hexane to obtain compound 5-Ac-tBuO (25 mg, yield: 58%) as an
off-white solid. 1H NMR (400 MHz, CDCl3) δ 8.21 (dd, J = 8.0, 1.4 Hz, 1H), 8.07 (dd, J = 8.0,
0.7 Hz, 1H), 7.73 (t, J = 2.3 Hz, 2H), 7.65 (s, 1H), 7.58 (s, 2H), 7.36 (brs, 2H), 7.21 (dd, J = 8.8,
2.6 Hz, 2H), 7.08–7.01 (m, 2H), 6.74 (dd, J = 8.5, 1.0 Hz, 2H), 5.55–5.43 (m, 8H), 5.11–5.11
(m, 4H), 4.20–4.11 (m, 6H), 3.35 (s, 6H, NCH3), 2.18, 2.18 (s, 6H, COCH3), 2.06, 2.06 (s, 6H,
COCH3), 2.05, 2.04 (s, 6H, COCH3), 2.01, 2.01 (s, 6H, COCH3), 1.84 (s, 3H, C(CH3)2), 1.72 (s,
3H, C(CH3)2), 1.55 (s, 9H, C(CH3)3). 13C NMR (101 MHz, CDCl3) δ 170.5, 170.4 (C), 170.1
(C), 170.0 (C), 169.3 (C), 169.2 (C), 164.1 (C), 156.3 (C), 154.7 (C), 154.5 (C), 148.1 (C), 145.8
(C), 143.9 (C), 143.9 (C), 138.2 (C), 130.7 (CH), 130.5 (CH), 129.2 (C), 128.5 (CH), 126.9 (C),
125.3 (CH), 124.8 (CH), 124.1 (CH), 122.4 (CH), 122.2 (CH), 112.8, 112.7 (CH), 99.0 (CH),
85.6 (C), 82.7 (C), 71.6, 71.5 (CH), 70.6 (CH), 68.3 (CH), 66.9 (CH), 64.1, 64.1 (CH2), 61.6, 61.6
(CH2), 38.3 (C), 37.6 CH3), 34.8 (CH3), 33.1 (CH3), 28.0 (CH3), 20.7, 20.7 (CH3), 20.6 (CH3),
20.6 (CH3), 20.5 (CH3). HRMS (ESI) calcd for C74H78N4O32 [M+Na]+ 1557.4491, found
1557.4499.

4.3.2. Compound 5-Ac-OH

Trifluoroacetic acid (0.3 mL) was added dropwise to a solution of 5-Ac-tBuO (10 mg,
6.5 µmol) in CH2Cl2 (1.5 mL) at rt. The resulting solution was stirred at room temperature
for 16 h. The reaction mixture was co-distilled with toluene (3×) and then with acetonitrile
on rotary evaporator, and was dried under vacuum to obtain compound 5-Ac-OH (9 mg,
yield: 98%) as a light brown solid. 1H NMR (400 MHz, CD3CN) δ 8.27 (dd, J = 8.0, 1.3 Hz,
1H), 8.12 (dd, J = 8.0, 0.8 Hz, 1H), 7.70 (t, J = 2.2 Hz, 4H), 7.59 (dd, J = 1.4, 0.8 Hz, 1H), 7.44
(brs, 2H), 7.27 (d, J = 8.9 Hz, 2H), 7.13 (dt, J = 8.7, 1.8 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 5.44
(dt, J = 3.4, 1.0 Hz, 2H), 5.39 (brs, 4H), 5.37–5.30 (m, 4H), 5.23–5.15 (m, 2H), 4.33–4.26 (m,
2H), 4.13 (dt, J = 5.8, 1.7 Hz, 4H), 3.31 (s, 6H), 2.15, 2.14 (s, 6H), 2.02, 2.01 (s, 6H), 1.98, 1.97
(s, 6H), 1.95, 1.95 (s, 6H), 1.74 (s, 3H), 1.66 (s, 3H). 13C NMR (125 MHz, CD3CN) δ 171.2 (C),
171.1 (C), 170.8, 170.7 (C), 170.7 (C), 170.6 (C), 169.9 (C), 166.3 (C), 157.3 (C), 156.0 (C), 155.4
(C), 149.3 (C), 146.5 (C), 145.2 (C), 137.6 (C), 131.9, 131.9 (CH), 131.8 (CH), 130.1 (C), 129.1
(CH), 129.0 (CH), 127.5 (C), 126.6 (CH), 125.4 (CH), 125.3 (CH), 123.0 (CH), 113.5, 113.5 (CH),
99.4, 99.4 (CH), 86.1 (C), 72.4, 72.4 (CH), 71.3 (CH), 69.2, 69.2 (CH), 68.2 (CH), 64.6, 64.61
(CH2), 62.5, 62.5 (CH2), 39.1 (C), 38.0 (CH3), 34.5 (CH3), 33.7 (CH3), 20.9, 20.9 (CH3), 20.8,
20.8 (CH3), 20.7 (CH3), 20.7 (CH3). HRMS (ESI) calcd for C70H70N4O32 [M+Na]+ 1501.3865,
found 1501.3744.

4.4. Compound 1

Compound 5-Ac-OH (6 mg, 3.4 µmol), LiOH*H2O (2.4 mg, 56 µmol), MeOH (0.7 mL)
and H2O (0.7 mL) were taken in a 5 mL round-bottom-flask and stirred at room temperature
for 1.5 h. The reaction mixture was acidified with aq 1M HCl and concentrated under
reduced pressure. The crude mixture was subjected to preparative HPLC (16 mm column
C18, A:B 70:30 → 0:100 over 25 min, A–water + 0.1% TFA, B—acetonitrile + 0.1% TFA) to
obtain compound 1 (3.0 mg, yield 70%) after lyophilization as an off-white solid. Analytical
HPLC: 97% (peak area). 1H NMR (400 MHz, CD3OD) δ 8.30 (dd, J = 8.0, 1.3 Hz, 1H),
8.16–8.11 (m, 1H), 7.79–7.66 (m, 4H), 7.61 (s, 1H), 7.38 (d, J = 13.0 Hz, 4H), 7.14 (dd, J = 8.6,
2.1 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 5.41 (s, 4H), 4.96 (dd, J = 9.0, 7.7 Hz, 2H), 3.90 (t, J =
3.0 Hz, 2H), 3.85–3.77 (m, 2H), 3.76–3.67 (m, 6H), 3.60 (ddd, J = 9.7, 3.4, 1.9 Hz, 2H), 3.34
(s, 6H), 1.75 (s, 3H), 1.67 (s, 3H). HRMS (ESI) calcd for C54H54N4O24 [M+Na]+ 1165.3020,
found 1165.3039.

4.5. Enzymatic Activation and Optical Characterization

β-galactosidase from E. coli (Grade VIII, lyophilized powder, ≥500 units/mg protein,
#G5635) and 2-nitrophenyl β-D-galactopyranoside (ONPG, #N1127) were purchased from
Sigma Aldrich, St. Louis, MO, USA. Dithiothreitol (DTT, #1610610) was purchased from
Bio Rad. Stock solutions were prepared in 100 mM (pH = 7) of aq. phosphate buffer at a
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concentration of 1000 units/mL for the enzyme, in 20 mM for ONPG, and in 1 M for DTT.
A 2 mM stock solution of compound 1 was prepared in DMSO.

The enzymatic activity of β-galactosidase with ONPG (Scheme S1) and with com-
pound 1 (separate experiments) was studied in a previously described home-built setup [42]
(Figure 2 and Figure S1). In brief, the sample was stirred and thermostatized during the
reaction in a Peltier-based temperature-controlled cuvette holder (Luma 40, Quantum
Northwest, Inc., Lake, WA, USA), while the absorption and emission of the sample’s
solution was monitored at desired intervals with a fiber-based spectrometer (Flame-S-
UV-Vis-ES, Ocean Insight, Orlando, FL, USA). For absorption measurements, deuterium
and tungsten halogen sources were used for illumination (DH-2000-BAL, Ocean Insight),
and fluorescence excitation (compound 1) was performed in a 90◦ configuration with an
LED source (M530 L3, Thorlabs Inc., Newton, NJ, USA). For screening, the substrate and
enzyme concentration (Figures S2 and S3) absorption measurements were performed in
a plate reader (CLARIOstar® Plus, BMG Labtech, Ortenberg, Germany) operated with
CLARIOstar® software 5.4. The data were further processed in MARS software (BMG
Labtech), and then analyzed and plotted with OriginPro 2020b (OriginLab Corporation,
Northampton, MA, USA).

4.6. Photoactivation and Optical Characterization

The photolysis of compounds 1 and 2 was performed in the same setup used for
enzymatic activation. In this case, a 365 nm LED (M365 L2, Thorlabs Inc.) at a 90◦

configuration was used to irradiate the samples for a set period of time, and then switched
off to measure the absorption and the emission spectra at the corresponding irradiation
time (Figures 2B and S4). The resulting solutions after the irradiation was concluded (Figure
S5) were injected (10 µL sample) via a Shimadzu LC-MS system, containing a Hypersil
GOLD 50 × 2.1 mm 1.9 µm analytical column. The following method was used: isocratic
90:10 A:B for 2 min, then gradient 90:10–1:99 A:B over 5 min, then isocratic 1:99 A:B for 2
min, where solvent A is water + 0.1% v/v HCO2H, and solvent B is acetonitrile + 0.1% v/v
HCO2H. A solvent flow rate of 0.5 mL/min was used, as well as a column temperature of
30 ◦C.

4.7. Labeling and Bio-Imaging

Cell culture of monoclonal Vimentin–Halo-expressing U-2 OS cells and transformation
with the pSV-β-galactosidase control vector: Human monoclonal Vimentin–Halo-expressing
osteosarcoma cells (U-2 OS) [43,44] were cultivated in McCoy’s medium (Thermo Fisher
Scientific, Waltham, MA, USA), supplemented with 10% (v/v) fetal bovine serum (Thermo
Fisher Scientific, Waltham, MA, USA) and 1% (v/v) sodium pyruvate (Sigma Aldrich,
St. Louis, MO, USA), in a humidified 5% CO2 incubator at 37 ◦C. Transfection with the
pSV-β-galactosidase control vector (Promega, Fitchburg, WI, USA, Cat.Nr. E1081) was
performed using TurboFectTM (Thermo Fisher Scientific, Waltham, MA, USA) according to
the manufacturer’s protocol.

Staining of living U-2 OS cells expressing Vimentin–Halo: The day before transfection,
10,000 U2-OS cells per chamber of a chamber slide (ibidi GmbH, Gräfelfing, Germany;
µ-Slide 8 Well Glass Bottom) were seeded in McCoy’s medium (Thermo Fisher Scientific,
Waltham, MA, USA) supplemented with 10% (v/v) fetal bovine serum (Thermo Fisher
Scientific, Waltham, MA, USA) and 1% (v/v) sodium pyruvate (Sigma Aldrich, St. Louis,
MO, USA). Some 24 hours after transfection with the pSV-β-galactosidase control vector or
mock treatment, respectively, staining with the Halo ligands was performed. Washing and
imaging were performed in Opti-MEMTM (Thermo Fisher Scientific, Waltham, MA, USA).
For labeling, the cells were incubated with a 1 µM solution of a probe for 30 min at 37 ◦C in
a humidified 5% CO2 incubator. Then, the cells were washed with Opti-MEM three times
for a total period of 30 min, and afterwards imaged directly.

Confocal and STED microscopy of living U-2 OS cells: Confocal light microscopy was
performed using a Leica TCS SP8 laser-scanning microscope (Leica Microsystems, Wetzlar,
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Germany). STED microscopy was performed using a quad scanning STED microscope
(Abberior Instruments, Göttingen, Germany) equipped with a UPlanSApo 100×/1.40 Oil
objective (Olympus, Tokyo, Japan). For dye excitation, a laser with an emission wavelength
of 561 nm was used. To achieve super-resolution imaging, a STED laser with the emission
wavelengths of 775 nm and a repetition rate of 40 MHz was applied. For detection, a filter
set designed for a detection range between 580 and 630 nm was used. With the exception
of contrast stretching, no further image processing was applied.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29153596/s1, Scheme S1: Enzyme control with ONPG; Figure S1:
Activation of ONPG and compound 1; Figure S2: Activation of compound 1 at different substrate (A)
and enzyme (B) concentrations; Figure S3: Michaelis–Menten constant (KM) for ONPG and compound
1; Figure S4: Absorption and emission of compound 2; Figure S5: LCMS after photolysis of compound 1
and 2; Scheme S2: Synthesis of carbamate 4; Scheme S3: Synthesis of compound 5-H-HT; Scheme S4:
Synthesis of carbamate 6; Scheme S5: Synthesis of compound 2; Scheme S6: Synthesis of compound
7-H-HT; Supplementary references; 1H NMR spectra and 13C NMR spectra of synthesized compounds.
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