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Abstract. We present a novel, general, and unifying point of view on sparse approaches to
polynomial optimization. Solving polynomial optimization problems to global optimality is a ubiq-
uitous challenge in many areas of science and engineering. Historically, different approaches on how
to solve nonconvex polynomial optimization problems based on convex relaxations have been devel-
oped in different scientific communities. Here, we introduce the concept of monomial patterns. A
pattern determines what monomials are to be linked by convex constraints in a convex relaxation
of a polynomial optimization problem. This concept helps to understand existing approaches from
different schools of thought, to develop novel relaxation schemes, and to derive a flexible duality
theory, which can be specialized to many concrete situations that have been considered in the litera-
ture. We unify different approaches to polynomial optimization including polyhedral approximations,
dense semidefinite relaxations, SONC, SAGE, and TSSOS in a self-contained exposition. We also
carry out computational experiments to demonstrate the practical advantages of a flexible usage of
pattern-based sparse relaxations of polynomial optimization problems.
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1. Introduction. Let X be a basic closed semi-algebraic set defined as

(1.1) X = {x ∈ Rn : g1(x) ≥ 0, . . . , gs(x) ≥ 0, h1(x) = 0, . . . , ht(x) = 0}

via s polynomial inequality and t polynomial equality constraints, where s, t ≥ 0 are
non-negative integers. In polynomial optimization, we are interested in mimizing a
polynomial over the feasible set X. We want to solve the problem

(POP) inf
x∈X

f(x),

where the objective f and the polynomials used to describe X are polynomials, i.e.,
elements of the ring R[x] of n-variate polynomials in the variables x = (x1, . . . , xn)
with coefficients in R. We use xα := xα1

1 · · ·xαn
n for the monomials in x, where

a monomial is determined by its exponent vector α ∈ Nn. In this notation, f(x) =∑
α∈A fαx

α ∈ R[x]A is an R-linear combination of monomials, where A is a finite set of
exponent vectors. Where convenient, we also use f to denote the vector of coefficients
of f(x). In general, we tried to use standard notation, avoid notational overhead,
and introduce specifics when they are first used. A list of symbols is provided for
convenience in the appendix.

1.1. The problem class polynomial optimization. To get a first intuition for
the problem class, we discuss polynomials and optimization from a general perspective,
before we look into aspects of how to solve (POP).
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1.1.1. Polynomials. In polynomial optimization, the objective function and the
inequalities and equalities describingX are polynomials in real variables x ∈ Rn. They
form a huge and important subset in the more general class of nonlinear programming
(NLP) problems.

Polynomial optimization problems of type (POP) appear in a variety of different
areas and contexts, due to the ubiquity of polynomials and their properties. Polyno-
mials arise directly in the mathematical modeling of real world systems, e.g., with a
cubic function in the Fitzhugh-Nagumo model or with a quadratic function when air
friction is modeled. They also arise from algebraic concepts. A famous example is the
Rough-Hurwitz stability criterium which states that a time-invariant linear system is
stable if the roots of it’s characteristic polynomial have only negative real parts. An-
other example are symbolic reformulations and underestimators using polynomials,
e.g., [49, 50]. Even binary variables xi ∈ {0, 1} can be modeled via concave quadratic
constraints xi(1−xi) = 0. Concrete examples of applications in polynomial optimiza-
tion, e.g., in discrete and combinatorial optimization, control systems and robotics,
statistics, and electric power systems engineering are provided in [3, Sec. 1.1], [28,
Sec. 1.1], and [12, Sec. 3.6].

Yet another reason for the importance of polynomials is their universal approxima-
tion property. Weierstraß showed in 1885 that the subalgebra of polynomials is dense
in the algebra of continuous functions (a property much celebrated and used nowadays
for neural networks). The Taylor series of a function provides a convenient way to
find polynomial approximations and error estimates for smooth functions. Polynomial
regression and approximation are also computationally stable and efficient, e.g., using
Tschebysheff polynomials and barycentric coefficients [55]. Therefore it is certainly
no exaggeration to claim that mastering of the problem class (POP) would have a
huge impact on many open challenges in science and engineering.

The structure ofX and the way it is given is of crucial important for particular ap-
proaches. In nonlinear programming, the convergence and performance of algorithms
and also the conditions of optimality depend strongly on properties of constraints,
such as the so-called constraint qualifications. In the approaches to polynomial op-
timization we are discussing here, they do not play a role, though. For (POP), it is
already interesting and nontrivial to address the special situations in which X = Rn,
which does not require any constraints, X = [−1, 1]n, modeled by the linear inequali-
ties −1 ≤ xi ≤ 1, or X = {−1, 1}n modeled by the equalities xi(1−xi) = 0. All those
cases have a different flavor, and there are methods specific to those cases, which can
be employed for solving a particular type of polynomial optimization problems. Nev-
ertheless, independent of a particular version of (POP), convexification is a common
principle applied to all these versions. In the following we shall explain this universal
principle without going into details regarding X, unless otherwise specified.

1.1.2. Optimization. A feasible point x∗ is called a global minimizer of (POP),
if there is no other point in X with a lower objective function value. It is called a local
minimizer, if there exists a neighborhood in X around x∗ in which this property holds.
It is way more difficult to find a global optimizer or even to verify global optimality of
a given point. In contrast, local optimality can usually be verified locally via sufficient
conditions of optimality by evaluating functions and higher-order derivatives in the
candidate point.

Convex optimization, i.e., the minimization of a convex objective function over
a convex feasible set X, has two important advantages compared to nonconvex op-
timization. The first advantage is that for strictly convex functions, the necessary
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first-order conditions of optimality are also sufficient conditions. The second, more
important advantage is that a local minimizer of a convex problem is also a global
minimizer. This can be seen by assuming the existence of two strict local minimizers,
considering the connecting line of (feasible) points and constructing a contradiction to
the local optimality of both from the convexity assumption on the objective function.
For convex nonlinear problems, efficient algorithms have been developed in the last
decades as shortly discussed in Section 1.4.

Many practical optimization problems are nonconvex, though. Sometimes, the
determination of local optima is acceptable in an engineering context, based on the
rationale that a descent-based algorithm initialized with the currently implemented
practical solution will improve it towards a local optimium. Practitioners in industry
might even argue that sometimes, moving from one local solution to a different one
would imply additional undesirable costs. Examples are the necessary training of
staff to control a complex process or related security issues. In addition, finding
global optimizers is simply often not realistically possible. Already local optimizers
can be very difficult to find due to high computational costs, e.g., in the training of
deep neural networks.

In many other contexts, apart of the intellectual desire to know what the very
best solution is, global optimality is required. This is certainly true when optimization
results are used for mathematical reasoning, such as the determination of bounds
for kissing numbers [35]. Note that here often additional concepts such as interval
analysis are necessary to obtain rigorous results [38]. Global optimization comes in
several flavors and versions and is supported and developed by a wide range of sub-
communities representing different philosophies. In our review, we are interested in
the global solution of (POP) and shall develop a general convexification framework
for this purpose.

1.1.3. How to globally solve polynomial optimization problems. There
are many excellent textbooks on polynomial optimization available [32, 26, 5, 59, 12,
21, 27, 39, 31] that highlight the connection to positive polynomials, sum of squares
(SOS), semidefinite programming (SDP), and related concepts from real algebra. Im-
portant contributions come also from a second community interested in global non-
linear programming (NLP), [38]. Here, polyhedral relaxations and spatial branch
and bound techniques [24, 29] have been suggested, e.g., [52, 54], sometimes in the
connection with additional concepts such as interval arithmetics [36]. Often these
approaches address also nonlinear optimal control problems, e.g., [1, 18, 19, 40, 16].

Many different approaches for the convexification of (POP) have been suggested
in the literature. Among them are the well-known McCormick envelopes [34, 46,
13], i.e., the convexification of variables x1 and x2 and their product x1x2. Other
examples are truncated moment relaxation and its dual, the SOS relaxation, [5, 28, 32],
scaled-diagonally-dominant sum of squares (SDSOS) [3], sums of non-negative circuit
polynomials [17, 47], bound-factor products [15] and their dual Handelman’s hierarchy
[22], multilinear intermediates [9], polyhedral outer approximations [53] as well as
expression trees [50, 49]. These approaches are either based on primal or on dual
formulations, as shall become clearer in the course of this review. It is one goal of this
paper to present a unifying point of view that allows an easy understanding of the
differences and similarities between these approaches. Also, a variety of optimization
solvers has evolved over the years, as discussed in Section 4.

Polynomial optimization problems have obvious connections with real algebra,
which in turn, is connected to semidefinite optimization. Since the seminal work of
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Jean-Bernard Lasserre, in the last two decades a community of experts working at
the interface of global optimization, semidefinite optimization, real algebra, and real
algebraic geometry has formed. This community seeks to understand the theoreti-
cal foundations of convexification as the fundamental principle of global optimization
and to use it in computations. It is interesting to observe the interplay between the-
ory and computational practice in this context. The theory suggests tools of great
generality supplied with extremely inefficient general algorithms. The computational
practice exploits rather concrete convexifications (like McCormick envelopes), which
can be deployed in general problems. Basically any kind of concretization of con-
vexification ideas has led to a spin-off – a sub-culture focussing and propagating this
particular convexification technique and its application for solving (POP). Examples
are McCormick envelopes, other kinds of linear programming relaxations, Lasserre
relaxations, SONC, and SAGE relaxations. With our review, we address three key
similarities between these approaches from different sub-communities: first, using
convexification as a main tool, second, trying to impose sparse constraints in prac-
tice, and third, establishing a duality theory based on general principles from conic
optimization. In our opinion, these similarities have not yet been articulated clearly
enough. In our presentation, we demonstrate how the idea of sparse convexifications
is implemented flexibly, without relying on specific modeling details. We illustrate
the impact of convexification and sparsification concepts with numerical results.

1.2. Convexification. The (formal) convexification of problem (POP) consists
of two elementary steps: lifting and describing the relationships between the variables
x and v with convex constraints.

1.2.1. Monomial Lifting. By introducing a new variable vα = xα for each of
the monomials that occur in (POP), we linearize the objective, which becomes the
linear function (vα)α∈A 7→

∑
α∈A fαvα. We introduce the linearization map Lv for

polynomials f ∈ R[x] by

Lv(f) := Lv

(∑
α∈A

fαx
α
)
:=
∑
α∈A

fαvα.

Since the monomial variable v0 for the monomial x0 = 1 is assigned the value 1, we
use v0 as the constant 1 if it is not specified otherwise. We call the linear inequality
Lv(f) ≥ 0 the linearization of the polynomial inequality f ≥ 0. In [27, Section 2.7]
Lv (without fixing v0 = 1) is called the Riesz linearization functional. For example,
the linearization of a polynomial f := (1 − x1)(1 − x2) is given by Lv(f) = Lv(1 −
x1 − x2 + x1x2) = v0,0 − v1,0 − v0,1 + v1,1 = 1− v1,0 − v0,1 + v1,1.

Having a linear objective is favorable, but it requires the introduction of nonlinear
equality constraints vα = xα, with α ∈ A, additionally to the constraint x ∈ X. This
stage of processing (POP) is the lifting stage, as we add new variables and optimize
in a higher-dimensional space. The variable vα is called the monomial variable for
the monomial xα (or, for the exponent vector α). After this kind of reformulation,
we have a vector x = (x1, . . . , xn) that varies in X and determines the values of the
monomial variables vα, α ∈ A, on which the objective Lv(f) depends. Thus, we do
not need x directly anymore, but we want to determine explicitly how the monomial
variables, which are linked to each other through the x-variables, are interdependent.
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1.2.2. Formal convexification. Problem (POP) is now reformulated as

inf

{∑
α∈A

fαvα : x ∈ X, vα = xα (α ∈ A)

}

The next step is to project out the x-variables, keeping the monomial variables and
introducing constraints that describe their relations. Since we want to arrive at a
convex problem in the end, we describe the relation in terms of convex constraints.
This intention can be formalized by replacing the constraint

(1.2) (vα)α∈A ∈ {(xα)α∈A : x ∈ X},

which is in fact a family of the constraints vα = xα, indexed by α ∈ A, with the
convex constraint

(1.3) (vα)α∈A ∈ MA(X) := conv{(xα)α∈A : x ∈ X}.

We have a linear objective on a convex feasible set, so it is readily clear that (POP)
is equivalent to the problem

inf

{∑
α∈A

fαvα : v ∈ MA(X)

}
(CVX-POP)

in the sense that (POP) and (CVX-POP) have the same optimal value. We emphasize
that (CVX-POP), the convex problem which we call the monomial convexification of
(POP), is a formal problem. By this we mean that (CVX-POP) provides no indi-
cation on how to formulate MA(X) in any of the available optimization paradigms.
Instead, (CVX-POP) simply declares our intention to reformulate or relax a noncon-
vex problem to a convex one. This process is called convexification in the jargon of
global optimization. The set MA(X) represents the (not yet known) convexification
that conveys the (not yet known) convex constraints, through which the monomial
variables vα, α ∈ A, are related. Both in the theory of global optimization and
real algebra, a major aim is to provide approaches to describe MA(X), exactly or
approximately, within tractable paradigms of convex optimization. Linear, second
order-cone, and semidefinite optimization are the most widely used paradigms of con-
vex optimization for that purpose. The points of view on what tractable means may
vary among sub-communities. Theoretically inclined experts consider polynomial-
time solvability of a class of optimization problems to be the standard definition of
being tractable. In contrast, practitioners may apply a more refined distinction, as
they also care about the conditioning of the problems, the rate of convergence and
the exact order of polynomial running time. Hence, for example, in view of these
remarks semidefinite optimization with a large size of semidefinite constraints can
be considered to be tractable in the theoretically inclined community, but would be
considered intractable in the practically inclined one.

1.3. Formal sparsification. We call a constraint dense, if it involves a large
fraction of the variables of the underlying optimization problem. In contrast, a sparse
constraint depends only on a small fraction of the optimization variables. More cor-
rectly, we are mainly interested in the difficulty of associated constraints and their
impact on computational runtimes. E.g., when we use semidefinite modeling tech-
niques, we measure the difficulty in terms of the sizes of the linear matrix inequalities,
as discussed below in Section 1.4.
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Whereas the question how to actually model the convex MA(X) is definitely the
core topic in global optimization, also the role of sparsity and approaches to impose
sparsity are very important in practice. Suppose, for example, that we have devel-
oped an approach to model MA(X) exactly or approximately with some theoretical
guarantees. This means that we have established a method that transfers the formal
constraint v ∈ MA(X) into a set of concrete constraints,

MA(X)
modeling method−−−−−−−−−−−→ Model of MA(X).

Our modeling method receives A and a description of X as an input and produces
a model for MA(X). But what if, when A is large and complicated, this model
for MA(X) is not tractable, because it involves computationally hard-to-handle or
ill-conditioned constraints? At a first glance, our modeling method is not helpful:
applying it to (CVX-POP) we obtain its concrete formulation, but we cannot solve it,
because it is not tractable. But looking more precisely, we see that there is a remedy,
and it relies on using sparse convex constraints. When we model MA(X), we want
to bind all of the variables vα with α ∈ A by convex constraints. This is a tough
task, because the number of variables may be large and their relations may be highly
nontrivial. What we can do instead is creating smaller (and possible overlapping)
groups of monomial variables and try to model the relations of variables within each
single group. As one of the options, we can just use the same modeling method for
each group of variables. The latter is a high-level view on imposing sparsity, which
refrains from details on how to choose the sparse sub-structures and what kinds of
sparse sub-structures are favorable. The above strategy leads to what we call a pattern
relaxation of (POP) with respect to the pattern family {P1, . . . , PN}, which covers A:

inf

{∑
α∈A

fαvα : (vα)α∈Pi
∈ MPi

(X) for i ∈ [N ]

}
(P-RLX)

This is a formal problem that declares the intention to find sparse constraints, and it
offers flexibility in choosing patterns Pi in a way that allows to achieve a desired bal-
ance between the approximation quality and the complexity of (P-RLX). By choosing
certain specific “shapes” of Pi, we can also prescribe sparse constraints of a particular
structure. This is also possible in a dual setting. For example and as explained in
detail later in Section 3.4.1, if we choose Pi of the form {2α, α + β, 2β}, we end up
with a SDSOS relaxation. If we choose the Pi to be a simplicial circuit, we end up
with a dual version of the SONC relaxation. There are many different approaches
that can also be combined to formulate (P-RLX).

We believe that our template how to derive convexifications of (POP) via the
formal problems (CVX-POP) and (P-RLX) has a definite methodological advantage.
While other sparse approaches are discussed inseparably of modeling methods, we
clearly separate modeling and sparsity. In the course of developing a particular ap-
proach to solve (POP) we can change a modeling strategy, but keep the sparsity-
imposing strategy unchanged or vice versa. In other words, the ways of imposing
sparsity need not be presented together with the modeling techniques. Both tasks
can be coordinated, but there is a certain amount of independence in carrying out
these two tasks. As one of the highlights, we stress that the the key ideas of duality
theory for sparse relaxations are independent of the concrete modeling approach. We
are not aware of any other source where the duality for (P-RLX) is presented in a
model-independent way.
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The procedure of developing convexifications without imposing sparsity can be
described via a diagram,

X
monomial map−−−−−−−−−→ {(xα)α∈A : x ∈ X} convexifying−−−−−−−−→ MA(X)

lifting−−−−→ MB(X).

The lifting partMA(X) → MB(X) is needed, when we want to pick a larger exponent
set B ⊇ A that we perceive to be more convenient to work with than the original set
A. For example, if n = 1, and we have A = {0, 2, 3, 6}, which means that we optimize
a polynomial with the exponents x0, x2, x3, x6, we might not have a specific strategy
that would help optimizing such a polynomial over X. Instead, we might consider
MB(X) for B = {0, 1, 2, 3, 4, 5, 6}, which would help us optimize all polynomials of
degree at most 6 over X. By providing a model for MB(X) and projecting MB(X)
onto MA(X) we establish a strategy for optimizing polynomials over X with the
exponent vectors in A. Clearly, for solving the problem practically, we need to proceed
with modeling and applying a particular convex optimization solver:

MB(X)
modeling−−−−−−→ Model of MB(X)

solving−−−−→

When establishing a model, lifting can be used once again, since sometimes MB(X)
is conveniently described as a projection of a higher-dimensional set.

The procedure of developing a sparse convexification is a variation of the above
procedure. In the sparse version, the set B is the union of P1, . . . , PN , and rather than
trying to model MB(X) we model its N projections, so that the respective diagram
is as follows:

MB(X)
projecting−−−−−−→ MPi

(X)
modeling−−−−−−→ Model of MPi

(X)

applied for each i ∈ [N ]. When models are established, we can move over to solving:

Model of MP1
(X), . . . ,Model of MPN

(X)
solving−−−−→

Figure 1 illustrates the procedure for the approximation of a cubic polynomial in
one variable x and exponents A = {1, 2, 3} on X = [0, 1]. Note that here we used
B = A. In general, pattern relaxations can not be expected to be as tight as in this
simple case.

The above strategy is an “assembly line” that brings us from (POP) to a lower
bound on (POP). It consists of the following steps and decisions:

1. What B ⊇ A and which sets P1, . . . , PN covering B do we use?
2. How do we model MPi(X)? In which optimization paradigm?
3. What algorithm is appropriate for the relaxation we have established?

The focus of our exposition is on the first question. We shall structure our review
according to linear programming, second-order cone programming, and semidefinite
programming where appropriate. The question of the overarching optimization par-
adigm and algorithmic choices will only be shortly commented upon in the following
section.

1.4. Modeling choices and optimization paradigms. As already mentioned
in Section 1.1.3, there are two schools of thought on computationally dealing with
MA(X), to which we shall refer shortly as SDP and NLP communities, respectively.
SDP communities introduce a sequence of semidefinitely representable sets (Sd)d≥deg f

that approximate MA(X) and converge to MA(X) as d → ∞. Fixing a specific d,
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Fig. 1: Elementary steps towards a moment relaxation of a one-dimensional cubic
polynomial. First row, left: the curve (xα)α∈A from (1.2) for A = {1, 2, 3} and
X = [0, 1], indicating the feasible values for the lifted, monomial variables v. Right:
the moment body MA(X) = conv{(xα)α∈A : x ∈ X}, see (1.3). Second row, left to
right: projections MPi(X) of MA(X) in blue for Pi ∈ F := {{1, 2}, {1, 3}, {2, 3}}.
Third row, left to right: liftings of MPi(X) into R3 for all Pi ∈ F . Last row:
the (intersected) feasible region (vα)α∈Pi

∈ MPi
(X) for i ∈ [3] of problem (P-RLX).
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(CVX-POP) can be relaxed by replacing MA(X) with Sd, and semidefinite pro-
gramming algorithms can be used to solve the resulting relaxation. However, as d
grows, the complexity of the underlying semidefinite relaxation may grow immensely.
In practice, only the lowest level of the hierarchy is usually used in computations.
The NLP community advocates the use of linear programming models. Linear pro-
gramming models may be less suitable for finding tight approximations of the sets
MA(X), because MA(X) may not be polyhedral and linear constraints can only de-
scribe polyhedra exactly. However, linear models work extremely well in branch-and-
bound frameworks, because the dual simplex method for linear programming can be
warm-started. There are additional approaches targeted towards other optimization
paradigms. Usually these are other forms of cone programming, such as second-order
cone or copositive programming. We do not intend to argue in favor of either of these
schools. Also, it is beyond the scope of this review to look into the algorithmic details.

Our intention is to show the similarities of the convexification theory indepen-
dent of the choice of a particular modeling approach and to integrate the available
modeling techniques into the unifying convexification theory. In this sense we want
to highlight one important similarity here. In all approaches, ultimately convex opti-
mization problems have to be solved – either as subproblems in a divide-and-conquer
approach, or as a reformulation of the original problem. For these convex optimization
problems descent based algorithms can be applied, because a local optimum is also
a global optimum. Often an interior point method is used, sometimes also active set
based approaches as the simplex method. Now it is crucial from a practical point of
view to understand the impact of different relaxations on the computational runtime.
In general, this is very difficult to assess because of the unknown iteration numbers
until convergence. However, the computational cost per iteration as an important
contributor to the overall runtime is somewhat easier to estimate and a good indica-
tor. In all Quasi-Newton methods – primal or primal-dual interior point, active set
based, or parametric programming – the computational cost per iteration is usually
dominated by the costs to solve systems of linear equations.

The main motivation for sparsification as discussed in Section 1.3 is that sparsity
can be exploited in the numerical linear algebra to solve systems of linear equations.
E.g., the MOSEK handbook [37] emphasizes that “having many small matrix variables
is more efficient than one big matrix variable”. Some details on the specific case of
interior point methods for large–scale cone programming are provided in [4]. The
main reason for this is that it is computationally cheaper to solve several smaller
systems of linear equations than fewer and larger ones. You would always prefer to
invert 1000 matrices of size 10 by 10 in comparison to inverting one matrix of size
10000 by 10000. This is due to the cubic runtime of the Cholesky method to obtain a
LU decomposition of a symmetric matrix. Numerical results for the solution of SDPs
of varying size indicate the approximate cubic runtime increase in the SDP size [4,
Table1.5]. Considering matrices of size n by n, a block decomposition into N matrices
of size m would thus be asymptotically highly preferable if Nm3 ≪ n3. Of course
there are many more details. Linear matrix inequalities may contain several matrix
variables, and matrix variables may feature in several inequalities, and all of them
may have different sizes. Sparsity may not only be exploited via block decompositions,
but in a variety of ways by exploiting specifics of the model or of the optimization
paradigm [4]. In some nonlinear optimization solvers, BFGS updates are directly
applied to an approximation of the inverse of the Hessian, reducing the effort from
cubic to quadratic for a matrix vextor multiplication.

Still, as a rule of thumb the rough Nm3 ≪ n3 improvement motivates why it is
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so interesting to look at the intersection of many patterns MPi
(X) of reduced size

compared to MA(X). One illustrative example was shown in Figure 1, although here
no significant savings can be expected for the small dimensions N = n = 3,m = 2.
As a main take-away we summarize that in all approaches to solving (POP), the
runtime of algorithms can be reduced drastically by creating and exploiting sparsity.
In practice, this often makes the difference between intractable and computationally
feasible and is a driving force in polynomial optimization reseach.

1.5. Duality. There are two dual points of view on polynomial optimization:
the convexification point of view we have just discussed and the non-negativity certi-
fication point of view. Non-negativity certification is a far-reaching generalization of
the ideas behind Farkas’ lemma and duality in linear programming to the case of poly-
nomial optimization. When one presents the theory of polynomial optimization, one
either starts with the convexification and then passes through non-negativity certifi-
cation via dualization or one does it the other way around, starting with the questions
of non-negativity certification and then passing to convexification via dualization. We
believe that it is instructive to have a general presentation of the duality theory for
sparse approaches, purified from the modeling details. Such a presentation allows to
understand the core ideas and to gain insight regarding how different approaches are
related to each other. For many specific choices of patterns, duality theorems were
formulated independently of each other. The general duality underpinning all of these
special cases is the duality of (P-RLX) to the bound-certification problem

sup{λ ∈ R : f − λ = g1 + · · ·+ gN , gi ∈ P(X)Pi
i ∈ [N ]}.

Here, the non-negativity of f−λ on X is to be certified as a sum of sparse polynomials
with supports contained in P1, . . . , PN which are non-negative on X. Analogously to
how we discussed modeling of (P-RLX), there is an aspect of modeling P(X)Pi

coming
up in relation to the bound-certification problem. Usually, a model of M(X)Pi

can
be dualized to obtain a model of P(X)Pi

, applying the duality of the respective
optimization paradigm (e.g., linear, second-order cone or semidefinite-programming
duality). Special cases, and a detailed discussion of duality will follow in Section 3.

1.6. Contributions. We emphasize that none of the propositions in this review
is genuinely novel or surprising, although we formulated them in a self-consistent
manner using basis tools from convex analysis and linear algebra. In particular the
proofs for Theorems 2.4 and 2.11 are more compact than in other references we are
aware of. The main contribution lies in generalization and abstraction of existing
ideas. The unifying framework allows to derive novel approaches to convexification
and/or sparsification, but also to derive theoretical results applicable to all existing
and future methods. We illustrate the potential of convexification and sparsification
with numerical experiments.

1.7. Structure of the paper. In Section 2 we provide an overview of two basic
convexification principles, based on linear and semidefinite programming, respectively,
and provide concrete suggestions on how to flexibly sparsify the convexification ap-
proaches. The second major part of this paper addresses in Section 3 the conic
viewpoint to pattern relaxations, duality theory for pattern relaxations, and the the-
ory of lifted conic formulations in the context of polynomial optimization. This part
provides a general systematic treatment of duality for sparse approaches to polyno-
mial optimization. It is independent from Section 2. In Section 4 we present results
of numerical experiments for specific patterns.
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2. Modeling principles for convexification. In this section we shall review
different techniques for convexification and sparsification of {(xα)α∈A : x ∈ X}, guided
by different principles. We start with some definitions and a look at semidefinite and
linear programming, before we continue with sparsification.

Let Sm be the space of symmetric matrices of size m over reals and Sm+ the convex
cone of positive semidefinite matrices in Sm. For a matrix M ∈ Sm, we denote the
condition M ∈ Sm+ as M ⪰ 0.

If M : RN → Sm is an affine map, then the condition M(v) ⪰ 0 is called a
linear matrix inequality (LMI) of size m. In other words, M(v) is a symmetric matrix
with the entries being affine functions in v and the condition M(v) ⪰ 0 requires
positive semidefiniteness of M(v). Semidefinite optimization is optimization of a
linear objective function subject to finitely many LMIs. If all the LMIs have size
2, then we get a special case of semidefinite opimization, called second-order cone
optimization. If all LMIs have size 1, we obtain linear programming as an even more
special case of semidefinite optimization. Semidefinite, second-order cone, and linear
optimiation have a well-developed algorithmic theory, with the underlying algorithms
implemented in a huge number of solvers and used in myriads of applications.

Definition 2.1. The set defined by finitely many LMIs is called a spectrahedron.
A set which is the image of a spectrahedron under a linear transformation is called a
projected spectrahedron or a semidefinitely representable set.

2.1. Semidefinite modeling principles. We first look at semidefinite model-
ing principles.

2.1.1. Semidefinite convexifications from inference rules. Our objective
is to lay out ways of deriving convex inequalities valid onMA(X) for the feasible setX
defined in (1.1). Observe that, if p(x) ≥ 0 is a polynomial inequality valid for x ∈ X,
then Lv(p) ≥ 0 is a linear inequality valid for v ∈ MA(X). Furthermore, if M(x) is
a matrix whose entries are polynomials in R[x]A and the condition M(x) ⪰ 0 is true
for x ∈ X, then the LMI Lv(M(x)) ⪰ 0 is true for v ∈ MA(X), where Lv(M(x)) is
the entry-wise linearization of the matrix M(x).

Let MB(x) = xB(xB)⊤. For every x ∈ Rn, we have easy inference rules:

p1(x) ≥ 0, . . . , pt(x) ≥ 0 ⇒ p1(x) · · · pt(x)MB(x) ⪰ 0,(2.1)

p1(x) ≥ 0, . . . , pt(x) ≥ 0 ⇒ p1(x) · · · pt(x) ≥ 0,(2.2)

p(x) ≥ 0 ⇒ p(x)MB(x) ⪰ 0,(2.3)

1 ≥ 0 ⇒ MB(x) ⪰ 0,(2.4)

p(x) = 0 ⇒ p(x)q(x) = 0(2.5)

where p, p1, . . . , pt, q ∈ R[x] and B is a finite subset of Nn. The inequalities gi(x) ≥ 0
and the equations hj(x) = 0 that define X are our fundamental knowledge concerning
feasibility. Application of the inference rules gives us further, redundant knowledge,
which turns out to be useful for convexification purposes. Rules (2.1–2.4) deal with
inequalities and differ in their degree of generality, with the rule (2.1) subsuming the
rules (2.2–2.4). (2.1) is a special case of (2.2) with B = {0}, (2.3) is a special case of
(2.1) with t = 1 and (2.4) is a special case of (2.3) with p = 1.

Inserting the polynomial inequalities and equations defining X into the premises
of (2.1–2.4) and linearizing the conclusions of these rules using Lv, we obtain linear
and semidefinite constraints that are valid for the moment body of X. In this way
different outer relaxations of the moment body MA(X) can be derived as projected
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spectrahedra. If one only uses the rule (2.2), one obtains an outer approximation by
a polyhedron.

The more general the rule is, the harder the implied constraints for MA(X)
may become. For example, if the product p1(x) · · · pt(x) in rules (2.1) and (2.2) has
many factors, then the respective linearization will involve many monomial variables.
If an exponent set B involved in rules (2.1) and (2.3) is large, then the respective
linearization will be an LMI of a large size. That is, more general rules allow a
more exact approximation of MA(X), but come at a higher computational price as
discussed in Section 1.4.

Remark 2.2. Let us estimate the number of monomial variables involved in the
linearization derived from (2.1–2.5). Since in our context linearization is simply sub-
stitution of monomials with monomial variables, we need to track the relation between
the monomials involved in the premises and the conclusions of our inference rules.

• If pi(x) ∈ R[x]Ai
, then the entries of the matrix p1(x) · · · pt(x)MB(x) in the

conclusion of (2.1) belong to R[x]A1+···+At+B+B.
• For (2.2), one has p1(x) · · · pt(x) ∈ R[x]A1+···+At .
• For (2.3), if p(x) ∈ R[x]C , the entries of p(x)MB(x) belong to R[x]C+B+B.
• For (2.4), the entries of MB(x) belong to R[x]B+B.
• For (2.5), if p(x) ∈ R[x]C and q(x) ∈ R[x]D, then p(x)q(x) ∈ R[x]C+D.

Deliberately choosing exponent sets Ai, B, C,D of a manageable size and appropriate
shape, we can control the computational complexity associated with the processing of
the repsective linearizations. That is, we can make the constraints sparse and we can
produce LMIs of a desirable (and not too large) size. This is an overarching idea of
most of the existing convexifications that rely on rules (2.1–2.5).

2.1.2. Positivstellensätze and their duals. Real algebra and real algebraic
geometry allow us to understand in which cases the convexifications form the above
inference rules approximate MA(X) arbitrarily well or even describe MA(X) exactly.
From the practical perspective, however, one definitely needs to keep track of the
complexity of the convex constraints resulting from those rules. The inferences (2.3)
and (2.4) are the favorite choices for linearization in the semidefinite optimization and
real-algebra communities. These choices are backed by Putinar’s Positivstellensatz
[42], which uses so-called sum of squares certificates of positivity. A polynomial in
R[x] is called SOS, if it admits a representation f2

1 +· · ·+f2
t with f1, . . . , ft ∈ R[x]. We

denote by Σ the set of all SOS polynomials in R[x] and call it the infinite-dimensional
SOS cone.

Theorem 2.3 (Putinar). Let X = {x ∈ Rn : g1(x) ≥ 0, . . . , gs(x) ≥ 0} be a
compact semialgebraic set contained in the ball {x : x2

1 + · · ·+ x2
n ≤ ρ} of some radius

ρ ∈ R>0. Let g0(x) := 1 and gs+1(x) := ρ − (x2
1 + · · · + x2

n). Then every polynomial
f which is strictly positive on X belongs to f = g0Σ+ · · ·+ gs+1Σ.

In the following theorem, we use the infinite symmetric positive semidefinite ma-
trix MNn = xNn

(xNn

)⊤. For a symmetric matrix M = (mi,j)i,j∈I ∈ RI×I with an
infinite index set I, we define positive semidefinteness condition M ⪰ 0 as the validity
of (mi,j)i,j∈B for every finite B ⊆ I. We use the following notation: if y ∈ Rn and
B ⊆ Nn, then for A ⊆ B the vector yA is the projection of y on the coordinates
indexed by A: yA = (yα)α∈A ∈ RA. The set YA denotes the projection of a set Y on
the A coordinates, i.e., YA = {yA : y ∈ Y }.

Theorem 2.4 (Dual Putinar). In the notation of Theorem 2.3, for every finite
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set A ⊆ Nn \ {0}, one has

(2.6) MA(X) =
{
v ∈ RNn

: v0 = 1, Lv(giMNn) ⪰ 0 for all i = 0, . . . , s+ 1
}
A
.

Proof. The set MA(X) is the closed convex hull of {(pα)α∈A : p ∈ X}. Hence,
for showing the part “⊆” of the set equality (2.6), it is enough to check that each
w = (pα)α∈A with p ∈ X belongs to the right-hand side of (2.6). For v = (pα)α∈Nn

we have vA = w, v0 = 1 and Lv(giMNn) = gi(p)MNn(p), where gi(p) ≥ 0 and
MNn(p) = vv⊤ is an infinite rank-one positive semidefinite matrix. This shows that
w belongs to the right-hand side of (2.6).

To conclude the proof of (2.6), we consider an arbitrary w ∈ RA \MA(X) and
show that such w does not belong to the right-hand side of (2.6). By separation
theorem, there exists c ∈ RA∪{0} such that

∑
α∈A wαcα + c0 < 0 and

∑
α∈A uαcα +

c0 ≥ 0 for every u ∈ MA(X). Taking uα = pα with p ∈ X, we see that the
polynomial

∑
α∈A xαcα + c0 is non-negative on X. Fix ε > 0 small enough to satisfy∑

α∈A wαcα + c0 + ε < 0. Since f =
∑

α∈A cαx
α + c0 + ε is strictly positive on X,

by Theorem 2.3 we conclude that f = g0σ0 + · · ·+ gs+1σs+1, where σ0, . . . , σs+1 ∈ Σ.
Consider any vector v ∈ RNn

satisfying vA = w. We have

0 >
∑
α∈A

cαwα + c0 + ε = Lv(f) =

s∑
i=0

Lv(giσi).

Hence Lv(giσi) < 0 for some i ∈ {0, . . . , s}. Since σi is a sum of squares, for some
of these squares, which we denote as q2, one has Lv(giq

2) < 0. Let q be given as
q = s⊤xB for some finite B ⊆ Nn and some s ∈ RB . Then giq

2 = s⊤giMBs and
by this, Lv(giq

2) = s⊤Lv(giMB)s < 0. The latter shows that giMB is not positive
semidefinite, which implies that the condition giMNn ⪰ 0 is violated. Consequently,
w is not in the right-hand side of (2.6).

Remark 2.5. A natural question arises about the meaning of the set on the right-
hand side of (2.6), of which we take the projection onto RA. Or in other words,
what would be the case A = Nn of Theorem 2.4? On the left-hand side as MNn(X)
one can expect some generalization of the closed convex hull operation for the set
{xNn

: x ∈ X}. It turns out that the correct generalization is the system of “complete
moment vectors” with respect to a probability measure concentrated on X. Such a
measure-theoretic generalization of Theorem 2.4 is nice to have, but it comes with the
price of being more technical, as measure-theoretic technicalities have to be addressed
to properly define MNn(X). We would like to stress that Theorem 2.4, which does
not involve any measure-theoretic machinery, is already enough to establish the con-
vergence of the hierarchy of moment relaxations as outlined in the following section.

2.1.3. Semidefinite hierarchies of moment relaxations. We can establish
sequences of approximations of polynomial optimization problems. The approxima-
tions are based on either linear or semidefinite convex problems and have convergence
guarantees from the theorems of the previous section. We discuss these hierarchies
and approximations with sparsity in mind.

Consider the setting of Theorem 2.4, assuming that we know an Ai with gi ∈
R[x]Ai

for i = 0, . . . , s + 1. Each constrained Lv(giMNn) ⪰ 0 can be “cropped”
to a constraint Lv(giMBi

) ⪰ 0, by fixing a finite set Bi ⊆ Nn. This an LMI of
a finite size |Bi|. In order to take into consideration of all the monomial variables
vα with α ∈ A in constraints it suffices to have B0 + B0 ⊇ A, since the constraint
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Lv(g0MB0
) = Lv(MB0

) ⪰ 0 involves the variables vβ with β ∈ B0 + B0. Hence,
each choice of B0, . . . , Bs+1 produces an outer approximation MR(B0, . . . , Bs+1)A of

MB(X), where with P :=
⋃s+1

i=0 (Ai +Bi) one has

MR(B0, . . . , Bs+1) := {v ∈ RP : Lv(giMBi
) ⪰ 0 for all i = 0, . . . , s+ 1}.

That is, MR(B0, . . . , Bs+1)A is a projected spectrahedron in RA that approxi-
mates the moment body MA(X) and is given as a projection of a spectrahedron in
RP . When all of the Bi converge to Nn, then MR(B0, . . . , Bs+1) converges to MA(X)
in the so-called Hausdorff metric. We recall that for compact sets K,L, the Hausdorff
metric is defined by δ(K,L) = max{maxq∈L minp∈K ∥p−q∥,maxp∈K minq∈L ∥p−q∥}.
When K ⊆ L, this is the minimal ρ ≥ 0 such that every point of K is at distance at
most ρ to some point of L.

Corollary 2.6. In the notation of Theorem 2.4, if (B0,t)t∈N with i = 0, . . . , s+1
are sequences of finite subsets of Nn that are increasing in t with respect to inclusion
and satisfying

⋃
t∈N Bi,t = Nn, then

lim
t→∞

MR(B0,t, . . . , Bs+1,t)A = MA(X)

holds in the sense of the Hausdorff metric.

Proof. Using
⋃

t∈N Bi,t = Nn and Theorem 2.4, we obtain

(2.7)
⋂
t∈N

MR(B0,t, . . . , Bs+1,t)A = MA(X).

Since Bi,t’s are increasing in t with respect to inclusion, the set MR(B0,t, . . . , Bs+1,t)A
is decreasing in t with respect to inclusion. Thus, applying Lemma 1.8.2 from [45] to
(2.7), we get the assertion.

Remark 2.7. Lasserre introduced the canonical choice Bi,t = Nn
2(d−di+t) in the

case, where A = Nn
2d, Bi = N2di and d ≥ di. For this choice Ai + Bi,t = Nn

2(d+t) so

that the spectrahedron MR(B0,t, . . . , Bs+1,t) is a subset of RNn
d+t .

Remark 2.8. Theorem 2.6 alludes to an iterative method for solving the problems
infx∈X f(x), where f ∈ R[x]A. Such a method would iteratively increment t and solve
a semidefinite optimization problem on Rt := MR(B0,t, . . . , Bs+1,t) in each iteration
in order to provide an improved lower bound on infx∈X f(x), which would converge
to the true value as t → ∞. However, in practice, such a method would be extremely
impractical. Traditionally, one uses interior-point methods for solving SDPs which
are difficult to warm-start. In addition, the size of the LMIs describing Rt get larger
(and quite dramatically so for large n) as t increases, leading to increased run times as
discussed in Section 1.4. Instead of practically using Theorem 2.6, one could treat it
as a framework result showing that, in principle, an arbitrarily precise approximation
of infx∈X f(x) is possible, albeit usually at a very high cost. The fact that the price
to be paid for accuracy is very high is not very surprising, because solving polynomial
optimization problems to global optimality is known to be computationally hard.

The practical conclusion we make here is that we should choose sets B0, . . . , Bs+1

that define the approximation MR(B0, . . . , Bs+1)A carefully. They should not be too
large and the structure of the particular problem infx∈X f(x) should be exploited, such
that the resulting SDPs can be solved in reasonable time.
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Remark 2.9. A natural modification of the relaxation R(B0, . . . , Bs+1)A is ob-
tained by replacing the semidefinite constraint Lv(giMBi

) ⪰ 0 with a family of con-
straints Lv(giMB) where B belongs to a given family Bi of finite subsets of Nn. In this
way, one large Bi can be replaced by smaller B’s taken from Bi. This new relaxation
might provide a looser approximation, but it it may become more manageable from a
computational perspective. The relaxation is MR(B0, . . . ,Bs+1)A, where

MR(B0, . . . ,Bs+1) := {v ∈ RP : Lv(giMB) ⪰ 0 for all i = 0, . . . , s+ 1, and B ∈ Bi}.

2.2. Linear programming models. Now we look at different convexification
approaches that result in linear programming models. Note that we often assume
specific structures X = K of the feasible set such as K being a polytope or K =
Box(l, u).

2.2.1. Bound-factor relaxations. Another useful positivstellensatz goes back
to Handelman [22].

Theorem 2.10 (Handelman). Let K be a non-empty polytope given as K =
{x ∈ Rn : g1(x) ≥ 0, . . . , gs(x) ≥ 0}, where g = (g1, . . . , gs) are polynomials of degree
one. Then every polynomial f ∈ R[x] strictly positive on K admits a representation

f =
∑
β∈B

cβg
β ,

where B ⊆ Ns is a finite set and cβ ≥ 0 for every β ∈ B.

Theorem 2.11 (Dual Handelman). In the notation of Theorem 2.10, for every
finite set A ⊆ Nn \ {0}, on has

(2.8) MA(K) = {v ∈ RNn

: v0 = 1, Lv(g
β) ≥ 0 for all β ∈ Ns}A.

Proof. The proof is analogous to the proof of the dual Putinar theorem 2.4, but
somewhat simpler, because it involves linear constraints rather than the semidefinite
ones. To show the inclusion “⊆”, we pick p, w and v in the same way as in the proof
of dual Putinar (note that K in the dual Handelman corresponds to X in the dual
Putinar). Then Lv(g

β) = g(v)β ≥ 0, since gi(v) ≥ 0 for each i ∈ [s] in view of the
fact that v belongs to P . This shows that w is in the right-hand side of (2.8).

To show the the inclusion “⊇”, we assume that w is in RA \MA(K). Then, as
in the proof of the dual Putinar, we fix a separating hyperplane determined by the
vector c, introduce an ε > 0 such that the polynomial f(x) (depending on c and ε) is
strictly positive on K. By Handelman, f =

∑
β∈B dβg

β , where B is a finite subset of
Ns and dβ are non-negative coefficients.

For every v ∈ Nn with vB = w, we have

0 >
∑
α∈A

cαwα + ε

= Lv(f) =
∑
β∈B

dηLv(g
β).

This implies that for some β ∈ B we have Lv(g
β) < 0. Consequently, v is not in

the right-hand side set of (2.8).

Here, we work under the assumptions of Theorem 2.10. Consider 0 ∈ Ai ⊆ Nn
1

such that gi ∈ R[x]Ai
. We can also fix Ai = Nn

1 , which is the case needed when the
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coefficients of gi are generic, but in more specific situations, we might prefer to take
a smaller Ai. We introduce the polyhedral relaxation BF(B) of MA(K) as

(2.9) BF(B) := {v ∈ RP : Lv(g
β) ≥ 0 for all β ∈ B}

depends on the choice of a finite set B ⊆ Ns and

P :=
⋃
β∈B

(A1 + · · ·+A1︸ ︷︷ ︸
β1

+ · · ·+As + · · ·+As︸ ︷︷ ︸
βs

).

We call BF(B) the bound-factor polyhedron for B. Analogously to how we analyzed
established semidefinite relaxations in Corollary 2.6, one can show that BF(B) can
approximate MA(K) arbitrarily well. In particular, limd→∞ BF(Ns

d)A = MA(K)
with the limit in the sense of the Hausdorff metric.

Remark 2.12. In contrast to linear programming relaxations, approximation by
semidefinite relaxations is achievable for a much broader class of moment bodies
MA(X), where X is not necessarily a polytope. In some cases (for example, for uni-
variate problems) one can even guarantee an exact description of MA(X). In sharp
contrast to this, an exact polyhedral description is impossible with linear programming
relaxations if MA(X) is not a polyhedron. On the other hand, linear programming
relaxations are better suited for applications in branch-and-bound frameworks, because
the dual simplex method can start in phase 2 with the solution of the parent node.

2.2.2. Exact polyhedral models. Since global NLP heavily relies on linear
programming, it uses patterns with polyhedral moment bodies. Below, we present
some such patterns.

Proposition 2.13. Let I ⊆ {0, 1}n and K = Box(l, u). Then the moment body
MI(K) is a polytope given by MI(K) = MI(vert(K)).

Proof. Clearly, vert(K) = {l1, u1} × · · · × {ln, un}. By rearranging xi(ui − li) =
xi(ui − li), one has

xi =
ui − xi

ui − li︸ ︷︷ ︸
ai,li

li +
xi − li
ui − li︸ ︷︷ ︸
ai,ui

ui.

with ai,li , ai,ui
≥ 0, for every x ∈ K, and ai,li + ai,ui

= 1. Representing x1, . . . , xn as
above and using the fact that m(x1, . . . , xn) := xI is an affine function in each of the
xi’s, we obtain

m(x) =
∑

s1∈{l1,u1},...,sn∈{ln,un}

a1,s1 · · · an,sn m(s1, . . . , sn),

where all 2n products a1,s1 · · · a1,sn are non-negative, for x ∈ K, and∑
s1∈{l1,u1},...,sn∈{ln,un}

a1,s1 · · · an,sn = (a1,l1 + a1,u1) · . . . · (an,ln + an,uu) = 1.

This shows MI(K) = MI(vert(K)), which immediately implies that MI(K) is a
polytope.
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Remark 2.14. Since MI(K) = MI(vert(K)), the condition in Proposition 2.13
that v ∈ MI(K) can be formulated using the linear constraints

v =
∑

p∈vert(K)

λp m(p),

1 =
∑

p∈vert(K)

λp

with the non-negative auxiliary variables λp ≥ 0.

Remark 2.15. The rectangle K = [l1, u1]×[l2, u2] is given by g = (g1, g2, g3, g4) =
(x1 − l1, u1 − x1, x2 − l2, u2 − x2) with gi ∈ R[x]Ai

and A1 = A2 = {(0, 0), (1, 0)} and
A3 = A4 = {(0, 0), (0, 1)}. In this case, it is known that for

B = {(1, 0), (0, 1)}2 = {(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1)},

the bound-factor polyhedron BF(B) coincides with the moment body MA(K) for A =
{0, 1}2. The four inequalities describing BF(B) are Lv(g1g3) ≥ 0, Lv(g1g4) ≥ 0,
Lv(g2g3) ≥ 0, and lv(g3g4) ≥ 0. They are known as McCormick inequalities.

Example 2.16. Consider M{0,1}2(K) for K = [−1, 1]2. By Proposition 2.13,

this moment body is a polytope with the vertices x{0,1}2

, where x ∈ {−1, 1}2, so that
v ∈ M{0,1}2 can be formulated as the constraint

1
v1,0
v0,1
v1,1

 = λ1


1
−1
−1
1

+ λ2


1
1
−1
−1

+ λ3


1
−1
1
−1

+ λ4


1
1
1
1


using auxiliary non-negative variables λ1, . . . , λ4 ≥ 0. Using McCormick’s inequalities
we can also formulate M{0,1}2(K) in the original space by

Lv((1− x1)(1− x2)) := 1− v1,0 − v0,1 + v1,1 ≥ 0,

Lv((1 + x1)(1− x2)) := 1 + v1,0 − v0,1 − v1,1 ≥ 0,

Lv((1− x1)(1 + x2)) := 1− v1,0 + v0,1 − v1,1 ≥ 0,

Lv(1 + x1)(1 + x2)) := 1 + v1,0 + v0,1 + v1,1 ≥ 0.

As a next step, we generalize Proposition 2.13 by passing from I = {0, 1}n to a
more general set P :

Proposition 2.17. Let α ∈ Nn, P ⊆ {0, α1} × · · · × {0, αn}, and K = Box(l, u).
Then the moment body MP (K) is a polytope.

Proof. There is no loss of generality in assuming αi > 0 for every i ∈ [n]. We
can describe P as P = ΓI, for some I ⊆ {0, 1}n and the diagonal matrix Γ ∈ Nn×n

with the diagonal entries α1, . . . , αn. By Proposition 2.20 from Section 2.3, one has
MP (K) = MΓI(K) = MI(K

Γ), where KΓ = Box(lΓ, uΓ). By Proposition 2.13,
MI(K

Γ) is a polytope.

Remark 2.18. Remark 2.14 and the proof of Proposition 2.17 yield a way to
provide an explicit formulation of MP (K) with P ⊆ {0, α1} × · · · × {0, αn}.

Motivated by Proposition 2.17, we call a pattern P ⊆ {0, α1} × · · · × {0, αn}
mutlilinear.

We also generalize Proposition 2.17 as follows.
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Proposition 2.19. Let Γ = (γ(1), . . . , γ(k)) ∈ Rn×k be a matrix, for which the
monomials xγ(i) with i ∈ [k] are variable-independent. Then for any P ⊆ Γ{0, 1}k,
the moment body MP (K) is a polytope.

Proof. This is a direct consequence of Propositions 2.20 and 2.13.

Patterns from expression trees. We describe how expression-tree convexifi-
cations from global NLP can be phrased in terms of patterns, when applied to (POP).
Each algebraic expression is made up of a certain set of elementary operations, such as
powers, linear combinations, or products of expressions. A decomposition of an alge-
braic expression into these operations can be visualized using an algebraic expression
tree. This is a rooted tree with nodes labeled by terms occurring in the expression.
Each term is built up from its child terms using elementary operations. The un-
derlying convexification is obtained by introducing a variable for each sub-expression
occurring in the tree and providing convex constraints that link the variables of every
node and its child nodes. A polynomial f =

∑
α∈A fαx

α can thus be expressed as a
linear combination of monomials, where each monomial xα is expressed as a product
of powers of the variables. If we do not want to use products with arbitrary number of
factors as elementary operations, we can fix a bracketing in the product xα1

1 · · ·xαn
n ,

to specify the order in which multiplications are carried out.
So, if f = 2x2

1x3 − 3x1(x2x
4
3) + 7x1(x2x3), we have the corresponding tree

f = 2x2
1x3 − 3x1(x2x

4
3) + 7x1(x2x3)

x2
1x3 x1(x2x

4
3) x1(x2x3)

x2
1

x3 x1 x2x
4
3

x1 x2x3

x1 x2 x4
3

x2 x3

x3

We assign monomial variables to all expressions apart from the root node f . The
convexification for the root node f and the variables v2,1,0, v1,1,4, and v1,1,1 assigned
to its children is f = 2v2,1,0 − 3v1,1,4 + 7v1,1,1. Every non-root node of a tree gets
assigned a monomial variable. Taking a non-root node together with its children
determines a pattern. For example, the node x1(x2x

4
3) and its children form the

pattern {(1, 1, 4), (1, 0, 0), (0, 1, 4)}, while the node x2
1 and its only child x1 determine

the pattern {(2, 0, 0), (1, 0, 0)}. As a consequence of Proposition 2.19, we see that
for three-element patterns P the respective moment body MP (K) is a polytope.
For the two-element patterns P = {(2, 0, 0), (1, 0, 0)} and P = {(0, 0, 4), (0, 0, 1)} the
respective moment bodies MP (K) are not polytopes, but they are two-dimensional
bodies, for which an outer polyhedral approximation can be constructed rather easily.
Hence, for this example, we establish a sparse polyhedral relaxation of (POP) using
(P-RLX) with a pattern family arising from an expression tree.

There is yet another possibility. If we allow products with arbitrary many factors
as elementary operations, then each monomial xα can be written as a product of
powers of the variables. For the above example, we obtain the expression tree
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f = 2x2
1x3 − 3x1x2x

4
3 + 7x1x2x3

x2
1x3 x1x2x

4
3

x1x2x3

x2
1

x3 x1 x4
3

x1 x3

x1

x2

x3

x2

The difference in constructing patterns for this tree is that some of the nodes determine
patterns of the form {α1e1, . . . , αnen, α}. For example, the node x1x2x

4
3 together with

its children defines the pattern {(1, 0, 0), (0, 1, 0), (0, 0, 4), (1, 1, 4)}. For such patterns,
Proposition 2.17 guarantees that the respective moment body MP (K) is a polytope.
Hence, the comments for the previous expression tree still apply.

2.3. Sparsifying dense approaches. We want to carry over Lasserre’s semi-
definite relaxations of the moment body MNn

d
(X) body to a relaxation of MP (X) for

some smaller sets P , which can be used as patterns in (P-RLX).
For a pattern P ⊆ Nn, we already introduced the notation xP := (xα)α∈P .

Given a matrix Γ = (γ(1), . . . , γ(k)) ∈ Nn×k, we use the similar notation with
xΓ := (xγ(1), . . . , xγ(k)) along with the vectors lΓ := (lγ(1), . . . , lγ(k)) and uΓ :=
(uγ(1), . . . , uγ(k)). For a set X, we introduce the set XΓ := {xΓ : x ∈ X}, which
is the image of X under the map x 7→ xΓ.

Assuming that Γ has rank k, one can now define the pattern ΓP := {Γα : α ∈
P}, which we call the image of P under Γ. The exponents in P are in one-to-one
correspondence with the exponents in ΓP , since Γ has rank k. We now map the
k-dimensional patterns Nk

d to patterns ΓNk
d. Clearly, one can generate many copies of

such patterns by considering many different choices of Γ, and then use such patterns
within (P-RLX).

We call monomials xγ(1), . . . , xγ(k) variable-independent if no variable xi occurs
in more than one of these k monomials. This means the supports of the exponent
vectors γ(1), . . . , γ(k) are pairwise disjoint.

Proposition 2.20. Let Γ = (γ(1), . . . , γ(k)) ∈ Nn×k be a rank k matrix and
consider a pattern P ⊆ Nk. Then for the moment body of the pattern ΓP , one has

MΓP (X) = MP (X
Γ).

If X = K = Box(l, u) and if xγ(1), . . . , xγ(k) are variable-independent monomials,
then KΓ = Box(lΓ, uΓ).

Proof. Since Γ has rank k, the map α 7→ Γα from P to ΓP is bijective. The pattern
P gives the system of monomials yP in the variables y = (y1, . . . , yk), whereas the
pattern ΓP gives the system of monomials xΓP . One can obtain xΓP by substituting
y = xΓ into yP . In the coordinate form, the substitution can be written as yi = xγ(i).
One has

MΓP (X) = conv{((xΓ)α)α∈P : x ∈ X}
= conv{(yα)α∈P : y ∈ XΓ}
= MP (X

Γ).

Assume now that X = K = Box(l, u) and that the monomials xγ(1), . . . , xγ(k) are
variable-independent. In this case, by letting x vary in K = Box(l, u), we can fix the
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values of the k monomials xγ(i) independently. Since xγ(i) takes values in [lγ(i), uγ(i)],
we obtain KΓ = Box(lΓ, uΓ).

If Γ = (γ(1), . . . , γ(k)) ∈ Nn×k is such that the monomials xγ(1), . . . , xγ(k) are
variable-independent, then we call the pattern ΓNk

d a truncated sub-monoid pattern.
If k = 1, then we call ΓNk

d a chain. Thus, a chain is a pattern of the form {0, γ, . . . , dγ},
where γ ∈ Nn.

Applying Proposition 2.20 to the moment body MΓNk
d
(X) of a truncated sub-

monoid pattern, we can transfer the relaxation techniques for MNn
d
(X) to the body

MΓNk
d
(X). In principle, both bound-factor relaxations and Lasserre’s semidefinite

relaxation can be chosen. In Section 4 we shall use Lasserre’s relaxation, thus we only
spell out the resulting Lasserre-type moment relaxation of MΓNk

2d
(X) (we replace d

by 2d, since we work with even degrees in Lasserre’s approach). For box constraints
we have KΓ = Box(lΓ, uΓ). The Lasserre-type relaxation of MΓNk

2d
is the following set

MRΓ,d(K) := {v ∈ RΓNk
2d : Lv(MΓNk

d
) ⪰ 0 and

Lv(hiMΓNk
d−1

) ⪰ 0 for all i ∈ [k]}

where hi := (xγ(i)− lγ(i))(uγ(i)−xγ(i)). We call MRΓ,d(K) the semidefinite relaxation
of MΓNd

k
(K) and use it in our computations.

Example 2.21. Consider the box K = [−1, 1] × [−2, 2]. We choose d = 1 and

Γ =

(
2 0
0 2

)
. Then ΓNn

2d = ΓN2
2 = {(0, 0), (2, 0), (0, 2), (4, 0), (2, 2), (0, 4)} is the

pattern. The monomials x2
1 and x2

2 range in the segments [0, 1] and [0, 4] for x ∈ K.
That is, l2,0 = 0, u2,0 = 1, l0,2 = 0, u0,2 = 4. Consequently, MRΓ,d(K) is given by the
LMIs

Lv(

 1 x2
1 x2

2

x2
1 x4

1 x2
1x

2
2

x2
2 x2

1x
2
2 x4

2

) :=

 1 v2,0 v0,2
v2,0 v4,0 v2,2
v0,2 v2,2 v0,4

 ⪰ 0,

Lv(x
2
1(1− x2

1)) := v2,0 − v4,0 ≥ 0,

Lv(x
2
2(4− x2

2)) := 4v0,2 − v0,4 ≥ 0.

Example 2.22. Consider the box K = [−1, 2]× [1, 2] and the chain pattern P =
{0, γ, 2γ} with γ = (1, 2). The Lasserre-type relaxation for this choice is MRΓ,d(K)

with Γ =

(
1
2

)
and d = 1. One has xγ = x1x

2
2. When x ∈ K, one has −1 ≤ x1 ≤ 2

and 1 ≤ x2
2 ≤ 4. It follows that the least value for xγ = x1x

2
2 is attained for x1 =

−1, x2
2 = 4 and the largest value for xγ is attained for x1 = 2, x2

2 = 4. That is, lγ = −4
and uγ = 8. Hence, MRΓ,d(K) is given by the LMIs

Lv(

(
1 x1x

2
2

x1x
2
2 x2

1x
4
2

)
) :=

(
1 v1,2

v1,2 v2,4

)
⪰ 0,

Lv((x1x
2
2 + 4)(8− x1x

2
2)) := 32 + 4v1,2 + v2,4 ≥ 0.

2.4. Shifting patterns. For all considered patterns we can also construct a
shifted version, which may be useful in computations. Note that if a pattern P does
not contain the zero exponent, we can pass from from P to P ∪ {0} without any
significant changes in the relaxation, because the constraint vP∪{0} ∈ MP∪{0}(X) is
equivalent to vP ∈ MP (X), v0 = 1.
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Proposition 2.23. Consider a pattern P ⊆ Nn with 0 ∈ P and an exponent
vector η ∈ Nn \ {0} such that the two monomials xη and xα are variable-independent
for each choice of α ∈ P . Then the pattern η + P is given by

Mη+P (X) = {(vη+β)β∈P ∈ coneMP (X) : lη ≤ vη ≤ uη}.

Proof. To clarify the asserted equality, we note that although coneMP (X) is a
subset of RP and Mη+P (X) is a subset of Rη+P , we can identify RP and Rη+P in
view of the bijection β ↔ η + β between the index sets P and η + P .

Due to variable-independence of the monomials xη and xα, the choice of values
of xη is independent on the choice of m(x) := (xα)α∈P , as x varies in X. Hence

Mη+P (X) = conv{txα : t ∈ [lη, uη], x ∈ X}
= conv{tu : t ∈ [lη, uη], u ∈ MP (X)},
= conv{tu : t ∈ {lη, uη}, u ∈ MP (X)}.

Thus, Mη+P (X) is the convex hull of two parallel cross-sections of coneMP (X) at
“heights” lη and uη, respectively. This readily gives the assertion.

Proposition 2.23 gives a way to establish formulations of shifted patterns, in
particular, shifted truncated sub-monoids and shifted chains. Since we employ the
conic-hull operation, we need to homogenize constraints. Both linear and semidefinite
constraints can be homogenized. We give a simple example, illustrating how shifting
works with respect to linear constraints.

Example 2.24. Consider the pattern {0, 1}2 × {1}, which is a shift of P =
{0, 1}2 ×{1} by the vector η = (0, 0, 1) and let us choose X = [0, 1]2 × [1, 2]. The mo-
ment body MP (X) is a polytope defined by the McCormick inequalities Lv(x1x2) :=
v1,1,0 ≥ 0, Lv(x1(1− x2)) := v1,0,0 − v1,1,0 ≥ 0, Lv((1− x1)x2) := v0,1,0 − v1,1,0 ≥ 0,
Lv((1 − x1)(1 − x2)) := 1 − v1,0,0 − v0,1,0 + v1,1,0 ≥ 0. When we homogenize, the 1
in the last inequality gets replaced by v0,0,0. Finally, we shift the indices by adding
η = (0, 0, 1) and add the constraint 1 ≤ v0,0,1 ≤ 2, resulting in the linear inequalities

v1,1,1 ≥ 0,

v1,0,1 − v1,1,1 ≥ 0,

v0,1,1 − v1,1,1 ≥ 0,

v0,0,1 − v1,0,1 − v0,1,1 + v1,1,1 ≥ 0,

1 ≤ v0,0,1 ≤ 2

that define M{0,1}2×{1}([0, 1]
2 × [1, 2]).

Example 2.25. We give a small example that shows how to derive a semidefinite
formulation of a shifted chain.

Consider the shifted chain η+P = {(0, 1), (1, 1), (2, 1), (3, 1), (4, 1)} with η = (0, 1)
and P = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0)}. We choose X = [−1, 1] × [1, 2]. The
moment body MP (X) is described by the two LMIs

Lv(

 1 x1 x2
1

x1 x2
1 x3

1

x2
1 x3

1 x4
1

) :=

 1 v1,0 v2,0
v1,0 v2,0 v3,0
v2,0 v3,0 v4,0

 ⪰ 0,

Lv((1− x2
1)

(
1 x1

x1 x2
1

)
) :=

(
1− v2,0 v1,0 − v3,0

v1,0 − v3,0 v2,0 − v4,0

)
⪰ 0
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Replacing 1 by v0,0, then shifting the indices by (0, 1) and introducing the constraint
1 ≤ v0,1 ≤ 2, we arrive at the following description of Mη+P (X):v0,1 v1,1 v2,1

v1,1 v2,1 v3,1
v2,1 v3,1 v4,1

 ⪰ 0,

(
v0,1 − v2,1 v1,1 − v3,1
v1,1 − v3,1 v2,1 − v4,1

)
⪰ 0,

1 ≤ v0,1 ≤ 2.

2.5. Summary and Visualization of Patterns. We have seen a variety of
different patterns that can be used in our general convexification and sparsification
framework. It is possible to combine the above approaches to obtain a pattern family
F . This can be done problem-specifically, by exploiting properties of the underly-
ing exponent set A to obtain a benefitial relation between computational cost and
tightness of the relaxation. Examples of such customized pattern families combining
multilinear patterns and shifted chains are visualized below and evaluated computa-
tionally in Section 4.3.4.

One additional advantage of the abstracted concept of monomial patterns is that
it allows a general way of visualizing which monomials and which auxiliary lifted
variables are involved.

Example 2.26. We consider different exponent sets for n = 2 for visualization,

A1 := {(0, 0), (0, 3), (3, 0), (3, 3)},
A2 := {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)},
A3 := {(0, 0), (0, 3), (0, 6), (2, 0), (2, 3), (4, 0)},
A4 := {(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5)},
Aex := {(0, 2), (1, 1), (2, 3), (2, 4), (4, 0), (5, 5)}.

Figure 2 shows a visualization for them and some of the patterns discussed above.
In addition, three custom pattern families F 1, F 2, and F 3 based on combinations of
multilinear patterns, chains, and shifted chains applied to Aex are also visualized in
the last row of Figure 2. They will be used for numerical results in Section 4.3.4.
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Fig. 2: Visualization of involved variables vα in examplary patterns. The title of each
subplot refers to the corresponding set A from Example 2.26. Exponents α ∈ A ⊂ N2

are depicted as red squares. Pattern-specific auxiliary exponents α ∈ ∪iPi are depicted
as blue dots. Curves connect all exponents α ∈ Pi. As a rule of thumb, the largest
cardinality |Pi| has a strong influence on the overall runtime to solve (P-RLX).
First row: multilinear patterns with P = {0, 1}2, Section 2.2.2
Second row: expression tree, Section 2.2.2, bound-factor product, Section 2.2.2, and
moment relaxation, Section 2.1
Third row: different truncated submonoids, Section 2.3
Fourth row: different shifted chains, Section 2.4
Fifth row: Families F 1, F 2, F 3 combining multilinear and shifted chains patterns
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3. Conic pattern relaxations and their duality. We now focus on a different
aspect of polynomial optimization – duality. Complementary, but also based on the
concept of sparsification, we shall see how patterns corresponding to some popular
dual approaches in polynomial optimization arise from a unifying, general framework.

3.1. Conic pattern relaxations. We introduce a conic analog of (P-RLX). To
this end, analogously to how we defined the moment body MA(X) using the convex

hull, we introduce the moment cone CA(X) := cone{xA : x ∈ X}, defined using the
conic hull. In the conic setting, we need to change our treatment of v0. In the
discussion below, v0 is a variable and not the constant 1. In particular, the use of the
functional Lv is modified accordingly.

We give an example in which the relation between the moment body and the
moment cone is straightforward and another example, where the relation is intricate.
The two situations differ by the condition whether the set of exponent vectors contains
the zero exponent.

Example 3.1. Let X = R. For A = {0, 1, 2}, one has

CA(X) =


v0
v1
v2

 ∈ RA :

(
v0 v1
v1 v2

)
⪰ 0

 ,

while

MA(X) =


 1
v1
v2

 ∈ RA :

(
1 v1
v1 v2

)
⪰ 0


is the cross-section of CA(X) by the plane v0 = 1. So, here CA(X) is a homogeniza-
tion of MA(X) and MA(X) is a de-homogenization of CA(X). That is, the relation
between CA(X) and MA(X) is straightforward.

Example 3.2. Consider the case A = {2, 3, 4} and X = R. Obviously, a polyno-
mial f(x) ∈ R[x]A is non-negative if and only if f(x)/x2 ∈ R[x]{0,1,2} is non-negative.
This implies that non-negative linear functionals on CA(X) correspond to non-negative
linear functionals on C{0,1,2}(X). Thus, by the separation theorem for convex cones,
CA(X) is a copy of C{0,1,2}(X) so that one has

CA(X) =


v2
v3
v4

 ∈ RA :

(
v2 v3
v3 v4

)
⪰ 0


The moment body MA(X) can be obtained by taking the cross-section of C{0}∪A(X)
by the hyperplane v0 = 1. By standard results on the moment problem for the real
line R, we know that the moment cone C{0,1,2,3,4}(X) is defined by Lv(M{0,1,2}) ⪰ 0.
Consequently, since C{0}∪A is a projection of C{0,1,2,3,4}(X), we have

C{0}∪A(X) =




v0
v2
v3
v4

 ∈ R{0}∪A :

v0 v1 v2
v1 v2 v3
v2 v3 v4


︸ ︷︷ ︸
=:Lv(M{0,1,2})

⪰ 0 for some v1 ∈ R


The semidefinite condition defining C{0}∪A(X) is an instance of a positive semidefinite
matrix-completion problem for a chordal graph. We refer to Chapter 10 of [56] for
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details. Hence, by [56, Theorem 10.1], this semidefinite condition can be phrased via
the positive semidefiniteness of the sub-matrices in the matrix defining C{0}∪A(X) that
do not involve v1. Consequently,

C{0}∪A(X) =



v0
v2
v3
v4

 ∈ R{0}∪A :

(
v0 v2
v2 v4

)
⪰ 0,

(
v2 v3
v3 v4

)
⪰ 0


By fixing v0 = 1 we obtain a description of MA(X) by two LMIs with matrices of
size two:

MA(X) =


v2
v3
v4

 ∈ RA :

(
1 v2
v2 v4

)
⪰ 0,

(
v2 v3
v3 v4

)
⪰ 0


We thus see that the description of MA(X) contains an LMI not present in the
description of CA(X).

For a finite exponent set A with 0 ∈ A, we formulate the conic convexification of
the problem infx∈X f(x) of optimizing a polynomial f ∈ R[x]A over a set X ⊆ Rn,
as the problem inf{Lv(f) : v ∈ RA, v0 = 1, v ∈ CA(X)}. This is nothing but
(CVX-POP), since the constraints v0 = 1, v ∈ CA(X) are nothing but the constraint
v ∈ MA(X). But when we move on to a sparse relaxation, the conic sparse relaxation
differs from (P-RLX) in general. As with (P-RLX), we fix a pattern family F =
{P1, . . . , PN} such that B := P1 ∪ · · · ∪ PN contains A as a subset. We call

(C-P-RLX) inf
{
Lv(f) : v0 = 1, vPi

∈ CPi
(X) for all i ∈ [N ]

}
the conic pattern relaxation of the problem infx∈X f(x) for the pattern family F =
{P1, . . . , PN}. When all Pi contain 0, (C-P-RLX) is nothing by (P-RLX), but when
some of the Pi’s do not contain 0, (C-P-RLX) is a coarser convexification than
(P-RLX) in general.

Example 3.3 illustrates the difference between (P-RLX) and (C-P-RLX).

Example 3.3. Consider A = {0, 1, 2, 3, 4}, X = R and the pattern family F =
{P1, P2} with P1 = {0, 1, 2} and P2 = {2, 3, 4}. For this choice, (P-RLX), formulated
as

inf

{
4∑

i=0

fivi : (v0, v1, v2) ∈ MP1(X), (v2, v3, v4) ∈ MP2(X)

}
,

gives the exact optimal value of infx∈X f(x) when f ∈ R[x]A satisfies f0 = f1 = f2 =
0. In contrast to this, (C-P-RLX), formulated as

inf

{
4∑

i=0

fivi : v0 = 1, (v0, v1, v2) ∈ CP1(X), (v2, v3, v4) ∈ CP2(X)

}
,

gives the optimal value −∞ or 0 when f0 = f1 = f2 = 0. To see this, note that
(v2, v3, v4) ∈ CP2

(X) is a positively homogeneous constraint so that validity implies
the validity of (λv2, λv3, λv4) ∈ CP2

(X) for each λ ∈ R+. Consequently, inf{(f2(λv2)+
f3(λv3) + f4(λv4) : λ ∈ R+} is −∞ or 0, depending on whether f2v2 + f3v3 + f4v4 is
negative or not.
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(C-P-RLX) is a coarser convexification of infx∈X f(x) than (P-RLX), but due to
the direct presence of cones in (C-P-RLX), it has an advantage of being directly con-
nected with conic optimization. In addition, the cones CPi

(X) involved in (C-P-RLX)
might have a simpler description than the respective moment bodies. We introduce
the notation

CRLXF (X) := {v ∈ RB : vPi
∈ CPi

(X) for all ∈ [N ]},

for the cone defining the conic moment relaxation. This cone is a relaxation of the cone
CA(X) in the sense of the inclusion CA(X) ⊆ CRLXF (X)A. The problem (C-P-RLX)
can be written as inf{Lv(f) : v0 = 1, v ∈ CRLXF (X)}.

3.2. Conic optimization and conic duality. We provide a brief overview
of conic optimization and conic duality, which we present in a form tailored to our
purposes. Dual cones can be formulated for general Euclidean spaces. Here we use a
definition directly addressing the real vector space and standard scalar product.

Definition 3.4. The dual cone of a set C ⊆ Rm is the closed convex cone

C∗ := {y ∈ Rm : ⟨y, x⟩ ≥ 0 for all x ∈ C},

where ⟨x, y⟩ := x⊤y is the standard scalar product of x and y.

By separation theorems, for every closed convex cone C, one has C∗∗ = C.
Conic programming is a general template of optimization problems with a linear

objective function and so-called conic constraints. We define a conic problem as a
problem of the form

(CP) inf{⟨c, x⟩ : x ∈ C, b−Ax ∈ D}

with the linear objective function x ∈ Rn 7→ ⟨c, x⟩ given by c ∈ Rn, the conic con-
straint x ∈ C on the vector x of decision variables, defined using a closed convex cone
C ⊆ Rn, and a linear conic constraint b − Ax ∈ D, defined using a vector b ∈ Rm,
a matrix A ∈ Rm×n and a closed convex cone D ⊆ Rm. If we choose D = {0}, the
constraint b−Ax ∈ D amounts to the system of linear equations Ax = b. If we choose
D = Rm

+ , the constraint b− Ax ∈ D becomes a system of linear inequalities Ax ≤ b.
If we choose C = Rn

+, the constraint x ∈ C is the non-negativity constraint on the x
variables. These observations shows that linear programming in its basic versions is
captured as a special case of (CP). The dual problem of (CP) is defined as

(CP-D) sup{⟨b, y⟩ : c−A⊤y ∈ C∗, y ∈ D∗}

Rather than presenting a general conic-duality theorem relating (CP) and (CP-D),
we focus on its special case, which we need for applications in polynomial optimization.

Proposition 3.5. Let C ⊆ Rm be a pointed closed convex cone, let p ∈ Rm and
q ∈ C \ {0}. Then

(3.1) sup{λ ∈ R : p− λq ∈ C} = inf{⟨p, v⟩ : v ∈ C∗, ⟨q, v⟩ = 1}.

The proposition is borrowed from [8, Proposition 2.4]. Its proof is an easy exercise in
convexity theory.

Remark 3.6. (3.1) asserts the equivalence of (CP) and (CP-D) for a special
choice of A, b, c and the cones C and D.
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Let us also establish an abstract “sparse” version of Proposition 3.5.

Proposition 3.7. Let C1, . . . , CN ⊆ Rm be closed convex cones, which are sub-
sets of a pointed closed convex cone C, let p ∈ Rm and q ∈ (C1 + · · · + CN ) \ {0}.
Then

(3.2) sup{λ ∈ R : p−λq ∈ C1+· · ·+CN} = inf{⟨p, v⟩ : v ∈ C∗
1∩· · ·∩C∗

N , ⟨q, v⟩ = 1}.

Proof. Since C1 + · · ·+CN ⊆ C and C is a pointed closed convex cone, it follows
that C1 + · · ·+CN , too, is a pointed closed convex cone. Hence, the assertion follows
by using Proposition 3.5 for the cone C1+· · ·+CN in combination with the well-known
equality (C1 + · · ·+ CN )∗ = C∗

1 ∩ · · · ∩ C∗
N .

3.3. Duality for conic pattern relaxations. We apply conic optimization
and duality as laid out in Section 3.2 to conic pattern relaxations. Let PA(X) denote
the set of polynomials f ∈ R[x]A that are non-negative on X. It is clear that PA(X)
is a closed convex cone. Furthermore, if X has non-empty interior, the cone PA(X)
is pointed. Indeed, if PA(X) ∩ (−PA(X)), as the set of polynomials f ∈ R[x]A that
are zero on X, consists only of the zero polynomial.

Remark 3.8. The set R[x]A can be identified with RA via the natural bijection∑
α∈A fαx

α ↔ (fα)α∈A. With this identification, Lv(f) is interpreted as the scalar
product of f ∈ R[x]A ↔ RA and v ∈ RA. Consequently, for C ⊆ R[x]A we have C∗ =
{v ∈ RA : Lv(f) ≥ 0 for all f ∈ C}. Analogously, for D ⊆ RA, we can interpret D∗

as a cone in R[x]A and use the equality D∗ = {f ∈ R[x]A : Lv(f) ≥ 0 for all v ∈ D}.
Proposition 3.9. Let A ⊆ Nn be a finite exponent set and X ⊆ Rn. Then

CA(X)∗ = MA(X)∗ = PA(X).

Proof. We have

CA(X)∗ =

{
f ∈ R[x]A :

∑
α∈A

fαvα ≥ 0 for all v ∈ CA(X)

}

=

{
f ∈ R[x]A :

∑
α∈A

fαvα ≥ 0 for all v ∈ cone{xA : x ∈ X}

}

=

{
f ∈ R[x]A :

∑
α∈A

fαvα ≥ 0 for all v ∈ {xA : x ∈ X}

}

=

{
f ∈ R[x]A :

∑
α∈A

fαx
α ≥ 0 for all x ∈ X

}
= PA(X).

Analogously, we obtain MA(X)∗ = PA(X).

The duality MA(X)∗ = PA(X) corresponds to a pair of optimization problems,
dual to each other.

Proposition 3.10. Let A ⊆ Nn with 0 ∈ A and f ∈ R[x]A. Then

sup{λ ∈ R : f − λ ∈ PA(X)} = inf{Lv(f) : v ∈ CA(X), v0 = 1}
= inf{Lv(f) : v ∈ MA(X)}.

Proof. The assertion is trivial, but it also follows from Proposition 3.5.
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In Proposition 3.10, the formal supremum-problem is a declaration of the intention
to find lower bounds on f , while the infimum-problem (written in two equivalent
versions) is a declaration of the intention to convexify. Proposition 3.10 serves as a
starting point for establishing an analogous sparse version of duality.

Proposition 3.11. Let P1, . . . , PN , A ⊆ Nn be finite sets of exponent vectors
satisfying {0} ∪ A ⊆ B := P1 ∪ · · · ∪ PN . Let f ∈ R[x]A and let X ⊆ Rn have
non-empty interior. Then

sup{λ ∈ R : f − λ ∈ PP1(X) + · · ·+ PPN
(X)}

= inf{Lv(f) : v0 = 1, vPi ∈ CPi(X) for every i ∈ [N ]}.

Furthermore, if 0 ∈ Pi for every i ∈ [N ], then the infimum is equal to

inf{Lv(f) : vPi ∈ MPi(X) for every i ∈ [N ]}.

If, additionally, the set X is compact, then sup and inf are attained and can be replaced
by max and min, respectively.

Proof. The cones PPi
(X) are subsets of the closed pointed convex cone PB(X),

which shows that the assumptions of Proposition 3.7 are fulfilled for the cones Ci =
PPi(X).

As a direct consequence of Proposition 3.9, we obtain

(CA(X)× RB\A)∗ = (MA(X)× RB\A)∗ = PA(X) ⊆ R[x]B

which, inserted in Proposition 3.7, yields the main assertion.
Now, assume that 0 ∈ Pi for every i ∈ [N ]. Then one has MPi

(X) = {v ∈
CPi

(X) : v0 = 1}.
Assume additionally that X is compact. The infimum is finite and a minimum,

because RLXF (X) = {v ∈ RB : vPi ∈ MPi(X) for all ∈ [N ]} is a compact set
contained in Box(lB , uB). Hence the supremum is finite as well. To see that the
(finite) supremum is attained it suffices to observe that PP1

(X) + · · · + PPn
(X) is a

closed convex cone so that {f − λ : λ ∈ R, f − λ ∈ PP1
(X) + · · · + PPN

(X)} is a
ray with the end point of the ray corresponding to the λ, for which the supremum is
attained.

We call

(D-P-RLX) max{λ ∈ R : f − λ ∈ PP1
(X) + · · ·+ PPN

(X)}.

the dual pattern relaxation for the pattern family F = {P1, . . . , PN}. The constraint
in (D-P-RLX) is a formal constraint f − λ = g1 + · · ·+ gN , involving the real-valued
variable λ, certifying the bound f ≥ λ on f through the “conic variables” gi ∈ PPi(X).
Analogously to our discussion of the primal problem (P-RLX), the conditions gi ∈
PPi

(X) are formal constraints, since (D-P-RLX) gives no clues on how to model
these constraints. It is just a declaration that if the Pi’s allow a sparse formulation
of gi ∈ PPi(X) in some optimization paradigm this implies the same for the model
(D-P-RLX). For being able to use (D-P-RLX), one either needs to provide exact
descriptions of PPi

(X), which may be a description in the original space or a lifted
description, or to model an inner approximation of PPi

(X). We stress that relaxing
(D-P-RLX) means finding formulations of inner approximations of PPi

(X). Indeed,
(D-P-RLX) is a maximization problem, so that a strengthening of the constraints
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vPi
∈ PPi

(X) by replacing PPi
(X) with smaller cones makes the maximum over λ’s

smaller. Thus, relaxing (D-P-RLX) means to determine a cone of particular types
of non-negative polynomials with the support in Pi and use such polynomials for
certifying bounds f(x) ≥ λ valid for x ∈ X.

3.4. Sparse conic approaches from the pattern perspective. One can de-
velop a concrete sparse conic approach by starting with (C-P-RLX) and then deriving
(D-P-RLX) via dualization, but one can also start with (D-P-RLX) and then derive
(C-P-RLX) via dualization. If one starts with (C-P-RLX), one emphasizes convexifica-
tion and then passes to (D-P-RLX), which is concerned with a certification of bounds
using sparse non-negative polynomials. If one starts with (D-P-RLX) and then derives
(C-P-RLX) as, e.g., in [23], one emphasizes certificates of bounds and then moves on
to convexification. Emphasis on bound certification has been the favorite choice in
the study of the SAGE, SOS, SDSOS, TS-SSOS and related approaches, which we
are going to summarize below. The contents of the following subsections are mostly a
survey of results about sparse approaches to polynomial optimization that are spread
in the literature. Our intention was to provide a largely self-contained and unified
presentation, in which specific approaches are derived as corollaries of general results.
Our presentation of the duality for SONC and SAGE differs from the presentation of
the duality in other sources such as [23]: rather than starting with a formulation of
(D-P-RLX) and obtaining a formulation of (C-P-RLX) via the dualization, we start
with a formulation of (C-P-RLX) and dualize it to a formulation of (D-P-RLX).

3.4.1. SAGE, SONC, and SDSOS. SAGE and SONC are closely related to
each other [14, 23]. The patterns in both these approaches are simplicial circuits, but
SAGE deals with the non-negativity on Rn

+, while SONC with the non-negativity on
Rn. We start with a discussion of SAGE.

Proposition 3.12. Let γ(0), · · · , γ(k) ∈ Nn be affinely independent exponent vec-
tors and let β ∈ Nn be an exponent vector in the relative interior of the k-dimensional
simplex conv(γ(0), . . . , γ(k)). Consider the coefficients λi > 0 of the convex combina-
tion

β =

k∑
i=0

λiγ(i),

1 =

k∑
i=0

λi

Then, for the pattern P = {β, γ(0), . . . , γ(k)}, one has

CP (Rn
+) =

{
v ∈ RP

+ : 0 ≤ vβ ≤
k∏

i=0

vλi

γ(i)

}
(3.3)

Proof. We denote the right-hand side of (3.3) as C. It is well known that the
weighted geometric mean g : Rk+1

+ → R

g(t0, . . . , tk) =

k∏
i=0

tλi
i

is a concave positively homogeneous function. Thus, C is a closed convex cone defined
as the region below the graph of g and above the graph of the zero function on Rk+1

+ .
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To see that CP (Rn
+) ⊆ C is true, it suffices to observe that for the choice vβ = xβ and

vγ(i) = xγ(i) with x ∈ Rn
+, the inequalities defining C are true, as the upper bound on

vβ is attained with equality and the lower bound on vβ is trivially fulfilled. To verify
the converse inclusion C ⊆ CP (Rn

+), we start with the set

G =

{
v ∈ RP

>0 : vβ =

k∏
i=0

vλi

γ(i)

}
,

the relative interior of the graph of g. Pick an arbitrary v ∈ G, fix yi = ln vγ(i)
and consider the matrix Γ = (γ(0), . . . , γ(k)). Let 1 = (1, . . . , 1)⊤ ∈ Rk+1. The
matrix M = (Γ⊤ 1) has rank k + 1. Hence, the linear system Mu = y with the
right-hand side y = (y0, . . . , yk)

⊤ has a solution u = (u1, . . . , un+1)
⊤. Let w =

(u1, . . . , un)
⊤. One has y = Mu = Γ⊤w + 1un+1, which can be spelled out as

⟨γ(i), w⟩ + un+1 = yi. Exponentiation of the latter equality gives xγ(i)eun+1 = vγ(i)
with x = (eu1 , . . . , eun)⊤ ∈ Rn

>0. For this choice of x and c = eun+1 , we obtain

cxβ =
∏k

i=0(cx
γ(i))λi =

∑k
i=0 vγ(i) = vβ and thus cxP = v. We have realized v ∈ G

as a point in CP (Rn
+) up to a scaling factor c > 0. Since PP (Rn

+) is a cone, v ∈ G
itself is contained in CP (Rn

+). This shows that G ⊆ CP (Rn
+). But then the topological

closure G, which is the whole graph of g, is also a subset of CP (Rn
+). To conclude the

proof it thus suffices to show that conv(G) = C. It is clear that if (vγ(0), . . . , vγ(k)) is

a standard unit vector and vβ = 0, then v is in the graph G of g. But then the graph
Rk+1

+ × {0} of the zero function, defined on Rk
+ is in conv(G). This shows that the

graph G of g and the graph of the zero function on Rk
+ are both subsets of C. But

since every point v ∈ C lies above the graph of the zero function and below the graph
of g, we conclude that C = conv(G).

We call a pattern P as in (3.3) a SAGE-circuit. For a family F = {P1, . . . , PN} of
SAGE circuits and the domain X = Rn

+, we call the problem (C-P-RLX) the SAGE
moment convexification of the problem infx∈X f(x).

For establishing the dual of the SAGE moment convexification, we need to dualize
the cone CP (Rn

+) from (3.3).

Definition 3.13. For λ = (λ0, . . . , λk) ∈ Rk+1
>0 with 1 =

∑k
i=0 λi, we define the

geometric-mean cone for λ by

GMCλ :=

{
(y, t0, . . . , tk) ∈ Rk+2

+ : 0 ≤ y ≤
k∏

i=0

tλi
i

}
.

Note that the geometric-mean cone is defined slightly differently in MOSEK’s documen-
tation [37].

Proposition 3.14. In the notation of Definition 3.13, one has

(3.4) (GMCλ)
∗ =

{
(z, s0, . . . , sk) ∈ R× Rk+1

+ : z +

k∑
i=0

(
si
λi

)λi

≥ 0

}
.

Proof. We denote GMCλ as C and the right-hand side of (3.4) as D. The scalar
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product of (y, t0, . . . , tk) ∈ C and (z, s0, . . . , sk) ∈ D satisfies

zy +

k∑
i=0

siti = zy +

k∑
i=0

λi
si
λi

ti

≥ zy +

k∏
i=0

(
si
λi

)λi k∏
i=0

tλi
i (by the AM-GM inequality)

≥

(
z +

k∏
i=0

(
si
λi

)λi
)
y

≥ 0.

This shows that D ⊆ C∗. Assume now C∗ ̸⊆ D. Then there exists (z, s0, . . . , sk) ∈ C∗

with s0, . . . , sk ≥ 0 and z +
∏k

i=0

(
si
λi

)λi

< 0. The continuity of this function allows

to find slightly increased values s0, . . . , sk > 0 still resulting in z +
∏k

i=0

(
si
λi

)λi

< 0.

Then, fixing (y, t0, . . . , tk) ∈ C with ti =
λi

si
and y =

∏k
i=0 t

λi
i , for the scalar product

of (y, t0, . . . , tk) and (z, s0, . . . , sk), we obtain

zy +

k∑
i=0

siti = zy +

k∑
i=0

λi

= zy + 1

< −
k∏

i=0

(
si
λi

)λi

y + 1

= −
k∏

i=0

(
si
λi

)λi

tλi
i + 1

= 0.

The scalar product is negative, which contradicts the fact that one of the vectors is
in C∗ and the other one is in C. This implies that D = C∗.

As a a direct consequence of Proposition 3.14, we obtain

Proposition 3.15. In the notation of Proposition 3.12, one has

PP (Rn
+) =

{
f ∈ R[x]P : fβ +

k∏
i=0

(
fγ(i)

λi

)λi

≥ 0

}
.

Proof. The assertion follows from Propositions 3.12, 3.14, and the duality relation
CP (Rn

+)
∗ = PP (Rn

+).

Proposition 3.15 yields an explicit formulation of the problem (D-P-RLX) on the
domain X = Rn

+ in the case when F = {P1, . . . , PN} is a family of SAGE-circuits. We
call such a problem (D-P-RLX) the SAGE relaxation of infx∈Rn

+
f(x) with respect to

the family of SAGE-circuits F . The polynomials of from PP1
(Rn

+) + · · ·+ PPN
(Rn

+),
where P1, . . . , PN are SAGE-circuits, are called SAGE polynomials.

Remark 3.16. Let us briefly discuss computational options for the SAGE mo-
ment convexification and the SAGE relaxation. The problems involve the cones GMCλ
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and (GMCλ)
∗ for different choices of λ. The cones GMCλ and (GMCλ)

∗ are similar
in nature, because both involve the weighted geometric-mean in their description. It
is known that GMCλ and (GMCλ)

∗ are second-order cone representable [11]. The
Mosek documentation [6] provides hints on how to model cones like GMCλ and its
dual. There are also further options, some of which rely on the substitution of vari-
ables vα = eνα for the SAGE moment convexification and fα = eϕα for the SAGE
relaxation.

We proceed with a similar derivation of primal and dual SONC relaxations.

Proposition 3.17. Let the assumptions of Proposition 3.12 hold and assume that
additionally γ(0), . . . , γ(k) ∈ 2Nn. Then, for β ∈ 2Nn, one has

(3.5) CP (Rn) =

{
v ∈ RP

+ : 0 ≤ vβ ≤
k∏

i=0

vλi

γ(i)

}
and, for β ̸∈ 2Nn, one has

(3.6) CP (Rn) =

{
v ∈ RP

+ : −
k∏

i=0

vλi

γ(i) ≤ vβ ≤
k∏

i=0

vλi

γ(i)

}

Proof. If β ∈ 2Nn, then P ⊆ 2Nn. This implies that the value xP does not depend
on the signs of the coordinates x1, . . . , xn but only on the absolute values |x1|, . . . , |xn|.
This implies CP (Rn) = CP (Rn

+) so that the assertion follows from Proposition 3.12.

If β /∈ 2Nn, then the sign of xγ(i) still does not depend on the signs of x1, . . . , xn

but the sign of xβ depend on the signs of x1, . . . , xn and switching the sign of xi, for
which βi is odd, generates a sign switch of xβ . This shows that CP (Rn) contains both
C ′ := CP (Rn

+) and its reflection C ′′ := {v ∈ RP : (−vβ , vγ(0), . . . , vγ(k)) ∈ CP (Rn
+)}.

Hence, CP (Rn) ⊇ C ′∪C ′′, where, in view of Proposition 3.12, C := C ′∪C ′′ is the right-
hand side of (3.6). To see that CP (Rn) is a subset of C it suffices to observe that, for
every x ∈ Rn, one has xP = (−|xβ |, xγ(0), . . . , xγ(k)) or xP = (|xβ |, xγ(0), . . . , xγ(k)),
we see that for v = xP , one of the two convex constraints that define C is attained
with equality. This concludes the proof of the equality CP (Rn) = C.

We can dualize the cones from Proposition 3.17.

Proposition 3.18. In the notation of Proposition 3.17, for β ∈ 2Nn, one has

PP (Rn) =

{
f ∈ R[x]P : fβ +

k∏
i=0

(
fγ(i)

λi

)λi

≥ 0

}
and, for β ̸∈ 2Nn, one has

PP (Rn) =

{
f ∈ R[x]P : − |fβ |+

k∏
i=0

(
fγ(i)

λi

)λi

≥ 0

}
.

Proof. If β ∈ 2Nn, then we have CP (Rn) = CP (Rn
+). Hence PP (Rn) = CP (Rn)∗ =

CP (Rn
+)

∗ = PP (Rn
+), where PP (Rn

+) was determined in Proposition 3.15.

Assume β ̸∈ 2Nn. We recall that xγ(i) does not depend on the signs of x1, . . . , xn

because γ(i) ∈ 2Nn, while xβ has a sign that can be switched by switching the sign

of an xi with odd βi. This shows that fβx
β +

∑k
i=0 fγ(i)x

γ(i) is non-negative on Rn

if and only if −|fβ |xβ +
∑k

i=0 fγ(i)x
γ(i) is non-negative on Rn

+.
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If γ(0, . . . , γ(k) are affinely independent exponent vectors that belong to 2Nn and
β ∈ Nn lies in the relative interior of the simplex with the vertices γ(0), . . . , γ(k),
we call P = {β, γ(0), . . . , γ(k)} a SONC circuit. We call (C-P-RLX) on the domain
X = Rn where F = {P1, . . . , PN} is a family of SONC circuits a SONC moment
convexification of the unconstrained problem infx∈Rn f(x), and we call the respective
problem (D-P-RLX) a SONC relaxation of the unconstrained problem infx∈Rn f(x).
Polynomials from PP1

(Rn)+ · · ·+PPN
(Rn), where P1, . . . , PN are SONC circuits, are

called SONC polynomials.
From Proposition 3.18, we obtain an explicit description of the SONC relaxations

for the problem infx∈Rn f(x).

Remark 3.19. Comments in Remark 3.16 regarding the computational options
for SAGE relaxations also apply for SONC relaxations.

We call a pattern of the form {2α, α + β, 2β} with α, β ∈ Nn and α ̸= β an
SDSOS pattern. This is a special SONC pattern with α + β = λ0(2α) + λ1(2β) and
λ0 = λ1 = 1

2 .

Proposition 3.20. Let P = {2α, α + β, 2β} ⊆ Nn be an SDSOS pattern. Then,
for α+ β ∈ 2Nn, one has

CP (Rn) = {v ∈ RP
+ : 0 ≤ vα+β , v2α+β ≤ v2αv2β},

PP (Rn) = {f ∈ R[x]P : fα+β + 2(f2α · f2β)1/2 ≥ 0}.

Furthermore, for α+ β ̸∈ 2Nn, one has

CP (Rn) = {v ∈ RP
+ : v2α+β ≤ v2αv2β},

PP (Rn) = {v ∈ RP : f2
α+β ≤ 2f2α · f2β}.

Proof. The assertion follows from Propositions 3.17 and 3.18 applied to the special
circuit P with k = 1 and λ0 = λ1 = 1

2 .

Analogously to SONC relaxations, we define SDSOS moment convexifications and
SDSOS relaxations of the problem infx∈Rn f(x). If P1, . . . , PN are SDSOS patterns,
then we call a polynomial from PP1

(Rn) + · · ·+ PPN
(Rn) an SDSOS polynomial.

3.4.2. Sparse SOS certificates for unconstrained problems. Let Sm+ be
the cone of positive semidefinite matrices within the vector space Sm of symmetric
matrices of size m. We introduce the Euclidean structure on Sm by endowing it with
the trace scalar product ⟨U, V ⟩ = tr(UV ). The following is well known:

Proposition 3.21. The cone Sm+ is self-dual. That is, (Sm+ )∗ = Sm+
Proof. Sm+ is the conic hull of the rank-one matrices uu⊤ with u ∈ Rm. Hence,

(Sm+ )∗ consists of matrices V that satisfy
〈
V, uu⊤〉 ≥ 0 for every u ∈ Rm. Since〈

V, uu⊤〉 = u⊤V u, the latter condition is exactly the definition of positive semidefi-
niteness, which gives the assertion.

A polynomial that is a sum of squares of polynomials from R[x] is called a SOS
polynomial. We introduce the closed convex cone

ΣB :=

{
t∑

i=1

f2
i : t ∈ N, f1, . . . , ft ∈ R[x]B

}
of sparse SOS polynomials with the sparsity determined by B. Clearly, ΣB ⊆
PB+B(Rn), but the inclusion is strict in general.
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Proposition 3.22. Let B ⊆ Nn be a finite set of m exponent vectors. Then, ΣB

is the image

(3.7) ΣB = {(xB)⊤MxB : M ∈ Sm+}

of Sm+ under the linear map M ∈ Sm+ 7→ (xB)⊤MxB ∈ R[x]B+B, while Σ∗
B is given

with MB = xB(xB)⊤ by

(3.8) Σ∗
B =

{
v ∈ RB+B : Lv(MB) ⪰ 0

}
,

which means that Σ∗
B is linearly isomorphic to a cross-section of Σm

+ by a linear sub-
space, with the isomorphy determined by the injective map v ∈ RB+B 7→ Lv(MB) ∈
Sm+ .

Proof. A square of a polynomial f(x) = f⊤xB ∈ R[x]B can be written as

f(x)2 = (f⊤xB)((xB)⊤f) = f⊤xB(xB)⊤f = f⊤MBf =
〈
MB , ff

⊤〉 ,
where in vector expressions involving f , we use the identification R[x]B ↔ RB . Conse-
quently, f2

1 + · · ·+ f2
t = ⟨MB , Q⟩, where Q =

∑t
i=1 fif

⊤
i ⪰ 0. Conversely, every sym-

metric positive-semidefinite matrix Q of size |B| can be decomposed into
∑t

i=1 fif
⊤
i

for some f1, . . . , ft, which shows that ⟨MB , Q⟩ =
∑t

i=1 f
2
i ∈ ΣB . This shows (3.7).

Since Sm+ is self-dual, a symmetric matrix M is positive semidefinite if and only if
⟨M,Q⟩ ≥ 0 holds for every symmetric positive semidefinite matrix Q. We thus obtain{

v ∈ RB+B : Lv(MB) ⪰ 0
}
=
{
v ∈ RB+B : ⟨Lv(MB), Q⟩ ≥ 0 for all Q ⪰ 0

}
=
{
v ∈ RB+B : Lv(⟨MB), Q⟩) ≥ 0 for all Q ⪰ 0

}
=
{
v ∈ RB+B : Lv(g) ≥ 0 for all g ∈ ΣB

}
= Σ∗

B .

which concludes the proof.

In most cases, we do not have an explicit description in any of the available
optimization paradigms for the cones PB+B(Rn) which we use in (D-P-RLX). In con-
trast, we have semidefinite representations for the cones ΣB , as explained by Proposi-
tion 3.22. Thus, SOS cones along with the so-called positivstellensätze, which explain
how positivity of polynomials can be certified in terms of SOS polynomials, provide a
theoretical foundation for semidefinite approaches to polynomial optimization. Such
approaches were pioneered by Lasserre [25].

For f ∈ R[x]B+B , we call sup{f ∈ R[x]B+B : f − λ ∈ ΣB} an SOS relaxation of
the unconstrained problem infx∈Rn f(x) with respect to the exponent set B. Further-
more, we call sup{Lv(f) : v0 = 1, Lv(MB) ⪰ 0} the semidefinite moment relaxation
of infx∈Rn f(x) with respect to the exponent set B. The dense versions of these
relaxations are obtained by taking B = Nn

d .
We formulate the duality between SOS and a semidefinite moment relaxation for

the unconstrained polynomial optimization problem.

Proposition 3.23. For a finite exponent set B ⊆ Nn and f ∈ R[x]B+B, we have

sup{λ ∈ R : f − λ ∈ ΣB} = inf{Lv(f) : v0 = 1, Lv(MB) ⪰ 0}.

Proof. The assertion follows by applying Proposition 3.5 to the pointed closed
convex cone C = ΣB and using the description (3.8) of (ΣB)

∗.
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From a computational perspective, the issue with the primal-dual pair of prob-
lems in Proposition 3.23 is that they involve semidefinite constraints with matrices
of size |B|. When |B| is large, the respective computations can become intractable,
as discussed in Section 1.4. To cope with this, one can establish a sparse version of
Proposition 3.23.

Proposition 3.24. Let B1, . . . , BN ∈ Nn be finite exponent sets and let f ∈
R[x]A with A = (B1 +B1) ∪ · · · ∪ (BN +BN ). Then

sup{λ ∈ R : f − λ ∈ ΣB1
+ · · ·+ΣBN

} = inf{Lv(f) : v0 = 1, Lv(MBi
) ⪰ 0 ∀ i ∈ [N ]}.

Proof. Clearly, ΣB1 + · · ·+ ΣBN
is a subset of the pointed convex cone PA(Rn),

so that that the assumptions of Proposition 3.7 are true for Ci = ΣBi
. Hence, the

assertion follows from Proposition 3.7 by taking into account the expression (3.8) for
the dual of the SOS cone. Note that we need to dualize ΣBi

as a cone in R[x]A. In
this case, (3.8) is only slightly modified to (ΣBi

)∗ = {v ∈ RA : Lv(MBi
) ⪰ 0}, by

using RA rather than RBi+Bi .

The primal-dual pair from Proposition 3.24 is a relaxed model for the pair of
the problems (D-P-RLX) and (C-P-RLX) using the cones ΣBi

⊆ PBi+Bi
(Rn) and

{v ∈ RBi+Bi : Lv(MBi
) ⪰ 0} ⊇ CBi+Bi

(Rn). Thus, Proposition 3.24 corresponds to a
pattern relaxation for the pattern family F = {Bi +Bi : i ∈ [N ]}.

We call the two problems in Proposition 3.24 the sparse SOS relaxation and the
sparse semidefinite moment relaxation of infx∈Rn f(x) with respect to the exponent
sets B1, . . . , BN .

3.4.3. TSSOS. The intention of the TSSOS approach [58] is to sparsify SOS
relaxations without losing quality. That is, one wants to replace an SOS relaxation
by an equivalent sparse SOS relaxation. Assume we want to solve the unconstrained
problem infx∈Rn f(x) with f ∈ R[x]A. We fix an SOS relaxation with respect to
some set B satisfying A ⊆ B + B. Having A and B, we now establish a sparse SOS
relaxation with respect to some B1, . . . , BN that is equivalent to the SOS relaxation
with respect to B for all polynomials f with the support contained in A. That is, one
wants to have

(3.9) inf{λ ∈ R : f −λ ∈ ΣB} = inf{λ ∈ R : f −λ ∈ ΣB1
+ · · ·+ΣBN

} ∀ f ∈ R[x]A.

Whenever the maximum size of the Bi’s is smaller than the size of B, the sparse
SOS relaxation is usually more tractable than the SOS relaxation with respect to B.

The TSSOS approach is an iterative algorithm that gets A and B with A ⊆
B + B as an input and performs updates on a partition B = {B1, . . . , BN} of B. In
each iteration, the partition gets coarser (that is, N gets smaller), and the algorithm
terminates in finitely many steps, providing a partition B that satisfies (3.9).

To explain the algorithm, we use undirected graphs and we view a graph as a
set of its edges. For example, G = {{0, 1}, {1, 2}, {1, 3}} is a graph with three edges
{0, 1}, {1, 2} and {1, 3} between nodes from the vertex set {0, 1, 2, 3}.

The algorithm starts by fixing S0 := A ∪ 2B. In the i-th iteration one considers
the graph Gi := {{α, β} : α, β ∈ Nn, α+ β ∈ Si−1}. One defines

Si = {α+ β : α, β nodes of Gi connected by a path},

and sets the partition Bi to be the family of connected components (vertex sets) of
Gi. Bi stabilizes after finitely many iterations and upon stabilization one has (3.9)
with Bi = {B1, . . . , BN}.
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Remark 3.25. How much one has gained by employing TSSOS, depends crucially
on whether the size of the sets B1, . . . , BN is small. Understanding which choices of
A lead to sparse TSSOS reformulations ΣB ∩ R[x]A is an interesting open problem.

Remark 3.26. The basic TSSOS approach was generalized to constrained poly-
nomial optimization and modified to the so-called Chordal-TSSOS approach [58] and
the CS-TSSOS approach.

Remark 3.27. A refined version of the TSSOS method has recently been suggested
[48]. In rTSSOS, refined partitions are determined via integer programming, allowing
a better fine-tuning between approximation quality and computational costs.

3.4.4. Optimization of sparse univariate polynomials over R+. Averkov
and Scheiderer have shown that optimization of sparse univariate polynomials over
R+ can be formulated exactly via a sparse SOS relaxation [8, Proposition 4.3].

Theorem 3.28. For every univariate polynomial f ∈ R[x]A, where A ⊆ N is a
finite set of exponents containing 0, of odd size |A| = 2k+1, and with d = max(A) >
2k one has

inf
x∈R+

f(x) = sup{λ : f − λ ∈ x0ΣB + · · ·+ xd−2kΣB}

= inf{Lv(f) : v0 = 1, Lv(x
iMB) ⪰ 0 for all i ∈ 0, . . . , d− 2k},

where B = {0, . . . , k}.
Theorem 3.28 implies that if a univariate polynomial f has 2k + 1 terms and an

arbitrarily large degree d, then the pattern relaxation with respect to the family of
patterns {i, .., i+ 2k}, where 0 ≤ i ≤ d− 2k, for the optimization of f on the domain
R+ gives the exact optimal value of (POP).

3.5. Lifted conic formulations. In Subsection 3.4, we discussed conic relax-
ations of polynomial optimization problems that are based on conic lifted representa-
tions. In this subsection, we present some abstract framework of lifted formulations
and provide a summary of how the different liftings from Subsection 3.4 are related
to each other.

3.5.1. Abstract lifted formulations.

Definition 3.29. Consider a closed convex cone D ⊆ Rn. We say that a subset
S of the finite-dimensional vector space Rm over R admits a D-lifted representation
if

(3.10) S = {Mx : x ∈ D, Ax = b}

for some linear maps M ∈ Rm×n, A ∈ Rk×m and b ∈ Rk. Geometrically, this means
that S is a linear image of an affine slice of D.

Remark 3.30. Representing S as an image S = MD = {Mx : x ∈ D} of some
cone D is a special case of a D-lifted formulation with k = 0. Furthermore, rep-
resenting S as a cross-section S = {x ∈ D : Ax = b} of D by the affine subspace
{x : Ax = b} is a special D-lifted formulation with M being the identity matrix.

Another way of writing the constraints x ∈ D, Ax = b is by parametrizing the
affine space {x : Ax = b} as x = v−Uy for some matrix U and a vector v. This allows
to represent the constraint x ∈ D, Ax = b as v − Uy ∈ D and Mx is represented as
Mx = Mv −MUy.
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When S in Definition 3.29 is a convex cone, one can replace b by the zero vector
in the D-lifted representation of S so that S is represented as a linear image of a slice
of D by a linear subspace.

In Subsection 3.4 we had a number of situations, in which we replaced the cones
CPi

(X) in (C-P-RLX) by smaller cones Ci that are images of some cones Di under a
linear map. The following abstract proposition underpins the duality for the respective
sparse conic relaxation of (C-P-RLX).

Proposition 3.31. Let p, q ∈ Rn, let C1, . . . , CN ⊆ Rn be pointed closed convex
cones and C := C1 + · · · + CN , a pointed closed convex cone that does not contain
q. Assume that for each i ∈ [N ] the cone Ci admits a formulation Ci := MiDi :=
{Miy : y ∈ Di} as an image of a closed convex cone Di under a matrix Mi. Then the
problem sup{λ ∈ R : p− λq ∈ C} can be formulated as

sup{λ ∈ R : p− λq ∈ M1D1 + · · ·+MNDN}
= inf{⟨p, v⟩ : ⟨q, v⟩ = 1, M⊤

i v ∈ D∗
i ∀ i ∈ [N ]}.

Proof. The assertion follows from Proposition 3.7 by taking into account that
(MiDi)

∗ = {v ∈ Rn : M⊤
i v ∈ D∗

i }.

3.5.2. Examples of primal dual pairs with lifting. We look at some special
cases of duality.

Proposition 3.32. Let polynomials g1, . . . , gs, f ∈ R[x]B be given for some finite
set B ⊆ Nn with 0 ∈ B. Then

sup{λ ∈ R : f − λ ∈ g1R+ · · ·+ gsR+}
= inf{Lv(f) : v ∈ RB , v0 = 1, Lv(gi) ≥ 0 ∀ i ∈ [s]}

and this primal-dual pair of problems provides a lower bound on the problem of the
minimization of f(x) subject to g1 ≥ 0, . . . , gs ≥ 0.

Proof. We use Proposition 3.31, which explains general sparse duality with lifting,
for Ai = gi and Di = R+, where we see gi(x) as a column vector in RB . The
minimization problem involves the constraints A⊤

i v ∈ D∗
i , where A⊤

i v = ⟨gi, v⟩ =
Lv(gi) and D∗

i = (R+)
∗ = R+. This gives the assertion.

Remark 3.33. The primal-dual pair in Proposition 3.32 is a pair of linear prob-
lems. If one knows some inequalities h1, . . . , hN valid on X ⊆ Rn, one can use these
linear problems to relax infx∈X f(x). In particular, it is possible to add the dual linear
problem to the relaxations arising from the expression trees, see Section 2.2.2.

Remark 3.34. Proposition 3.32 in combination with Handelman’s theorem 2.10
gives a primal-dual pair of linear problems for the minimization infx∈K f(x) of a
polynomial f over a polytope K ⊆ Rn. If g1 ≥ 0, . . . , gm ≥ 0 is a system of linear
inequalities that describes K, one can choose hi = gα(i) with α(i) ∈ Nn. Handelman’s
theorem guarantees that when {α(i) : i ∈ [N ]} = Nn

d and d is large enough, the primal-
dual pair approximates infx∈K f(x) arbitrarily well.

Remark 3.35. For the primal and dual SAGE relaxation, based on a family of
SAGE patterns P1, . . . , PN with B := P1 ∪ · · · ∪ PN , the cones Di are GMC cones
GMCλ(i) with λ(i) ∈ Rki+2

>0 , and the matrix Ai provides a coordinate embedding of

Rki+2=̂RPi into RB that bijectively sends RPi to RPi×{0}B\Pi by appending zero com-
ponents. Accordingly, A⊤

i describes the coordinate projection of RB onto RPi=̂Rki+2.
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Analogous comments also apply to the SONC, SDSOS, and sparse SOS relaxations.
The underlying cone for the SDSOS relaxation is GMC1/2,1/2.

For sparse SOS relaxations, Proposition 3.31 provides an abstract version of
Proposition 3.24, where Ai corresponds to the linear map Q ∈ Smi 7→ (xBi)⊤QxBi ∈
R[x]A, with mi = |Bi|, and A⊤

i corresponds to the adjoint of this map, which is the
map v ∈ RA → Lv(MBi

) ∈ Smi .

3.5.3. Relevant conic-optimization paradigms.

Remark 3.36. Conic programming with respect to the cone Rn
+ is linear pro-

gramming. A Rn
+-lifted formulation is also called a linear extended formulation. It

is known that a set X admits a linear extended formulation if and only if X is a
polyhedron. This follows from the fact that polyhedrality is preserved under taking lin-
ear images. Thus, linear programming convexification techniques correspond to conic
optimization for the cone Rn

+.

Definition 3.37. We call (S2+)m a second-order cone and we call a set S second-
order cone representable if it admits a (S2+)m-lift. We define second-order cone pro-
gramming as optimization of a linear objective function subject to finitely many LMIs
M1(x) ⪰ 0, . . . ,Mm(x) ⪰ 0 with matrices of size 2.

Remark 3.38. Polyhedra are second-order cone representable, since every linear
inequality ⟨a, x⟩ + b ≥ 0 in the variables x can be rewritten as a linear matrix in-

equality

(
⟨a, x⟩+ b 0

0 0

)
⪰ 0 with a matrix of size 2. On the other hand, not every

second-order cone representable set is a polyhedron: consider for example the unit

disc, described as

(
1 + x1 x2

x2 1− x2

)
⪰ 0.

Definition 3.39. A Sm+ -lifted formulation is also called a semidefinite lifted for-
mulation or a semidefinite extended formulation. We call a set that admits a semi-
definite extended formulation semidefinitely representable.

Remark 3.40. Every second-order cone representable set is semidefinitely repre-
sentable, because (S2+)m corresponds to a cross-section of S2m+ . On the other hand,
Hamza Fawzi showed that there exist semidefinitely representable sets that are not
second-order cone representable [20]. This result was generalized by Averkov [7] and
later generalized even further by Saunderson [44].

There is a well-developed theory of computational methods for solving linear,
second-order cone and semidefinite optimization problems, with the methods imple-
mented by various solvers. So, for each relaxation of a polynomial optimization prob-
lem that relies on linear, second-order cone or semidefinite lifted formulations, it is
possible to use the available computational machinery to carry out computations in
practice.

Remark 3.41. For SAGE and SONC relaxations we use lifts with respect to the
Cartesian products

GMCγ(1) × · · · ×GMCγ(m)

of the GMC cones. For conic programming with respect to GMC cones computational
approaches are also available. Alternatively, one can pass from GMC cones to second-
order cones, using a result of Ben-Tal and Nemirovski [11], which shows that GMCλ

is second-order cone reprentable.
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4. Computations. In this section we shall investigate numerically the impact
of various forms of convexification and sparsification on computational runtime and
on the quality of approximations. We describe which algorithms were evaluated with
which criteria in Section 4.1, and describe the benchmark test set of polynomial
optimization problems in Section 4.2. The numerical results are then presented and
discussed in Section 4.3.

4.1. Convexification and sparsification approaches. We are interested in
different ways of convexification and in a comparison to existing solvers for polyno-
mial optimization problems based on either primal or dual approaches. In all of our
numerical comparisons we used the following software. The abbreviations will be used
in all following figures.
Method Description

B We used the software BARON 1.8.9 [43, 53] with default settings, called from
MATLAB. BARON is a mature solver, based on branch-and-bound and polyhedral
relaxations. We enforced a 1000 second time limit, as discussed further below.

R Root node relaxation of BARON, indicating the computational costs and ap-
proximation quality of the polyhedral relaxation without branch-and-bound
based refinements.

Y We used the software YALMIP 20200930 [30] as a MATLAB toolbox. It allows
to compute the moment as well as the SOS relaxation of (POP). We used
YALMIP’s solvesos at the lowest possible level of the SOS hierarchy with
MOSEK 9.2.32 [37].

SOS In study 4.3.3, method Y could not provide a solution due to memory issues.
We replaced it with a custom implementation of Lasserre’s SDP relaxation at
the lowest possible level of the hierarchy. It gave qualitatively similar results
on other test problems (data not shown).

CS We used the software CS-TSSOS 1.00, based on the (dual) TSSOS approach
[58], compare Section 3.4.3. CS-TSSOS is a JULIA package that allows to
exploit correlative sparsity and term sparsity simultaneously. We called the
first level of the hierarchy by running the command cs tssos first with

settings order = ⌈deg(f)
2 ⌉ and TS="MD".

SIG The PYTHON package SAGEOPT 0.5.3 [14, 23] allows to compute relaxations
based on SONC polynomials as well as SAGE relaxations based on signomials.
For SONC relaxation no finite lower bounds could be obtained for any of
the instances, all shown results correspond to SAGE relaxations, compare
Section 3.4.1. We used the method sig constrained relaxation on the
lowest possible hierarchy level.

The rationale behind the selection of these methods was the variety of primal and
dual approaches: BARON for global NLP approaches relying on polyhedral relaxations,
YALMIP as an implementation of the dense Lasserre’s semidefinite relaxation, CS-TSSOS
as a particular way to sparsify the latter, and SAGEOPT as an alternative approach
relying on the circuit patterns. Note that more solvers to solve (POP) globally exist,
such as SCIP [57], COUENNE [10], or LINDOGlobal. As they are based on polyhedral
relaxations, too, we concentrated on a comparison with BARON. We are not aware of
any other source, where such a broad comparison across a wide range of approaches
was carried out.

In different numerical studies in Section 4.3 we compared the approaches listed
above to implementations of pattern relaxations from Section 2 as specified below.
The code for solving the pattern relaxation (P-RLX) was implemented and run in
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MATLAB 9.10.0.1669831 (R2021a) Update 5 [33], consists of roughly 3500 lines of code,
and uses MOSEK 9.2.32 [37] to solve the relaxations. We used the following pattern
relaxations in order of appearance.
Method Description

M Multilinear pattern relaxation using Fm
A := {{0, α1}× · · · × {0, αn} : α ∈ A}.

Here, and in what follows, as ap preprocessing step we only keep the inclusion-
maximal patterns of the family and leave out all the other patterns.

C Chain relaxation for the pattern family Fc
A := {Cαα : α ∈ A} given by

Cα :=

{
k

α

gcd(α)
: k = 0, . . . , 2⌈gcd(α)/2⌉

}
,

where gcd(α) denotes the greatest common divisor of the components of α.
H Pattern relaxation for the pattern family Fh

A constructed as follows. Choose
the minimal d ∈ N such that A ⊆ {0, . . . , 2d}n and add to Fh

A the patterns
{kei : k = 0, . . . , 2d} for each i ∈ [n], and {(k, . . . , k) : k = 0, . . . , 2d}, and
{0, k} × · · · × {0, k} for every k = 0, . . . , 2d, and all patterns from Fm

A .
S Pattern relaxation for the family Fs

A := {Sα,i : i ∈ [n], α ∈ A}

Sα,i := {(α1, . . . , αi−1, k, αi+1, . . . , αn) : k = 0, . . . , 2⌈αi/2⌉}

of shifted axis-parallel chains containing elements of A.
MC Pattern relaxation for the pattern family Fmc

A := Fm
A ∪ Fc

A.
T Pattern relaxation for the pattern family F t

A consisting of truncated sub-
monoid patterns constructed as follows. Fix a truncated submonoid pattern
P = 2Nn

2⌈deg(A)/4⌉. For each α ∈ Nn, consider the pattern Pα = ΓNn
2⌈deg(A)/2⌉

given by the matrix Γ = (γ(1), . . . , γ(n)) with γ(i) = ei if αi > 0 and γ(i) = 0
otherwise. Define F t

A := {P} ∪ {Pα : α ∈ A \ P}. This pattern is designed to
give more tractable Lasserre-type relaxations for low degrees d.

4.2. Test set and evaluation criteria. Establishing a meaningful test set for
evaluating approaches to (POP) is a nontrivial task. Regarding the choice of the ob-
jective f , there are low-degree and high-degree instances, there are dense instances,
instances with a specific structural sparsity and instances with a random sparsity,
instances with many variables and instance with a small number of variables, struc-
tured instances occurring in particular applications and randomly generated instances.
There are many ways to combine the above properties so that a thorough evaluation
would require a large number of different types of instances. Evaluation on such a
diverse test set would allow us to understand on which types of instances a particular
approach should be applied.

We are not aware of any library of polynomial optimization instances that exhibits
such a desired degree of diversity. Thus, we randomly generated a test set of instances
of different types and complemented it with some structured examples. Our test sets
evaluates 12 choices of A, classified into four types: dense exponent sets, sparse sets,
sparse sets with large dimension n and small degree d, and specifically structured sets.
The latter is composed of exponent sets that are designed to give specific insight for
some of the tested relaxation approaches.

In all calculations, we fix the feasible set X to the box K = [0, 1]n. For each A, we
create a sample of twenty polynomials by sampling coefficients for f using a uniform
distribution in [−1, 1]A. However, samples are only included in the test set, when they
are sufficiently difficult. To quantify difficulty, we used the performance of method
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B. Only when either the minimization problem minx∈K f(x) or the maximization
problem minx∈K −f(x) can not be solved completely by BARON within the time limit
of 1000 seconds, do we keep f . This procedure explains why the reported runtimes
of BARON are always at least 1000 seconds and only allow to indicate the potential of
improvement of BARON for difficult cases. This preselection is motivated by the basic
idea that we primarily need to improve the performance of methods on instances that
are currently hard for established solution techniques.

The first evaluation criterium is the approximation quality of the relaxation. To
consider different directions of optimization over the feasible set K, we consider min-
imization and maximization problem. We use the normalized value

(4.1) trivF (f,K) =
maxv∈RLXF (K) Lv(f)−minv∈RLXF (K) Lv(f)

maxv∈Box(lA,uA) Lv(f)−minv∈Box(lA,uA) Lv(f)
∈ [0, 1]

as an indicator of the tightness of the calculated relaxations in comparison to the
trivial bounds obtained from the bounds (lA, uA) on the monomials occuring in f .
Values close to 1 indicate that the bounds obtained via relaxation RLXF (K) do not
improve much over the trivial bounds in the denominator, whereas values close to 0
indicate that RLXF (K) is a good relaxation.

The second reported criteria is computational time, provided as the wall-clock
time in seconds, averaged over all 20 samples. The solvers were run on a compute
server with 4 Intel(R) Xeon(R) Gold 6138 CPUs with 20 cores of 2 threads and 1
TB RAM each under Ubuntu 20.04.3. Each solver-instance pair was assigned to one
such job, i.e., the solvers themselves did not use the parallel structure. In order to
distribute the solver-instance pairs to the 80 cores we used [51].

4.3. Numerical results. We investigate the performance of different methods
with respect to approximation quality evaluated via (4.1) and computational run time.
We structure the analysis according to properties of the exponent sets A.

4.3.1. Dense Exponent Sets. We first consider dense exponent sets A = Nn
d

for n ∈ {2, 4} and d = 10. Results are shown in Figure 3.
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Fig. 3: Results for dense exponent sets A = Nn
d . Shown is the median and standard

variation for 20 sample coefficient vectors f of the evaluation criterium (4.1) for the
methods specified in Section 4.1. Note that a value close to 0 indicates a good relax-
ation. The average computational time in seconds is provided below each method in
the bottom row. Note that only instances are selected for which BARON needs the full
time limit on either minimization or maximization problem.
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The root relaxation R of BARON can be solved in 1.5 and 20 seconds, respectively.
The solution B using branch-and-bound is constrained on purpose by the imposed
time limit of 1000 seconds for minimization and maximization problem. During this
time a certain number of nodes can be processed, which leads to a significant reduction
in the case N2

10. For the higher dimensional polynomials in N4
10 the solution time per

node is increased, though. The reduced number of nodes that can be processed in the
time limit do only result in a modest improvement of the bounds.

The methods Y, CS, SIG, S, and MC provide good bounds. In comparison, the
runtime for SIG is not very competetive. The multilinear polyhedral relaxation M can
be solved fast, but results in weaker bounds, as expected. The bounds are better for
n = 4 compared to R, though, probably due to a larger pattern size and hence more
connections between monomial variables compared to the relaxation BARON uses.

4.3.2. Sparse Exponent Sets. We use randomly generated sparse exponent
sets A = S(n, d) to test pattern families that do not assume any structure of A.

S(n, d) is generated by randomly picking

⌈√(
n+d
d

)⌉
exponents via randperm from

Nn
d . Results are shown in Figure 4.
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Fig. 4: As in Figure 3, but for sparse exponent sets S(n, d).

In comparison to BARON, the semidefinite relaxations Y and CS provide very good
results also in n = 6 dimensions, albeit at a high computational price. In compar-
ison, SIG, M, and H provide weaker bounds, but up to three orders of magnitude
faster. Method M based on multilinear patterns results in weak bounds, which can
be strengthened considerably with method H at some computational expense by ad-
ditionally enforcing indirect connections between moment variables via n + 1 chains
and d multilinear patterns.

4.3.3. Sparse Exponent Sets with n > d. As in Section 4.3.2 we use sparse
exponent sets, however now with a high number of variables n = 20, 25, 30, 40 and
low degree d = 4. Results are shown in Figure 5.

The difficulty of these instances becomes apparent from the weak bounds close
to 1 provide by method R and for n = 40 also for B. Remember that a value of
1 in (4.1) corresponds to relaxations that have no advantage over the trivial lower
bounds on the monomial variables. Excellent bounds are provided by the Y / SOS
methods. However, the computational time increases drastically and memory issues
arise for Y, validating the theoretical considerations in Section 1.4. It becomes clear
that alternatives are necessary for problems in higher dimensions. It is interesting
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Fig. 5: As in Figure 3, but for sparse exponent sets S(n, d) with n > d.

that methods CS and SIG run comparitively fast, but do not result in good bounds.
One such candidate is method T, which is tailored for problems with low degree

and many variables and profits computationally from the small size of the involved
LMIs. The very good bounds provided by T can be calculated two orders of magnitude
faster than with YALMIP. This allowed to also compute nontrivial bounds for instances
with exponent sets S(80, 4) in approximately 400 seconds.

4.3.4. Specifically structured test sets. To complement the results on dense
and sparse exponent sets, we consider specific exponent sets with particular properties.
We start with adversarial instances. Assume for example that we want to solve (POP)
with A = {(k, . . . , k) : k = 0, . . . , 2d}, where d ∈ N. This is actually a disguised one-
dimensional problem, since we can make a substitution y = x1 · · ·xn. Thus, we need
patterns that would link the monomial variables with the exponents in A. Since A
is a chain, choosing A as a pattern is optimal. This means, C is an optimal method
for this A. But if we use M, we would link the monomials xi

1 · · ·xi
n with the variables

x1, . . . , xn by convex constraints, which is not helpful. So the above support is an
adversarial choice for method M. By looking at such kinds of special A’s we are able
to understand which are the preferred choices of A for the methods we evaluate and
on which choices of A the methods have difficulties. We test four exponent sets based
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on chain pattern families,

A5 = {(k, k) : k = 0, . . . , 10} ⊂ N2
10

A6 = {(k, k, k, k) : k = 0, . . . , 10} ⊂ N4
10

A7 = {kα : k = 0, . . . , 10, α ∈ {e1, e2, e1 + e2}} ⊂ N2
10

A8 = {kα : k = 0, . . . , 10, α ∈ {e1, e2, e3, e4, e1 + e2 + e3 + e4}} ⊂ N4
10

Results are shown in Figure 6.
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Fig. 6: As in Figure 3, but for specific adversarial exponent sets A5, A6, A7, A8.

As a main take-away, the exploitation of chain patterns in C and H brings a huge
advantage in comparison to the multilinear pattern method M. The resulting bounds
are similar to those produced by B and SIG, but significantly faster. This shows that
the structure of the exponent set may be decisive for the performance of particular
methods. Detecting such structures a priori in an automatized, adaptive way, seems
to be one of the future challenges in polynomial optimization.

Findally, we study the exponent set Aex as defined in Example 2.26 and visualized
in Figure 2. In addition to the solvers and methods M and H, we also apply three
custom pattern families F 1, F 2, and F 3 as introduced in the fifth row of Figure 2.
Results are shown in Figure 7.

One observes that particular choices of pattern families, such as F 3, may bring
additional advantages with respect to runtime and approximation quality when com-
pared to method H.

5. Conclusions and Outlook. We have presented different aspects of con-
vexification and sparsity exploitation for primal and dual approaches to polynomial
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Fig. 7: As in Figure 3, but for the exponent set Aex and additional custom pattern
families F 1, F 2, and F 3 as introduced in Example 2.26.

optimization in a self-contained review. The review contains novel proofs. For ex-
ample, we proved the dual positivstellensätze from Putinar and Handelman using
infinite-dimensional matrices together with a projection argument, which allowed to
omit the introduction of moments. Our generalized framework is meant to facilitate
the transfer of theoretical results to special cases.

Our numerical experiments indicate the huge potential of tailored relaxations
based on pattern families. Structure exploitation may bring huge advantages in com-
parison to standard approaches both in terms of approximation quality and in com-
putational runtime. Patterns have already been used for special cases. Ahmadi and
coworkers [2] investigated a combination of the patterns Nn

2 and axis-parallel chains
for the unconstrained case X = Rn. They were able to show equivalences of primal
and dual formulation and exact representations for specific exponent sets A.

Ideally, one would like to develop an adaptive method that works best for any type
of instances, i.e., with respect to exponents α ∈ A and coefficient vectors. Detecting
favorable structures a priori in an automatized, adaptive way, seems to be one of the
future challenges in polynomial optimization. First ideas in this direction are based
on graph algorithms [41] or integer programming [48], but require further research.
An integration into concepts from the global NLP community, in particular branch-
and-bound frameworks, is also very promising.
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[30] J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in In Proceedings
of the CACSD Conference, Taipei, Taiwan, 2004.

[31] V. Magron and J. Wang, Sparse polynomial optimization: theory and practice, World Scien-
tific, 2023.

[32] M. Marshall, Positive polynomials and sums of squares, vol. 146 of Mathematical Surveys
and Monographs, American Mathematical Society, Providence, RI, 2008, https://doi.org/
10.1090/surv/146, https://doi.org/10.1090/surv/146.

[33] The Mathworks, Inc., MATLAB version 9.6.0.1174912 (R2019a) Update 5, Natick, Massa-
chusetts, 2019.

[34] A. Mitsos, B. Chachuat, and P. Barton, McCormick-Based Relaxations of Algo-
rithms, SIAM Journal on Optimization, 20 (2009), pp. 573–601, https://doi.org/10.
1137/080717341, http://dx.doi.org/10.1137/080717341, https://arxiv.org/abs/http://dx.
doi.org/10.1137/080717341.

[35] H. D. Mittelmann and F. Vallentin, High-accuracy semidefinite programming bounds for
kissing numbers, Experimental Mathematics, 19 (2010), pp. 175–179.

[36] R. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[37] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version 9.0., 2019,

http://docs.mosek.com/9.0/toolbox/index.html.
[38] A. Neumaier, Complete Search in Continuous Global Optimization and Constraint Satisfac-

tion, Cambridge University Press, 2004, pp. 271–369.
[39] J. Nie, Moment and polynomial optimization, 2023.
[40] I. Papamichail and C. Adjiman, A Rigorous Global Optimization Algorithm for Prob-

lems with Ordinary Differential Equations, Journal of Global Optimization, 24
(2002), pp. 1–33, https://doi.org/10.1023/A:1016259507911, http://dx.doi.org/10.1023/
A%3A1016259507911.

[41] B. Peters, Monomial Patterns in Polynomial Optimization, PhD thesis, Otto von Guericke
University Magdeburg, 2021, https://mathopt.de/publications/Peters2021.pdf.

[42] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathe-
matics Journal, 42 (1993), pp. 969–984.

[43] N. V. Sahinidis, BARON 17.8.9: Global Optimization of Mixed-Integer Nonlinear Programs,
Users Manual, 2017.

[44] J. Saunderson, Limitations on the expressive power of convex cones without long chains of
faces, SIAM Journal on Optimization, 30 (2020), pp. 1033–1047.

[45] R. Schneider, Convex bodies: the Brunn-Minkowski theory, vol. 151 of Encyclopedia of Math-
ematics and its Applications, Cambridge University Press, Cambridge, expanded ed., 2014.

[46] J. Scott, M. Stuber, and P. Barton, Generalized McCormick relaxations, Journal of Global
Optimization, 51 (2011), pp. 569–606, https://doi.org/10.1007/s10898-011-9664-7, http:
//dx.doi.org/10.1007/s10898-011-9664-7.

[47] H. Seidler and T. de Wolff, An experimental comparison of SONC and SOS certificates for
unconstrained optimization, arXiv preprint arXiv:1808.08431, (2018).

[48] D. Shaydurova, V. Kaibel, and S. Sager, Refined tssos, 2024, https://arxiv.org/abs/2402.
05444.

[49] H. D. Sherali and W. P. Adams, A reformulation-linearization technique for solving discrete
and continuous nonconvex problems, vol. 31, Springer Science & Business Media, 2013.

[50] E. Smith, C. Pantelides, and G. Reklaitis, A symbolic reformulation spatial branch-and-
bound algorithm for the global optimization of nonconvex MINLPs, Computers & Chemical
Engineering, 25 (2001), pp. 1399–1401, https://doi.org/10.1016/S0098-1354(01)00733-5.

[51] O. Tange, Gnu parallel 20201022, Oct 2020, https://doi.org/10.5281/zenodo.4118697, https:
//doi.org/10.5281/zenodo.4118697. GNU Parallel is a general parallelizer to run multiple
serial command line programs in parallel without changing them.

[52] M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global opti-
mization, Mathematical Programming, 103 (2005), pp. 225–249.

[53] M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global opti-
mization, Math. Program., 103 (2005), pp. 225–249.

[54] M. Tawarmalani and N. V. Sahinidis, Convexification and global optimization in continuous
and mixed-integer nonlinear programming: theory, algorithms, software, and applications,
vol. 65, Springer Science & Business Media, 2013.

https://doi.org/10.1007/978-0-387-09686-5_7
https://doi.org/10.1007/978-0-387-09686-5_7
https://doi.org/10.1007/978-0-387-09686-5_7
https://doi.org/10.1287/opre.11.6.972
https://doi.org/10.1287/opre.11.6.972
http://dx.doi.org/10.1287/opre.11.6.972
https://arxiv.org/abs/http://dx.doi.org/10.1287/opre.11.6.972
https://arxiv.org/abs/http://dx.doi.org/10.1287/opre.11.6.972
https://doi.org/10.1090/surv/146
https://doi.org/10.1090/surv/146
https://doi.org/10.1090/surv/146
https://doi.org/10.1137/080717341
https://doi.org/10.1137/080717341
http://dx.doi.org/10.1137/080717341
https://arxiv.org/abs/http://dx.doi.org/10.1137/080717341
https://arxiv.org/abs/http://dx.doi.org/10.1137/080717341
http://docs.mosek.com/9.0/toolbox/index.html
https://doi.org/10.1023/A:1016259507911
http://dx.doi.org/10.1023/A%3A1016259507911
http://dx.doi.org/10.1023/A%3A1016259507911
https://mathopt.de/publications/Peters2021.pdf
https://doi.org/10.1007/s10898-011-9664-7
http://dx.doi.org/10.1007/s10898-011-9664-7
http://dx.doi.org/10.1007/s10898-011-9664-7
https://arxiv.org/abs/2402.05444
https://arxiv.org/abs/2402.05444
https://doi.org/10.1016/S0098-1354(01)00733-5
https://doi.org/10.5281/zenodo.4118697
https://doi.org/10.5281/zenodo.4118697
https://doi.org/10.5281/zenodo.4118697


48 A. AVERKOV, B. PETERS, AND S. SAGER

[55] L. N. Trefethen, Approximation Theory and Approximation Practice, Extended Edition,
SIAM, 2019.

[56] L. Vandenberghe, M. S. Andersen, et al., Chordal graphs and semidefinite optimization,
Foundations and Trends in Optimization, 1 (2015), pp. 241–433.

[57] S. Vigerske and A. Gleixner, SCIP: global optimization of mixed-integer nonlinear programs
in a branch-and-cut framework, Optim Methods Softw, 33 (2018), pp. 563–593, https://
doi.org/10.1080/10556788.2017.1335312, https://doi.org/10.1080/10556788.2017.1335312.

[58] J. Wang, V. Magron, and J.-B. Lasserre, Chordal-TSSOS: A Moment-SOS Hierarchy That
Exploits Term Sparsity with Chordal Extension, SIAM J. Optim., 31 (2021), pp. 114–141,
https://doi.org/10.1137/20M1323564, https://doi.org/10.1137/20M1323564.

[59] H. Wolkowicz, R. Saigal, and L. Vandenberghe, Handbook of semidefinite programming:
theory, algorithms, and applications, vol. 27, Springer Science & Business Media, 2012.

https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1137/20M1323564
https://doi.org/10.1137/20M1323564


SPARSE CONVEX RELAXATIONS IN POLYNOMIAL OPTIMIZATION 49

Appendix: Notation. We denote the convex hull and the convex conic hull
of sets by conv and cone, respectively. The transposition operation is denoted as ⊤.
By default, vectors are interpreted as columns, but when the choice of the column
vs. row convention does not matter, we write vectors as rows to avoid unnecessary
transposition.

[n] {1, . . . , n}
|A| Cardinality of set A
A Finite exponent set, A ⊂ Nn

B Finite exponent set in Nn, B ⊇ A with B = P1 ∪ · · · ∪ PN

A+B Minkowski sum, {α+ β : α ∈ A, β ∈ B}
BF(B) Polyhedral relaxation based on (2.9)
Box(l, u) Box of lower and upper bounds [l1, u1]× . . .× [ln, un]

CA(X) Moment cone cone{xA : x ∈ X}
CRLXF (X) Conic moment relaxation {v ∈ RB : vPi ∈ CPi(X) for all ∈ [N ]}
deg(A) Degree, max{deg(xα) : α ∈ A}
MA(X) Moment body MA(X) := conv{(xα)α∈A : x ∈ X}
F Pattern familiy F = {P1, . . . , PN}
f(x) Objective function, polynomial
g Vector of polynomial inequalities g(x) ≥ 0 defining X
h Vector of polynomial equalities h(x) = 0 defining X
K Special case of feasible set X, either box or polytope

Lv(f) Linearization map Lv

(∑
α∈A fαx

α
)
:=
∑

α∈A fαvα

MB(x) MB(x) = xB(xB)⊤

MR(B0, . . . ,Bk) {v ∈ RP : Lv(giMB) ⪰ 0 ∀ i ∈ [k] and B ∈ Bi}
Nn

d Space of exponents of maximum degree d for polynomials in Rn

Pi Pattern, as a member of the pattern family F
R[x] Ring of polynomials in variables x ∈ Rn with real coefficients
R[x]A As R[x], but with monomials whose exponent vectors are in A
RA Real vector space isomorphic to R|A| with vectors indexed by A
Sm Space of symmetric matrices of size m over reals
Sm+ Space of positive semidefinite matrices in Sm
s Number of polynomial inequality constraints in X
t Number of polynomial equality constraints in X
v Monomial variable vector with entries vα = xα ∈ R
x Variables of original problem (POP), x ∈ Rn

xα Product xα =
∏n

i=1 x
αi
i

X Feasible set, x ∈ X ⊆ Rn

Y Topological closure of set Y
yA If y ∈ Rn and B ⊆ Nn, then for A ⊆ B the vector yA is the

projection of y on coordinates indexed by A: yA = (yα)α∈A ∈ RA

YA Projection of a set Y on the A coordinates: YA = {yA : y ∈ Y }
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