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Enhancing corrosion-resistant alloy design through
natural language processing and deep learning
Kasturi Narasimha Sasidhar1*, Nima Hamidi Siboni1,2, Jaber Rezaei Mianroodi1,2,
Michael Rohwerder1, Jörg Neugebauer1, Dierk Raabe1

We propose strategies that couple natural language processing with deep learning to enhance machine capa-
bility for corrosion-resistant alloy design. First, accuracy of machine learning models for materials datasets is
often limited by their inability to incorporate textual data. Manual extraction of numerical parameters from de-
scriptions of alloy processing or experimental methodology inevitably leads to a reduction in information
density. To overcome this, we have developed a fully automated natural language processing approach to trans-
form textual data into a form compatible for feeding into a deep neural network. This approach has resulted in a
pitting potential prediction accuracy substantially beyond state of the art. Second, we have implemented a deep
learning model with a transformed-input feature space, consisting of a set of elemental physical/chemical prop-
erty–based numerical descriptors of alloys replacing alloy compositions. This helped identification of those de-
scriptors that are most critical toward enhancing their pitting potential. In particular, configurational entropy,
atomic packing efficiency, local electronegativity differences, and atomic radii differences proved to be themost
critical.
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INTRODUCTION
Within only a few years, machine learning has revolutionized the
way how we design advanced materials (1–4). Rapid progress has
been made particularly due to the initiatives within the materials
research community to systematize the protocols for collection
and documentation of materials data in a manner amenable to anal-
ysis by machine learning. Large-scale initiatives such as the Materi-
als Project (5), Citrination, and JARVIS (6) are noteworthy
examples. Of all the many directions that have been pursued, few
of the important ones are as follows: (i) property and performance
prediction of materials in an engineering system with a given set of
input parameters (including for instance, processing history, and
service conditions) (7, 8), (ii) discovery of new material composi-
tions and processing routes for achieving application-oriented
targets in terms of desired material properties (9, 10), and (iii)
image-based analysis methods for automating materials character-
ization (11). In addition, another direction that is beginning to gain
importance, especially in view of developments in “explainable ar-
tificial intelligence (AI)” (12) is to derive mechanistic insights into
pertinent materials properties/processes from machine learning–
basedmethods, i.e., transitioning from correlations toward causality
(13). Two categories of methods that enhance the explainability and
interpretability of machine learning based models can be identified:
(i) “model-agnostic methods,” which can be applied to any machine
learning model regardless of the algorithm, and (ii) “model-specific
methods,” which analyze specific internal components of a model
and are thus specific to the particular algorithm (12, 14). Examples
of the first category include feature permutation (15), input pertur-
bation analysis, and automated reasoning-based approaches (14),
while methods such as layer-wise relevance propagation (16, 17)
and gradient-based sensitivity analysis (18) are model-specific ap-
proaches to analyze deep neural networks (DNNs).

Different aspects of metallic corrosion have been studied in
recent years through one or more of the above-mentioned
machine learning approaches, in the hope of identifying efficient
means to tackle this menacing problem, contributing to annual eco-
nomic losses of the order of 2.5 trillion USD (19). Prediction of
high-temperature oxidation kinetics of alloys (20, 21), atmospheric
corrosion rates of steels (22, 23), environmental corrosion in rein-
forced concrete structures (24), and identifying forms of corrosion/
coating materials from images using convolutional neural networks
(25, 26) are examples in this regard. The effectiveness of the differ-
ent machine learning algorithms over different types of datasets and
problem statements of this category has been reviewed in (27). In
the direction of alloy discovery, attempts have been made to
create automated workflows making use of programmable scanning
flow cells and additive manufacturing for rapid experimental data
generation (28, 29). Such high-throughput experimental methods
coupled with machine learning have served to identify optimized
alloy compositions, for example, within the Fe-Cr-Ni-Mn system
for molten salt corrosion resistance (28) and an optimized Al-Ni-
Ti alloy with high corrosion resistance (29). In the context of ex-
plainable AI, a recent work has used a gradient boosting–based
feature ranking algorithm to identify the most critical parameters
affecting the uniform corrosion rate of multiprincipal element
alloys (30).

We have recently developed a DNNmodel for analyzing compo-
sitional and environmental contributions toward pitting resistance
of several classes of corrosion-resistant alloys (31). In this introduc-
tory work, a rather simplistic DNNwas trained to predict the pitting
potential of an alloy of a known bulk composition in a given elec-
trochemical test environment. The simplicity of the network lied in
the fact that it was capable of accepting only numerical inputs con-
sisting of alloy composition and environmental test parameters in-
cluding test solution pH value, chloride ion concentration, and test
temperature. However, the phenomenon of pitting in corrosion-re-
sistant alloys is systemic in nature, i.e., it is dependent on the precise
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microstructural state of the material and the dynamics of the elec-
trochemical tests performed, over and above the average alloy com-
position. Consequently, machine capability to predict the pitting
potential of an alloy can only be enhanced by taking information
pertaining to alloy-processing history (that governs its final micro-
structural state) and the experimental protocols followed during the
electrochemical testing into account. In view of the fact that such
information is routinely presented in the form of detailed text de-
scriptions (for example, in literature references), making such infor-
mation machine comprehensible is not straightforward. It can be
achieved by a process of manual feature extraction, for instance,
of information such as heat treatment temperature, time, electro-
chemical cell construction, etc. from the textual descriptions.
However, such a manual process is not practicable due to multiple
reasons: (i) It is not scalable to large datasets [especially with the
trend moving toward creating large datasets through automated
text mining (32, 33)]; (ii) considering the heterogeneity in informa-
tion in the context of electrochemical corrosion testing, it would be
not possible to ascertain the most important features/information
to be extracted from the text; (iii) information density could be sub-
stantially compromised. Therefore, a completely automated natural
language processing approach (i.e., an approach that can transform
textual data into a meaningful numerical data structure without
human intervention), coupled with a deep learning model is essen-
tial to process such textual data and thus contribute to more accu-
rate predictions on alloy corrosion behavior (32–35). Further, while
it must be mentioned that optimizations carried out using the sim-
plistic neural network model proved to be useful (31), the specific
mechanisms by which different elements possibly enhance the
pitting resistance of the alloys (in the spirit of explainable AI)
could not be discerned. It must be said, therefore, that although
the approach has allowed us to make an initial evaluation of its po-
tential in general, substantial room for improvement exists in differ-
ent directions.

In this work, we have attempted to enhance the capabilities of the
deep learning framework to predict the pitting potential of corro-
sion-resistant alloys in two principal directions. First, we have im-
plemented a model coupling an automated natural language
processing methodology with a DNN to facilitate training on
both numerical and textual data simultaneously. This has, as ex-
plained above, helped enrich the information density within the
training data, resulting in a substantial improvement in its training
and test accuracy. Second, we have made an attempt to train a
simple DNN model with a transformed input feature space. In
other words, the input composition of each alloy in the dataset is
transformed into a set of “alloy descriptors”making use of different
atomic, physical, and chemical properties of the constituent alloying
elements. With the help of model training and optimization, funda-
mental alloy characteristics, independent of the elements involved,
that could be most important for pitting resistance could be identi-
fied. We also demonstrate the capability of this approach of input
feature space transformation to evaluate alloy systems that are
completely absent in the training data.

RESULTS AND DISCUSSION
Process-aware DNN
Model architecture
The dataset on “electrochemical metrics for corrosion-resistant
alloys” (36), as adapted for pitting potential in (31) (with a total
of 769 records across five alloy classes) has been used in this
work. The dataset consists of three categories of input features: (i)
numerical features, including alloy composition, pH value, and
chloride ion concentration of the test solution and test temperature;
(ii) categorical features, includingmicrostructure andmaterial class;
and (iii) textual features, including heat treatment, test method,
comments, and scan rate. The textual input features documented
in the dataset consist of excerpts from the respective published lit-
erature references, describing certain details of the alloy processing
history (in the “heat treatment” and “comments” features), and ex-
perimental test methodology (in the “test method” and “scan rate”
features) that could influence the pitting potential. Some of these
textual data instances, as documented in the dataset are exemplarily
shown in Table 1.

For the purpose of serving as input data for training a DNN, the
numerical inputs are taken as such, and the categorical inputs are
transformed into numerical inputs by serial numbering [as in (31)].
In case of the textual input features, a natural language processing
architecture (schematically illustrated with the help of an example
in Fig. 1A) has been used for transforming them into an amenable
form. The approach consists of three main stages, namely, tokeni-
zation of the vocabulary, word embedding (or word vectorization),
and last, processing the sequence of embedded vectors correspond-
ing to each phrase/sentence of a particular input instance through a
recurrent neural network (RNN) layer. Word embedding combined
with RNNs (to process data with a sequential nature) has emerged
as a popular method for most text-related automation tasks includ-
ing sentiment extraction, text completion, language translation, and
smart human assistance (37–40). This has primarily been due to
their ability to capture “context” in textual inputs, deal with
words/phrases not encountered during training, learn grammatical
constructs, and maintain a high degree of information density, as
opposed to conventional NLP approaches. The method and archi-
tecture by which this is accomplished by these models is de-
scribed below.

In the first step of tokenization, each unique word in the entire
dataset is replaced by a unique integer token (a dictionary size of
10,000 was used as a safe upper bound for the current dataset).
This would transform a given phrase/sentence into a vector of inte-
gers as shown in Fig. 1A. Since different phrases/sentences can have
different sequence lengths, the vector of integer tokens is padded
with a requisite number of zeroes at the end to obtain constant-
length vectors of size equal to the maximum sequence length in
the dataset (an upper bound of 200 has been used).

However, these integer tokens corresponding to the words do
not carry any interpretable meaning. For instance, they cannot rep-
resent the semantic similarity between different words or part of
speech of a given word. To achieve this, the next step of word em-
bedding or, respectively, word vectorization is carried out. In this
process, each integer token is converted into an n-dimensional
vector of floats, where n is the embedding dimensionality (a value
of n = 64 has been used in the current work) (https://www.
tensorflow.org/api_docs/python/tf/keras/layers/Embedding).
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Weights for performing this operation are optimized during train-
ing of the model, i.e., it is a supervised embedding process, for the
purpose of generating context-specific embedding vectors. Upon
completion of training, the closeness of vectors corresponding to
each word in the embedding space represents their semantic simi-
larity. Thus, each vector of integer tokens in the input data is con-
verted into a second rank tensor as shown in Fig. 1A.

In the final step, such a second-rank tensor consisting of embed-
ded word vectors is processed through a RNN layer, to convert each
tensor into a single vector (carrying 32 elements in this case) that
can be fed as input to a fully connected dense layer. A long-short–
term memory (LSTM) layer was used for this purpose. These layers
have been found to be most efficient to handle sequential data (such
as text, audio, and video) (41). With the help of introducing gate
functions within the cell structure, these layers have the capability
to identify long-term dependencies. In the current context, they
would have the capability to identify key, related words in a given

phrase/sentence, regardless of their position in the sequence of
words (41). Thus, the most meaningful portion of the sentence
would be supplied as input to subsequent layers of the model.

Last, all the numerical inputs processed through a normalization
operation and all the output elements from the LSTM layer of each
of the textual inputs are concatenated to form the input layer to a
fully connected DNN model (Fig. 1B). Three subsequent fully con-
nected hidden layers, with similar hyperparameters as optimized in
(31) [i.e., 64, 64, and 32 nodes, respectively, equipped with a recti-
fied linear unit (ReLU) activation function and dropout fraction of
0.5 at each layer] have been used before reaching the final output,
i.e., the pitting potential. This entire architecture has been termed as
the “process-aware DNN model,” custom-designed for predicting
the pitting potential of an alloy composition with a given processing
history and measured under a given set of test conditions.

Table 1. Examples of the types and content of textual data instances in the dataset. The textual data instances are excerpts from different sections of the
literature references from which the dataset was compiled. All four of the textual features are fed as input into the model for training.

Test method Scan rate Heat treatment Comments

Potentiostatic polarization. The experimental
procedure was to first polarize the electrode
potentiostatically at the least noble potential
within the passive region for at least 15 min to
achieve steady-state passivity. The potential
was then advanced in stages of 50mV, allowing
5 min between each change. Initially, the
current decreased or remained constant after
each potential adjustment, but eventually, a
steadily increasing current at some potential Vc
indicated the onset of pitting (or of
transpassivity). Steady-state values Vc were
obtained subsequently by holding the
potential for long times at a fixed value and
then observing pitting or the lack of it under a
low-power microscope. The lowest potential
for which pitting could not be observed after a
10-hours or longer period of constant
polarization was considered to be the steady-
state value Vc. Reproducibility was in the order
of ±5 mV.

Steady state The ingots were homogenized in A or He,
usually at 1050°–1100°C for several hours.
Ingots of Ni-Cr, Ni-Mo, and Cr-Fe were cold
rolled to 0.25 cm, then annealed at 1000°–
1050°C andwater quenched. The Cr-Fe alloys
containing more than 40% Cr were difficult
to roll or swage; hence, electrodes were
machined directly from the homogenized
ingot. Ingots of the lower % Cr-Fe alloys and
of the stainless steels were swaged to about
0.45-cm-diam rods, annealed at 1050°C and
water quenched. All electrodes measured
approximately 2 cm long and were either 0.4
cm diam or 0.5 cm wide by 0.2 cm thick.

The electrodes were abraded to a final 3/0
emery paper, and pickled usually in 15%
HNO3, 5% HF at 80°C for 5 min to remove
the cold worked surface.

The “scratch” technique was used for the
determination of pitting potentials. The
electrode was first polarized potentiostatically
to some potential well below the expected
pitting potential. The polarization current was
allowed to stabilize and then the electrode
surface was scratched with a sharp silicon-
carbide crystal mounted on the end of a glass
tube. The scratching of the electrode surface
resulted in a sharp polarization current “blip.”
The electrode potential was manually adjusted
by 20-mV steps to more and more noble
potential values, until the scratch failed to
repassivate, a failure that was indicated by a
gradual current rise after the electrode was
scratched. The pit was allowed to develop for
10 min, and then the electrode was examined
visually. Only those results were considered to
be valid where pits actually developed at the
scratched site.

20-mV steps
by manual
increment

Heat treated for 1 hour at 1500°F followed by
water quenching.

Polished only through 600-grit SiC
metallographic paper.
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Training and validation
Figure 2 shows representative results of the evolution of the mean
absolute error values of network predictions on the training and test
datasets during 5000 epochs of training history. The two sets of
plots correspond to the best and worst performance during the
sixfold cross-validation, respectively. The mean absolute error
values on training and test datasets, also referred to as the loss
and validation loss, respectively, can be seen to saturate in both
cases at a minimum value close to 150 mV (Fig. 2), in comparison
to the 170mVobtained in case of the simple DNN (31), at the end of
training. The difference in performance can be observed in the R2
coefficient being 0.72 and 0.84, respectively. After the sixfold cross-
validation in training, an average validation loss value equal to 150
mV, and an average R2 coefficient of 0.78 ± 0.06 over test data pre-
dictions have been obtained. It can thus be seen that the present
deep learning architecture taking the material processing history
and details of test methodology into consideration outperforms
the previous simplistic DNN (which also had a lower average R2

coefficient of 0.61 ± 0.04), when trained over the same dataset
(31). The variation in test accuracies across different folds of the
cross-validation is a consequence of specific outlier data points
(marked by red arrows in the scatter plot in Fig. 2B). Analysis of
the train-test splits of the dataset across the different folds has
shown that presence of these outlier data instances in the test
dataset (instead of in the train dataset) results in poor test accura-
cies. These outlier data instances have been found to mostly belong
to specific Fe-based alloy compositions, which do not have any in-
formation corresponding to the alloy processing history in the
“comments” and “heat treatment” columns. This explains the
reason for poor model performance in case of these outlier
points. It further confirms the importance of this information for
accurate prediction of the pitting potential.
Composition optimization
Composition optimizations have been carried out using the
process-aware DNN model, in particular to understand the differ-
ences in training outcomes in comparison to the previously

Fig. 1. Process aware DNN model architecture. (A) Schematic representation of the entire process-aware DNN model. (B) Schematic illustration of the data processing
workflow carried out within the natural language processing (NLP) module. LSTM, long-short–term memory.
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published simple DNNmodel (31) without textual information. For
this purpose, composition optimizations starting from similar
initial alloy compositions and using the same learning rate have
been carried out with both the simple and the process-aware
DNN model variants. Figure 3 shows representative results of
these optimizations. In all cases, the pitting potential was attempted
to be maximized while maintaining the test environment parame-
ters (i.e., pH value and chloride ion concentration) constant during
the course of optimization and allowing only the compositional pa-
rameters to change. Apart from qualitative similarities in the Fe-
based stainless steel (Fig. 3, A and B) and the FeCrNiCo high
entropy alloy (Fig. 3, G and H), notable differences in the predicted
composition trajectories between the two models can be observed.
The first one is the notably enhanced contribution of Mo toward
enhancing the pitting potential in the ferritic stainless steel (Fig.
3A) and the Ni-Cr-Mo alloy (Fig. 3C). Second, interstitial N and
C have emerged as important contributors also to the Ni-Cr-Mo
alloy with the process-aware DNN (Fig. 3C). With the simple
DNN model, the NiCrMo alloy is actually the singular exception
where neither of N and C can be seen to create a major impact

(Fig. 3D). Last, the emergence of Cu as a positive contributor to
the pitting potential of the Al-Cr alloy with the process-aware
model can be seen as the additional factor not observed in the op-
timizations from the simple DNN model (Fig. 3, E and F).

The observed differences show the enhanced ability of the
current process-aware DNN model toward comprehending the al-
loying element contributions to pitting resistance in the different
alloy systems. This enhanced capability originates naturally from
the enhanced information density provided as input for the
model. For instance, Cu is an element that is known to enhance
the pitting resistance of Al alloys (although only when in solid sol-
ution) (42, 43). Despite this fact, the reason why it does not show a

Fig. 2. Model-training results for the process-aware DNN. Variation of the train
and test accuracies (termed as the loss and validation loss, respectively) during the
training history and predictions of the trained model over the test dataset at the
end of training are shown. The average validation loss obtained after training of
the simple DNN (31) has also been indicated. The variation in performance during
different folds of the sixfold cross validation has been represented by showing the
best (highest R2 coefficient and lowest validation loss at the end of training) and
worst performances in (A and B), respectively. (C) Comparison of the model eval-
uation metrics for the simple and process aware DNNs.

Fig. 3. Composition optimization results. Comparison of compositional optimi-
zations performed using the current process-aware DNN model [plots on the left
column, i.e., (A), (C), (E), and (G)] and the previously publishedmore simplistic DNN
model (31) [plots on the right column, i.e., (B), (D), (F) and (H)]. Comparable initial
alloy compositions have been chosen from (A and B) Fe-based alloys, (C andD) Ni-
Cr-based alloys, (E and F) Al-based alloys, and (G and H) high-entropy alloys.
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major contribution in the simple DNNmodel optimizations can be
understood in the following manner. The database reports a pitting
potential of −360 mV for a binary Al–4 wt % Cu alloy when mea-
sured by slow scan rate potentiodynamic polarization experiments.
However, the same composition at the same pH and comparable
chloride ion concentration has also been reported to have a
pitting potential close to−600mVwhenmeasured by potentiostatic
measurements. In other words, the simple DNN model, because of
its inability to read and use any textual data, perceives an apparently
contradictory behavior of the Al-Cu alloys. Thus, no conclusive un-
derstanding of the beneficial/detrimental influence of Cu in this
alloy system can be learned. This could just be a representative
example of several such instances in the dataset.

Consequently, results from the process-aware DNN model, re-
flecting the emergence of Cu in the Al-Cr alloy, show that the infor-
mation supplied by the textual data (in the form of a test
methodology in the example cited here) plays an important role
toward resolving these apparent contradictions. This also explains
the higher test accuracies achieved. Further, the tendency for satu-
ration in the composition alteration during the optimization in case
of the Al-Cr alloy is quite noteworthy. It is well known from the
literature (42, 43) that the presence of Cu in excess of its solubility
limit, resulting in the presence of Cu-rich precipitates, is not bene-
ficial. These precipitates are cathodic to the surrounding Cu-lean
matrix, making the interfacial regions preferred sites for pit initia-
tion (43). It is therefore very encouraging to see that despite not im-
posing any artificial limits on any alloying elements during
composition optimization, the model saturates at a Cu content
(Fig. 3E) close to its solubility limit in the alloy matrix. This success-
ful prediction could be attributed to the fact that the database con-
sists of Cu contents varying in the range of 0 to 6 wt %, i.e., from
below to much beyond the solubility limit.

Similarly, the enhanced contribution of Mo in the stainless steel
and the Ni-Cr-Mo alloy (Fig. 3, A and C) and that of interstitial el-
ements N and C in the Ni-Cr-Mo alloy (Fig. 3C) in optimizations
using the process-aware DNN is also encouraging. This is because,
in case of stainless steels, the coefficient for Mo in the pitting resis-
tance equivalent number (44) has a much greater contribution
toward enhancing pitting resistance than that reflected from the op-
timizations using the simple DNN. Nevertheless, it must be admit-
ted that the model still does not naturally predict a saturation in
either Mo or interstitial contents during the optimizations begin-
ning from the transition-metal alloy–based compositions. This
leads to possible overshooting of the modeled alloying element con-
tents (such as 20 to 30 wt % Mo in Fig. 3, A and C) during optimi-
zation. Such an overestimation of at least one element even by the
process-aware model further underscores the importance of embel-
lishing the amount of training data for achieving better and reason-
ably capped results. Any efforts in this direction can be expected to
turn out to be highly beneficial.
Keyword analysis for text inputs
While the results described above demonstrate a general impor-
tance of considering textual input, we now describe a strategy for
identifying specific keywords/phrases within a given textual input
that play the most crucial role in pitting potential prediction. This
involves a customized input perturbation approach, which is dem-
onstrated with the help of simple examples. A list of distinct textual
inputs is generated by sequentially adding one word each of a given
complete sentence. For instance, the list of inputs generated for the

sentence, “Polarization curves were obtained in potentiostatic
manner” (which serves as a test method input for an Fe-15Cr-
13Ni-2.5Mo alloy composition) is presented in Table 2. This list
of textual inputs for the feature in question is supplied to the
trained process-aware DNN model while keeping all other inputs
fixed. The variation in the pitting potential predicted by the
trained model over consecutive inputs would represent the sensitiv-
ity/importance of the newly added word to the preceding phrase.
The results obtained from this sentence clearly reveal the word “po-
tentiostatic” to be the most important keyword in the sentence. The
magnitude of error drops sharply when the word potentiostatic is
introduced. A feature that is important to note is also the substantial
variation in predicted pitting potential just before the appearance of
the word potentiostatic. This is because the LSTM layers have the
capacity to detect structure of phrases/sentences, as described
earlier. In this case, the training data contain a lot of phrases of
the form, “were obtained/measured in potentiostatic/potentiody-
namic manner,” which appears to be recognized by the model.

However, it must also be mentioned that a similar analysis has
also revealed some example sentences, which do not show any var-
iations. For instance, for the same input of the Fe-15Cr-13Ni-2.5Mo
alloy, a similar word-by-word analysis of the heat treatment input
“This one received a final heat treatment of 1h at 1049C followed by
water quenching compared to the one above” showed no particular
variation at any word. This demonstrates the caution that needs to
be exercised in performing such a keyword analysis. The strongly
supervised nature of the LSTM layer training implies that keywords
could be highly context sensitive (i.e., dependent on other input
values, other phrases in the same input) and that it is not necessary
to always have “keywords,” but a sentence as a whole could be
important.

Feature transformed DNN
Model architecture
For preparing input data, the compositional parameters of the alloys
have been transformed into a set of different descriptors making use
of different atomic, physical, and chemical properties of the

Table 2. List of text inputs and the corresponding predicted pitting
potentials using the process aware DNN model for a Fe-15Cr-15Ni-
2.5Mo alloy for the purpose of keyword analysis.

S.
no.

Text input for the test
method feature

Predicted pitting
potential (mV)

Error
(mV)

1 Polarization 198.93 −27.07

2 Polarization curves 198.55 −27.45

3 Polarization curves were 199.88 −26.12

4 Polarization curves were
obtained

199.90 −26.10

5 Polarization curves were
obtained in

177.53 −48.47

6 Polarization curves were
obtained in potentiostatic

233.18 7.18

7 Polarization curves were
obtained in
potentiostatic manner

239.59 13.59
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constituent elements. This has been done primarily by using a spe-
cific alloy-composition-featurization function called “WenAlloys”
available from “matminer,” an open-source Python library (45) pro-
viding featurization tools for performing machine learning tasks on
materials data sets. The descriptors generated by this featurization
process (which are used as the material-specific input parameters
for the DNN model) and their definitions are tabulated in Table 3.

Most of the descriptors have been developed within the high
entropy alloy (46, 47) and metallic glass (48) communities, with
the aim of capturing different physical and chemical characteristics
of multicomponent solid solutions into such mathematical descrip-
tors (46, 49, 50). In addition to these features generated from mat-
miner, we have added one more feature, namely, mean oxide
enthalpy (also defined in Table 3) to incorporate information on
the oxide stability of different elements within a given alloy compo-
sition. Test method–related parameters including test solution pH,
chloride ion concentration, and test temperature have also been in-
corporated into the input training data. Information on microstruc-
tural details and materials class has not been included in this model
since such information is partly encoded within the solid solution
descriptors. It must also be noted that the textual input has not been
included in this model, to first evaluate its performance in compar-
ison with the previously published simple DNN model (31). The
transformed feature space is then fed as input into a simple, fully
connected DNN. The network consists of three hidden layers
with 128, 64, and 32 nodes, respectively, in conjunction with a
ReLU activation function and dropout fraction of 0.5 at each
layer, before reaching the final output, i.e., the pitting potential.
Training and validation
Wenow consider the secondDNNmodel, which is taking the trans-
formed features as input. For this model, a modification in the hy-
perparameters, i.e., increasing the number of nodes in the first
hidden layer to 128, was essential. This was necessary for achieving
similar training and test accuracies as in the published, simple DNN
model (31). Figure 4 shows a representative variation in the error
metrics (i.e., the loss and validation loss measures) during the
10,000 epochs of training. The validation loss and R2 coefficient
for test predictions averaged over the sixfolds of cross-validation
turned out to be 168mVand 0.66, respectively (Fig. 4C). Overfitting
has once again been avoided by virtue of using a dropout fraction of
0.5 at each hidden layer. The training and test accuracies were found
to be rather similar during different folds of the sixfold cross-vali-
dation. Analysis of outliers did not reveal any specific compositions
that had consistently high prediction errors. The training and test
accuracies of this model are poorer than the process-aware DNN
model discussed above. Despite this, the additional benefits
offered by such a model are twofold. On the one hand, input
feature space optimizations performed using it provide mechanistic
insights into alloy corrosion phenomena. On the other hand, such a
model allows making predictions for alloy systems that are not
present in the training data. Both of these aspects are discussed in
the following sections.
Mechanistic insights derived from input feature space
optimizations
Maximization of the pitting potential by the gradient-descent
method using the feature-transformed DNN model has been per-
formed, starting from five different initial input instances. While
the DNN model is not given any information of the alloy composi-
tion/alloy class at any stage of training or optimization, the identity

of each input instance in terms of its actual composition and alloy
class has been recorded during data preparation, for better analysis
and interpretability. The five different initial inputs used for optimi-
zation have been chosen to represent one composition from each of
the five alloy classes existing within the original/untrans-
formed dataset.

On the basis of the optimization trajectories, the input features
can be classified into two categories: (a) those exhibiting rapid var-
iation during optimization resulting in a substantial extrapolation
beyond their respective ranges in the training dataset, and (b)
those exhibiting negligible amount of variating during optimiza-
tion. Figure 5 shows the trajectories followed by input features be-
longing to the first category, during the five optimization sequences.
It can be inferred that these input features [i.e., “Yang radii δ,” “elec-
tronegativity δ,” “atomic packing efficiency (APE) mean,” and “con-
figurational entropy”] would be the most important to be
engineered, to achieve optimal pitting resistance in alloys.

Conventionally, two distinct, qualitative approaches that
enhance the pitting resistance of an alloy have been discussed in
the literature (51). One approach is to improve the stability and
healing behavior of the protective, passive oxide film on the alloy
surface. The other is to have alloying elements in the (surface
regions of the) material that reduce the dissolution rate of the
alloy in an active pit environment (51, 52). The input features
shown in Fig. 5 [i.e., those belonging to category (a)] can be
viewed as quantitative descriptors that promote the occurrence of
these conventionally recognized, qualitative pitting resistance
mechanisms (in particular the latter), as elaborated below. It can
be seen from Fig. 5 that the input feature trajectories starting
from the initial instance corresponding to an Al-alloy composition
are qualitatively opposed to those starting from other (transition-
metal based) alloys. Therefore, a discussion of these transition-
metal–based alloys is first presented, followed by a separate discus-
sion on Al-based alloys.

First, a strong tendency to move toward negative values of the
APE for the transition-metal–based alloys can be observed (Fig.
5A). APE is a quantity that has been designed within the metallic
glasses community from a glass formability perspective (48, 53).
It represents the effective packing fraction of a solute-centered
cluster of atoms independent of its configuration and applied
strain. It is defined as the radius ratio between the central atom
and the average radius of atoms in the nearest-neighbor shell, nor-
malized by the ideal radius ratio for a cluster with that number of
atoms, which has been established for binary systems in the litera-
ture (53). A value of APE equal to zero represents the ideal packing
efficiency. Positive values represent clusters with excess free volume
and negative values represent clusters packed even closer than the
established ideal packing considering binary systems. The optimiza-
tion pathways thus reveal a strong tendency tomove toward increas-
ing packing density in the metallic lattice for enhanced pitting
resistance. An increased packing efficiency leads to an increase in
the number of bonds to be broken for dissolving unit volume of
the metal. In other words, high packing efficiency in the metallic
lattice would necessitate a relatively low rate of metal dissolution
in an active-pit environment and thus contribute to better pitting
resistance. Similarly, increase in the local electronegativity differ-
ences between alloying elements would increase the strength of
the metallic bonds, also making metal dissolution difficult. The in-
creasing values of electronegativity δ for trajectories starting from
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transition-metal–based alloy parameters (Fig. 5C) are in corrobora-
tion with this understanding. Further, the corresponding configu-
rational entropies can also be observed to be increasing for these
trajectories initiating from the transition-metal–based alloy param-
eters (Fig. 5B). This is in support of the understanding that stabili-
zation of single-phase solid solutions in preference to second-phase
precipitation is generally good for pitting resistance. Last, the pa-
rameter related to atomic radii mismatch is also observed to have
a strong influence on the pitting potential. In particular, the
higher the mismatch, the higher is the pitting potential. While
there appears to be no obvious reason for why an increased mis-
match in radii should be beneficial for pitting resistance, such a cor-
relation picked up by the DNNmodel could possibly be explained as
follows. From the composition-based DNN models [in this work
(Fig. 3) and also in the previously published work (31)], it can be
seen that interstitial elements such as N and C have a strongly ben-
eficial influence on the pitting potential. As these are elements of
substantially different atomic radii than the other substitutional

alloying elements in all alloy classes that constitute the main
crystal lattice, an increase in their amounts obviously leads to an in-
crease in the atomic radii mismatch. In other words, the strongly
positive gradient in the Yang radii δ parameter could be interpreted
as an indicator toward having substantial fractions of interstitial el-
ements, i.e., elements with a distinctly smaller atomic radius than
the host matrix element so as to improve pitting resistance.

The substantially different behavior of the optimization path-
ways in the region of the feature space corresponding to Al-alloys
from the transition-metal–based alloy classes can be understood
as follows. In case of Al alloys, the major contributor to the protec-
tive passive oxide film is the main matrix element, i.e., Al. Passive
film formation is not dependent on alloying elements. Instead, the
presence of alloying elements (such as Cu, Si, Mg, and Zn) leads to
potential disruptions in the passive film formation owing to the
presence of second-phase precipitates. The primary role of these al-
loying elements is toward improving the mechanical properties. In
traditional alloy design, their amounts have been optimized in such
a way that this mechanical property enhancement is achieved with
minimal deterioration in the corrosion resistance. On the contrary,
in other alloy classes such as stainless steels and Ni-based alloys, the
main matrix elements, i.e., Fe or Ni, are not responsible for the for-
mation of the protective oxide film. Instead, it is the presence of in-
creasing amounts of Cr that results in its formation. Because of this
fundamental difference in the mechanism of passivation, the behav-
ior of Al-alloys differs notably from the rest of the alloy classes con-
sidered in this work. The trajectories of all the important input
features indicate this deleterious influence of alloying in Al alloys
in general. For example, the configurational entropy and the radii
mismatch (Fig. 5, B and D) tend to decrease for maximizing the
pitting potential, indicating a tendency to move toward the pure
constituent Al. The tendencies for electronegativity mismatch and
the atomic packing efficiency (Fig. 5, A and C) are also opposite to
those in the other alloy classes, although with a lesser magnitude.

However, it must be stated that the magnitude of variation for all
the input features in case of the optimization pathway beginning
from the Al-alloy composition is much smaller than those begin-
ning from other transition-metal–based alloy classes. This suggests
a difficulty in identifying clear optimization pathways in the input
feature space surrounding the Al-based alloys. This could be due to
the much higher sensitivity of Al-alloys to processing history and
test methodology, information that has not been provided to the
current DNN model.
Prediction for Al-Cu-Sc-Zr alloy
As introduced earlier, one of the unique advantages that arises from
training the DNN model on a transformed feature space is the
ability to use the same trained network for making predictions on
alloys containing elements that do not even exist within the training
data. From the known elemental properties (such as atomic size,
electronegativity, etc.), the input features can be calculated for any
unseen alloy composition. If the DNN were to be trained on com-
position inputs only, then making such predictions would be im-
possible. We now demonstrate this capability of the DNN model
by making predictions for a range of compositions in the Al-Cu-
Sc-Zr alloy system. The training data used in the current work do
not have any instances consisting of either Sc or Zr. Alloying of Al-
Cu, Al-Mg, and Al-Cu-Mg-Zn alloys with Sc and Zr has been con-
sistently observed to cause an enhancement in their corrosion prop-
erties, including pitting resistance (54–57).

Table 3. Set of descriptors calculated from individual alloy
compositions, serving as input parameters for the feature-
transformed DNN model. ci, ri, χi, and Ec,i refer to the atomic fraction,
atomic radius, Pauling electronegativity, and cohesive energy of an
element i in a given alloy composition. ΔH0MOx

is the ground state formation
enthalpy of an elemental oxide MOx. R is the universal gas constant.

Descriptor Definition

Yang radii δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ci 1 � ri=rð Þ
2

q

Omega TmΔSmix
jΔHmix j

APE mean

Radius ratio between the central atom and
the average radius of atoms in the nearest-
neighbor shell, normalized by the ideal
radius ratio for a cluster with that number

of atoms

Radii local mismatch
Pn

i¼1
Pn

j¼1;j=icicj j ri � rj j

Radii γ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþrmin Þ

2 � r2

ðrþrmin Þ
2

q� �

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþrmax Þ2 � r2

ðrþrmax Þ2

q� �

Configurational entropy
� R
Pn

i¼1cilnðciÞ

Lambda entropy ΔS
δ2

Electronegativity δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ciðχ � χiÞ
2

q

Electronegativity local
mismatch

Pn
i¼1
Pn

j¼1;j=icicj jχi � χj j

Valence electron
concentration (VEC) mean

Pn
i¼1ciðVECiÞ

Mixing enthalpy
Pn

i¼1;j.i4cicj:ΔH
mix
ij

Mean cohesive energy
Pn

i¼1ciðEc;iÞ

Number of itinerant
electrons (total, s, p, d,
and f)

Pn
i¼1ci:ðe=aÞi

Mean oxide enthalpy
Pn

i¼1ci:ðΔH
0
MOx
Þi
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Fig. 4. Model training results of the feature-transformed DNN. (A) Representative plot of the variation in the loss and validation loss measures, respectively, during
training history (B) predictions of the trainedmodel over the test dataset at the end of training. (C) Comparison of the model evaluationmetrics of the simple and feature-
transformed DNNs.

Fig. 5. Optimization trajectories of the input features that exhibited rapid variation. (A) Atomic packing efficiency (APE) mean. (B) Configurational entropy. (C)
Electronegativity δ. (D) Yang radii δ.
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Figure 6 shows a plot of the pitting potentials predicted for a
series of Al–4 wt % Cu alloys, with Sc and Zr contents varying in
the typical range of 0 to 0.3 wt %, respectively. For making the pre-
dictions, the alloy compositions were featurized by the same proce-
dure followed for preparing the training data and provided as input
to the trained DNNmodel. The beneficial influence of the presence
of Sc and Zr can be seen with a steady increase in the pitting poten-
tial with increasing Sc and Zr contents. These results show the
ability of the model to learn the effect of alloying elements, not
only from correlations but also directly from their intrinsic physical
and chemical properties, i.e., with causal background. Of course, the
DNNmodel at this stage does not have any information of the effect
of heat treatment, and therefore, the exact quantitative predictions
may not be fully reflective of the experimental measurements. Nev-
ertheless, by combining both methodologies described in this work,
i.e., input feature transformation and natural language processing to
describe processing history, we shall have a powerful tool at hand to
make quantitative evaluations of uninvestigated alloy compositions.
Such efforts, together with automated methods of data collection
from the literature, in our opinion would be the way forward.

In summary, the process-aware neural network model capable of
accepting textual inputs pertaining to alloy processing history and
electrochemical test methodology in addition to numerical inputs
was found to substantially outperform the simple neural network
model in terms of pitting potential prediction accuracy. Alloying
element contributions toward pitting resistance in a given electro-
chemical environment could be more accurately discerned using
the process-aware neural network model in comparison to the
simple neural networkmodel. Positive contributions ofMo in stain-
less steels and Ni-based alloys, interstitial C and N in Ni-based
alloys, and dissolved Cu in Al-based alloys were found to be note-
worthy examples. Keyword analysis of the natural language process-
ing–based process-aware model provided a methodology for
identifying potential sources of crucial information present within
the textual data. While the pitting potential prediction accuracy of
the feature-transformed neural network model was found to be in-
ferior in comparison to the process-aware neural network model, it
provided valuable mechanistic insights into the alloy corrosion phe-
nomenon. Alloy descriptors including configurational entropy,
atomic packing efficiency, local electronegativity differences

between alloying elements, and their atomic radii differences
proved to be the most critical parameters providing pitting resis-
tance. Through the example of the Al-Cu-Sc-Zr alloy system, we
could also demonstrate the ability of the feature-transformed
neural network model to make predictions on the role of alloying
elements, Sc and Zr in this example, that might not be present in the
training data.

METHODS
Model training
Both the models discussed in this work have been implemented,
trained, and tested using Keras (58), an application programming
interface written in Python, running on top of the machine learning
platform TensorFlow (59). All the weights at the beginning of train-
ing are initialized in conjunction with the glorot uniform initializer
(60) and the biases set to zero. The Adam optimization algorithm
(61) was used during training with a step size (learning rate) of
0.001. For both models, the adapted datasets include 769 records.
The respective datasets were divided into training and testing data
sets in a 4:1 ratio, while ensuring random sampling in both. Also, in
both cases, the models were trained six times, each time using a dif-
ferent random dataset split (i.e., sixfold cross-validation).

Optimization
After training, optimization within the input parameter space of
both the models was done to maximize the pitting potential using
the multidimensional gradient descent algorithm (62), using a
learning rate of 0.0001 in all cases. The augmented Keras model
class, capable of returning the derivative of the output with
respect to the inputs (AugNet) (31, 63) has been used for this
purpose with both the models. In case of the process-aware DNN,
gradients were calculated only with respect to the numerical inputs.
In other words, the text information contributes toward altering the
weights of the different inputs within the trained model. However,
they do not participate during the optimization process itself. In
case of the feature-transformed DNN, gradients are calculated
with respect to all the input parameters and maximization of the
pitting potential is done while allowing the variation of all input
parameters.
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