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Supplementary Note 1. FIRST-PRINCIPLES CALCULATION FOR THE COSI FAMILY IN
EQUILIBRIUM

A. Lattice and band structures

The LH and RH chiral semimetal CoSi compounds are related by a mirror symmetry as shown
in Supplementary Figure 1(a). We show the three-dimensional BZ of LH and RH CoSi compounds
in Supplementary Figure 1(b). The band structures for LH and RH chiral semimetal CoSi are the
same, as illustrated in Supplementary Figure 1(c) and Supplementary Figure 1(d) for cases without
SOC and Supplementary Figure 1(e) and Supplementary Figure 1(f) for cases with SOC.

The AlPt compound has the same lattice structure and BZ as the CoSi compound. Because of the
same band structures of the LH and RH chiral semimetals, here we only show the band structures
of LH AlPt compound, as illustrated in Supplementary Figure 2(a) for the case without SOC and
in Supplementary Figure 2(b) for the case with SOC.
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Supplementary Figure 1. (a) The lattice structures for the LH and RH CoSi with opposite chirality are linked
by a mirror operation. (b) The BZ of the CoSi family. (c) Comparison of the calculated band structures from DFT
calculations in blue lines and tight-binding calculations in red dot lines along high symmetry paths
X → Γ → R → M → Γ for the LH CoSi without SOC. (d) Similar results as (c) but for the RH CoSi without SOC.
(e,f) Corresponding results to (c) and (d) but including the effects of SOC. The Fermi level denoted as the green
chain line is set as zero.
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(a) (b)

Supplementary Figure 2. (a) Comparison of the calculated band structures from DFT calculations in blue lines
and tight-binding calculations in red dot lines along high symmetry paths X → Γ → R → M → Γ for the LH AlPt
without SOC. (b) Similar results as (a) but for the LH AlPt with SOC. The Fermi level denoted as the green chain
line is set as zero.

B. Surface states

As illustrated in Supplementary Figure 3(b) and Supplementary Figure 3(c) for LH and RH CoSi
compounds, the Fermi arc states on the (001) surface in Supplementary Figure 3(a) are also related by
a mirror operation. As we can see, when we consider the effects of SOC as shown in Supplementary
Figure 3(c), the degeneracy of surface states is released. Similar to the case of CoSi compound,
we also calculate the (001) surface states of the LH AlPt compound, as shown in Supplementary
Figure 4.
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Supplementary Figure 3. (a) The schematic for the BZ of the CoSi compound. The BZ projected on the (001)
side surface is marked by purple dashed lines. (b) The Fermi arc states on the (001) surface for the LH (left panel)
and RH (right panel) CoSi in equilibrium at the zero-energy cut without SOC. (c) Corresponding results to (b) but
including the effects of SOC.
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Supplementary Figure 4. The Fermi arc states on the (001) surface for the LH AlPt without SOC (left panel)
and with SOC (right panel) in equilibrium at the zero-energy cut.
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Supplementary Note 2. FLOQUET EFFECTIVE k · p HAMILTONIAN FOR THE COSI FAMILY

Herein we take the CoSi compound as an example to construct the Floquet effective k ·p Hamilto-
nians for the topological fermions at Γ and R points without and with SOC. The Floquet engineering
of the linearly polarized light (LPL) has no momentum shift effects on topological fermions at Γ and
R points. So we only take the spin-1 excitation as an example to consider the Floquet engineering
of the LPL, then consider the pumping of the circularly polarized light (CPL), which is mainly
discussed in the main text.

A. Γ point without SOC

The effective k · p Hamiltonian of spin-1 excitation at the Γ point [1] is expressed as

ĤΓ(k) = h̄vΓηk · J = h̄vΓη

 0 ikz −iky
−ikz 0 ikx
iky −ikx 0

 (1)

where k = (kx, ky, kz) is the momentum relative to the Γ point, h̄vΓ = 1.231 eV·Å and η = +1(−1)
for the LH (RH) CoSi [2].

LPL — Here we consider a LPL with the frequency Ω = 2π
T
, where T is one optical cycle, and

its polarization aligns with the x direction. The LPL can be represented as A(t) = A0(sinΩt, 0, 0),
where A0 denotes the amplitude of the vector potential A(t). By applying the Peierls substitution
kx → kx +

eA0

h̄
sinΩt, we obtain the time-dependent k · p Hamiltonian for LPL as

ĤΓ(k, t) = h̄vΓη

 0 ikz −iky
−ikz 0 ikx + iA sinΩt
iky −ikx − iA sinΩt 0

 (2)

where we have redefined A = eA0

h̄
for simplicity. Once we assume the photon energy h̄Ω is large

compared to the other energy scales [3], the perturbation theory can be applied and we obtain the
time-independent Floquet effective k · p Hamiltonian as

Ĥeff
Γ (k) =

1

T

∫ T

0

ĤΓ(k, t)dt+
1

h̄Ω

∞∑
n=1

1

n

[
Ĥn(k), Ĥ−n(k)

]
+O(Ω−2)

≃ 1

T

∫ T

0

ĤΓ(k, t)dt+
1

h̄Ω

[
1

T

∫ T

0

e−iΩtĤΓ(k, t)dt,
1

T

∫ T

0

eiΩtĤΓ(k, t)dt

] (3)

where

1

T

∫ T

0

ĤΓ(k, t)dt = h̄vΓη

 0 ikz −iky
−ikz 0 ikx
iky −ikx 0

 = ĤΓ(k) (4)

1

T

∫ T

0

e∓iΩtĤΓ(k, t)dt = h̄vΓη

 0 0 0
0 0 ±A

2

0 ∓A
2

0

 (5)
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and the following formula has been used:

1

T

∫ T

0

dt sinΩt ei(n−m)Ωt =
1

2iT

∫ T

0

dt
(
ei(n−m+1)Ωt − ei(n−m−1)Ωt

)
=

1

2i
(δm,n+1 − δm,n−1)

(6)

The second term M = 1
h̄Ω

∑∞
n=1

1
n

[
Ĥn(k), Ĥ−n(k)

]
in Supplementary Equation 3 is defined as the

Floquet commutator, reflecting the correction of electronic structures due to the light-matter inter-
action within the perturbation theory. After some calculations, we find the Floquet commutator M
in Supplementary Equation 3 is zero and obtain Ĥeff

Γ (k) = ĤΓ(k), which has no obvious corrections
to the spin-1 excitation. To verify our analysis, we conduct the Floquet tight-binding calculation for
this case, as shown in Supplementary Figure 7(a) in Supplementary Note 4A, and find no obvious
momentum shift upon LPL pumping. So next we consider the Floquet engineering of the CPL.

CPL — Let’s consider a CPL represented as A(t) = A0(0, γ sinΩt, cosΩt) incident along the
x direction, where γ = ±1 denotes LCPL and RCPL. By applying the Peierls substitution ky →
ky + γ eA0

h̄
sinΩt and kz → kz +

eA0

h̄
cosΩt, the time-dependent k ·p Hamiltonian for CPL is obtained

as

ĤΓ(k, t) = h̄vΓη

 0 ikz + iA cosΩt −iky − iγA sinΩt
−ikz − iA cosΩt 0 ikx
iky + iγA sinΩt −ikx 0

 (7)

where we have redefined A = eA0

h̄
for simplicity. Using the same method as above, we obtain the

time-independent Floquet effective k · p Hamiltonian as

Ĥeff
Γ (k) ≃ 1

T

∫ T

0

ĤΓ(k, t)dt+
1

h̄Ω

[
1

T

∫ T

0

e−iΩtĤΓ(k, t)dt,
1

T

∫ T

0

eiΩtHΓ(k, t)dt

]
(8)

where

1

T

∫ T

0

ĤΓ(k, t)dt = ĤΓ(k) (9)

1

T

∫ T

0

e∓iΩtĤΓ(k, t)dt = h̄vΓη

 0 iA
2

∓γA
2

− iA
2

0 0
±γA

2
0 0

 (10)

and the following formula has been used:

1

T

∫ T

0

dt cosΩt ei(n−m)Ωt =
1

2T

∫ T

0

dt
(
ei(n−m+1)Ωt + ei(n−m−1)Ωt

)
=

1

2
(δm,n+1 + δm,n−1)

(11)

So finally we obtain

Ĥeff
Γ (k) = h̄vΓη

 0 ikz −iky
−ikz 0 i(kx − γvΓηA

2

2Ω
)

iky −i(kx − γvΓηA
2

2Ω
) 0

 = h̄vΓη

(
k · J− γvΓηA

2

2Ω
Jx

)
(12)
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Spin-1 Double Weyl(a) (b)

Supplementary Figure 5. (a) Band structures without light pumping in black dot lines and Floquet band
structures in blue lines are shown for the spin-1 excitation. (b) Band structures without light pumping in black dot
lines and Floquet band structures in red lines are shown for the double Weyl fermion.

As we can see, along the x direction, there is a momentum shift

δΓ = +
γvΓηA

2

2Ω
= ΞΓ

vΓ
2

(13)

where ΞΓ is the Floquet chirality index in the main text. Then we take the LH CoSi (η = +1) under
the pumping of LCPL (γ = +1) as an example to plot the Floquet band structures, and the results
are shown in Supplementary Figure 5(a) in blue lines.

B. R point without SOC

The effective k · p Hamiltonian of the double Weyl fermion at the R point [1] is expressed as

ĤR(k) = h̄vRηk · (σ ⊕ σ) = h̄vRη

(
k · σ 0
0 k · σ

)
(14)

where h̄vR = 0.88 eV·Å. Actually there are no corrections to the effective k · p Hamiltonian for
the Floquet engineering of the LPL, leading to the absence of momentum shift, as shown in Sup-
plementary Figure 7(b) in Supplementary Note 4A. Now we only show the results for the Floquet
engineering of the CPL. For a CPL A(t) = A0(0, γ sinΩt, cosΩt) incident along the x direction,
considering the Peierls substitution (ky → ky + γ eA0

h̄
sinΩt, kz → kz +

eA0

h̄
cosΩt), we obtain

ĤR(k, t)

=h̄vRη


kz + A cosΩt kx − iky − iγA sinΩt 0 0

kx + iky + iγA sinΩt −kz − A cosΩt 0 0
0 0 kz + A cosΩt kx − iky − iγA sinΩt
0 0 kx + iky + iγA sinΩt −kz − A cosΩt


(15)
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where we have redefined A = eA0

h̄
for simplicity. Using the same method as above, we obtain the

time-independent Floquet effective k · p Hamiltonian as

Ĥeff
R (k) ≃ 1

T

∫ T

0

ĤR(k, t)dt+
1

h̄Ω

[
1

T

∫ T

0

e−iΩtĤR(k, t)dt,
1

T

∫ T

0

eiΩtHR(k, t)dt

]
(16)

where

1

T

∫ T

0

ĤR(k, t)dt = ĤR(k) (17)

and

1

T

∫ T

0

e∓iΩtĤR(k, t)dt = h̄vRη


A
2

∓γA
2

0 0
±γA

2
−A

2
0 0

0 0 A
2

∓γA
2

0 0 ±γA
2

−A
2

 (18)

Similarly, we can obtain

Ĥeff
R (k) = h̄vRη

(
k · σ + γvRηA2

Ω
σx 0

0 k · σ + γvRηA2

Ω
σx

)
= h̄vRη

(
k · (σ ⊕ σ) +

γvRηA
2

Ω
σx ⊕ σx

)
(19)

And there is a momentum shift δR = −γvRηA2

Ω
= ΞRvR along the x direction. Then we take the

LH CoSi (η = +1) under the pumping of LCPL (γ = +1) as an example to plot the Floquet band
structures, the results are shown in Supplementary Figure 5(b) in red lines and the momentum shift
is opposite compared to that of the spin-1 excitation in Supplementary Figure 5(a).

C. Γ point with SOC

The effective k · p Hamiltonian of the spin-3/2 excitation at the Γ point [4] can be written as

ĤΓ(k) = h̄vΓηk · S 3
2
= h̄vΓη


akz 0 −a+3b

4
k+

√
3(a−b)
4

k−

0 bkz
√
3(a−b)
4

k− 0

−a+3b
4

k−
√
3(a−b)
4

k+ −akz 0√
3(a−b)
4

k+ 0 0 −bkz

 (20)

where k± = kx ± iky, a = cos ϵ, b = sin ϵ, ϵ = arctan(−3) and h̄vΓ = 1 eV·Å for simplicity. For a
CPL A(t) = A0(0, γ sinΩt, cosΩt) incident along the x direction, considering the Peierls substitution

(ky → ky + γ eA0

h̄
sinΩt, kz → kz +

eA0

h̄
cosΩt), we obtain the ĤΓ(k, t) as

h̄vΓη


a(kz +A cosΩt) 0 −a+3b

4 (k+ + iγA sinΩt)
√
3(a−b)
4 (k− − iγA sinΩt)

0 b(kz +A cosΩt)
√
3(a−b)
4 (k− − iγA sinΩt) 0

−a+3b
4 (k− − iγA sinΩt)

√
3(a−b)
4 (k+ + iγA sinΩt) −a(kz +A cosΩt) 0√

3(a−b)
4 (k+ + iγA sinΩt) 0 0 −b(kz +A cosΩt)


(21)

where we have redefined A = eA0

h̄
for simplicity. In the same way, we can calculate that

1

T

∫ T

0

ĤΓ(k, t)dt = ĤΓ(k) (22)
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Spin-3/2 Double Spin-1(a) (b)

Supplementary Figure 6. (a) Band structures without light pumping in black dot lines and Floquet band
structures in blue lines are shown for the spin-3/2 excitation. (b) Band structures without light pumping in black
dot lines and Floquet band structures in red lines are shown for the double spin-1 fermion.

and

1

T

∫ T

0

e−iΩtĤΓ(k, t)dt = h̄vΓη


aA
2

0 −a+3b
4

γA
2

−
√
3(a−b)
4

γA
2

0 bA
2

−
√
3(a−b)
4

γA
2

0
a+3b
4

γA
2

√
3(a−b)
4

γA
2

−aA
2

0√
3(a−b)
4

γA
2

0 0 − bA
2

 (23)

1

T

∫ T

0

eiΩtĤΓ(k, t)dt = h̄vΓη


aA
2

0 a+3b
4

γA
2

√
3(a−b)
4

γA
2

0 bA
2

√
3(a−b)
4

γA
2

0

−a+3b
4

γA
2

−
√
3(a−b)
4

γA
2

−aA
2

0

−
√
3(a−b)
4

γA
2

0 0 − bA
2

 (24)

So finally we obtain the Floquet effective k · p Hamiltonian Ĥeff
Γ (k) as

h̄vΓη

 akz 0 −a+3b
4

(kx − aγvΓηA2

Ω
+ iky)

√
3(a−b)

4
(kx − aγvΓηA2

Ω
− iky)

0 bkz
√

3(a−b)
4

(kx − aγvΓηA2

Ω
− iky) 0

−a+3b
4

(kx − aγvΓηA2

Ω
− iky)

√
3(a−b)

4
(kx − aγvΓηA2

Ω
+ iky) −akz 0√

3(a−b)
4

(kx − aγvΓηA2

Ω
+ iky) 0 0 −bkz


(25)

We can conclude that for the spin-3
2
excitation along the x direction, there is a momentum shift

δΓ = +
aγvΓηA

2

Ω
=

γχΓ(η)A
2

Ω
avΓ = ΞΓavΓ (26)

Then we take the LH CoSi (η = +1) under the pumping of LCPL (γ = +1) as an example to plot
the Floquet band structures, the results are shown in Supplementary Figure 6(a) in blue lines.
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D. R point with SOC

The k · p Hamiltonian of the double spin-1 excitation at the R point [4] is just the direct sum of
two Hamiltonians of the spin-1 excitation as

ĤR(k) = −h̄vRηk · (J⊕ J) = −h̄vRη

 0 ikz −iky
−ikz 0 ikx
iky −ikx 0

⊕

 0 ikz −iky
−ikz 0 ikx
iky −ikx 0

 (27)

where h̄vR = 1 eV·Å for simplicity. Similar to the derivation process for the spin-1 excitation, for
a CPL A(t) = A0(0, γ sinΩt, cosΩt) incident along the x direction, we can obtain the momentum
shift along the x direction of the double spin-1 excitation as

δR = −γvRηA
2

2Ω
=

γχR(η)A
2

Ω

vR
2

= ΞR
vR
2

(28)

which is opposite compared to the momentum shift of the spin-3/2 excitation. We also take the
LH CoSi (η = +1) under the pumping of LCPL (γ = +1) as an example to plot the Floquet band
structures as shown in Supplementary Figure 6(b) in red lines.
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Supplementary Note 3. UNDERSTANDING THE MOMENTUM SHIFT FROM THE VIEWPOINT OF
THE LIE ALGEBRA

Herein, we will prove that in the Floquet effective k · p Hamiltonian of the topological fermions,
the Floquet commutator M = 1

h̄Ω

∑∞
n=1

1
n
[Ĥn(k), Ĥ−n(k)] can be expanded by the generators of the

Lie algebra su(2), and the momentum shift can be comprehended from the perspective of the Lie
algebra su(2).

A. A brief introduction of the Lie algebra

In general, the Lie algebra g is a vector space V with a bilinear map (Lie bracket) [·, ·] : V ×V → V
and satisfies [5]:

Antisymmetry: [X, Y ] = −[Y,X]

Jacobi identity: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0
(29)

For instance, the three-dimensional Euclidean space R3 is a Lie algebra, and the cross product is
just its Lie bracket. Actually, the Lie algebra g can be regarded as a kind of linearization of the
Lie group G, because it characterizes the local structures near the identity of the Lie group G,
corresponding to the tangent space (Lie algebra g ≡ TeG) of the differential manifold (Lie group G)
at its identity. So once we know a representation of the Lie algebra g, we can obtain a representation
of the corresponding Lie group G through an exponential mapping.

For the Lie algebra su(N) with n generators (N2 − 1 = n), the Lie product can be defined by

[Xa, Xb] = i
∑
c

f c
abXc (30)

where the subscripts a, b, c ∈ {1, 2, ..., n} and f c
ab is the structure constant. Especially, for the Lie

algebra su(2), there are three generators in the space span(Xa, Xb, Xc) that satisfy [Xa, Xb] = if c
abXc.

And the irreducible representations X(S) of su(2) is labelled by S (spin), shown as

S 0 1
2
1 3

2
. . .

dim = 2S + 1 1 2 3 4 . . .

B. The relationship between the Floquet commutator and the Lie algebra su(2)

For the topological fermions in the main text: Weyl (spin-1/2) fermion, spin-1 and spin-3/2

(Rarita-Schwinger-Weyl) excitations, their effective k · p Hamiltonians in equilibrium Ĥ0(k) can
all be written as

∑
α ζα(k)Xα, where Xα are the generators in the 2-, 3-, and 4-dimensional matrix

irreducible representations of the Lie algebra su(2), corresponding to S = 1
2
, 1, 3

2
. Moreover, the

matrix elements in Ĥ0(k) are all in the first order for k, so the time-dependent k · p Hamiltonian

Ĥ(k, t) can be decomposed as Ĥ0(k)+Ĥ(t). Because 1
T

∫ T

0
e±inΩtĤ0(k) = 0, the Floquet commutator
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M can be expressed as

M =
1

h̄Ω

∞∑
n=1

1

n

[
Ĥn(k), Ĥ−n(k)

]
=

1

h̄Ω

∞∑
n=1

1

n

[
1

T

∫ T

0

e−inΩtĤ(k, t)dt,
1

T

∫ T

0

einΩtĤ(k, t)dt

]
=

1

h̄Ω

∞∑
n=1

1

n

[
1

T

∫ T

0

e−inΩt
(
Ĥ0(k) + Ĥ(t)

)
dt,

1

T

∫ T

0

einΩt
(
Ĥ0(k) + Ĥ(t)

)
dt

]
=

1

h̄Ω

∞∑
n=1

1

n

[
1

T

∫ T

0

e−inΩtĤ(t)dt,
1

T

∫ T

0

einΩtĤ(t)dt

]
(31)

It is easy to notice that Ĥ(t) can also be expanded by the generators of the Lie algebra su(2) as∑
α ζα(t)Xα (α ∈ {a, b, c}), because it is constructed by the Peierls substitution from Ĥ0(k). Then

M =
1

h̄Ω

∞∑
n=1

1

n

[
1

T

∫ T

0

e−inΩtĤ(t)dt,
1

T

∫ T

0

einΩtĤ(t)dt

]

=
1

h̄Ω

∞∑
n=1

1

n

[
1

T

∫ T

0

e−inΩt

(∑
α

ζα(t)Xα

)
dt,

1

T

∫ T

0

einΩt

(∑
β

ζβ(t)Xβ

)
dt

]

=
1

h̄Ω

∞∑
n=1

1

n

[∑
α

ζα,−nXα,
∑
β

ζβ,nXβ

]

=
1

h̄Ω

∞∑
n=1

1

n

∑
α

∑
β

ζα,−nζβ,n [Xα, Xβ]

=
i

h̄Ω

∞∑
n=1

1

n

∑
α

∑
β

ζα,−nζβ,nf
k
αβXk

(32)

where we have defined ζα,±n = 1
T

∫ T

0
e±inΩtζα(t)dt. We can see from Supplementary Equation 32 that

the Floquet commutator M can still be expanded by the generators of the Lie algebra su(2).

C. The LPL pumping case

We should emphasize that, for the LPL pumping, regardless of the polarization direction, the
phase of the component along the a (b, c) direction remains constant.

If the polarization direction of the pumping light is along the a (b, c) direction, there is only a single

direction for the Peierls substitution (kα → kα+A sinΩt), leading to Ĥ(t) = ζα(t)Xα. Consequently,
the Floquet commutator M must be zero due to [Xα, Xα] = 0, implying that topological fermions do
not exhibit no momentum shifts under the LPL pumping in the framework of the Floquet engineering.

For the more general case, we can write down the general form of the vector potential for the LPL
as A(t) = cosΩt(Aa, Ab, Ac). Then we can derive the Floquet commutator M in Supplementary
Equation 32 as:
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M =
1

h̄Ω

∞∑
n=1

1

n

[
1

T

∫ T

0

e−inΩtĤ(t)dt,
1

T

∫ T

0

einΩtĤ(t)dt

]

=
1

h̄Ω

∞∑
n=1

1

n

[
1

T

∫ T

0

e−inΩt

(∑
α

ζα(t)Xα

)
dt,

1

T

∫ T

0

einΩt

(∑
β

ζβ(t)Xβ

)
dt

]

=
1

h̄Ω

∞∑
n=1

1

n

[
1

T

∫ T

0

e−inΩt

(∑
α

ζ(t)AαXα

)
dt,

1

T

∫ T

0

einΩt

(∑
β

ζ(t)AβXβ

)
dt

]

=
1

h̄Ω

∞∑
n=1

1

n
ζ−nζn

[∑
α

AαXα,
∑
β

AβXβ

]
(33)

where Aα is the time-independent component of the vector potential A(t) along the α direction and

we have defined ζ±n = 1
T

∫ T

0
e±inΩtζ(t)dt. Notice that α, β ∈ {a, b, c},

[∑
α AαXα,

∑
β AβXβ

]
must

be zero.
For clarity, let’s consider a straightforward example. Suppose the polarization direction of the

vector potential lies in the xy plane, as shown in the inset of Supplementary Figure 7(c), we can
then write down the vector potential for the LPL as A(t) = A cosΩt(sin θ, cos θ, 0), where A is
the amplitude of the vector potential. In this case, α, β ∈ {x, y}, and we can derive the Floquet
commutator M as:

M =
1

h̄Ω

∞∑
n=1

1

n
ζ−nζn

[∑
α

AαXα,
∑
β

AβXβ

]

=
1

h̄Ω

∞∑
n=1

1

n
ζ−nζn [AxXx + AyXy, AxXx + AyXy]

=
1

h̄Ω

∞∑
n=1

1

n
ζ−nζnA

2 [sin θXx + cos θXy, sin θXx + cos θXy]

= 0

(34)

We also perform the Floquet tight-binding calculations for spin-1 and double Weyl fermions, as
illustrated in Supplementary Figure 7(c) and Supplementary Figure 7(d). Therefore, in general, in
the framework of the Floquet engineering, upon the LPL pumping, there are no momentum shifts
regardless of the polarization direction.

D. The CPL pumping case

But for the CPL pumping, the situation is different. Because there are at least two directions for
the Peierls substitution (kα → kα + γA sinΩt and kβ → kβ + A cosΩt), we can obtain the Floquet
commutator as

M ≃
[
1

T

∫ T

0

e−inΩtĤ(t)dt,
1

T

∫ T

0

einΩtĤ(t)dt

]
= [ζα,−nXα + ζβ,−nXβ, ζα,nXα + ζβ,nXβ]

= (ζα,−nζβ,n − ζα,nζβ,−n)[Xα, Xβ]

= iζnαβf
k
αβXk

(35)
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where (ζα,−nζβ,n − ζα,nζβ,−n) ̸= 0 has been rewritten as ζnαβ for simplicity. We can see the Floquet
commutator M is nonzero, and Xk just corresponds to the third generator. This indicates that the
shift is along the k direction, which aligns with the propogation direction of the CPL. So finally
under the illumination of CPL, there is a momentum shift instead of the splitting for topological
fermions.
Furthermore, for double Weyl and double spin-1 fermions, their effective k · p Hamiltonians in

equilibrium are just the direct sum of two Weyl fermions and two spin-1 fermions with the same
chirality, which corresponds to totally reducible representations of the Lie algebra su(2), and can
be divided into the direct sum of two irreducible representations. Using methods similar to the
above, we can demonstrate the CPL-induced Floquet commutator M ≃ iζnαβf

k
αβ(Xk ⊕ Xk), which

also denotes a momentum shift.
As for the opposite momentum shifts for spin-1 and double Weyl fermions shown in the main text,

the fundamental reason is that the structure constants f c
ab of their Lie algebra su(2) are opposite

numbers. For the spin-1 excitation ĤΓ(k) = h̄vΓηk · J, J is just generators of the Lie algebra su(2)
as

Jx =

 0 0 0
0 0 i
0 −i 0

 , Jy =

 0 0 −i
0 0 0
i 0 0

 , Jz =

 0 i 0
−i 0 0
0 0 0

 (36)

and satisfies [Ja, Jb] = if c
abJc = −iϵcabJc, where ϵcab is the Levi-Civita symbol. For the convenience

of the following analysis, we can redefine J̃i = 2Ji, then [J̃a, J̃b] = −2iϵcabJ̃c. From Supplementary
Equation 35 we can obtain the CPL-induced Floquet commutator M as

M ≃ iζnαβf
k
αβXk = iζnαβf

k
αβJk = −2iζnαβϵ

k
αβ(

1

4
J̃k) (37)

But for the double Weyl fermion ĤR(k) = h̄vRηk·(σ⊕σ), as generators of the Lie algebra su(2), σ
satisfies [σa, σb] = if c

abσc = 2iϵcabσc, then the CPL-induced Floquet commutator M can be expressed
as

M ≃ iζnαβf
k
αβ(Xk ⊕Xk) = 2iζnαβϵ

k
αβ(σk ⊕ σk) (38)

Herein from Supplementary Equation 37 and Supplementary Equation 38 we can ascertain that the
opposite momentum shifts stem from the opposite structure constants.
However, for the Dirac fermion ĤD(k) = k · (σ ⊕ σ∗), σ and σ∗ satisfy different Lie products:

[σa, σb] = 2iϵcabσc and [σ∗
a, σ

∗
b ] = −2iϵcabσ

∗
c , so the Lie product of σ ⊕ σ∗ is not closed (for instance,

[σ1 ⊕ σ∗
1, σ2 ⊕ σ∗

2] = [σ1, σ2] ⊕ [σ∗
1, σ

∗
2] = 2iσ3 ⊕ (−2iσ∗

3) = 2i{σ3 ⊕ (−σ3)} cannot be expanded by
σ3 ⊕ σ∗

3 = σ3 ⊕ σ3). Then we can follow the similar derivation process as above and obtain the
CPL-induced Floquet commutator M ≃ 2iζnαβϵ

k
αβ{σk ⊕ (−σ∗

k)}. The minus sign indicates that the
Dirac fermion will split up into two Weyl fermions, which will shift along opposite directions.
Furthermore, we can give a general description from the viewpoint of the quantum field theory

(QFT). Actually, the Dirac fermion (spinor) is just the reducible representation of the Lorentz
algebra so(1, 3) ≃ su(2) ⊗ su(2). Once we know all (irreducible) representations of the Lie algebra
su(2), we can obtain all (irreducible) representations of the Lorentz algebra so(1, 3). We can label
each irreducible representation with (S+, S−), and the corresponding dimension of the irreducible
representation is just (2S+ + 1)(2S− + 1). For example, the left- and right-handed Weyl fermions
(spinors) can be denoted as (1

2
, 0) and (0, 1

2
), and the Dirac fermion (spinor) is a combination of

two Weyl fermions (spinors) with opposite chirality, represented as (1
2
, 0)⊕ (0, 1

2
), aligning with the

earlier analysis.
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More generally, our results are not limited to the topological fermions in this work. Some other
spin-S topological excitations [6] have been observed in the universe of solids due to the space group
symmetry restrictions, which are less stringent compared to the Poincaré symmetry in the field of
the high energy physics. For the spin-S topological excitations, there also could be CPL-induced
momentum shifts in the framework of the Floquet engineering.
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Supplementary Note 4. FLOQUET TIGHT-BINDING HAMILTONIAN

A. The LPL-induced Floquet band structures of the CoSi compound

In Methods in the main text we have constructed the matrix element of the Floquet tight-binding

Hamiltonian as Ĥnm(k) =
1
T

∫ T

0
dtĤTB(k, t)ei(n−m)Ωt−mh̄Ωδmn, where m, n are Floquet indices. To

confirm the absence of momentum shifts for topological fermions under the LPL pumping, we choose
the LH CoSi without SOC as a case study to calculate Floquet band structures. First, we define the
LPL as A(t) = A0(sinΩt, 0, 0), maintaining the same pumping photon energy h̄Ω and electric field
intensity A0Ω as in the main text. As depicted in Supplementary Figure 7(a) and Supplementary
Figure 7(b), for both spin-1 and double Weyl fermions, no momentum shifts are observed.

(a) (b)
Spin-1 Double Weyl

(c) (d)

y

z

θ

x

Supplementary Figure 7. (a) Band structures without light pumping in blue dot lines and Floquet band
structures upon the LPL radiation from the diagonalization of the Floquet tight-binding Hamiltonian in black
dashed lines for the spin-1 excitation around the Γ point without SOC. (b) Analogous results to (a) but for the
double Weyl fermion around the R point. The band structures without light pumping are denoted in red dot lines.
(c,d) Analogous results to (a,b) but for a more general LPL. The inset in (c) illustrates the polarization direction of
the LPL at θ = 30◦ during the calculations of this part. The shaded yellow regions represent the first
Floquet-Brillouin zone (FBZ) in [− h̄Ω

2 , h̄Ω2 ). The truncation of m and n indices is set to {−2,−1, 0, 1, 2}.
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For a more general case, we select the vector potential of the LPL in the xy plane as A(t) =
A0(sin θ sinΩt, cos θ sinΩt, 0) = A0 sinΩt(sin θ, cos θ, 0), as shown in the inset of Supplementary Fig-
ure 7(c). But still, as depicted in Supplementary Figure 7(c) and Supplementary Figure 7(d), for
both spin-1 and double Weyl fermions, no momentum shifts are observed, which validates our pre-
vious analysis based on the Floquet effective k · p Hamiltonian in Supplementary Note 2A and the
Lie algebra su(2) in Supplementary Note 3.

B. The LCPL-induced Floquet band structures of CoSi and AlPt compounds

Regarding the LCPL pumping laser for the LH CoSi crystal, in the main text without SOC,
we choose the truncation of m and n indices as {−1, 0, 1}. The results of the truncation as
{−2,−1, 0, 1, 2} are presented in Supplementary Figure 8 with the same photon energy and electric
field intensity. The truncation used in this work is sufficient to describe the momentum shifts of the
topological fermions.
For the AlPt compound, because of effects from the heavy element Pt, we should consider SOC

in the calculations of Floquet band structures. The results are shown in Supplementary Figure 9
and the truncations of m and n are {−2,−1, 0, 1, 2}. We should point out that, for the spin-3/2 and
double spin-1 fermions under the laser pumping in the framework of the Floquet engineering, in order
to decrease the effects of bands (pointed by blue and red arrows in Supplementary Figure 9(a) and
Supplementary Figure 9(b)) closer to them, we choose the pumping photon energy as 320 meV and
the electric field intensity as 5.4× 107 V/m, which also shows the adjustability of the parameters to
induce the momentum shift. But actually, the degeneracy of these crossing points is not very perfect
as shown in the insets in the upper right corner of Supplementary Figure 9(a) and Supplementary
Figure 9(b). This is related to the fit quality of the Wannier functions, which are the fundamental
of the Floquet tight-binding Hamiltonian. But the characteristic of momentum shift still exists,
which is also confirmed by Floquet effective k · p Hamiltonians in Supplementary Note 2C and
Supplementary Note 2D.

(a) (b)
Spin-1 Double Weyl

Supplementary Figure 8. (a) Band structures without light pumping in blue lines and Floquet band structures
upon the LCPL radiation from the diagonalization of the Floquet tight-binding Hamiltonian in black dot lines for
the spin-1 excitation around the Γ point without SOC. (b) Analogous results to (a) but for the double Weyl fermion
around the R point. The band structures without light pumping are denoted in red lines. All results are calculated
for the LH CoSi crystal. The shaded yellow regions represent the first FBZ in [− h̄Ω

2 , h̄Ω2 ).
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(a) (b)
Spin-3/2 Double Spin-1

Supplementary Figure 9. (a) Band structures without light pumping in blue lines and Floquet band structures
upon the LCPL radiation from the diagonalization of the Floquet tight-binding Hamiltonian in black dot lines for
the spin-3/2 excitation around the Γ point with SOC. (b) Analogous results to (a) but for the double spin-1 fermion
around the R point. The band structures without light pumping are denoted in red lines. All results are calculated
for the LH AlPt crystal. The shaded yellow regions represent the first FBZ in [− h̄Ω

2 , h̄Ω2 ).
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C. The LCPL-induced Fermi arc states on the (001) surface with SOC

When we consider the effects of SOC, the Fermi arc states on the (001) surface for the LH and
RH CoSi at the zero-energy cut can also be calculated as shown in Supplementary Figure 10. We
observe the release of degeneracy in the light-induced surface states, yet their connections persist in
alignment with the scenario without SOC under the light pumping in the main text. We choose the
pumping photon energy as 100 meV and the electric field intensity as 4.4 × 107 V/m during CoSi
calculations.
As for the LH and RH AlPt, we show corresponding results in Supplementary Figure 11 with the

pumping photon energy as 320 meV and the electric field intensity as 5.4× 107 V/m.

Low

High

LH RH

Supplementary Figure 10. The schematic of the Fermi arc states on the (001) surface for the LH (left panel) and
RH (right panel) CoSi at the zero-energy cut when SOC is included upon the irradiation of the LCPL.

Low

High

LH RH

Supplementary Figure 11. The schematic of the Fermi arc states on the (001) surface for the LH (left panel) and
RH (right panel) AlPt at the zero-energy cut when SOC is included upon the irradiation of the LCPL.
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Supplementary Note 5. VALIDITY OF THE HIGH-FREQUENCY LIMIT

In Supplementary Note 2, we construct the Floquet effective k · p Hamiltonians for topological
fermions at Γ and R points without and with SOC to investigate the light-matter interactions.
A complementary approach to show the validity of the high-frequency limit is to calculate the
Floquet band structures obtained from the diagonalization of the Floquet extended k·p Hamiltonian
and compare them with the results from the Floquet effective k · p Hamiltonian. Herein, we take
the double Weyl fermion at the R point without SOC as a starting point. Actually, as shown in
Supplementary Equation 14, the double Weyl fermion is the direct sum of two Weyl fermions with
the same topological charge, so without loss of generality, we can analyze the Weyl fermion to clarify
this issue.
The effective k · p Hamiltonian of the Weyl fermion is expressed as

ĤW (k) = h̄vWηk · σ = h̄vWη

(
kz kx − iky

kx + iky −kz

)
(39)

where we set h̄vW = 0.88 eV·Å. For the convenience of the next analysis and discussion, we perform
a unitary transformation to the matrix in Supplementary Equation 39 as

ĤW (k) = h̄vWη

( − 1√
2

1√
2

1√
2

1√
2

)(
kz kx − iky

kx + iky −kz

)( − 1√
2

1√
2

1√
2

1√
2

)
= h̄vWη

(
−kx −kz + iky

−kz − iky kx

) (40)

Such a unitary transformation does not change the topological charge of the Weyl fermion. Then we
consider a CPL represented as A(t) = A0(0, γ sinΩt, cosΩt) incident along the x direction, where
γ = ±1 denotes LCPL and RCPL. By applying the Peierls substitution ky → ky + γ eA0

h̄
sinΩt and

kz → kz +
eA0

h̄
cosΩt, the time-dependent k · p Hamiltonian for CPL is obtained as

ĤF
W (k, t) =h̄vWη

(
−kx −kz + iky + A(− cosΩt+ iγ sinΩt)

−kz − iky + A(− cosΩt− iγ sinΩt) kx

)
(41)

where we have redefined A = eA0

h̄
for simplicity. Then, consistent with the discussion in Supple-

mentary Note 2B, we employ the Floquet theory to obtain the time-independent Floquet matrix
elements as[

ĤF
W (k)

]
nm

=
1

T

∫ T

0

dtĤF
W (k, t)ei(n−m)Ωt −mh̄Ωδmn

=
(

(−kx−mh̄Ω)δmn (−kz+iky)δmn+
A
2
(−δm,n+1−δm,n−1+γδm,n+1−γδm,n−1)

(−kz−iky)δmn+
A
2
(−δm,n+1−δm,n−1−γδm,n+1+γδm,n−1) (kx−mh̄Ω)δmn

) (42)

where T = 2π/Ω is one optical cycle of the pumping laser and we omit h̄vWη for simplicity. Now
we only consider the first-order contributions of light-matter interaction within the framework of
Floquet theory. By truncating the time-independent Floquet extended k · p Hamiltonian ĤF

W (k) in

Supplementary Equation 42 to m,n = {−1, 0, 1}, we obtain ĤF
W (k) as

ĤF
W (k) =


−kx + h̄Ω −kz + iky 0 A

2
(γ − 1) 0 0

−kz − iky kx + h̄Ω A
2
(−γ − 1) 0 0 0

0 A
2
(−γ − 1) −kx −kz + iky 0 A

2
(γ − 1)

A
2
(γ − 1) 0 −kz − iky kx

A
2
(−γ − 1) 0

0 0 0 A
2
(−γ − 1) −kx − h̄Ω −kz + iky

0 0 A
2
(γ − 1) 0 −kz − iky kx − h̄Ω

 (43)
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Weyl Double Weyl(a) (b)

Supplementary Figure 12. (a) Floquet band structures from the Floquet extended k · p Hamiltonian in black
dot lines and from the Floquet effective k · p Hamiltonian in red lines are shown for the Weyl fermion. (b) Similar
results but for the double Weyl fermion.

We only focus on the Floquet band structures along the kx direction, which is also the propagation
direction of the CPL. So let ky = 0 and kz = 0, we obtain

ĤF
W (kx) =


−kx + h̄Ω 0 0 A

2
(γ − 1) 0 0

0 kx + h̄Ω A
2
(−γ − 1) 0 0 0

0 A
2
(−γ − 1) −kx 0 0 A

2
(γ − 1)

A
2
(γ − 1) 0 0 kx

A
2
(−γ − 1) 0

0 0 0 A
2
(−γ − 1) −kx − h̄Ω 0

0 0 A
2
(γ − 1) 0 0 kx − h̄Ω

 (44)

In the same way as shown in Supplementary Note 2B, we can also obtain the Floquet effective
k · p Hamiltonian of the Weyl fermion as

Ĥeff
W (k) = h̄vWη

(
k · σ +

γvWηA2

Ω
σx

)
(45)

Now we set η = +1 and γ = +1 as an example to plot the Floquet band structures along the
kx direction from the diagonalization of the Floquet extended k · p Hamiltonian [Supplementary
Equation 44] and from the Floquet effective k · p Hamiltonian [Supplementary Equation 45]. The
calculated results are shown in Supplementary Figure 12(a). We can see, to some extent, the Floquet
effective k · p Hamiltonian can capture the key feature of the light-matter interaction for the Weyl
fermion, such as the momentum shift highlighted by the blue arrow in Supplementary Figure 12(a).
So the high-frequency limit used in the main text is reliable. In addition, we also calculate the
corresponding results for the double Weyl fermion in Supplementary Figure 12(b), and ensure that
the analysis of the Weyl fermion can also be applied to the double Weyl fermion because their
Floquet quasienergy spectra are the same.
Moreover, Some new features in Floquet band structures can be found beyond the Floquet effective

k · p Hamiltonian for the Weyl fermion, as shown in Supplementary Figure 13(a). Two red Floquet
bands have a hybridization with a gap instead of a crossing, but two blue Floquet bands keep the
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Supplementary Figure 13. (a) Floquet band structures from the Floquet extended k · p Hamiltonian ĤF
W (kx)

are shown for the Weyl fermion. The red and blue Floquet bands are what we are concerned about. (b) Floquet
band structures are shown in black lines. The Floquet bands in red and blue dot lines are obtained from the
diagonalization of Ĥ1(kx) and Ĥ2(kx) in Supplementary Equation 48, respectively.

band crossing. Such phenomena are related to the interactions between Floquet bands with different
Floquet indices of m,n = −1 and m,n = 0.
To provide an intuitive physical picture, we can directly pick up the four-band Hamiltonian from

the Floquet extended k · p Hamiltonian ĤF
W (kx) in Supplementary Equation 44 as

Ĥ4×4
W (kx) =


−kx + h̄Ω 0 0 A

2
(γ − 1)

0 kx + h̄Ω A
2
(−γ − 1) 0

0 A
2
(−γ − 1) −kx 0

A
2
(γ − 1) 0 0 kx

 (46)

We then rearrange the matrix elements in the Ĥ4×4
W (kx) as

Ĥ4×4
W (kx) =


kx + h̄Ω A

2
(−γ − 1) 0 0

A
2
(−γ − 1) −kx 0 0

0 0 kx
A
2
(γ − 1)

0 0 A
2
(γ − 1) −kx + h̄Ω

 (47)

Let γ = +1, we obtain

Ĥ4×4
W (kx) =


kx + h̄Ω −A 0 0
−A −kx 0 0
0 0 kx 0
0 0 0 −kx + h̄Ω


=

(
kx + h̄Ω −A
−A −kx

)
⊕
(
kx 0
0 −kx + h̄Ω

)
=Ĥ1(kx)⊕ Ĥ2(kx)

(48)

We can diagonalize the reduced Hamiltonians Ĥ1(kx) and Ĥ2(kx) in Supplementary Equation 48,
and the results are shown in Supplementary Figure 13(b). The red dashed lines are from the reduced
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Hamiltonians Ĥ1(kx) and the blue dashed lines are from the reduced Hamiltonians Ĥ2(kx). Because

the off-diagonal term in the reduced Hamiltonians Ĥ1(kx) is −A, which is nonzero, two red bands
will decouple and have a gap between them. Conversely, the off-diagonal term in the reduced
Hamiltonians Ĥ2(kx) is 0, so two blue bands will have a crossing point. In a word, the chirality of
the CPL can affect the coupling between Floquet bands with different Floquet index.
In addition, if we compare the Floquet band structures of the double Weyl fermion from the Floquet

tight-binding Hamiltonian shown in Supplementary Figure 8(b) and from the Floquet extended k ·p
Hamiltonian shown in Supplementary Figure 12(b), we can see in Supplementary Figure 8(b), the
Floquet bands pointed by the blue arrow also have a gap, which does not match the analysis above
(two blue Floquet bands have a crossing point instead of a gap in Supplementary Figure 13(a)).
Actually, the above discussion is based on the fact that matrix elements in the effective k ·p Hamil-

tonian of the Weyl fermion are all in the first order for k, so the reduced Hamiltonian Ĥ2(kx) in
Supplementary Equation 48 possesses zero off-diagnal terms. If high order terms for k are considered
in the effective k ·p Hamiltonian, some nonzero off-diagnal terms will emerge in the reduced Hamil-
tonian Ĥ2(kx), and the gap will occur between two blue Floquet bands, which has been captured by
the calculations of the Floquet tight-binding Hamiltonian.
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Supplementary Note 6. THE ESTIMATION OF THE SCATTERING TIME IN COSI SINGLE CRYSTAL

In different growth conditions of the CoSi single crystal, the estimated mobility µe is around
2.3 × 102 ∼ 7.3 × 103 cm2/(V · s) [7]. In addition, we know µe = eτ

me
, where me is the mass of the

electron. So we can estimate the scattering time τ as

τ =
µeme

e

=
(2.3× 102 ∼ 7.3× 103)× 9.11× 10−31

1.6× 10−19

kg · cm2

C · (V · s)

=
(2.3× 10−2 ∼ 7.3× 10−1)× 9.11× 10−12

1.6

kg ·m2

C · (V · s)
= (1.31× 10−13 ∼ 4.16× 10−12) s

= (1.31× 102 ∼ 4.16× 103) fs

(49)

And the corresponding energy is h̄ω = 2πh̄/τ = h/τ = (1 ∼ 31.6) meV.
In order to form observable Floquet states in experiments, we need the period of the pumping

laser T = 2π/Ω to be shorter than the scattering time τ , namely T < τ ∼ 131 fs. Then the pumping
photon energy h̄Ω should be larger than h̄ω, namely, h̄Ω > h̄ω ∼ 31.6 meV. This is a relatively
loose restriction. In the main text, we set the photon energy h̄Ω = 100 meV to carry out Floquet
calculations, which are reasonable for the formation of the Floquet states in experiments.
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Supplementary Note 7. MORE DISCUSSION ON PROPOSED EXPERIMENTS

In this section, we give more discussion on our proposed experiments in the main text.

Firstly, time- and angle-resolved photoemission spectroscopy (TrARPES) remains a powerful and
direct experimental technique to observe both surface and bulk Floquet band structures. As outlined
in Supplementary Table 1, TrARPES has successfully detected the Floquet metallic surface state
(e.g., the Dirac surface state of Bi2Se3 and Bi2Te3) and the Floquet metallic bulk state (e.g., the
Dirac bulk state of graphene). All experiments in Supplementary Table 1 employ the (Mid-)infrared
(IR) pumping to induce Floquet states (similar to our proposal, 0.1 eV for the pumping laser) and
then utilize a suitable probe laser to capture the Floquet bulk or surface states. Therefore, from an
experimental technology standpoint, we believe that TrARPES is possible to probe the light-induced
Fermi arcs.

Technology Reference Pump laser Probe laser Material

[8] 0.12 eV ultraviolet (UV) pulse
[9] 0.16 eV 6.3 eV

the Dirac surface
state of Bi2Se3

[10] 0.1 eV UV pulse
the Dirac surface
state of Bi2Te3

[11] 0.65 eV 26.5 eV
[12] 0.246 eV 26.4 eV

the Dirac bulk state
of graphene

[13] 0.28 eV 21.7 eV
the bulk state of

WSe2
[14] 0.34-0.44 eV 6.2 eV

TrARPES

[15] 0.16 eV 6.2 eV
the bulk state of

black phosphorus (BP)

Supplementary Table 1. TrARPES experiments for the direct observation of Floquet states.

Secondly, we have listed some related experiments in Supplementary Table 2 to show the feasibility
of detecting Kerr and Faraday rotations on the ultrafast timescales. The initial three experiments
in Supplementary Table 2 all focus on non-magnetic or paramagnetic materials, where CPL is ap-
plied to break time-reversal symmetry (TRS), leading to the CPL-induced anomalous Hall effect.
These studies employ Mid-IR pumping-terahertz (THz) Faraday probe spectroscopy to measure the
Faraday rotation angle and deduce the CPL-induced anomalous Hall conductivity (AHC) in the
frequency domain.

Moreover, we should point out that birefringence is a potential phenomenon in the Kerr and
Faraday rotation measurements. However, birefringence typically exhibits anisotropy compared to
Kerr and Faraday rotations. That is, in principle by rotating the half-wave plate while keeping the
beam at the same spot, we can distinguish birefringence from Kerr (Faraday) signals. This allows us
to extract the contribution of birefringence, which is a viable experimental treatment method [16].

Finally, We attempt to provide a brief derivation to consider the electron occupation for the AHC.
Before the laser pumping, due to the presence of the TRS, the AHC σ =

∑
n

∫
BZ

[f(ϵn(k))Ωn(k)]dk =
0, where f(ϵn(k)) is the electron occupation at the n-th band. In equilibrium, f(ϵn(k)) follows the
Fermi-Dirac distribution, and ϵn(k) is the n-th band energy. Under CPL pumping, we suppose the
light-induced AHC to be σ′ =

∑
n

∫
BZ

[f ′(ϵn(k))Ω
′
n(k)]dk, and the change of AHC can be described
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Technology Reference Material Pump laser Probe laser

THz Faraday
probe

spectroscopy

[17]
the Dirac fermion

in Cd3As2

0.138 eV
∼ 107 V/m

∼THz

[18]

the massive Dirac
fermion in

Co3Sn2S2 above the
Curie temperature

0.31 eV
∼ 1.1× 108 V/m

∼THz

[19]
the Dirac fermion

in bismuth
0.31 eV

∼ 2.3× 107V/m
∼THz

Our proposal
the topological
fermion in CoSi

0.1 eV
4.4× 107 V/m

∼THz

Supplementary Table 2. THz Faraday experiments related to the Floquet physics.

as:

δσ = σ′ − σ

=
∑
n

∫
BZ

[f ′(ϵn(k))Ω
′
n(k)− f(ϵn(k))Ωn(k)] dk

=
∑
n

∫
BZ

[f ′(ϵn(k))Ω
′
n(k)− f(ϵn(k))Ω

′
n(k) + f(ϵn(k))Ω

′
n(k)− f(ϵn(k))Ωn(k)] dk

=
∑
n

∫
BZ

[f ′(ϵn(k))− f(ϵn(k))] Ω
′
n(k)dk+

∑
n

∫
BZ

f(ϵn(k)) [Ω
′
n(k)− Ωn(k)] dk

=
∑
n

∫
BZ

[f ′(ϵn(k))− f(ϵn(k))] Ω
′
n(k)dk+

∑
n

∫
BZ

f(ϵn(k))Ω
′
n(k)dk

(50)

As we can see from Supplementary Equation 50, the first term corresponds to the contribution from
the change of the electron occupation and the light-induced Berry curvature, while the second term
only arises from the light-induced Berry curvature (due to the equilibrium Fermi-Dirac distribution
f(ϵn(k)), the dominate term is the momentum shift), corresponding to

∑
k∈{Γ,R} χk(η) · δk shown in

the main text. Then, we analyze the contribution of the first term in Supplementary Equation 50
under different cases.
Herein, we propose to use the THz Faraday probe spectroscopy to detect the change of AHC

[18, 19], the pulse duration of THz laser is on the order of magnitude of ps. In such time scale, the
electronic states with higher energy away from the Fermi level will contribute little. For the light-
induced sidebands around the Fermi level within the energy window [−0.1 eV, 0.1 eV], the change
of the electron distribution [f ′(ϵn(k)) − f(ϵn(k))] combined with the light-induced Berry curvature
(see the first term in Supplementary Equation 50) should contribute to the AHC to some extent.
In practical terms, for the massive Dirac semimetal Co3Sn2S2 above the Curie temperature, the

contribution of light-induced AHC has been confirmed from the Floquet Berry curvatures predom-
inantly [18]. In the similar setup and system, we anticipate that the momentum shifts from the
Floquet Berry curvatures in CoSi could primarily contribute to the AHC.
However, the above discussion is just a preliminary argument. The time-dependent density func-

tional theory (TDDFT) or quantum Liouville equation with relaxation should be utilized to com-
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prehensively examine the electron occupation of Floquet bands in the future.
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