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c École Polytechnique Fédérale de Lausanne, Laboratory of Sustainable and Catalytic Processing, Station 6, Lausanne 1015, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Computer-aided Molecular Design 
Graph Neural Networks 
Solvents 
Lignin 
Biorefineries 

A B S T R A C T   

Solvent selection is a difficult task for lignin-first biorefineries and lignin upgrading as the solvent must satisfy 
multiple complex technical requirements, while remaining extremely stable to allow recycling. High lignin 
solubility is a common selection criterion, but the ideal solvent for lignin-first biorefineries also requires non- 
reactivity towards acids and stabilising reagents encountered in the reaction liquor. To facilitate the search 
for promising solvents, we developed a computational solvent design framework. The framework consists of a 
graph-based genetic algorithm for molecular design wherein a graph neural network is used for lignin solubility 
predictions. Based on these predictions, the genetic algorithm iteratively optimises the molecular structures, 
inspired by evolutionary strategies, such as selection, cross-over, and mutation. The developed framework 
designed numerous solvents with high potential for application in lignin-first biorefineries and lignin upgrading. 
For these solvents, experiments confirmed solubilities between 20 and 60 wt.% across different types of lignin. 
Notably, several solvents were stable under typical biorefinery process conditions. Furthermore, the explain-
ability of graph neural networks enabled us to link the lignin solubility predictions with structural features of the 
solvents, providing a clear rationale for solvent selection.   

1. Introduction 

Lignocellulosic biomass, an abundant source of renewable carbon, is 
a promising feedstock for the production of bio-based commodities [1]. 
During organosolv processing, lignocellulosic biomass is treated with 
organic solvents, water, and acid under elevated temperatures to sepa-
rate the three major biomass fractions: lignin, cellulose and hemicellu-
lose sugars. Harsh process conditions are required to liberate lignin from 
the lignin-carbohydrate complex of the recalcitrant biomass. However, 
the given process conditions contribute to the cleavage of ether and ester 
motifs of the native lignin and promote undesired condensation re-
actions [2]. The structurally altered lignin contains stable interunit C-C 
bonds which impede lignin upgrading to aromatic monomers. This 
problem gave rise to lignin-first biorefineries that apply approaches for 
active lignin stabilisation [2–7]. One such strategy is aldehyde-assisted 
fractionation (AAF), which exploits aldehyde protection chemistry to 
stabilise lignin and prevent its condensation. The aldehyde forms a 
stable acetal with the α- and γ-hydroxyl groups of the β-O-4 linkage in 

lignin preventing protonation of α-carbon, the most vulnerable position 
for condensation. As a consequence, the formation of interunit C-C 
bonds between the side-chain α-carbons and neighbouring aromatic 
rings is hindered (see SI for the detailed reaction mechanism) [2]. Both, 
the condensed and aldehyde-protected lignin, can be upgraded to a 
variety of applications such as lignin-based coatings, films, resins, 
nanoparticles, or thermoplastics [8–11]. However, the acetal-stabilised 
lignin can be depolymerised to aromatic monomers with high near- 
theoretical yields [7]. Another lignin-first approach is reductive cata-
lytic fractionation (RCF). In RCF, the biomass is treated with an organic 
solvent combined with a transition metal catalyst. In the presence of a 
hydrogen donor, which could be an external H2 source or the solvent 
itself, the catalyst directly converts the dissolved lignin into aromatic 
monomers by cleaving the β-O-4 aryl ether motifs [3]. 

Solvent selection is crucial for both lignin isolation from biomass and 
further lignin upgrading. For lignin-first approaches, important solvent 
properties are high lignin solubility, and stability towards the reaction 
liquor. Moreover, environmental, health and safety (EHS) criteria as 

* Corresponding authors. 
E-mail addresses: jeremy.luterbacher@epfl.ch (J.S. Luterbacher), sundmacher@mpi-magdeburg.mpg.de (K. Sundmacher).  

Contents lists available at ScienceDirect 

Chemical Engineering Journal 

journal homepage: www.elsevier.com/locate/cej 

https://doi.org/10.1016/j.cej.2024.153524 
Received 10 April 2024; Received in revised form 31 May 2024; Accepted 25 June 2024   

mailto:jeremy.luterbacher@epfl.ch
mailto:sundmacher@mpi-magdeburg.mpg.de
www.sciencedirect.com/science/journal/13858947
https://www.elsevier.com/locate/cej
https://doi.org/10.1016/j.cej.2024.153524
https://doi.org/10.1016/j.cej.2024.153524
https://doi.org/10.1016/j.cej.2024.153524
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cej.2024.153524&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Chemical Engineering Journal 495 (2024) 153524

2

well as solvent recyclability and price influence the feasibility of the 
process, rendering solvent selection a trade-off between different target 
properties. 

Alcohols (ethanol, 2-propanol, 1-butanol) and acetone are frequently 
applied in organosolv processing due to their low price and benign EHS 
properties. However, these solvents suffer from low lignin solubility and 
are not applicable to AAF, as they react with aldehydes to form hemi-
acetals or hemiketals. Halogenated solvents are not recommended for 
application in industrial scale due to their health hazards and low lignin 
solubility. 2-methyl tetrahydrofuran (2-MeTHF) is a bio-based ether 
suitable for AAF with mediocre lignin solubility, which is prone to 
peroxide formation, posing a risk for explosions [12,13]. 1,4-dioxane 
offers high lignin solubility and is also stable under AAF process con-
ditions [14]. However, peroxide formation, carcinogenicity and nega-
tive environmental effects of 1,4-dioxane [13] prompt the search for 
alternative solvents, especially for large-scale processes. In addition, 
solvents with high lignin solubility could be of immense interest for the 
processing of cellulose pulp and hemicellulose sugars to remove lignin 
impurities. 

For RCF, solvents such as ethers and alcohols are a common choice 
[15]. Here, solvents with high lignin and hydrogen solubilities are 
preferred. When no external hydrogen is added to the process, the sol-
vent acts as a hydrogen source itself and should therefore have sufficient 
hydrogen donating capacity. 

Lignin upgrading commonly requires solvents with high lignin sol-
ubility, such as DMSO [11]. For lignin nanoparticle formation, anti- 
solvent precipitation is a commonly applied method that relies on 
relative differences in lignin solubility between the applied solvents 
[9,10]. 

Solvent selection in lab settings is laborious and resource-consuming. 
Therefore, computer-guided methods were developed to facilitate the 
search [16–18]. We recently published a COSMO-RS-based [19–22] 
solvent screening analysing a database, containing more than 8000 
potential solvents, for their applicability in lignocellulose processing 
[23]. Sulfoxides, azines, oxazolines, and phosphonates were computa-
tionally identified, and lignin solubilities up to 33 wt.% were experi-
mentally confirmed. In the solvent screening, the search for ideal 
solvents was focused on a limited database. However, expanding the 
search space appears crucial to harness the full potential of computer- 
guided solvent selection. 

Solvent design algorithms, such as variational autoencoders, gener-
ative adversarial networks, and evolutionary algorithms, enable de novo 
generation of solvents with tailored properties [24,25]. While the data- 
driven variational autoencoders and generative adversarial networks 
are black-box models that hardly allow to rationalise the designed 
structures, evolutionary algorithms allow for more insights into the 
structural changes performed on the molecule and to follow distinct 
structural patterns. State-of-the-art solvent selection for lignin dissolu-
tion and biomass fraction requires extensive expert knowledge, experi-
mentally determined solvent parameters [26,27], or time-consuming 
quantum mechanical (QM) calculations [23]. 

Here, we present a computational solvent design framework for 
lignin-first biorefineries and lignin upgrading that operates indepen-
dently from experimental parameters. We coupled a graph neural 
network (GNN) for lignin solubility predictions with the newly devel-
oped graph-based genetic algorithm PSEvolve for solvent design. The 
GNN was trained on COSMO-RS solubility data and eliminated the need 
for time-consuming QM calculations. In this way, the GNN acts as a 
surrogate model of COSMO-RS for lignin solubility predictions. In 
addition to significantly speeding up the lignin solubility predictions, 
GNNs can be coupled with attribution techniques to gain insights into 
the explainability of their predictions [28]. This feature was used to 
identify the most influential molecular substructures for the solubility 
predictions. Consequently, functional groups associated with high lignin 
solubility can be identified from expert knowledge using the GNN 
explainability as an extra toolkit to guide rational solvent selection. The 

molecular graph representation of the solvents was not only applied in 
the GNN solubility predictions but also exploited in the developed ge-
netic algorithm PSEvolve. Genetic algorithms perform random mutations 
on molecules, and require a robust molecular representation, such as 
graphs, to ensure structural validity [29–31]. To allow for efficient 
exploration of the chemical space, PSEvolve combines graph and valence 
theory with a well-studied measure for synthetic accessibility [32]. In 
this manner, PSEvolve generates only structurally feasible molecules that 
are easily synthesisable or even commercially available. 

Unlike many other molecular design algorithms, the developed ge-
netic algorithm PSEvolve generates structurally feasible molecules that 
are easily synthesisable or even commercially available by applying 
graph and valence theory in combination with a measure for synthetic 
accessibility [32]. Therefore, the developed algorithm allows for fast 
and efficient exploration of the chemical space. 

We demonstrate the solvent design framework for two test cases: In 
the first case, lignin dissolution is the main objective, which is an 
important mechanism in lignin isolation from biomass (e.g. in organo-
solv processing, AAF, and RCF) and lignin upgrading (e.g. production of 
lignin films or nanoparticles). The exploration of the chemical space is 
purely guided by maximising the lignin solubility. The second case fo-
cuses on solvent design for AAF. There, the objective is to maximise the 
lignin solubility under constraints of acid- and aldehyde-stability of the 
solvents. Finally, the most promising solvent candidates are selected for 
lignin solubility measurements and aldehyde-assisted biomass 
pretreatment. 

2. Results and discussion 

2.1. Workflow 

In the proposed framework (see Fig. 1), we coupled a GNN with the 
newly developed graph-based genetic algorithm PSEvolve for the design 
of tailor-made solvents for lignocellulose processing and lignin 
upgrading. The GNN was trained and tested on COSMO-RS-generated 
solubilities of a representative lignin fragment in more than 3300 
solvents. 

Genetic algorithms are inspired by biological evolution processes 
and were frequently applied in computer-aided design of drugs, sol-
vents, and catalysts [33–35]. The developed graph-based genetic algo-
rithm PSEvolve is the core of the solvent design framework. In this study, 
PSEvolve iteratively modifies chemical structures to maximise their 
lignin solubility based on GNN solubility predictions. We initialised 
PSEvolve with a start population containing 1000 n-hexane molecules, a 
solvent with low solubility across different types of lignin [12,36] and 
optimised their structures over 1000 generations. In each generation, 
the GNN predicted lignin solubilities served as a measure of fitness for 
each chemical structure. In analogy to Darwin’s “survival of the fittest”, 
fitness-appropriate selection, cross-over, and random mutations aim to 
drive the population of chemical structures towards maximal fitness 
[37]. 

To ensure diversity among the population and to reduce the risk of 
convergence to local minima, PSEvolve features a broad range of muta-
tion operations, such as the addition, deletion and substitution of bonds 
and atom, the relocation of molecular fragments, or the addition of 
functional groups. In contrast to several other molecular design algo-
rithms, PSEvolve ensures generating structurally feasible molecules by 
combining implicit valence count and graph theory (see methods for 
details). Furthermore, PSEvolve allows for imposing constraints on the 
molecular structure. In this study, an important constraint was the 
synthetic accessibility score (SAS) [32]. The SAS is an estimate for the 
ease of synthesis of a molecule and prevents the algorithm from 
exploring structurally feasible molecules that are, however, hardly 
commercially available or involve difficult synthesis. Acid- and 
aldehyde-instable functional groups were excluded during solvent 
design tailored towards AAF. PSEvolve can be also adapted to other 
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molecular design problems with broad application in chemical 
engineering. 

The GNN enabled fast and accurate predictions of the lignin solubi-
lity which was crucial for the fitness evaluation within the genetic al-
gorithm. First, the chemical structure of the solvent molecules was 
transformed into a molecular graph. This graph was defined by a set of 
nodes and edges, representing atoms and chemical bonds, respectively. 
We assigned several atom and bond features to the graph (see methods 
for details). In the message-passing step, the node features of the graph 
were updated by using the information about the neighbouring nodes 
and the connecting edges. Then, by performing this message passing 
operation multiple times, the node embeddings were effectively 
enriched with information of their neighbourhood. The resulting 
updated graph was subsequently passed through a pooling operation to 
yield the “molecular fingerprint” of the solvent. This solvent fingerprint 
acts as a tailor-made vectorial representation of the solvent optimised 
for predicting lignin solubility This tailor-made fingerprint served as an 
input to a multilayer perceptron which finally predicted the lignin 
solubility. 

As experimental data on lignin solubility is scarce, the GNN was 
trained and tested with COSMO-RS solubility predictions of a repre-
sentative lignin structure in more than 3300 solvents. A trimer of 
guaiacyl (G)-units connected via β-O-4 bonds was used as a 

representative lignin structure for solubility predictions. The represen-
tative structure was modelled on a quantum chemical level (molecular 
weight: 530.57 g/mol, see SI for molecular structure). The β-O-4 motif is 
the predominant bond pattern in lignin, constituting approximately 50 
% of the linkages in softwood, 60 % in hardwood, and 80 % in grasses 
[38]. The abundancy and ease of cleavage renders the β-O-4 motif, a key 
target for lignin depolymerisation [5]. In contrast to p-hydroxyphenyl 
(H)-and syringyl (S)-units, only G-units are produced across all hard-
wood, softwood, and herbaceous biomass sources [39]. In grasses and 
hardwoods, G-units are less abundant compared to S- and H-units. 
However, G-units only differ by a methoxy group from H- and S-units 
and can be therefore seen as intermediate structures. This structural 
similarity renders G-units excellent representative units. A recent 
computational analysis revealed that lignin solubility is rather depend-
ing on solvent parameters than on structural features of lignin [26], 
rendering the choice of the lignin representative less influential. 

Overall, the GNN and COSMO-RS predictions are in good agreement 
(R2 = 0.896, MAE = 0.322 for the test set), with slight deviations in the 
upper solubility ranges with log(xsol, lignin) > -1 (Fig. 2 a). To obtain 
accurate lignin solubility predictions for a structurally different chem-
icals as generated by the solvent design algorithm, we applied a training 
set that reflects a high structural diversity (Fig. 2 b). Our previous study 
[23] showed, that COSMO-RS predictions are useful for qualitative 

Fig.1. Workflow for the proposed solvent design framework. The genetic algorithm PSEvolve optimises the structure of a molecule population by iteratively per-
forming evolutionary operations, such as selection of the fittest individuals for cross-over, and mutation. The genetic algorithm performs the operations on the graph 
of the molecule to guarantee structural feasibility. The fitness is given by the lignin solubility as predicted by a GNN. The GNN was trained on COSMO-RS generated 
lignin solubility prior to coupling with the genetic algorithm. Constraints on the molecular structures, such as molecular weight, restriction of functional groups, and 
synthetic accessibility can be introduced for the design of tailor-made solvents. 
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solubility comparison of different solvents, rather than accurate abso-
lute solubility predictions. Being trained on COSMO-RS data, the GNN 
consequently allows to qualitatively compare various solvents in their 
ability to dissolve lignin. Further details regarding applicability ranges 
of the GNN are provided in the SI. Furthermore, the accuracy of the 
COSMO-RS solubility predictions is reduced for solubilities of log(xsol, 

lignin) > -1 [40]. The varying COSMO-RS accuracy might explain the 
disparity between the COSMO-RS and the GNN predictions in this region 
(see Fig. 2 a). Unfortunately, the region of high lignin solubility is of 
particular importance when designing solvents for the same purpose. 
However, the main objective of this study is to identify a broad range of 
so-far unexplored solvent classes, rather than identifying a single 
optimal one. Therefore, the deviations are less impactful for the scope of 
this work and do not outweigh the advantages of using the GNN as a 
surrogate model of COSMO-RS. Indeed, solvent design was only made 
possible by the low computational time and suitable accuracy of the 
GNN. 

2.2. Tailored solvents for lignin dissolution 

Many strategies for lignin upgrading, such as the fabrication of lignin 
films, coatings, or nanoparticles, require efficient dissolution of lignin. 
Therefore, in this first test case, the main objective was maximising the 
lignin solubility. We initialised the algorithm with a start population of 
hexane molecules, which are known for a low lignin solubility, without 
fixing any constraints on functional groups. 

For analysing the most promising designed molecules, we selected 
those with the highest solubilities (log(xsol, lignin) > -1.5; around 21,000 
molecules). We studied the relation between the molecular structure and 
the GNN predicted lignin solubilities by applying t-distributed stochastic 
neighbour embedding (t-SNE) to the GNN-generated solvent finger-
prints. t-SNE reduces dimensionality of the GNN fingerprint, a vectorial 
representation of the molecular graph, to a 2-dimensional space in 
which molecules with similar GNN fingerprints are located within 
proximity of each other. Structurally similar molecules were predicted 
to have similar lignin solubilities (Fig. 3 a). Therefore, the GNN can be 
considered as a quantitative structure–property relationship (QSPR) 
model that was trained “end-to-end” from the molecular graph to the 
lignin solubility. Additionally, the GNN was able to generate tailor-made 
optimised molecular fingerprints. We found regions with especially high 
lignin solubility predictions (log(xsol, lignin) > -0.60) corresponding to 
sulfoxides, compounds with P = O motif, sulfones, triazines, diazines, 
and azoles (Fig. 3 a). Other solvent classes promising for lignin 
upgrading are morpholines, cyclic ethers, and cyclic ketones. The 

overall fittest solvent was dimethyl sulfoxide (DMSO) with log(xsol, 

lignin) = -0.35, followed by 1,3,5-triazine (log(xsol, lignin) = -0.36), N,N- 
dimethylpyrimidin-5-amine (log(xsol, lignin) = -0.37), and dimethyl 
methyl phosphonate (DMMP) (log(xsol, lignin) = -0.38). 

A common method to demonstrate the applicability of molecular 
design frameworks is the rediscovery of molecules with the desired 
target property [41]. DMSO and pyridine were recently reported as the 
most effective solvents for lignin dissolution [42,43], all of which were 
rediscovered by the presented solvent design framework. DMSO is 
frequently applied in the formation of lignin nanoparticles and film 
formation, which underlines the applicability of the solvent design 
framework for lignin upgrading. 

In addition to the already established lignin solvents such as DMSO 
and pyridine, we discovered commercially available azoles, such as 
thiazole or isoxazole. Thiazole is only slightly toxic (LD50 oral rat: 938 
mg/kg) [13] while toxicity data for isoxazole is currently lacking. 
Further aromatic N-heterocycles were designed, including triazines, 
diazines, pyridines, and bicyclic compounds. Common side chain motifs 
were methoxy-, alkyl-, and NH2-groups. Pyridines and many diazines 
have benign EHS properties [13] and are readily commercially avail-
able. Most triazines, but also sulfones and phosphonates are solid at 
room temperature, limiting their applicability for lignin upgrading. 
Cyclic ethers and ketones were associated with lower GNN-predicted 
lignin solubilities compared to the aforementioned solvents, however, 
they were predicted to have a higher lignin solubility compared to the 
usually applied 1,4-dioxane. 

During the solvent design, functional groups associated with low 
lignin solubilities (e.g. alkanes) were gradually replaced by functional 
groups associated with higher lignin solubilities (e.g. aromatic N-atoms, 
Fig. 3 b) leading to a gradually increasing mean lignin solubility of the 
population (Fig. 3 c). All designed solvents with a lignin solubility of log 
(xsol, lignin) > -1.5 are summarised in the Supplementory Information 
(SI). 

2.3. Connecting structural solvent features with lignin solubility 

GNNs can be coupled with attribution techniques to explain the 
predictions. Integrated gradients [28,44] (IG) is one of such attribution 
methods specifically developed to comply with the sensitivity and 
implementation invariance axioms. In the IG method, the integral of the 
gradients of the model’s output with respect to its input is computed, 
while gradually changing the input values from a baseline to the actual 
input of interest. This process effectively assigns importance scores to 
each input feature by attributing their contribution to the final 

Fig.2. GNN-training with COSMO-RS solubility data for a representative lignin fragment. a) Parity plot for GNN vs. COSMO-RS predictions of the training and the 
test set. The coefficient of determination (R2) and the mean absolute error (MAE) are given for the test set. b) Chemical classes of the training set as computed by the 
Classyfire toolbox. 
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prediction. The IG method identifies nodes and edges with the highest 
impact on a given prediction. Therefore, the contribution of each atom 
and bond within the solvent to the predicted lignin solubility can be 
visualised and potentially used as a guide to explain the results. To 
enable reliable interpretations of the results beyond theoretical pre-
dictions, we first experimentally measured the solubility of different 
types of lignin in the designed solvents. Subsequently, we employed IG, 

to attribute the predicted lignin solubility to structural features of the 
solvent. 

For experimental validation, we selected 27 commercially available 
potential solvents with identical or similar structures to the solvent 
candidates designed by the genetic algorithm. Subsequently, these sol-
vents were used to measure the solubilities for three different types of 
lignin (T = 85 ◦C): Kraft lignin isolated from softwood species, 

Fig.3. Application of the solvent design framework for lignin upgrading. a) t-SNE plot of the designed molecules with highlighted lignin solubility. b) Exploration of 
chemical space during molecule optimisation. c) Evolution of the molar lignin solubility during molecular optimisation. 
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FABIOLATM organosolv lignin [45] isolated from hardwood, and her-
baceous lignin isolated from corn cob by mild acidolysis (MAL) (see SI 
for 2D HSQC NMR of the wood and additional data points with lignin 
isolated from birchwood). N-heptane and dibutyl ether were chosen as a 
control solvents with low lignin solubility, and 2-MeTHF as a control for 
mediocre solubility, based on the results of our previous work [12]. The 
lignin solubilities ranged between 20-60 wt.% in most of the selected 
solvents (Fig. 4 a). Highest solubilities were measured for DMSO (≥ 60 

wt.%), and isoxazole (≥ 50 wt.%), 2-picoline-n-oxide (≥ 49 wt.%), 2,5- 
dimethyl-pyrazine (≥ 49 wt.%), and thiazole (≥ 49 wt.%). In general, 
the experiments confirmed high solubilities for the solvents designed by 
the genetic algorithm. The differences in solubility between the different 
types of lignin were rather low, implying that the solvents tested are 
universally effective. Note that for most solvents, lignin saturation was 
not completely reached as the solutions became increasingly viscous 
with higher amounts of dissolved lignin and imposed challenges for 

Fig.4. Experimental validation of the GNN predictions and attribution of structural features to the predicted lignin solubilities. a) Experimental lignin solubilities in 
the designed solvents for Kraft lignin, FABIOLATM lignin, and mild acidolysis lignin (MAL) isolated from corn cob. Most solvents were commercially available as 
originally designed by the genetic algorithm. Otherwise, structurally similar molecules were purchased. Arrows indicate that lignin saturation was not yet reached, 
however, the high viscosity of the solution hindered measurements with higher lignin loadings. The numerical data is provided in SI. b) Normalised attributions for 
each discovered solvent class. A higher attribution score of the highlighted structural feature indicates higher importance for the lignin solubility prediction. Ab-
breviations: DMSO – dimethyl sulfoxide, DESO – diethyl sulfoxide, DMM-sulfonamide – dimethyl methane sulfonamide, DMMP – dimethyl methyl phosphonate, 
DEMP – diethyl methyl phosphonate, DEEP – diethyl ethyl ethyl phosphonate, 5-Br-1-Me-1H-imidazole – 5-bromo-1-methyl-1H-imidazole, 4-(2-HE)morpholine – 4- 
(2-hydroxyethyl)morpholine, DEGDME – diethylene glycol dimethyl ether, DEGDEE – diethylene glycol diethyl ether, 2-MeTHF – 2-methyl tetrahydrofuran. 
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filtering even with specialised filters designed for viscous samples. 
We noticed deviations between predicted and experimental solubil-

ity data for some of the selected ethers. We measured lignin solubilities 
of up to 51 wt.% for diethylene glycol dimethyl ether (DEGDME), 
whereas the structurally similar diethylene glycol diethyl ether 

(DEGDEE) dissolved maximally 8.9 wt.% of lignin. The GNN was not 
able to discriminate the differences between the ether structures and 
predicted for both solvents nearly no lignin dissolution. Additional ex-
periments showed that this difference in solubility seems to be influ-
enced by additional CH3-groups that reduce the polarity (see SI for more 

Fig.5. Application of the solvent design framework for AAF. a) t-SNE plot of the designed molecules with highlighted lignin solubility. b) Exploration of chemical 
space during molecule optimisation. c) Evolution of the molar lignin solubility during molecular optimisation. 
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details). 
Subsequently, we applied the IG method to identify the structural 

features with the highest influence on the GNN-predicted lignin solu-
bility. In a comprehensive study of different attribution methods [28], 
IG was suggested as the most suitable alternative of graph attribution 
when the last layer of the GNN framework is not a pooling mechanism, 
similar to the setup in the present study. We computed normalised at-
tributions that indicated the importance of nodes and bonds for the 
solubility predictions (Fig. 4 b). A higher attribution score indicates a 
higher importance on the predictions. Notice that since the attribution 
scores were normalised, they only allowed for a relative comparison 
within the same molecule. The high lignin solubility in sulfoxides and 
sulfones was mainly attributed to the presence of S-atoms and the 
adjacent double bonds in solvent structures. Similarly, the P=O motif in 
phosphine oxides was the most influential in promoting lignin solubility. 
Additionally, in phosphonates, phosphorus (P) and oxygen (O) atoms 
received the highest attribution scores. The high lignin solubility in ar-
omatic heterocycles was in general attributed to the N-atoms and the 
neighbouring aromatic bonds. However, for specific classes like oxazoles 
and thiazoles, the sulfur (S-) and oxygen (O-) atoms within the aromatic 
rings had a higher attribution score than the aromatic N. In contrast, 
nitrogen atoms within side chains as well as alkyl chains and saturated 
rings found in compounds such as butyl sulfone, 4-pyrrolidinopyridine, 
and 1,3-aminopropyl imidazole, had less impact on solubility pre-
dictions. In the case of ethers, the oxygen atoms (O-atoms) had a more 
significant impact on the predicted solubility of lignin than the car-
bon–carbon (C-C) bonds. In general, solvents containing S, N, P, O and/ 
or aromatic bonds were associated with high lignin solubility pre-
dictions, indicating consistency with general chemical intuition. Indeed, 
lignin with numerous benzene rings and oxygen atoms could engage in 
π-interactions with solvent molecules and form hydrogen bonds with 
these heteroatoms. However, as predictions and experiments diverge for 
ethers, we expect additional important features affecting solubility that 
could not be captured by the GNN. In line with the presented results, the 
computational Kamlet-Taft-parameter analysis of Sumer and van Lehn 
revealed that a solvent requires good hydrogen bond-accepting ability 
and intermediate to high polarity for efficient lignin dissolution [26]. 

2.4. Tailoring molecular solvent structures for aldehyde-assisted 
fractionation 

To identify solvents compatible with the AAF process that also in-
cludes an acid and an aldehyde, we searched for solvents that provided 
high lignin solubility while being stable towards the reaction liquor. For 
this purpose, we excluded several functional groups due to their po-
tential reactivity: primary and secondary amines, aldehydes, aromatic 
N-heterocycles, isocyanates, amides, esters, and hydrazides. Although 
ketones can undergo aldol condensation with aldehydes under acidic 
conditions, we did not exclude keto-groups, as they are easily mutatable 
by the algorithm to other functional groups, such as ether or C=C 
groups. 

During the design, sulfoxides, sulfones, ethers, ketones, P=O com-
pounds, and cyclic ethers and ketones were explored (Fig. 5 a). In 
addition, the functional group restrictions spurred the exploration of 
non-excluded nitrogen-containing patterns, such as nitro-groups or cy-
clic imines, with high GNN-predicted lignin solubilities. 

Similar to the solvent design for lignin dissolution, the number of 
alkane groups decreased rapidly within the first generations which were 
replaced by functional groups associated with higher lignin solubilities 
(Fig. 5 b). 

However, unlike for lignin dissolution only, the search became more 
targeted, concentrating on solvent classes that are effective at dissolving 
lignin while taking into account the functional group restrictions. 
Among the 100 fittest solvent candidates, nearly 90 % were sulfoxides, 
with DMSO being the overall fittest designed solvent (log(xsol, lignin) =
-0.35). Finally, due to the functional group constraints, the algorithm 

designed fewer solvents with high lignin solubilities compared to the run 
for lignin upgrading. As a consequence, the average lignin solubility of 
the solvent population was lower (Fig. 5 c). 

2.5. Experimental aldehyde-assisted pretreatment of birch wood 

AAF leads to the separation of three main components of the 
biomass: cellulose-rich pulp, uncondensed acetal-stabilised lignin, and 
aldehyde-protected xylose (a product of hemicellulose depolymerisa-
tion). We experimentally evaluated the designed solvents for their 
applicability in AAF, using milled birch wood, propionaldehyde, and 
HCl37% added to selected solvent candidates, such as sulfoxides, sul-
fones, phosphonates, and ethers. The suitability of the tested solvents for 
AAF was assessed by measuring the weight of isolated cellulose pulp, the 
yield of lignin monomers after hydrogenolysis of the pretreatment li-
quor, and the yield of xylose protected by propionaldehyde (dipro-
pylxylose, DPX). These metrics can serve as indicators of the 
effectiveness of biomass depolymerisation into these three fractions. 

Notably, the tested sulfoxides, sulfones (except the DMM- 
sulfonamide), phosphonates, and ethers were resistant to acidic condi-
tions (0.4 M HCl) and elevated temperature (T = 85 ◦C), showing no 
visible signs of degradation. Upon completion of the pretreatment re-
action, we observed that the biomass was uniformly disrupted to smaller 
fragments in samples containing butyl sulfone, DEGDEE, and DMM- 
sulfonamide. The filtrated pulp in these samples appeared as a fine 
powder of light colour (Fig. 6a), constituting around 40 wt.% of the 
biomass. In contrast, in the samples, containing DEGDME, 18-crown-6 
ether, DMSO, and phosphonates, the biomass retained its original 
form of wood chips. The filtrated pulp in these cases constituted up to 90 
wt.% of the biomass, indicating a less effective extraction of biomass 
components in the liquor, with a significant portion remaining retained 
within the cellulose fibers. We speculate that these solvents were too 
polar to attack the nonpolar faces of cellulose that are typically dis-
rupted by hydrophobic stacking interactions within cellulose in sol-
vent–H2O mixtures [46]. 

After pulp separation, the filtrate contained extracted lignin with 
propionaldehyde-protected β-O-4 linkages as confirmed by the HSQC 
NMR (Fig. 8, SI). Hydrogenolysis of such uncondensed lignin over Ru/C 
at 250 ◦C produces valuable aromatic monomers and their quantifica-
tion provides insights into the effectiveness of lignin extraction and 
quality. The benchmark solvent 1,4-dioxane allowed to produce near- 
theoretical 7.8 wt.% of monomers on a raw biomass basis, followed by 
DEGDEE and butyl sulfone, each providing around 5 wt.% of monomers, 
and DEGDME and 18-crown-6 ether, yielding less than 4 wt.% (Table 5, 
SI). 

Aldehyde-protected sugars including DPX demonstrated potential as 
sustainable solvents and versatile platform chemicals [47–50]. The yield 
of DPX exceeded 20 wt.% (based on the raw biomass) in 1,4-dioxane, 
and the designed solvents DEGDEE and butyl sulfone. The DPX yield 
for the crown ether, DEGDME and DMM-sulfonamide was lower than 15 
wt.%. DMM-sulfonamide demonstrated signs of degradation during the 
pretreatment, while two other solvents did not provide sufficient 
biomass disruption as mentioned above. We detected low amounts of 
DPX (< 1 wt.%) produced after pretreatment in phosphonates and 
sulfoxides. Interestingly, in control experiments with dibutyl ether and 
heptane, we obtained DPX yields comparable to 1,4-dioxane, suggesting 
that the interactions of non-polar solvents and the biomass enable suf-
ficient contact between the reaction components (e.g. aldehyde) and 
xylan that closely interacts with cellulose in a plant cell. However, these 
solvents could not provide effective delignification and a high-quality 
lignin as the lignin forms a globule with reduced surface area in such 
highly nonpolar solvents [51], preventing its protection by the aldehyde 
and leading to condensation. 

The pretreatment experiments showed that the designed glycol 
ethers, and sulfones are promising solvent candidates for the AAF pro-
cedure. Notably, DEGDEE and butyl sulfone provided effective 
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fractionation of cellulose pulp, and successful extraction of PA-protected 
lignin and xylose in the pretreatment liquor with yields comparable to 
the carcinogenic benchmark solvent 1,4-dioxane. Using high boiling 
solvents that are solid at room temperature, such as butyl sulfone, in the 
AFF requires adaptions of current procedures for the isolation of frac-
tions from the liquor and for solvent recovery. Additionally, this solvent 
is currently produced in limited quantities and its toxicological profile is 
not well studied, opening opportunities for future research. 

The solvents tested in this work were specifically designed to target 
the lignin fraction of the biomass. Therefore, most candidates are highly 
polar since this characteristic feature is necessary to ensure lignin sol-
ubilisation in the liquor, thereby increasing its surface area exposed for a 
reaction with aldehyde in the mixture (see SI for details) [51]. However, 
we found that the overall quality and quantity of the extracted lignin are 
also significantly influenced by other solvent properties. In particular, in 
addition to polar groups, the solvent should have sufficient non-polar 
domains that can disrupt the cellulose microfibrils and facilitate the 
extraction of lignin and xylan. This is likely the case of butyl sulfone that 
has both a highly polar SO2-group and two distinct aliphatic chains in its 
structure, showing superior results, as well as DEGDEE which signifi-
cantly outperformed DEGDME despite the only difference being the 
presence of two additional methyl groups in the DEGDEE structure. 

Lastly, the stability of the solvent under acidic conditions at high tem-
peratures is crucial to maintain a consistent and effective chemical 
environment throughout the process. 

3. Conclusions 

The presented computational solvent design framework generated 
so-far unexplored solvent classes for lignocellulose biomass fraction-
ation and lignin upgrading. Besides DMSO, which is frequently applied 
in lignin upgrading, we designed azoles, and six-membered aromatic N- 
heterocycles. Due to their high, experimentally validated lignin solu-
bilities (20-60 wt.%) and their low toxicity, these solvents are highly 
interesting for application in the fabrication of lignin-based films, 
nanoparticles, or resins. 

Solvent selection for AAF is a complex task that requires a solvent 
that not only effectively dissolves lignin but also disrupts cellulose fibers 
and remains unreactive and stable under acidic conditions. In addition, 
EHS criteria and commercial availability immensely narrow the space of 
potential solvent candidates. Despite these challenges, our computa-
tional framework successfully designed promising solvents for AAF such 
as glycol and cyclic ethers as well as sulfones. Solvents from these groups 
showed acid stability under AAF conditions and provided performance 

Fig.6. a) Cellulose-rich pulp after pretreatment with degdee (above) and dmso (below). b) DPX yield on raw biomass basis c) lignin monomer yield on raw biomass 
basis in the liquor after propionaldehyde-assisted pretreatment of birch wood at 85 ◦C for 3 h using the selected solvents. 
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nearly on par with 1,4-dioxane, while being potentially less toxic. We 
found that stable aprotic solvents possessing heteroatoms (e.g. oxygen, 
nitrogen, or sulfur), giving them sufficient polarity, and hydrocarbon 
motifs, representing the nonpolar domain of the solvent, could be suit-
able for application in AAF and in lignocellulose processing in general. 
The challenge for finding the right balance of these characteristics re-
mains opened for future research. 

The use of GNNs was computationally fast, serving as a surrogate 
model for COSMO-RS lignin solubility predictions. Due to the applica-
bility of explainability methods to the GNN, such as IG, we were able to 
analyse the structural solvent features impacting the predicted lignin 
solubility. In line with experimental results, solvents containing sulfur, 
aromatic nitrogen, phosphorous or oxygen were connected to high 
lignin solubility predictions. Therefore, the presented solvent design 
framework not only facilitated the exploration of promising solvents but 
also provided valuable insights into the specific molecular characteris-
tics essential for achieving high lignin solubility. Furthermore, the pre-
sented solvent design approach could serve as a blueprint for other types 
of molecules, e.g. for cellulose for which only few effective solvents were 
reported. 

4. Methods 

4.1. COSMO-RS lignin solubility predictions 

The molecular weight of lignin ranges between 2,500 and 15,000 g/ 
mol. COSMO-RS lignin solubility predictions require QM calculations of 
lignin but are infeasible for the whole molecule due to its size. Similar to 
our previous study [12], we used a representative lignin structure that 
captures the most prominent structural features of the original polymer. 
We used a trimer of G-units connected via the most common bond 
pattern, the β-O-4 motif (molecular weight: 530.57 g/mol, see SI for 
molecular structure). The lignin solubility was predicted by COSMO-RS 
predictions with the G-trimer at a temperature of 70 ◦C, matching with 
mild processing conditions. The QM calculations and the COSMO-RS 
solubility predictions were performed as described earlier [12]. For 
this study, we used an iterative algorithm to improve the accuracy (see 
SI for details). 

4.2. Data set splitting 

The final data set contained COSMO-RS lignin solubility predictions 
in 3314 different solvents. The data set was split into a model developing 
set and a test set with a proportion of 80/20. The Butina clustering al-
gorithm, as implemented in rdkit [52], was first used to generate clusters 
of similar molecules. Each cluster was then randomly split with a pro-
portion of 80/20 to generate the model’s developing set and the test set. 
In this way, we ensured that the model was trained and tested on similar 
chemical structures. In this way, the estimation of the model’s perfor-
mance reflects its accuracy within the domain defined by the chemical 
classes used during the model’s development. Furthermore, this type of 
splitting ensures an even distribution of chemical classes within the 
model’s developing and test sets. 

The binary Morgan fingerprint with a radius of two and a bitsize of 
2048 was used to calculate the Tanimoto similarity of each pair of 
molecules. With this information a matrix of molecular distances was 
constructed by subtracting the corresponding similarity value from one. 
This matrix of distances was utilized to perform the Butina clustering. A 
threshold of five molecules was used to differentiate between a large and 
a small cluster. All large clusters were randomly split as mentioned 
above while all small clusters were directly put into the model’s 
developing set. The test set was reserved for model assessment while the 
model’s developing set was further split with a proportion of 85/15 to 
constitute the train and validation sets. All results shown in the paper 
correspond to the test set unless mentioned otherwise. 

4.3. GNN architecture 

The graph of the solvent G = (V, E) consists of a set of nodes V 
connected by a set of edges E, representing the corresponding atoms and 
bonds, respectively. Atom and bond features (see Table 1) were calcu-
lated by rdkit [52] (version 2021.03.1) and constitute the vectorial 
representation of the corresponding nodes and edges within the graph. A 
matrix of atom features A ∈ {0,1}na x naf and a matrix of bond features 
B ∈ {0,1}nb x nbf was then defined for each molecule, where na and nb 
denote the number of atoms and bonds in the solvent, and naf and nbf 
refer to the number of atom and bond features. The connectivity be-
tween atoms and bonds was given by the connectivity matrix C ∈ N2x2nb 

capturing the indices of the source and receiver nodes. The features, see 
Table 1, were selected to distinguish fundamental differences between 
atoms and bonds within a given molecule [53,54]. The cheminformatics 
package rdkit converted the solvents’ SMILES representations into mo-
lecular objects, and calculated all atomic and bond features and the 
connectivity matrix. One-hot-encoding was used to encode the atomic 
and bond information into fixed-size vectors for all molecules according 
to the dimensions shown in Table 1. 

PyTorch geometric (version 2.3.1) and PyTorch (version 1.10.2) were 
used for the GNN setup. The model consists of 3 message passing layers 
operating with a hidden-dimension of 50 and using the NNConv archi-
tecture. The message passing is based on the based on the continuous 
kernel-based convolutional operator from Gilmer et al. [55] 

a(l+1)
v = W(l)a(l)

v +
1

|N(v)|
∑

w∈N(v)

(ϕ(l)
e (bvw) • a(l)

w + q(l)),

where av
(l+1) stands for the vector of updated node features for node v, 

W(l) corresponds to a matrix of learnable parameters at message passing 
layer (l), N(v) stands for the cardinality of the set of neighbouring nodes 
of node v, E(l) corresponds to the edge-transformation function (here 
implemented as a single-hidden layer neural network with the ReLU 
activation function), bvw stands for the vector of edge features for the 
edge connecting node v and node w, q(l) is a learnable bias vector at 
message passing layer (l). A single hidden-layer neural network with 
dimension 64 and the ReLU activation function was used as the edge- 
transforming function. The batch normalisation proposed by [56] was 
used after each message passing layer to enhance the training of the 
model. The Leaky ReLU activation was used after the first and second 
message passing layers to update the node embeddings. The molecular 
fingerprint was then obtained by using the max global pooling function 
on the final updated graph. A multi-layer perceptron (MLP) was later 
used to regress the final solubility prediction from the molecular 
fingerprint. This MLP contains 2-hidden layers with dimensions 50 and 
25. A dropout ratio of 0.1 was used in the message-passing layers and the 
final MLP to prevent overfitting. The model was trained “end-to-end” 
from the molecular graph to the lignin solubility using the AdamW 
optimizer with a learning rate of 0.001 and batches of 32 graphs. The 

Table 1 
Atom and bond features incorporated in the GNN.  

Atom or 
bond 

Feature Description Dimension 

Atom 
features 

Atom type (C, O, N, Cl, F, S, Si, Br, P, Se, I, B, As, 
Ge, Al) 

15 

Ring Is it in ring? 1 
Aromatic Is it aromatic? 1 
Hybridisation (sp, sp2, sp3, sp3d) 4 
Bonds Number of bonds attached 

(0,1,2,3,4) 
5 

Charge Formal charge (0,1,-1,3) 4 
H’s attached Number of bonded H’s (0,1,2,3) 4 

Bond 
features 

Bond type (single, double, triple, aromatic) 4 
Conjugated Is it conjugated? 1 
Ring Is it in ring? 1  
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mean squared error (MSE) was used as the loss function. The training 
was performed for 100 epochs. A learning rate scheduler was used to 
decrease the learning rate by a factor of 0.8 using a patience of three 
epochs. The training was performed independently on 5 different train/ 
validation splits resulting in 5 independent models. The final predictions 
were made by the ensemble of these 5 models by averaging their indi-
vidual predictions. All hyperparameters were determined based on 
ablation studies assessed on the validation set. 

4.4. Explainability of GNN predictions 

To gain further insights into structural groups that contribute to high 
compared to low solubilities, we applied the Integrated Gradients (IG) 
attribution method [28,44] which is only applicable to a binary classi-
fication GNN. Therefore, a second GNN (referred to as the “classification 
GNN”) was trained to perform the classification of the molecules into 
“promising solvent” and “non-promising solvent”. The binary classifi-
cation threshold was set to log(xsol, lignin) = -1.5 according to the solu-
bility values predicted by COSMO-RS. The same train and test splits as 
for the regression task were used here. For developing the classification 
GNN the chosen message-passing scheme corresponds to the one pro-
posed by [57] as implemented in PyTorch geometric. Two message- 
passing layers were used with a hidden dimension of 32. Then, a 
global sum pooling layer was used to obtain the molecular fingerprint. 
Finally, a MLP of 2-hidden layers with a hidden size of 32 and the ReLU 
activation function was used to map the fingerprints to the binary sol-
ubility classes. The final two neurons of the MLP used the log-softmax 
activation function. Drop-out with a probability of 0.5 was used after 
the first hidden layer of the MLP to prevent overfitting. The class with 
the predicted probability of belonging was selected as the predicted 
solvent class. The classification GNN was trained using the negative log- 
likelihood as the loss function and the Adam optimizer. The training ran 
for 100 epochs with a learning rate of 0.001 and a batch size of 128 
graphs. Further information regarding the classification GNN can be 
found in the SI. 

The classification GNN was coupled with the IG method to highlight 
the structural features of each input graph that were the most relevant 
for classifying the solvent as “promising” or “not-promising”. For this, 
the IG implementation from Captum [58] (version 0.6.0) was used. The 
corresponding solvent graph with all node features equal to zero was 
used as a baseline for IG. The attribution scores were normalised for each 
graph so that they lie between 0 and 1. These scores reflect the least and 
most important substructures of the graph for predicting the corre-
sponding class, respectively. The default Gauss-Legendre quadrature 
rule as implemented in Captum was used for computing the integral of 
the gradients. It is important to highlight that the intention of gathering 
explainability scores by using IG and the classification GNN is to support 
or guide the scientist in the overall explainability and interpretation 
tasks. The attribution techniques should not be used as the solely ground 
truth for scientific discovery. Therefore, the explainability scores 
described in this section should be taken more as an extra tool to support 
experimental discovery rather than as the scientific discovery per se. 

4.5. Implementation of the genetic algorithm 

The graph-based genetic algorithm PSEvolve iteratively performed 
evolutionary operations on a given population of start molecules to drive 
the population towards desired properties. In each iteration, also 
referred to as generation, the fitness of each molecule was evaluated and 
molecules with the lowest fitness values were deleted from the popu-
lation to maintain a constant population size. In this study, the fitness 
was given by the molar lignin solubility xsol,lignin as predicted by the 
GNN. Molecules for cross-over are selected based on their fitness value 
according to roulette-wheel selection. During cross-over, the selected 
molecules were fragmented, and the fragments were stored in a mating 
pool. Children were generated by combining randomly selected parent 

fragments from the mating pool. The probability of occurring mutations 
was determined by the mutation rate. In this study, we initialised the 
algorithm with a start population of 1000 hexane molecules and opti-
mised the structures over the course of 1000 generations. In each gen-
eration, 50 parents were chosen for cross-over to produce 100 children. 
The mutation operation was randomly chosen from the possible opera-
tions summarised in Table 2. 

The generation of structurally feasible molecules was guaranteed by 
adhering to the rules of graph and valence counts as implemented in 
network [59] (version 2.6.3) and rdkit [52] (version 2022.03.5). 

Most of the molecular operations were based on a fragmentation- 
and a combination algorithm. The fragmentation algorithm split a given 
molecule into two or more fragments. The molecular graph was 
searched for so-called “bridges” whose removal would split the graph 
into unconnected fragments. From the set of identified bridges, one was 
randomly selected and the corresponding bond is deleted. However, 
molecules solely composed of rings, do not contain bridges. If no bridge 
could be identified, the molecule was checked for the occurrence of rings 
of which one was randomly selected. Bonds shared by multiple rings 
would not split the graph after their deletion. The shared ring bonds 
were identified by rdkit and excluded from the set of deletable ring 
bonds. Two deletable bonds were randomly chosen and deleted, leading 
to a fragmentation of the ring. 

The combination algorithm randomly combined two or more frag-
ments to one molecule. All fragments given as input to the combination 
algorithm were searched for atoms that are able to form additional 
bonds (implicit valence ≥ 1). In this way, for each fragment, a set of 
potentially bond-forming atoms is identified. From each set of poten-
tially bond-forming atoms, one was randomly selected and a bond was 
created. 

Atom deletion comes with the risk of deleting atoms that lead to 
fragmentation of the molecule. Therefore, safe atom deletion relies on 
the identification of articulation points. Similar to the concept of 

Table 2 
Overview of the graph-altering operations implemented in PSEvolve.  

Graph-altering 
operation 

Description 

Atom addition A given molecule is fragmented using the fragmentation 
algorithm and the atom to be added is treated as another 
fragment. All fragments are combined using the 
combination algorithm. 

Bond addition Use the adjacency matrix and implicit valences to identify 
atoms that are not yet connected and able to form further 
bonds. From the set of connectable atoms, randomly choose 
one pair. If the implicit valence is ≥ 2, the algorithm 
randomly decides whether a single or double bond is 
formed. 

Atom substitution A randomly chosen atom is substituted by another 
randomly chosen atom type. 

Bond substitution A randomly chosen bond is substituted by another bond 
type (single or double bond). 

Atom deletion Identify articulation points and remove the identified 
atoms from the set of deletable atoms. Randomly choose 
one deletable atom. 

Bond deletion Identify bridges and remove the identified bond from the 
set of deletable bonds. Randomly choose one deletable 
bond. 

Relocation The fragmentation algorithm is used to split a given 
molecule into several fragments. The combination 
algorithm randomly combines the fragments. 

Addition of functional 
groups 

A given molecule and a randomly chosen functional group 
(see SI for a list of functional groups) are combined using 
the combination algorithm. 

Cross-over Parent molecules are selected (roulette-wheel selection). 
The parents are subjected to the fragmentation and the 
resulting fragments are stored in the mating pool. Children 
are generated by randomly selecting two fragments from 
the mating pool which are subsequently subjected to the 
combination algorithm.  
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bridges, articulation points are atoms, whose deletion would split the 
molecule into fragments. Therefore, the identified articulation points 
were excluded from the set of deletable atoms. For safe atom deletion, 
we randomly chose one of the deletable atoms. 

For all operations involving bond formation, the algorithm decided 
randomly between creating single or double bonds, if the implicit 
valence of the corresponding atoms was at least 2. 

PSEvolve can incorporate constraints to further tailor the molecule 
design to the desired application. In this study, we limited the molecular 
weight to 200 g/mol. Furthermore, we used the SAS as an additional 
constraint. The SAS is an estimate for the ease of synthesis of a molecule 
and ranges from 1 (easily synthesizable) to 10 (difficult to synthesize). 
Within the genetic algorithm, the SAS score of each individual was 
constrained to ≤ 3.5. To prevent the design of halogenated solvents, or 
solvents containing metals, the search space was restricted to C-, O-, H-, 
N-, S-, and P-atoms only. The maximum molar weight was set to 200 g/ 
mol. To tailor the generation of solvents towards AAF, acid- and 
aldehyde-instable groups were excluded. We ensured, that the molecu-
lar constraints align with the structural features within the GNN training 
data (e.g. the atom type restriction matches the atom types within the 
GNN training set) to stay within the applicability range of the GNN (see 
SI). 

The validity of the molecules under the given constraints was veri-
fied each time the algorithm introduced new molecules to the popula-
tion or altered a given structure. Unsuitable molecules were deleted and 
the operation was performed until a valid structure was generated. In 
this way, the population size remained constant. All hyperparameters 
and constraints are given in Table 3. Subsequently, the fitness is eval-
uated and the described steps are repeated until a defined end criterion 
is reached. For the setup, the calculation time was ca. 3 h on a standard 
notebook (Lenovo IdeaPad 5, AMD Ryzen 7 5700U, 16 GB RAM). 

4.6. Preparation of lignin samples 

In this study, we tested three types of lignin. FABIOLATM lignin was 
isolated from Rettenmaier beechwood by the acetone organosolv pro-
cess and was generously provided by our collaborator TNO (the 
Netherlands). Kraft lignin originated from softwood species, was ac-
quired from Berner Fachhochschule. Mild acidolysis lignin (MAL) was 
isolated from corn cob species using a technique described in detail here 
[12,60]. Corn cobs were obtained from IP-Suisse in Lausanne 
(Switzerland), milled using a 6 mm screen and sieved with a 0.45 mm 
mesh to isolate particles smaller than 0.45 mm, which were used for 
lignin extraction. 

4.7. Experimental lignin solubility measurements 

The solubility of lignin samples in the selected solvents was deter-
mined experimentally at 85 ◦C using gas chromatography as described 
in detail [12]. This method is applicable for solvents that are high- 
boiling, solid at room temperature and tend to solidify when using 
traditional gravimetric techniques for measuring solubility of the target 
solute. The details are provided in SI. 

4.8. Aldehyde-assisted pretreatment experiments 

Birch wood (Betula pendula) was procured from M. Studer of the Bern 
University of Applied Sciences. The wood chips were sorted to remove 
residual bark and leaves, then milled using a 6-mm screen and used 
directly for pretreatment experiments. 

The propionaldehyde-assisted pretreatment of birch wood in the 
selected solvents was performed as described in detail in the past work 
[14]. Briefly, 4.5 g of milled birch wood, 4.8 ml of propionaldehyde, 
0.85 ml of HCl37%, and 25 ml of solvent were added in a thick-walled 
glass reactor equipped with a stir bar. The reactor was placed in an oil 
bath heated to 85 ◦C and the reaction proceeded for 3 h while stirring at 
600 rpm. The reaction was cooled to room temperature and 20 ml of 1,4- 
dioxane was added to the mixture. 0.5 ml aliquot of the reaction liquor 
was taken, diluted in DMSO and analysed by gas chromatography (GC, 
Agilent Technologies 7890B) equipped with flame ionisation detector 
(FID) and HP-5 Column (Agilent) to determine DPX yield using cali-
bration curve method. The yield is provided on a raw biomass basis 
(non-dried, non-extracted birch wood) accounting for the weight of DPX 
derived from propionaldehyde [14]. The pretreatment reaction mixture 
was filtered using a Nylon filter of 0.8 µm to separate cellulose-rich pulp. 
The pulp was then dried in a vacuum desiccator for 48 h and then 
weighed. The filtrate was neutralised by gradually adding 0.86 g of 
sodium bicarbonate solid at room temperature until pH 6–7. The solu-
tion was diluted to 100 mL with 1,4-dioxane in a volumetric flask and 
centrifuged to remove precipitated salt. 20 mL of the 1,4-dioxane/lignin 
solution was taken for hydrogenolysis in a 50-ml Parr reactor (stainless 
steel) equipped with a magnetic stirrer and a K-type thermocouple. 100 
mg of 5 % Ru/C was added to the solution and the reactor was pres-
surized to 40 bar of hydrogen gas. The reactor was heated to 250 ◦C for 3 
h. Then, the reactor was cooled down to room temperature, depressur-
ized, and the solution was filtered with 0.2 µm PTFE syringe filter to 
remove catalyst. 200 µl of an internal standard solution of decane 
(~0.05 g/ml) was added to the filtered solution and 1 ml sample was 
analysed by GC-FID to determine monomer yield. The quantification of 
monomers was performed using the Effective Carbon Number (ECN) 
method and described in detail in the past work [14]. 
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generations  
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