Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Engineering new-to-nature biochemical conversions by combining fermentative metabolism with respiratory modules

MPG-Autoren
/persons/resource/persons278299

Schulz-Mirbach,  Helena Anna Maria
Systems and Synthetic Metabolism, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons228922

Kruesemann,  J. L.
Systems and Synthetic Metabolism, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons300793

Andreadaki,  T.
Systems and Synthetic Metabolism, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons267586

Mavrothalassiti,  E.
Intercellular Macromolecular Transport, Department Köhler, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons300795

Weresow,  M.
Systems and Synthetic Metabolism, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons250281

Dronsella,  B.
Systems and Synthetic Metabolism, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons132110

Bar-Even,  A.       
Systems and Synthetic Metabolism, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons196387

Lindner,  S. N.
Systems and Synthetic Metabolism, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schulz-Mirbach, H. A. M., Kruesemann, J. L., Andreadaki, T., Nerlich, J. N., Mavrothalassiti, E., Boecker, S., et al. (2024). Engineering new-to-nature biochemical conversions by combining fermentative metabolism with respiratory modules. Nature Communications, 15(1): 6725. doi:10.1038/s41467-024-51029-x.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-B0EA-2
Zusammenfassung
Anaerobic microbial fermentations provide high product yields and are a cornerstone of industrial bio-based processes. However, the need for redox balancing limits the array of fermentable substrate-product combinations. To overcome this limitation, here we design an aerobic fermentative metabolism that allows the introduction of selected respiratory modules. These can use oxygen to re-balance otherwise unbalanced fermentations, hence achieving controlled respiro-fermentative growth. Following this design, we engineer and characterize an obligate fermentative Escherichia coli strain that aerobically ferments glucose to stoichiometric amounts of lactate. We then re-integrate the quinone-dependent glycerol 3-phosphate dehydrogenase and demonstrate glycerol fermentation to lactate while selectively transferring the surplus of electrons to the respiratory chain. To showcase the potential of this fermentation mode, we direct fermentative flux from glycerol towards isobutanol production. In summary, our design permits using oxygen to selectively re-balance fermentations. This concept is an advance freeing highly efficient microbial fermentation from the limitations imposed by traditional redox balancing.