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Searching the data of gravitational-wave detectors for signals from compact binary mergers is a
computationally demanding task. Recently, machine-learning algorithms have been proposed to address
current and future challenges. However, the results of these publications often differ greatly due to differing
choices in the evaluation procedure. The Machine Learning Gravitational-Wave Search Challenge was
organized to resolve these issues and produce a unified framework for machine-learning search evaluation.
Six teams submitted contributions, four of which are based on machine-learning methods, and two are
state-of-the-art production analyses. This paper describes the submission from the team TPI FSU Jena and
its updated variant. We also apply our algorithm to real O3b data and recover the relevant events of the
GWTC-3 catalog.
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I. INTRODUCTION

One of the most powerful known sources of gravitational
waves (GWs) is a compact binary coalescence: the final
stage of a binary composed of compact objects, such as a
black hole or neutron star. Analyzing the signal from such
an event allows us to constrain the source parameters,
such as component masses, which greatly contributes to the
study of the black hole population in the Universe, and
the mechanism by which supermassive black holes are
formed [1,2]. For this reason, GW observations are crucial
in expanding our understanding of the Universe.
Most contemporary detection pipelines are based on

matched filtering [3] and use a template bank of expected
waveforms. These pipelines are highly sensitive to signals
covered by the template bank, but less sensitive to others.
Loosely modeled searches are a complementary approach:
they do not require the advanced knowledge of waveforms
to be searched for, but they are less sensitive to compact-
binary mergers than matched-filter searches [4–6].
With the broadening of the sensitive frequency range of

detectors, it becomes necessary to increase the density of

template banks. In addition, expanding the parameter space
of interest typically requires more templates to cover the
signal manifold. This causes a steep rise in the size of
template banks and therefore computational time of
matched-filtering-based algorithms. In particular, this is
an issue when incorporating effects such as eccentricity [7],
precession [8,9], or higher-order modes [9,10].
Moreover, matched-filter searches are optimal for an

idealized Gaussian noise distribution. However, actual
detector data deviate from this assumption [11]. While
measures are taken to reduce the effect of this deviation,
there are still optimizations to be made. These are some of
the driving forces behind the search for new, more efficient
methods to complement the matched-filter-based analyses.
A rather new development is using machine learning

(ML) methods in GW astronomy. This was started by two
pioneering papers on the topic of GW detection [12,13].
Their approach consisted of applying convolutional neural
networks to recognize whether individual one second-long
whitened samples of Gaussian noise contain a binary black
hole (BBH) GW signal. In another direction, applications
in parameter estimation [14–16], denoising [17,18], fast
waveform generation [19], and more [20] have also been
published; we, however, remain focused on the detection
problem in this paper.
In the recent years, a multitude of new results have been

achieved on this topic [20–23]. However, owing to differing
choices in the generation of test data, results in the literature
are difficult to compare to each other. To resolve this issue,
theMachine Learning Gravitational-Wave Search Challenge
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(MLGWSC-1) [24,25] has been organized. From12October
2021 until 14 April 2022, multiple teams developed
ML-based algorithms for the detection of GW signals
originating in BBH mergers in month-long streams of data
from the two U.S.-based Laser Interferometer Gravitational
Observatory (LIGO) detectors [26]. The final test data were
unknown to participants but followed a known distribution,
and no scoreboardwas kept during the challenge. Eventually,
four ML-based submissions were received, as well as two
conventional algorithms to provide a baseline. Their perfor-
mance has been evaluated in detail, and effects responsible
for the differing performance of submissions have been
isolated.
We have authored one of the challenge submissions,

titled “TPI FSU Jena.” On test datasets following a
simplified Gaussian noise distribution, our search was
the top ML submission and performed close to the
matched-filter baseline, a similar submission being a close
second. In addition, it had a comparatively short runtime.
However, on test data generated using LIGO open data
[27], non-Gaussian noise artifacts polluted the search
results to a large degree.
In this work, we first briefly describe the MLGWSC-1,

our submission, and choices made during its development.
Following that, we describe the steps taken to further
optimize the contribution after the end of the challenge,
which greatly improve its performance when non-Gaussian
noise transients are present in the data. Finally, we
demonstrate the power of the developed searches by
applying them to open data from the second half of the
third observing run and recovering the events of the third
Gravitational-Wave Transient Catalog (GWTC-3) lying in
the relevant portion of the source parameter space.

II. MLGWSC-1

A. Test data

The test data consist of two strains from the LIGO
Hanford and Livingston detectors. The script used to
generate them was available to participants of the challenge
with the option to specify its seed. For the final evaluation,
a challenge dataset in the length of one month was
generated after the challenge deadline using a previously
unknown seed [24].
The test data exist in four levels named datasets of

progressively increasing difficulty. The first three use
background noise generated by a colored Gaussian model,
while the fourth uses real noise from the O3a observing
run [27]. The injection complexity is also increasing, from
nonspinning, dominant mode only, to precessing wave-
forms with generic misaligned spins and multiple higher-
order modes.
Test data are generated using the script generate_

data.py supplied by the MLGWSC-1 [25], which creates
the background noise, generates waveforms, and injects

them into the noise, forming the foreground. Both the back-
groundand the foregroundare stored inHDF5 files [28], each
containing groups titled L1 and H1 for the Livingston and
Hanford detectors, with the full length of the strain split into
multiple segments labeled by their GPS start time. These
segments are generated independently of each other. All time
series are sampled at a rate of 2048 Hz. A low frequency
cutoff of 15 Hz is applied to the background noise to allow
for reduction in data size of the real detector noise to be
downloaded.
The injection parameters are generated by the astro-

physical distribution for all angular parameters, and the
distance is specified by generating the chirp distance,
defined as [29]

dc ¼ d ·

�
Mc;0

Mc

�
5=6

; ð1Þ

where d is the luminosity distance, Mc ¼
ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass, and Mc;0 ¼
1.4=21=5M⊙ is a fiducial chirp mass. The squared chirp
distance is drawn from a uniform distribution over the
interval d2c ∈ ½1302 Mpc2; 3502 Mpc2�. Component masses
are drawn in the detector frame from uniform distributions
over different intervals depending on the dataset, following
the primary/secondary mass constraint m1 ≥ m2.
The events are placed at random intervals between 24 s

and 30 s between merger times. The waveforms are
generated using the IMRPhenomXPHM [30] phenomeno-
logical model, capable of accurate modeling of precession
and higher-order modes. They are then projected on the
corresponding detectors and injected into the background
data to produce the foreground.
In the first dataset, Gaussian noise is generated, from

the aLIGOZeroDetHighPower power spectral density
(PSD) [31,32] (see Sec. III A). Component masses
m1; m2 ∈ ½10M⊙; 50M⊙� are drawn from a uniform distri-
bution, all six spin components are set to zero, only the
dominant 2;�2 modes are used, and the low frequency
cutoff is chosen to be 20 Hz.
In the second dataset, Gaussian noise is generated using

an unknown PSD. From a set of 20 PSDs derived from the
O3a observing run data [27], for each detector, one is
randomly chosen and used to generate the noise in all
segments. Component masses m1; m2 ∈ ½7M⊙; 50M⊙� are
drawn from a uniform distribution, and both spins are
aligned with the orbital angular momentum with magni-
tudes uniformly drawn from a uniform distribution
on ½−0.99; 0.99�.
In the third dataset, noise is generated in a similar

manner to the second dataset. However, a new PSD is
chosen (from the same set) for each segment. The dis-
tribution of component masses is the same as in the second
dataset. In contrast, the spins are no longer aligned; their
magnitude is uniform from 0 to 0.99, and their direction is
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isotropically distributed. All higher-order modes available
to the IMRPhenomXPHM approximant are used.
In the fourth dataset, real LIGO noise is used. A real

noise file in the extent of approximately three months has
been prepared by the MLGWSC-1 team, the data gener-
ation script randomly chooses segments from it to comprise
the dataset background, and the L1 stream is time shifted
with respect to H1 by a random amount in order to
introduce different noise realizations. The injections are
generated in a manner identical to the third dataset.

B. Evaluation procedure

The evaluation is done in a similar manner to [21,22].
The submitted algorithms are applied to background data
without any injections as well as to data with BBH
injections to determine the relationship between their
false-alarm rate (FAR) and sensitive distance.
Each submitted algorithm is required to take a file in the

format described in Sec. II A as input and produce a file
containing identified candidate events as output. It must be
an HDF5 file containing three datasets referring to the GPS
time of the events, the ranking statistics, and the tolerance
for error in the time.
The evaluation is performed by the evaluate.py

script supplied by the MLGWSC-1 [25]. It requires the
outputs of the submission algorithm on both the foreground
and the background files as input, identifies true positives,
and determines the FAR at varying detection thresholds.
The relationship between the FAR and the sensitive
distance is in principle similar to the receiver operating
characteristic, which is the relationship between the per-
centage of false positives and true positives as one varies
the threshold for identification of a positive.
To obtain the sensitivity curve of an algorithm based on

the identified background and foreground events, we first
count the number of background events with a ranking
statistic greater than the threshold. Dividing by the total
duration of the background data analyzed (in this case
30 days ¼ 2 592 000 s), we find the FAR. The sensitive
volume of the search at FAR ¼ F can be calculated by [33]

VðF Þ ¼
ZZ

ϵðF ;x;ΛÞϕðx;ΛÞ dxdΛ; ð2Þ

where x are an injection’s spatial coordinates, Λ the other
injection parameters, ϵðF ;x;ΛÞ is the efficiency of the
search, and ϕðx;ΛÞ is the injection parameter distribution.
If we denote NI;F the number of found injections at a
FAR ¼ F andMc;i, i ¼ 1;…; NI;F the chirp masses of the
found injections, the expression simplifies to [24]

VðF Þ ≈ VðdmaxÞ
NI

XNI;F

i¼1

�
Mc;i

Mc;max

�
5=2

; ð3Þ

whereNI is the total number of injections andMc;max is the
upper limit of injected chirp masses.
We then call the graph of the sensitive volume VðF Þ as a

function of the FAR the algorithm’s sensitivity curve, and
these are the main criterion for the challenge evaluation.
The runtimes of submitted algorithms were also mea-

sured and are available in the challenge paper [24]. All
submitted algorithms are evaluated on standardized hard-
ware, provided by the challenge organizers. The hardware
consists of a total of eight Intel Xeon Silver 4215 cores at
2.5 GHz, 192 GB of RAM, and eight nVidia RTX 2070
GPUs with CUDA support, 8 GB of VRAM each.

III. EXPERIMENTAL SETUP

A. Data processing

As described in [11], the standard noise model in LIGO
detectors is correlated in the time domain. However, using
the Fourier transform, in the frequency domain the noise is
uncorrelated and described by a Gaussian distribution with
zero mean and a frequency-dependent variance called the
PSD and denoted SnðfÞ.
Let us use d̃ to denote the Fourier transform of a time

series d. Following [11], the transformation

d ↦ dw; d̃wðfÞ ¼
d̃ðfÞffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p ð4Þ

yields a time series with a flat PSD, corresponding to white
noise. This process is called whitening and is a common
method in GW data analysis. The PSDs in GW detectors
rise steeply toward both low and high frequencies, and the
signals are dominated by strong noise at frequencies
outside the most sensitive band of the detectors.
Following [21], we feed whitened data to the ML model.

When applying to test data, the algorithm first estimates the
PSDof the time series in question usingWelch’smethod [34]
with a segment duration of 0.5 s, then symmetrically
truncates the time-domain response of the SnðfÞ−1=2 whiten-
ing filter to a width of 0.25 s, and uses this PSD towhiten the
entire time series. This is done for each segment in the input
data separately, as well as for each detector.
As the noise in LIGO detectors is not stationary over

timescales on the order of days, one must account for the
PSD drift. This is addressed by slicing the data into chunks
shorter than the PSD-drift timescale in the test data
generation process [25].

B. Training and validation data

In the training and validation datasets, the noise is taken
from the real noise file provided by the MLGWSC-1.
A segment from the file is chosen at random, its PSD is
estimated and used to whiten the entire segment, and the
whitened segment is sliced into one-second samples. While
the noise generation loop is running, these slices are used
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sequentially, and once all have been used, a new segment is
whitened and sliced in the same manner. The PSD is
retained through the processing of the entire segment for
whitening of waveform injections.
To generate the waveform injections, we apply the Python

package PyCBC [35]. The distributions of individual param-
eters are summarized in Table I; they follow the distribution
used in test datasets 3 and 4 (see Sec. II A) with exceptions,
which we describe in the following paragraphs. A limited
number of noise samples (given for each experiment in
Sec. IV) are injected with a waveform and assigned the
label (1,0); the remaining ones remain pure noise and are
assigned the label (0,1). However, the waveforms are
normalized to a network optimal signal-to-noise ratio
(SNR) ρnet ¼ 1 during the data generation procedure and
only injected at a randomly generated ρnet ∈ ½7; 20� at each
training epoch. Owing to the SNR normalization, the
luminosity distance is irrelevant, and a fiducial 1 Mpc
value (the PyCBC default) is passed to the approximant.
For consistency with the experiments of [21], we set the

lower mass limit to 10M⊙ instead of 7M⊙ used to generate
test datasets 2–4. An additional training run confirms that
including the range ½7M⊙; 10M⊙� in the training data does
not improve the performance of the search. We suspect this
is due to the increased length of waveforms in this region
of the parameter space [24], due to which a part of the
waveform’s SNR is outside the network’s input window
when the merger is aligned.
Furthermore, owing to an oversight on our part, the

inclination angle does not follow the astrophysical distri-
bution cos ι∈ ½−1; 1�. However, this is not expected to pose
an issue, as the dominant effect of the inclination angle on
the waveforms is a constant rescaling [36], which is lost as
we normalize the waveforms to a fixed network SNR. A
rerun of the code for the MLGWSC-1 submission with the
astrophysical distribution confirms that the results are
indistinguishable.
Both the training and validation data are generated by

following the steps below:

(1) Get noise:
(a) get next slice from current segment,
(b) if segment finished, choose a new one at random,

whiten it, slice it, and take its first slice.
(2) If applicable, generate waveform:

(a) set up parameters (see Table I),
(b) generate waveform,
(c) crop so that merger is within the given interval;

append zeros,
(d) whiten using the PSD of the corresponding noise

segment,
(e) normalize to optimal ρnet ¼ 1.

(3) Store noise and waveform separately. At each train-
ing epoch, inject at a newly generated optimal SNR.

C. Test data

Test data meant for evaluation before submitting are
generated using the program generate_data.py sup-
plied by the MLGWSC-1 [25]. For final testing, all four
datasets are generated with the length of 2 592 000 seconds ¼
30 days, and the seed is set to 4 261 537. Dataset 4 with this
seed is used to generate Fig. 2 and to optimize the updated
submission in Sec. IVC.
The seeds used for generating the challenge datasets to

evaluate the submitted algorithms to the MLGWSC-1 and
to plot Fig. 4 are given in Sec. II A.

D. Machine learning

The MLGWSC-1 is aimed at evaluating the performance
of ML algorithms. In its simplest form, this corresponds to
a model with an arbitrary number of free parameters whose
error is being optimized over a large dataset. This is
frequently done using gradient-descent-based optimizers
and their stochastic varieties, which approximate the
gradients on small batches of the dataset in their successive
iterations. The error function being optimized here is a
modification of the binary cross entropy loss [21]

CðȲ;YÞ ¼ −
1

m

Xm
i¼1

Xn
j¼1

Yij log ðð1 − εÞȲij þ εÞ; ð5Þ

designed to remove divergences when an element of Ȳ is
zero using the regularization parameter 0 < ε ≪ 1.
Neural networks are a class of ML models built of

artificial neurons; these are functions defined as

f∶ Rn → R; ð6aÞ

x ↦ σ

�Xn
i¼1

wixi þ b

�
: ð6bÞ

The parameters wi and b are called the weights and
bias, respectively, and are optimized through the training

TABLE I. Distributions from which waveform injection param-
eters are drawn. Intervals refer to a uniform distribution.

Parameter Uniform distribution

Approximant IMRPhenomXPHM
Component masses m1 ≥ m2 ∈ ½10M⊙; 50M⊙�
Spin magnitudes jχ 1j; jχ 2j∈ ½0; 0.99�
Spin directions isotropic
Coalescence phase Φ0 ∈ ½0; 2πÞ
Inclination angle ι∈ ½0; 2π�
Declination sin θ∈ ½−1; 1�
Right ascension φ∈ ½−π; πÞ
Polarization angle Ψ∈ ½0; 2πÞ
Sampling rate 2048 Hz
Low frequency cutoff 20 Hz
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process. The function σ is called an activation function;
a popular choice we use here is the Exponential Linear
Unit [37] with α ¼ 1∶

ELUðzÞ ¼
�
αðexpðzÞ − 1Þ if z < 0;

z if z ≥ 0:
ð7Þ

A feed-forward neural network is organized in layers of
independent neurons, each of which feeds its output into
neurons of the following layer. They can be fully con-
nected, i.e., the input of each neuron consists of the outputs
of all neurons in the previous layer, also called dense layers.
In this paper, we also make use of convolutional layers,
whose structure corresponds to a set of filters sliding over
a multichannel input [38]. This reduces the number of
independent connections and thus weights in the network.
Further components are max pooling layers, which act as

a downsampling operation [39], and dropout layers, which
improve the training convergence through a type of noise
injection [40,41]. For an introduction to ML and neural
networks, we refer the reader to [42,43].

E. Model architecture

In this work, we use a simple convolutional neural
network (CNN) design, which is an extension of the
architecture used in [21]. For a simple implementation
of the method used there, we first define a CNN called the
base network, which does not have a final activation. Its
architecture is shown in Table II.
Unlike coincident searches such as the CNN-Coinc

submission [22] to the MLGWSC-1, wherein the streams
from each detector are analyzed separately and combined
using a probability-based formula, we employ a coherent
approach. The network accepts a two-channel input to carry
data from two detector streams.
The base network produces two outputs, which we

denote x0, x1. Following the method of [21], for training
we append a Softmax layer,

yi ¼ SoftmaxðxÞi ¼
expðxiÞP
j expðxjÞ

; ð8Þ

which maps its inputs to a set of positive numbers which
sum up to 1. The purpose of this activation is to represent
uncalibrated probabilities [44] of different classes in
classification problems, and in this case we wish the output
y0 to represent the probability that the input sample
contains an astrophysical GW signal.
The networks are trained using the stochastic Adam

optimizer [45] with a learning rate of γ ¼ 4 × 10−6, and the
other parameters set to their defaults in PyTorch [46]
(β1 ¼ 0.9, β2 ¼ 0.999, ϵ ¼ 10−8), for a total of 250 epochs.
The training dataset is split into batches of 32 samples, and
each epoch consists of one optimizer step per batch.

When testing in the same manner, however, a numerical
issue arises. In single-precision floating point arithmetic
using PyTorch, y0, which we would like to use as the ranking
statistic of the resulting search, rounds up to 1 when
x0 − x1 ≳ 16,whichiswell intherangeofvaluesencountered
by the search. To resolve this, we rewrite Eq. (8) for i ¼ 0 as

y0 ¼
1

1þ exp ðx1 − x0Þ
¼ 1

1þ exp ð−ΔxÞ : ð9Þ

We see that y0 is a purely growing function ofΔx ¼ x0 − x1,
which is therefore an equivalent ranking statistic, without
suffering from the same numerical issue. Therefore, Δx is
used as the ranking statistic in the search. This technique is
called the unbounded softmax replacement. For more
detailed information see Ref. [21].
The CNN is only part of the detection algorithm

following [21], as it only accepts simple one-second-long
slices. The full algorithm consists of feeding overlapping
slices of the test data to the network, applying a threshold,
and clustering the results into candidate detections. First,
the entire segment is whitened using the method described
in Sec. III A.
Then, the segment is sliced into one-second long samples

with an offset of 0.1 seconds, which are fed to the network

TABLE II. Architecture of the base network. It accepts an input
with two channels corresponding to two detector streams and
possesses 635 318 trainable weights. “KS” refers to kernel size,
and “shape” is the output shape of the corresponding layer. The
batch normalization layer is only used in the original submission
to the MLGWSC-1 but not in the improved searches.

Layer KS Shape Activation

Input 2 × 2048
(Batch norm) 2 × 2048
Convolution 33 16 × 2016 ELU
Convolution 32 16 × 1985 ELU
Convolution 17 16 × 1969 ELU
Convolution 16 16 × 1954 ELU
Max pooling 4 16 × 488
Convolution 17 16 × 472 ELU
Convolution 16 32 × 457 ELU
Convolution 9 32 × 449 ELU
Convolution 8 32 × 442 ELU
Max pooling 3 32 × 147
Convolution 9 32 × 139 ELU
Convolution 8 64 × 132 ELU
Convolution 9 64 × 124 ELU
Convolution 8 64 × 117 ELU
Max pooling 2 64 × 58
Flatten 3712
Dense 128 ELU
Dropout 128
Dense 128 ELU
Dropout 128
Dense 2
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and the Δx outputs recorded. Because the networks are
trained on injections with merger time 0.6 to 0.8 seconds
after the sample start time, each slice is associated with the
time 0.6 seconds after the start time of the slice, in order to
compensate for this alignment.
A threshold is applied to the network outputs, and those

which exceed it are clustered by time, with a minimal
separation of 0.35 seconds between clusters. Each of these
clusters is then considered a candidate event to be saved
in the output file. As the ranking statistic, the maximum of
the network outputs in the cluster is used, and the time
corresponding to the maximum is used as the time of
the candidate event. For all output events, the value of
0.2 seconds is chosen as the time uncertainty in the search
output (see Sec. II B), to match the size of the merger
alignment interval in the training data.

IV. RESULTS

A. MLGWSC-1 submission

For the submission, we choose the training dataset to
contain 500 000 pure noise samples and 500 000 noiseþ
waveform samples, the validation dataset to contain 100 000
pure noise samples and 100 000 noiseþ waveform samples,
and the sliced real noise is used. The training and validation
losses are monitored during the training, and their evolution
is shown in Fig. 1.
Out of the local minima of the validation loss, the global

minimum as well as two earlier local minima are chosen
and further tested by applying to the test datasets 3 and 4;
the result for dataset 4 is shown in Fig. 2. The results on
dataset 3 were virtually indistinguishable; for better per-
formance on dataset 4 we chose the network state at epoch
79 for the submission to the MLGWSC-1.
It is necessary to set one more parameter: the first

detection threshold, applied before clustering. Applying
the trained algorithm to a shorter dataset (length of one
day), the resulting sensitivities are displayed in Fig. 3. We
choose the value of −8 for the threshold applied to the Δx
ranking statistic, as its performance is indistinguishable
from others at lower FARs, while it reaches up to higher

FARs than others. However, at FAR values relevant to GW
astronomy, all algorithms perform comparably; therefore
this choice does not seem to be relevant, and we do not
perform the same optimization in further experiments.

B. MLGWSC-1 results

The MLGWSC-1 received a total of six contributions,
four of which are ML based. The remaining two are
conventional analyses to provide a baseline; the first is
the matched-filtering-based PyCBC [33], the other is the
loosely modeled search cWB [5,47].

FIG. 1. Evolution of the training and validation loss values
throughout the training of the MLGWSC-1 submission.

FIG. 2. Sensitivity curves of the network at three minima of the
validation loss highlighted in Fig. 1 used to select the final
network state for the submission.

FIG. 3. Sensitivity curves of the submitted trained network
using multiple Δx thresholds to determine a suitable value. The
datasets are generated by the script provided by the MLGWSC-1
in the length of one day (86 400 seconds), with the difficulty
specified as datasets 3 and 4 in the top and bottom panel,
respectively. Owing to a large overlap between the sensitivity
curves, rather than color coding, their left ends are annotated with
the threshold value. All curves reach the same point at the right
end, F ¼ 1 day−1.
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Rather than an extensive coverage of the MLGWSC-1
results, which are described in great detail in [24], this
section focuses on a particular issue which occurs when real
noise is presented to our algorithm. We would like to
specifically bring to the reader’s attention the performance
of our algorithm (labeled D: TPI FSU Jena) and the
algorithm labeled E: Virgo-AUTh, whose sensitivity curves
on datasets 3 and 4 are shown in Fig. 4. Both ML
submissions are plotted as dashed lines; in addition the
PyCBC submission is shown.
Both submissions use a very similar approach. In the final

evaluation on test dataset 3, their performances are close to
each other with D operating at a slightly higher sensitivity at
all FARs; this gap widens as we approach F ¼ 1 month−1

(in fact, this holds on all datasets which use Gaussian
noise [24]). However, the Virgo-AUTh algorithm retains
≥ 90% of the sensitive distance of the TPI FSU Jena search
at F ≥ 2 month−1, and at F ¼ 1000 month−1 this gap
narrows to a separation of roughly 4%.
Moving to dataset 4, the performance of the Virgo-AUTh

algorithm degrades only mildly. In contrast, the perfor-
mance of our submission deteriorates much more, losing all
sensitivity at F < 102 month−1. This is due to the noise
transients which are omnipresent in real detector data, and
which are revealed to produce triggers louder than injected
waveforms in further analysis.
Finally, the runtimes of our algorithm are consistently

lower than those of the other submissions. On average,
the Virgo-AUTh search takes ∼50% longer to run on the
challenge hardware on all four test datasets due to the
higher complexity of its network architecture. On datasets
2–4 the estimated runtimes of PyCBC are ∼40 times as large.
We note that the given PyCBC runtimes are estimations as a
different hardware setup is used to run the search.

C. Updated submission

Following the Virgo-AUTh team’s algorithm through
[24,48,49], we identify three main differences, which we
expect to be responsible for the large difference in
performance. These are input normalization, network
architecture, and training dataset distribution, and we cover
them in detail below.

1. Input normalization and network architecture

While our submission retains the batch normalization
layer from [21], the Virgo-AUTh team has tested multiple
input normalization methods, and uses a deep adaptive input
normalization (DAIN) layer instead. Inspired by this idea,we
attempt to replace the batch normalization layer by a DAIN,
as well as simply remove the input normalization altogether.
Out of these three options, only the complete removal of
input normalization brings a discernible reduction in FARs.
While our submission makes use of a fairly simple and

small CNN design, the Virgo-AUTh team’s submission
uses a larger and more complex ResNet design. We attempt
to replace our network with an identical ResNet design and
encounter no improvement in sensitivity, along with an
increased computational cost. The same experiment with
all three input normalization options mentioned above
yields similar results. Therefore, we decide to retain the
original CNN design and merely remove the batch nor-
malization layer for further development.

2. Training dataset distribution

In the end, the key issue turns out to be the distribution of
the training dataset. We use a 1∶1 dataset in terms of the
number of pure noise samples to ones with injections in
our original submission. Further experiments indicate the

FIG. 4. Sensitivity curves of three selected submissions, along with updated versions of two of them, on datasets 3 and 4 of the
MLGWSC-1. Each panel contains the performance of the submissions on one test dataset. Dashed lines mark conventional analyses, and
solid lines mark ML-based search algorithms. In case of the TPI FSU Jena and Virgo-AUTh teams, the dotted lines mark the original
submissions, while the solid lines mark the updated algorithms. The remaining submissions are shown in gray for illustration of overall
challenge results.
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optimal ratio to be 1∶3 as the network’s performance
degrades when this ratio is shifted in either direction.
Six training runs are performed using the same opti-

mization procedure as previously. At each epoch, the
network’s sensitivity is evaluated on test data with real
noise, and from each run the state with the highest sensitive
distance at F ¼ 1 month−1 is chosen and labeled as
R<run number 1–6>/<4-digit epoch number>.
Of the resulting six states, we choose R1/0021 for the
final search algorithm as it has the highest sensitivity. Its
sensitivity curves are shown in Fig. 4 alongside the curves
of all submissions as well as the updated Virgo-AUTh
search, called AResGW [48,49].
The sensitivity on datasets using Gaussian noise dete-

riorates slightly; this is to be expected as one optimizes for a
different noise distribution, rejecting potential glitches in
data containing none. At F ¼ 1 month−1, the sensitive
distance is reduced by 5.4%. In the overall ranking, ours
remainsall submissions as well as the updated the most
sensitive of all ML submissions on Gaussian noise.
On real noise, the updated submission reaches the

highest sensitivity of all ML submissions at F ≲
10 month−1 and is narrowly outperformed by Virgo-
AUTh at higher FARs. At F ¼ 1 month−1, our updated
submission has a sensitivity distance of 1316 Mpc, and

Virgo-AUTh operates at 87% of this value. At the same
time, the updated version of their algorithm outperforms
ours in both cases.

D. Application to O3b data

The O3 LIGO observing run was split by a commission-
ing break into two phases, O3a and O3b [27,50]. The first
part is used to train the CNNs above to recognize BBH
waveform injections in real LIGO noise. In this section, we
apply the searches developed above to real data recorded by
LIGO through the O3b phase and cross reference the output
with the transients recorded in the GWTC-3 catalog [3].
To query O3b data, we require a minimum segment

length of one minute and the same data quality require-
ments as the real noise file used in the MLGWSC-1; known
injections are not removed. This leaves us with a total of
8 228 706 seconds of data in a total of 2 377 segments,
amounting approximately to 95 days and 6 hours. In
comparison, the full O3b observing run was 147 days
and 2 hours in length.
We apply all six searches trained in Sec. IV C 2 to these

data. The GWTC-3 catalog [3] consists of 35 confident
detections and seven marginal ones. Events lying outside
the segments of available data are excluded, leaving us
with 31 confident and four marginal events to be found.

TABLE III. List of O3b events from the GWTC-3-confident catalog [3] and their identification by the six final
searches. Events which are not recovered by the given search are marked by centerdots. Thirteen events are omitted
(see Table IV). The events are grouped into three sections based on their estimated component masses (see text for
details).

F ½month−1�
Event name ρMF R1/0021 R2/0150 R3/0036 R4/0038 R5/0193 R6/0026

GW200224_222234 20.0 0.0 0.9 0.0 0.0 0.0 0.0
GW200311_115853 17.8 0.0 0.9 0.6 1.3 0.0 6.0
GW200225_060421 12.5 0.0 1.6 0.0 0.0 1.9 0.3
GW191215_223052 11.2 0.0 1.9 1.3 1.3 0.0 1.3
GW200208_130117 10.8 19.2 2.2 3.5 3.1 1.6 10.1
GW200219_094415 10.7 5.0 4.7 8.8 38.7 12.6 19.5
GW200209_085452 9.6 1.3 2.8 0.9 2.8 2.2 0.3
GW191204_110529 8.8 1.6 3.1 0.0 3.1 5.0 3.1
GW200308_173609 7.1 � � � � � � � � � � � � � � � � � �
GW191222_033537 12.5 0.0 4.1 2.5 2.5 0.3 0.3
GW200128_022011 10.6 25.5 3.1 0.0 11.7 10.4 2.2
GW191230_180458 10.4 6.6 149 19.5 98.9 36.9 5.0
GW191127_050227 9.2 38.7 2.8 4.4 18.6 3.1 6.6
GW200220_124850 8.5 215 517 956 96.1 695 375
GW191126_115259 8.3 � � � � � � � � � � � � � � � � � �
GW200216_220804 8.1 � � � 189 � � � � � � 841 � � �
GW191113_071753 7.9 � � � 634 391 � � � 713 647
GW200306_093714 7.8 485 407 720 � � � 69.3 � � �
GW200208_222617 7.4 38.1 6.0 19.5 55.1 159 187
GW200322_091133 6.0 810 898 � � � � � � � � � � � �
GW191204_171526 17.5 3.5 8.8 4.1 4.4 7.6 6.0
GW191109_010717 17.3 0.0 1.9 0.9 0.6 1.3 0.9
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These excluded events are listed in the left column of
Table IV. In addition, we confirm that none of the events
contained in available segments take place closer than
46 seconds to either end of their respective segments.
A catalog event is marked as found, if the search output

contains an event within 0.2 seconds of the time given in
the catalog, and it is assigned its corresponding ranking
statistic t. The remaining catalog events are considered
missed, and the remaining events reported by the search are
considered false alarms. The catalog event is then consid-
ered detected at a FAR of

F ¼ Nf>t

T
; ð10Þ

where Nf>t is the number of false alarms louder than t, and
T is the total length of the analyzed segments. In addition, if
the FAR of an event is at least 1000 month−1, it is also
considered missed.
None of the events marked marginal in the GWTC-3

catalog are found by either of the searches. The resulting
FARs of confident events in the analyzed segments are
shown in Table III. The table is split into three sections: in
the first, the 90% credible intervals on both component
masses lie fully in the ½10M⊙; 50M⊙� range used for
training the networks, while in the third, at least one of
them lies fully outside ½10M⊙; 50M⊙�. The remaining cases
are contained in the second section. The credible intervals
and accompanying SNR values come from the catalog’s
parameter estimation pipeline based on Bilby [51,52] and
are supplied by GWOSC [53].
Let us comment shortly on the results of Table III. Most

importantly, all events in the first section, where the search
algorithms are expected to operate at a high sensitivity, are
found by all six tested networks at a FAR lower than
40 month−1, with the exception of GW200308_173609,
which is the second weakest event in the catalog at
ρMF ¼ 7.1. In the vast majority, the events are detected
at F < 4 month−1.

In the second and third sections the searches are expected
to operate at a reduced sensitivity as the corresponding
parameter space is not fully covered in the training dataset.
This is confirmed in Table III; however, louder events at
ρMF ≳ 9 and ρMF ≳ 17 in the second and third section,
respectively, are also mostly detected at F < 10 month−1

by the ML-based searches.
As a final comment, Q-scan spectrograms of the loudest

false alarms in the analyzed data seem to be consistent with
them being known types of glitches.

V. CONCLUSION

We have presented a convolutional neural network-based
gravitational wave detection algorithm capable of perform-
ing comparably to conventional algorithms in specific
settings, and its implementation, submitted to the
MLGWSC-1. While the submission performs well on test
data using Gaussian noise, the noise transients present in
the data with real noise prove to be too much of a challenge
and reduce its sensitivity to zero at relevant FARs. In the
present work, we resolve this issue by a careful optimiza-
tion of the training parameters and demonstrate that the
updated search outperforms all other original challenge
submissions besides the PyCBC matched-filter search.
At the same time, while each independent run of the

updated algorithm converges to a state with high sensitivity
of the resulting search, a detailed analysis reveals that the
sensitivity is highly nonmonotonic during the training [54].
In addition, Fig. 1 also shows unexpected oscillations in the
validation loss. This phenomenon is not yet fully under-
stood and warrants further investigation.
As a final application of the updated search, we analyze

open data from the O3b observing run [27] of the LIGO-
Virgo Collaboration and cross reference the results with the
corresponding catalog GWTC-3 [3]. We demonstrate that
in the intended regime of BBHs with component masses
between 10M⊙ and 50M⊙, our searches can confidently
detect eventswith a networkSNRabove 8.This is in linewith
contemporary matched-filter-based searches, as the value 8
roughly corresponds to one false alarm per month [21].

Full outputs of all six search algorithms as well as
spectrograms of the 128 loudest events of each are publicly
available in the data release [55].
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APPENDIX: CODE

The code provided by the MLGWSC-1 organizers is
available in [25]. The code used in the experiments is
contained in [55]. The submission to the MLGWSC-1 as
described in Secs. III and IVA is stored in the directory
mlgwsc-1. For the experiments detailed in Secs. IV C and
IVD, the code is available in the subdirectorycorrection
along with additional materials and results.
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