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France
ABSTRACT We combine traction force data with Bayesian inversion to obtain an absolute estimate of the internal stress field
of a cell monolayer. The method, Bayesian inversion stress microscopy, is validated using numerical simulations performed in a
wide range of conditions. It is robust to changes in each ingredient of the underlying statistical model. Importantly, its accuracy
does not depend on the rheology of the tissue. We apply Bayesian inversion stress microscopy to experimental traction force
data measured in a narrow ring of cohesive epithelial cells, and check that the inferred stress field coincides with that obtained
by direct spatial integration of the traction force data in this quasi one-dimensional geometry.
INTRODUCTION
Dynamical behaviors of multicellular assemblies play a
crucial role during tissue development (1) and in the main-
tenance of adult tissues (2). In addition, disregulation of
multicellular structures may lead to pathological situations
such as tumor formation and tumor progression (3). In this
context, cell monolayers have been extensively studied to
model in vivo tissue functions. Such approaches allow for
well-controlled experiments, which have been performed
in a variety of settings, such as monolayer spreading (4,5),
wound healing (6,7), channel flow (8,9), confined flow
(10,11), and collective migration (12,13). The dynamics of
multicellular assemblies is regulated through mechanical
forces that act upon cell adhesive structures. These forces
are exerted at the cell-substrate interface (14), but also
through cell-cell junctions (15). The transmission of stresses
within multicellular assemblies is thus important to under-
stand collective movements, cell rearrangements, and tissue
homeostasis. Even though kinematic information is readily
available, mechanical properties that rely on internal stress
are less well understood. Indeed a number of important bio-
logical questions, such as the determination of the molecular
mechanisms that underlie the transmission of force within a
tissue (16), necessitate a measurement of internal stresses.

Several internal force measurement methods have been
proposed and implemented (see Sugimura et al. (17) for a
Submitted October 16, 2015, and accepted for publication March 7, 2016.

*Correspondence: philippe.marcq@curie.fr

Editor: Cecile Sykes.

http://dx.doi.org/10.1016/j.bpj.2016.03.002

� 2016 Biophysical Society
recent review): at the molecular scale, Förster resonance
energy transfer (18,19); at the cell scale, microrheology
(20,21); and at the tissue scale, liquid drops (22), birefrin-
gence (23), or laser ablation (24,25). Although one would
ideally like to read out from data the spatio-temporal depen-
dence of the full stress field, the above methods yield either
a local, subtissue scale measurement (18–22), or a subset of
the components of the stress tensor (23), or a relative mea-
surement—up to an undetermined multiplicative constant
(24,25). Monolayer stress microscopy (MSM), first intro-
duced in Tambe et al. (26), does not suffer from these draw-
backs: it builds upon the measurement of traction force data
to estimate the stress field of monolayers of cohesive cells.
Indeed, the force exerted by cells on a planar-deformable
substrate can be computed from the displacement field of
the underlying layer (27,28), using either: (1) traction force
microscopy (5,29,30) where small beads are inserted within
the (elastic) substrate, their displacements are measured,
and the traction forces are obtained by solving an inverse
elastic problem; or (2) arrays of micropillars (31–33), where
the traction forces are simply proportional to the in-plane
displacements of the pillars. However, once the traction
forces are known, obtaining the internal stress from the
force balance equations is an underdetermined problem
because, in the two-dimensional case, three components
of the symmetrical stress tensor must be obtained from
two traction force components. In MSM (26,34), these equa-
tions become well-posed thanks to an additional hypothesis
on tissue rheology: the cell monolayer is assumed to be
a linear, isotropic elastic body. MSM has been validated
Biophysical Journal 110, 1625–1635, April 12, 2016 1625

mailto:philippe.marcq@curie.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2016.03.002&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2016.03.002


Nier et al.
independently on numerical data using particle dynamics
simulations: in Zimmermann et al. (35), the reasonable
accuracy of stress reconstruction from data that does not
correspond to an elastic rheology has been attributed to
the weakness of shear stresses in both simulated and living
tissues. Assuming again that the tissue is an elastic body,
and in addition that the displacement field is continuous
at the cell-substrate interface, internal stresses may also be
computed directly from substrate displacement data, cir-
cumventing the need to compute traction forces (36).

In the presence of cell divisions and extrusions that
constantly rearrange a tissue (37), it is not clear that its
rheology is that of a solid body. To our knowledge, the
elastic rheology hypothesis has not been directly validated,
while alternative rheologies have been proposed in the
literature (7,38–40) and shown to model successfully
specific aspects of the mechanical behavior of cell mono-
layers. Further, the rheology of multicellular assemblies
may depend on the timescale (37), as well as on the type
of cell considered (41). These caveats call for a method to
accurately estimate the internal stress field of a cell mono-
layer irrespective of the underlying rheology.

A classical way to solve underdetermined inversion
problems involves Bayesian inference (42), a technique
originating in statistics (43), and now widely used in physics
(44) and biophysics (45). Of note, Bayesian inversion has
also been used to solve the inverse elastic problem of traction
force microscopy (46,47). Recently, some among us pro-
posed aBayesian force inferencemethod based on cell geom-
etry, and applied it to segmented images of the Drosophila
pupal wing and notum (48–50). The tissue-scale stress arises
from coarse-graining of cell-cell interactions. For tight
epithelia where adherens junctions are a key player of force
transmission between neighboring cells, it is reasonable to
assume that the cell-scale contribution to stress is mostly
related to local contact within the apical side of the epithe-
lium, whereas basal contributions from, e.g., lamellipodia,
are negligible. Accordingly, the dominant contributors to tis-
sue-scale stress were identified as cell pressures and cell-cell
junction tensions, and force balance equationswerewritten at
each cell vertex, resulting in an underdetermined system.
This systemwas solved usingBayesian inversion (42), where
the inferred tensions and pressures were the most likely
values (the modes) of a posterior distribution function. In
the case of the fruitfly pupal wing, it turned out that tissue
stress, obtained by coarse-graining, is oriented by external
forces, and that its anisotropy promotes hexagonal cell
packing (49). Similar systems of equations may become
well-posed thanks to additional hypotheses (equal cell pres-
sures (50,51)), or when cell pressures are not required (52).
However, the stress is measured up to an arbitrary additive
constant: its absolute value is out of reach because the input
data are cell vertex positions and cell junction angles.

Below, we formulate Bayesian inversion stress micro-
scopy (BISM), a method to estimate the internal stress field
1626 Biophysical Journal 110, 1625–1635, April 12, 2016
of a cell monolayer from traction-force microscopy mea-
surements. Importantly, BISM yields an absolute measure
of the stress and dispenses with hypotheses on monolayer
rheology. We define BISM and introduce statistical mea-
sures of its accuracy. The method is first validated using
numerical simulations that provide traction-force data.
The inferred stress field, once computed, is compared to
the simulated stress data used as a reference. Robustness
is checked by implementing changes in the statistical model,
as well as in the mechanical ingredients of the numerical
simulations. BISM is further validated using experimental
data in a quasi one-dimensional (1D) geometry that allows
for a direct calculation of the stress field by spatial inte-
gration of the traction force field. Finally, our results are
compared with existing methods.
MATERIALS AND METHODS

Mechanics

Within a continuum description, a flat, thin cell monolayer is characterized

at position~r and time t by a field of two-dimensional internal stresses sð~r; tÞ
and by a field of external surfacic forces~tð~r; tÞ that the monolayer exerts on

the substrate. Because inertia is negligible, the balance of linear momentum

reads in vector form

div s ¼ ~t; (1)

and in Cartesian coordinates ðx; yÞ (see S1.2 in the Supporting Material for

polar coordinates)

vsxx

vx
þ vsxy

vy
¼ tx; (2)

vsyx vsyy
vx
þ

vy
¼ ty: (3)

Note that at this stage, due to the grid definition (see below and Fig. 1 b), we

do not enforce the symmetry of the stress tensor (equality of the shear stress

components due to angular momentum conservation (53)). With a confined

monolayer in mind (10,11), the boundary condition reads

sij nj ¼ 0; (4)

where~n denotes the vector normal to the edge, and summation over repeated

indices is implied. In the plane, the units of stresses and (surfacic) forces are

Pa.m and Pa, respectively. Assuming that the monolayer height is uniform

and constant hð~r; tÞ ¼ h0, the 3D stress reads s3D ¼ s=h0. When spatial or

temporal variations of the height cannot be neglected (4,5), BISM can be im-

plemented by replacing~tð~r; tÞ by~tð~r; tÞ=hð~r; tÞ and by inferring the 3D stress

from div s3D ¼~t=h, provided that the height remains small compared to the

system size, as is generally the case for in vitro cell monolayers (26,54). A

treatment of the full 3D case where the height is comparable or larger than

the system size is beyond the scope of this work.

Because experimental traction forces are measured with a finite

spatial resolution l, assumed to be isotropic for simplicity, we write a

force balance equation in each of a large number of square surface ele-

ments of area l2 (see Fig. 1 a). We aim at inferring the stress tensor

sði; jÞ ¼
�
sxxði; jÞ syxði; jÞ
sxyði; jÞ syyði; jÞ

�
in each element. The traction force exerted

by the tissue in element ði; jÞ on the substrate is~tði; jÞ, with components



FIGURE 1 Discrete monolayer mechanics. (a) A tissue element of vol-

ume l2 � h. (b) Pictorial representation of local force balance; see Eqs. 5

and 6, and see text for definitions. To see this figure in color, go online.
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txði; jÞ; tyði; jÞ. In the case of a rectangular grid with C columns and R rows,

the discretized force balance equation for element ði; jÞ reads

l
�
sxxðiþ 1; jÞ � sxxði; jÞ þ sxyði; j þ 1Þ � sxyði; jÞ

�
¼ l2 txði; jÞ; (5)

l
�
syxðiþ 1; jÞ � syxði; jÞ þ syyði; j þ 1Þ � syyði; jÞ

�

¼ l2 tyði; jÞ (6)

to lowest order in l (see Fig. 1 b). We thus have N ¼ C� R variables for tx
and ty, ðCþ 1Þ � R variables for sxx and syx and C� ðRþ 1Þ variables for
syy and sxy. Defining traction force and stress vectors as

~T ¼ �
txð1; 1Þ/txðR;CÞ tyð1; 1Þ/tyðR;CÞ

�t
;

~s ¼ �
sxxð1; 1Þ/sxxðCþ 1;RÞ syyð1; 1Þ/syyðC;Rþ 1Þ

� sxyð1; 1Þ/sxyðC;Rþ1Þ syxð1; 1Þ/syxðCþ1;RÞ�t;

where the superscript t denotes the transpose, we rewrite Eqs. 5 and 6 in

matrix form

A~s ¼ ~T: (7)

The matrix A, of size 2N � ð4N þ 2ðCþ RÞÞ, may be decomposed as

A ¼
�
Ax 0 Ay 0

0 Ay 0 Ax

�
; (8)
where Ax and Ay correspond to the discretized matrix forms, at second order

in l, of the partial derivatives with respect to x and y.
Statistics

To solve the underdetermined linear system (Eq. 7), we implement

Bayesian inversion (42): all variables and parameters of the problem are

probabilized. For simplicity, we use, wherever possible, Gaussian probabil-

ity distribution functions, denoted Nð~X ��~m; SÞ for a multivariate (vector)

Gaussian random variable ~X with mean ~m and covariance matrix S.

Likelihood

The first ingredient of the statistical model is the likelihood function

Lð~T ��~sÞ, which contains information provided by experimental measure-

ments. For experimental data, the force balance equations (Eq. 7) are veri-

fied up to an additive noise due to measurement errors. Assuming this noise

to be Gaussian with zero mean and uniform covariance matrix S ¼ s2 I,

where the parameter s2 denotes the noise variance and I is the identity

matrix, the likelihood is expressed as Lð~T ��~sÞ ¼ N ð~T ��A~s; s2 IÞ or
L
�
~T
��~s� ¼

�
1ffiffiffiffiffiffiffiffiffi
2ps2

p
�2N

exp

"
� jj~T�A~s jj 2

2s2

#
; (9)

where k. k is the (L2) Euclidean norm.
Prior

Second, the prior probability distribution function pð~sÞ embeds additional

information concerning the stress field:

(1) We assume that the stress obeys a Gaussian distribution function with

zero mean ~s0 ¼~0 and covariance matrix s20 I;

(2) We enforce the equality of the two off-diagonal components of

the stress tensor: in compact vector form ~sxy ¼~syx , i.e.,

sxyði; jÞ þ sxyði; j þ 1Þ ¼ syxði; jÞ þ syxðiþ 1; jÞcði; jÞ (see Fig. 1 b

and S1.3);

(3) We enforce the boundary conditions (Eq. 4), namely two conditions at

each boundary element ði; jÞ, written in compact vector form~sBC ¼~0 ).

Up to a normalizing factor, the prior reads

pð~sÞfexp
h
� k~s k 2þa2xyk~sxy�~syx k2þa2

BC
jj~sBC jj 2

2s2
0

i
(10)

or

pð~sÞ ¼
 

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p jB j s20

p !4Nþ2ðRþCÞ

exp



� ~stB�1~s

2s2
0

�
: (11)

The second ingredient of the statistical model is a Gaussian prior

pð~sÞ ¼ N ð~s j~0; S0 ¼ s20 BÞ, where B is a reduced covariance matrix of

determinant jB j . Note that a Gaussian prior suppresses stress values larger

than a few times s0 (see Schwarz et al. (55) for a similar approach in the

context of traction force microscopy). In practice, we set the hyperpara-

meters axy and aBC to the values axy ¼ aBC ¼ 103, large enough for condi-

tions (2) and (3) to be enforced (see S3.2 for a discussion of these values). If

required by a given experimental setup, the boundary conditions should be

modified appropriately in the definition of the prior.

Resolution

According to Bayes’ theorem, the posterior (conditional) probability distri-

bution functionPð~s j~TÞ of the stress given the traction force data is propor-
tional to the product of the likelihood by the prior,
Biophysical Journal 110, 1625–1635, April 12, 2016 1627
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P
�
~s j~T�fL

�
~T
��~s� � pð~sÞ: (12)

Because both are Gaussian, the posterior is also Gaussian

Pð~s j~TÞ ¼ N ð~s j~sP; SPÞ, with a covariance matrix SP and a mean ~sP
given by (42)

SP ¼ �
S�1
0 þ At S�1 A

��1
; (13)

~sP ¼ SP At S�1 ~T: (14)
We use maximum a posteriori (MAP) estimation (42) and define the

inferred stress ~bs as the mode (maximal value) of the posterior ~bs ¼~sP.

Qualitatively, the underdeterminacy has been lifted: 4N þ 2ðRþ CÞ un-

known stress values are determined from 2N traction force values,

4N þ 2ðRþ CÞ conditions from the Gaussian distribution of the stress

tensor, N equalities of the two shear components, and 4ðRþ CÞ boundary
conditions.

In this Gaussian model, MAP estimation is identical to minimization of a

Tikhonov potential (42). The dimensionless regularization parameter

L ¼ l 2 s2

s20
(15)

quantifies the relative weight given to the prior, compared to the likelihood,

when performing Bayesian inversion. Factoring out (sl)2, Eqs. 13 and 14

read

SP ¼ ðslÞ2�L B�1 þ l2 At A
��1

; (16)

~sP ¼ �
L B�1 þ l2 At A

��1
l2 At ~T: (17)
Because the product Al is dimensionless and independent of l, the posterior

covariance (Eq. 16) is a function of L and sl, while the posterior mode

(Eq. 17) depends upon L and l~T.

Hyperprior

For generality’s sake, we probabilize the parameter s2 and the hyperpara-

meter s20, yet undetermined in Eqs. 13 and 14 (recall that S ¼ s2 I and
FIGURE 2 Schematics of BISM. (a) Both the likelihood (with parameter s2

definition of the posterior, a Gaussian distribution function of mean s!P, and

MAP estimator of the stress bs! is the mode of the posterior s!P, Eq. 14. (b) In

consistently within a hierarchical Bayesian construction. MAP estimation is pe

s!ðkÞ (Eqs. 13 and 14) and for the variances s2ðkÞ, s
2
0ðkÞ (Eqs. 19 and 20) until conv

as the asymptotic value s!PðNÞ, computed using s2ðNÞ ¼ limk/Ns2ðkÞ and s20
LðNÞ ¼ l2 s2ðNÞ=s

2
0 ðNÞ. A flowchart of the algorithm is given in Fig. S6. To see
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S0 ¼ s20 B ). Within the framework of hierarchical Bayesian descriptions,

the model is closed by the hyperprior probability distribution functions

Hðs2Þ and Hðs20Þ (56,57). Up to a normalizing factor, the posterior now

reads (see Fig. 2 a)

P
�
~s
��~T�fL

�
~T
��~s; s2� � p

�
~s
�� s20� � H

�
s2
� � H

�
s20
�
:

(18)

For simplicity, we use Jeffreys’ noninformative hyperprior: Hðs2Þf1=s2,

Hðs20Þf1=s20 (56,57).

Simultaneous a posteriori optimization with respect to ~s, s2 and with s20
being intractable, we solve the problem iteratively, starting from initial

values s2ð0Þ and s20ð0Þ (see Fig. 2 b). At step k R 1, we first calculate the

mode ~sP ðkÞ from previous values s2ðk�1Þ, s
2
0ðk�1Þ (Eqs. 13 and 14). Maxi-

mizing the posterior with respect to each hyperparameter yields the updated

hyperparameter values

s2ðkÞ ¼ 1
2Nþ2

����~T � A~sP ðkÞ
���� 2; (19)

s2 ¼ 1 ~st B�1 ~s : (20)
0ðkÞ 4Nþ2ðRþCÞþ2 P ðkÞ P ðkÞ

Once convergence is reached, s2ðkÞ/s2ðNÞ, s
2
0ðkÞ/s20ðNÞ, the stress estimate is

defined as ~bs ¼~sP ðNÞ, computed from Eqs. 13 and 14 with the optimal

values s2ðNÞ and s20ðNÞ. An estimate ~dbs of the error on ~bs is calculated as

the square root of the diagonal values of the covariance matrix SP ðNÞ.
Because the marginal distribution of traction forces is Gaussian, with a

covariance matrix ST ¼ Sþ A S0 A
t (42), we also calculate an estimate

~
dbT of the error on the traction force as the square root of the diagonal

values of ST.
Measures of accuracy

The numerical resolution of a set of hydrodynamical equations yields a

numerical data set ftnumg of traction forces, from which we compute a

set fsinfg of inferred stresses. Because the numerical data set fsnumg of

stresses is also available, measures of accuracy involving numerical simu-

lations typically compare fsinfg with fsnumg.
A classical goodness-of-fit measure is the coefficient of determination,

defined for the sxx component of the stress as
), and the prior (with hyperparameters s20, axy, and aBC ) contribute to the

covariance matrix SP. Given numerical values of s2, s20, axy, and aBC, the

BISM, the values of s2 and s20 are not given a priori, but determined self-

rformed iteratively, by successively optimizing the posterior for the mode

ergence to a fixed point is reached. The estimator of the stress bs! is defined

ðNÞ ¼ limk/Ns20 ðkÞ in Eqs. 13 and 14, with a regularization parameter

this figure in color, go online.
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R2
xx ¼ 1�

P�
snum
xx � sinf

xx

�2P�
snum
xx � �snum

xx


�2; (21)

where the sums and the averages h.i are performed over space. Similar

definitions apply to other components, and allow us to define an aggregate
coefficient of determination R2
s averaged over all stress components. Accu-

rate estimates correspond to numerical values of R2
s close to 1. The discre-

tized force balance Eqs. 5 and 6, used as a definition of inferred traction

forces, yield a set ftinfg of inferred traction forces computed from the set

of inferred stresses fsinfg. Comparing ftnumg with ftinfg allows us to define
similarly a R2

T diagnostic for numerical data.

When analyzing an experimental data set ftexpg of traction forces, R2
s

cannot be computed in the absence of a reference set of stresses. As above,

comparing ftexpg with ftinfg allows us to define a measure of accuracy for

experimental data, the coefficient of determination R2
T . An alternative mea-

sure of predictive accuracy is the c2
T diagnostic, defined as the average value

of the square of reduced residuals

c2
T ¼ 1

2N

X ðtexp � tinfÞ2

dbT2
; (22)

where the sum is performed over space and over traction force components.

This measure of accuracy is, up to a normalizing factor, similar to the

‘‘omnibus goodness-of-fit’’ measure advocated in the literature (56,57).

The estimated standard deviation dbT may be replaced in Eq. 22 by the mea-

surement error dt. Numerical values of c2
T close to 0 are indicators of high

accuracy.

A last test of accuracy is provided by the calculation of average experi-

mental stress values from traction force data (53), which may be compared

with the average inferred stresses for each component (see S3.4 and S1.4).
Experimental methods

We used Madin-Darby canine kidney (MDCK) cells as an epithelial cell

model.

Cell culture

MDCK wild-type cells were cultured in media containing DMEM (Life

Technologies, Carlsbad, CA), 10% FBS (Life Technologies), and 1% anti-

biotics (penicillin and streptomycin).

Microcontact printing and substrate preparation for traction
force microscopy

We measured the traction forces exerted by cells on their substrate by using

soft silicone gel as previously described in Vedula et al. (58). Fluorescent

beads were deposited onto the gel to measure the displacement field.

Briefly, a thin layer of the gel was spread on a glass-bottom dish and

then cured at 80�C for 2 h. Cured gel was silanized using a 5% solution

of APTES ((3-aminopropyl) triethoxysilane; Sigma-Aldrich, St. Louis,

MO) in pure ethanol. This gel was later incubated for 5 min with 100 nm

carboxylated fluorescent beads (Invitrogen, Carlsbad, CA) suspended in de-

ionized water. Subsequently, the substrate was dried and microcontact-

printed with fibronectin (13,59) using a thin water-soluble PVA (polyvinyl

alcohol) membrane that allows the transfer of fibronectin on soft gel. The

PVA membrane was later dissolved and the non-contact-printed areas

were blocked using 0.2% pluronics (Sigma-Aldrich) solution. The substrate

was then washed and was seeded with cells. Cells were allowed to grow un-

til the microcontact printed area was fully covered.

The images were acquired using phase contrast and fluorescent channels

to record cell positions and bead displacements, respectively.

For analysis, the imaging drifts were corrected in ImageJ (National Insti-

tutes of Health, Bethesda, MD) using the Image Stabilizer plugin (60). To
analyze the displacement field of beads, we used an open-source iterative

particle-image velocimetry plugin in ImageJ (61). To reconstruct the trac-

tion force field from the obtained displacement field, an open source Fourier

transform traction cytometry plugin was used in ImageJ (61). The resulting

traction force values were taken for the validation of the BISM inferred

stress fields. To estimate the experimental error dtexp made on traction force

measurements, we calculated the mean value of traction forces measured on

square regions of the substrate devoid of cells (surface area 50 � 50 mm2).

Monolayer height measurement

The confluent cell monolayer was fixed for immunofluorescence micro-

scopy. Actin present inside the cells was fluorescently labeled using Alexa

Fluor 488-conjugated phalloidin (Invitrogen) at 1:1000 dilution in PBS. To

measure tissue height, overall cell shape was then visualized with the help

of cortical actin. Imaging was done using a model No. LSM 780 confocal

microscope (Carl Zeiss, Jena, Germany) with a step size of 0.4 mm to cap-

ture the entire height of the tissue. In the confined ring-shape geometry,

height was measured at different locations to obtain the mean value and

standard deviation of the monolayer height h ¼ 5.3 5 1.2 mm.
RESULTS

Validation: numerical data

A first example of the application of BISM to a numerical
data set is given by using the traction force field of a
compressible viscous fluid driven by active force dipoles, in-
teracting with its substrate through an effective fluid friction
force, and confined in a square, with the boundary condi-
tions (Eq. 4). We solve this problem on a 100 � 100 mm2

square over a regular Cartesian grid with C ¼ R ¼ 50,
N ¼ C � 2500, and l ¼ 2 mm (see S1.1). We use material
parameter values typical of cell monolayers: friction coef-
ficient xv ¼ 100 kPa mm�1 s (7), shear viscosity h ¼
103 kPa mm s (62), and compression viscosity h0 ¼ h. To ac-
count for the measurement error, we add to the traction force
field a white noise of relative amplitude 5% (variance

s2exp ¼ 1:2 10�3 kPa2), and obtain the numerical data set

ftnumg of traction forces (Fig. 3 a), referred to below as
‘‘Viscous’’. We checked that the total sum of the traction
forces is close to zero, as expected for a closed system
with negligible inertia.

Bayesian inversion is performed with a custom-made
script written in MATLAB (The MathWorks, Natick,
MA). With s2ð0Þ ¼ 10�1 kPa2 and s20ð0Þ ¼ 102 kPa2 mm2 as
initial values, the resolution method converges in a few steps
toward the asymptotic hyperparameter values s2ðNÞ ¼
4:7 10�7 kPa2 and s20ðNÞ ¼ 3:4 10�1 kPa2 mm2, or LðNÞ ¼
5:5 10�6 (see S3.1 and Fig. S4 a in the Supporting Material).
The data sets fsnumg and fsinfg of simulated and inferred
stresses are shown in Fig. 3, b and c: we find that their spatial
structures are quite similar. This observation is confirmed
quantitatively by plotting component by component the in-
ferred stress versus the simulated stress (Fig. 3, d–f), and by
the numerical values of the coefficients of determination
R2
xx ¼ 0:94, R2

yy ¼ 0:97, R2
xy ¼ 0:95, yielding an aggregate

measure of accuracy R2
s ¼ 0:96, close to 1. Using the in-

ferred data set ftinfg of traction forces, we also obtain
Biophysical Journal 110, 1625–1635, April 12, 2016 1629



FIGURE 3 Validation: numerical data. (a) Simulated traction force field tnum, represented at each point by an arrow. Scale bar: 10 kPa. (b) Simulated stress

field snum. (c) Inferred stress field sinf , plotted on a 50� 50 grid. At each point, the stress tensor is represented by two line segments oriented along the stress

eigenvectors, of lengths proportional to the eigenvalues (blue, tensile stress; red, compressive stress; scale bar: 10 kPa mm). Note the high degree of similarity

between images (b) and (c). (d–f) Plots of the inferred stress versus the simulated stress for each component, in kPa.mm. Error bars correspond to dbs and the

red line is the bisector y ¼ x. To see this figure in color, go online.
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1� R2
T ¼ 2 10�5 and c2

T ¼ 7 10�7, indicating that all the in-
formation contained in the traction force data is used. An
order of magnitude of the error bar is given by the stan-
dard deviations, calculated using Eq. 16: dbsz102 lsðNÞz
10�1 kPa mm, corresponding to z10% of the maximal
stresses.

All qualitative and quantitative indicators show that the
stress field has been inferred accurately.
Robustness to variations of the statistical model

We test the robustness of BISM by varying one by one each
feature of the statistical model, first focusing on alternative
definitions of the prior, arguably our most prominent
assumption; and second, modifying the likelihood, the
hyperprior, and the resolution method. For conciseness, pre-
cise definitions and implementations are given in S2.1–
S2.3. Table S1 in the Supporting Material lists the values
of R2

s thus obtained, given the same numerical data sets as
for BISM.

Setting axy to 0 in the definition of the prior has a signif-
icant influence on the accuracy of inference ðR2

s ¼ 0:75Þ :
the symmetry of the stress tensor needs to be enforced in
the prior for accurate estimation. Unsurprisingly, this im-
pacts less the diagonal ðR2

xx ¼ R2
yy ¼ 0:81Þ than the shear

components ðR2
xy ¼ R2

yx ¼ 0:61Þ. In a similar way, knowl-
edge of the correct boundary conditions should be included
in the prior whenever possible: setting aBC to 0 has a large
negative impact ðR2

s ¼ 0:53Þ. We shall further comment
below on the influence of boundary conditions.
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Importantly, the accuracy of inference remains excell-
ent when the prior, the likelihood, or the hyperprior dis-
tributions are not Gaussian. This shows that the accuracy
of BISM does not depend sensitively on a Gaussian
assumption. Of note, we do not assume that traction
force data obeys a Gaussian distribution. The data set
( ftnumg or ftexpg ) is used as is—indeed, experimental
traction force distributions are known to exhibit expo-
nential tails (5,63). In all cases, the regularization param-
eter is small LðNÞ � 1 (see Table S3): the distribution
of inferred stresses fsinfg depends mostly on the empi-
rical distribution of traction force data. Thus, even if the
multivariate posterior distribution is Gaussian, the uni-
variate, empirical distribution of the inferred stress (the
mode ~sP ðNÞ ) is not necessarily Gaussian (see Fig. S7
for numerical data). Similarly, even if the stress prior
distribution function has a zero mean, the mean infe-
rred stress is not necessarily equal to zero (see Fig. 5 i,
later, for an example). The small values of LðNÞ are
consistent with robustness, with respect to variations of
the prior.

We conclude that BISM is robust to variations of the sta-
tistical model.
Robustness to variations of the numerical
simulation

We next apply BISM to a broad spectrum of numerical data,
and vary successively the values of material parameters, the
rheology, the boundary conditions, the system shape, the
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spatial resolution, the nature, and the amplitude of the mea-
surement noise (see S2.2).

Given the values of R2
s compiled in Table S2, we verify

that BISM remains accurate with a different (elastic)
rheology (also see Elastic 1 in Table 1), or in a different (cir-
cular) geometry. In the viscous case, we observe that the ac-
curacy decreases as a function of the bulk viscosity h0. For
larger h0, we observe larger values of stress components,
leading to asymmetrical distributions: this is at variance
with our assumption of an even prior distribution, and
may explain the lower value of R2

s obtained when
h0 ¼ 101 h.

Accuracy decreases when the prior does not include our
knowledge of the boundary conditions. However, the influ-
ence of erroneous values of the stress at the system’s bound-
aries rapidly decreases far from the edge. When the
coefficient aBC is set to 0, removing the outermost rows
and columns increases R2

s from 0.53 to 0.60. We estimate
the corresponding penetration length of boundary values
to ~10% of the system size, consistent with Tambe et al.
(34). We conclude that, whenever available, the correct
boundary conditions should be taken into account in the
prior.

Importantly (see Fig. 4), accuracy remains acceptable
ðR2

s > 0:8Þ for a spatial resolution larger than a few data
points per cell, as well as for measurement noise levels up
to 20% of the traction force amplitude, consistent with mea-
surement errors typical of force traction microscopy (31).

These results highlight that BISM is robust to variations
of the numerical simulations that yield the traction force
data.
FIGURE 4 Robustness. BISM remains highly accurate ðR2
s > 0:8Þ for

noise levels and spatial resolutions typical of traction force measurements.

(Red solid line) Coefficient of determination R2
s versus relative level of

added noise. R2
s is averaged over three realizations of the noise. (Blue

dashed line) Coefficient of determination R2
s versus number of traction

force data points per cell, for a typical cell area of 100 mm2. To see this

figure in color, go online.
Validation: experimental data

While inverting the force balance equations (Eq. 1) requires
specific techniques in two dimensions, the same problem
reduces in one dimension to straightforward integration
along the spatial coordinate (5). For this reason, we fabri-
cated a micropatterned ring whose measured mean radius
rmean ¼ 90 mm is larger than its width w ¼ 33 mm;
measured the substrate displacement field; and deduced
the traction forces exerted by a monolayer of MDCK cells
confined within the ring (Figs. 5, a–c, and see Experimental
Methods for further details). We find an average traction
force amplitude texpz200 Pa for a measurement error of
the order of dtexpz40 Pa, and deduce a relative error
dtexp=texp of ~20%, consistent with the range of noise ampli-
tudes where BISM was deemed applicable (see Fig. 4). The
height of the monolayer is typically 5.3 5 1.2 mm (see
Experimental Methods), much smaller than the spatial
extension 2prmean, and varies smoothly (see Fig. S8). In
Fig. 5, d–f, we plot the three stress components as inferred
by BISM, with a regularization parameter LðNÞ ¼
6:7 10�6 and a traction force-based measure of accuracy
c2
T ¼ 4:7 10�6, as defined by Eq. 22. Note that the inferred

stresses are mostly positive, even though the prior distribu-
tion is a zero-mean Gaussian (see Fig. 5 i).

Because shear stresses are small compared to angular
normal stresses jsrq j ; jsqr j � jsqq j , the orthoradial
component of the force balance equation (see S1.2) sim-
plifies to

vsqq

vq
¼ r tq: (23)

Taking into account the experimental angular resolution

Dq, and averaging radially over the width of the ring, we
obtain the 1D value of the increment of orthoradial stress
over Dq:

Ds1D
qq ¼ hr tqir Dq: (24)

This value is compared with the radially averaged increment

of orthoradial stress inferred by BISM hDsqqir (Fig. 5,
g and h). The excellent agreement found between experi-
mental ðhr tqir DqÞ and inferred ðhDsqqirÞ 1D stresses is
quantified by a coefficient of determination R2

ring ¼ 0:99
(see Fig. 5 h). To check that BISM allows us to infer abso-
lute stress values, we calculate the average pressure hPexpi
from traction force data (see S1.4):�

Pexp


 ¼ 1

2
htrri; (25)

where hi denotes spatial averaging over the whole domain.

We obtain hPexpi ¼ �2:18 kPa:mm, in agreement with the
average inferred pressure hPinfi ¼ �2:175 0:94 kPa:mm.

We conclude that BISM is readily applicable to experi-
mental traction force data, and has been validated on
Biophysical Journal 110, 1625–1635, April 12, 2016 1631



FIGURE 5 Validation: experimental data. (a and b) Heat maps of the components tr and tq of the traction forces texp in kPa, on a 12 � 72 polar grid.

(c) Phase constrast image of the MDCK cell monolayer. Scale bar: 20 mm. (d–f) Heat maps of the components srr , sqq, and srq of the inferred stress field

sinf in kPa mm. (g) Angular profiles of the radially averaged inferred stress ( hDsqqir , red circles) and of the 1D stress ( hr tqir Dq, blue line), with an angular
resolution Dq ¼ p=36 rad. Error bars of the inferred stress are the radial average of dbsqq. (h) Radially averaged inferred stress versus the 1D stress.

The coefficient of determination of this plot is R2
ring ¼ 0:99. (i) Empirical distribution function of the inferred component sqq (blue circles). Red

dashed line corresponds to the zero-mean, Gaussian prior distribution function with standard deviation s0 ¼ 2:13 kPa:mm. To see this figure in color,

go online.

Nier et al.
experimental data without reference to a specific rheological
model of the tissue.
Comparison with monolayer stress microscopy

Monolayer stress microscopy, as introduced in Tambe et al.
(26), assumes that the cell monolayer is a linear, isotropic
elastic body. Given traction force data, MSM consists in
finding the stress field that minimizes an energy functional
of the cell monolayer. MSM is thus straightforward to
implement using FreeFemþþ (64), a finite element soft-
ware based on the same variational approach (see S1.1).

A simpler implementation of MSM, which also assumes
an elastic cell monolayer rheology, has been proposed
recently in Moussus et al. (36). We call this method
1632 Biophysical Journal 110, 1625–1635, April 12, 2016
‘‘MSMu’’ because it does not require the calculation of trac-
tion forces and uses the substrate displacement field u as
input data. MSMu further assumes that the displacement
field u is continuous at the interface between substrate and
cells: tissue internal stresses are computed directly from
substrate displacements. In practice, we calculate substrate
displacements from the traction force data set, given numer-
ical values of the substrate elastic modulus Esub ¼ 5 kPa and
Poisson ratio n2D sub ¼ 0:5 (36).

By analogy with MSM, we introduce a stress estimation
method, named ‘‘MSMh’’, that assumes a viscous rheology
for the cell monolayer. Thanks to the variational formulation,
we compute the velocity field given the force traction field
with FreeFemþþ, and estimate the stress field given numer-
ical values of the viscosity coefficients. Of note, other
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variants of MSM could be implemented assuming other tis-
sue rheologies consistent with a variational formulation (65).

The comparison relies on three numerical simulations:
in addition to the Viscous and Elastic 1 data sets studied
above, another simulation of an elastic tissue, named
Elastic 2, has been performed, using the elastic coefficients
E ¼ 10 kPa mm and n2D ¼ 0:5, as advocated in Moussus
et al. (36). Each variant of MSM assumes a tissue rheology,
and thus relies on a set of material parameters. To perform
MSM andMSMu, we use the same tissue elastic coefficients
as in the Elastic 1 (26) and Elastic 2 (36) simulations,
respectively. To perform MSMh, we use the same tissue vis-
cosity coefficients as in the Viscous simulation.

Table 1 summarizes our results and compares the accuracy
of the different methods (see also Fig. S9 for visual compar-
ison). In all cases, the values of R2

s are closer to 1 for BISM,
which performs better than MSM, MSMu, and MSMh. By
construction, BISM seems less sensitive to experimental
noise than deterministic stressmicroscopies. For each variant
of MSM, accuracy is maximal for the data set generated ac-
cording to the same rheological hypothesis, i.e., Elastic 1,
Elastic 2, and Viscous forMSM,MSMu, andMSMh, respec-
tively. Unsurprisingly, a mismatch between numerical simu-
lation and stress microscopy methods, either in the values of
material parameters or in the choice of a rheology, leads to a
lower value of the coefficient of determination.

We also applied MSM to the experimental data set studied
in Validation: Experimental Data. Following the same pro-
tocol, we obtained a larger dispersion of inferred values
than with BISM. The inferred data set obtained by MSM
is characterized by a lower coefficient of determination
R2
ring ¼ 0:32, far below the BISM value R2

ring ¼ 0:99.
All existing stress microscopies infer the stress field up to

an additive null vector s0 such that div s0 ¼ 0. Classically
(53), null vectors of the linear problem div s ¼~t are related
to the Airy stress function c through s0xx ¼ ðv2c=vy2Þ,
s0yy ¼ ðv2c=vx2Þ, and s0xy ¼ �ðv2c=vxvyÞ. Because BISM
infers faithfully the mean stress hsi in confined geometries,
it limits the class of undetectable stresses to zero-mean
stress fields that verify both div s0 ¼ 0 and the boundary
conditions (Eq. 4). Alternative methods will be necessary
to ascertain the relevance of these special solutions to cell
monolayer mechanics.
TABLE 1 Comparison with monolayer stress microscopy

Rheology BISM MSM MSMu MSMh

Viscous 0.96 �0.52 0.48 0.91

Elastic 1 0.97 0.88 0.73 0.80

Elastic 2 0.99 0.61 0.85 0.67

Coefficients of determination R2
s obtained with BISM, MSM, MSMu, and

MSMh (see text for definitions). Traction force data sets were obtained

with material parameter values h ¼ 103 kPa mm s, h0 ¼ h (Viscous);

E ¼ 102 kPa mm, n2D ¼ 0:5 (26) (Elastic 1); and E ¼ 10 kPa mm,

n2D ¼ 0:5 (36) (Elastic 2). Awhite noise of relative amplitude 5% is added

in all cases.
CONCLUSION

Bayesian inversion stress microscopy estimates the inter-
nal stress field of a cell monolayer given traction force
data. Validation on both numerical and experimental
data shows that the method works reliably independently
of the tissue rheology, of its geometry, and of the bound-
ary conditions imposed on the stress field. As a conse-
quence, BISM should apply equally well to isolated cell
assemblies and to patches of cells within a larger mono-
layer. Because the hypotheses made pertain to statistics
(Bayesian inversion), we checked that the method is
robust to changes in the underlying statistical model, in
particular to changes in the prior. Importantly, its statisti-
cal nature leads to a simple, natural definition of an
error bar on the stress estimate. It is compatible with
the level of experimental noise and with the spatial
resolution typical of traction force microscopy. Last,
BISM is more accurate than MSM, and its accuracy
is less sensitive to the rheology of the tissue than all
variants of monolayer stress microscopy. BISM is quite
general because it relies on the laws of mechanics and
on reasonable and robust statistical assumptions. It can
therefore be applied to other active materials strongly
interacting with a soft substrate, provided the height of
the system is small compared to its planar spatial
extension.

We analyzed traction force images, i.e., spatial data at a
given, fixed time. However, BISM does not rely on an
assumption of quasi-stationarity, and would apply equally
well to spatio-temporal data, i.e., to traction force movies.
Our preliminary results suggest that combining Bayesian
inversion with Kalman filtering then further improves
accuracy.

To date, the modeling of cell monolayer mechanics typi-
cally relies on a forward approach: assumptions made on tis-
sue rheology are validated indirectly through predictions
made on (measurable) tissue kinematics. A reliable mea-
surement of the internal stress field paves the way to inverse
approaches, where the combination of stress with kinematic
data, such as the strain rate field or the cell-neighbor ex-
change rate field, would allow us to read out constitutive
equations from data, and to infer the values of material
parameters.
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