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A B S T R A C T

Quantitative analysis of microstructural features on the nanoscale, including precipitates, local chemical or-
derings (LCOs) or structural defects (e.g. stacking faults) plays a pivotal role in understanding the mechanical
and physical responses of engineering materials. Atom probe tomography (APT), known for its exceptional
combination of chemical sensitivity and sub-nanometer resolution, primarily identifies microstructures through
compositional segregations. However, this fails when there is no significant segregation, as can be the case for
LCOs and stacking faults. Here, we introduce a 3D deep learning approach, AtomNet, designed to process APT
point cloud data at the single-atom level for nanoscale microstructure extraction, simultaneously considering
compositional and structural information. AtomNet is showcased in segmenting L12-type nanoprecipitates from
the matrix in an AlLiMg alloy, irrespective of crystallographic orientations, which outperforms previous methods.
AtomNet also allows for 3D imaging of L10-type LCOs in an AuCu alloy, a challenging task for conventional
analysis due to their small size and subtle compositional differences. Finally, we demonstrate the use of AtomNet
for revealing 2D stacking faults in a Co-based superalloy, without any stacking-faults-relevant samples in the
training dataset, expanding the capabilities for automated exploration of hidden microstructures in APT data.
AtomNet can thus recognize challenging microstructures, including nanoprecipitates with diameters above 2 nm,
LCOs with diameters of about 1–2 nm without obvious compositional segregation, and even unforeseen planar
defects by analyzing atom-atom environments. AtomNet pushes the boundaries of APT analysis, and holds
promise in establishing precise quantitative microstructure-property relationships across a diverse range of
metallic materials.

1. Introduction

The overall set of physical properties in materials is governed by
microstructures across multiple length scales, spanning from grain-level
phase constitution [1–3] down to atomic-level solute distribution [4–6].
Understanding these features necessitates advanced characterization
techniques at different length scales for specific applications. Difficulties
arise at finer scales, largely owing to the more significant challenges in
balancing spatial resolution and statistical reliability [7,8]. Atom probe
tomography (APT), with excellent elemental sensitivity and near-atomic
resolution [9], can perform a quantitative 3D assessment of nanoscale

microstructures in engineering materials and as such allows for direct
correlation with macroscopic properties. This includes not only nano-
scale precipitates [10–12], complex oxides [13,14] andmultiphases [15,
16], but also crystalline defects such as dislocations [17,18] and grain
boundaries [19,20]. Their successful detection generally depends on a
certain degree of compositional segregation. Relevant algorithms
include isosurface analysis [21,22], K nearest neighbor [23], radial
distribution function [24], maximum separation algorithm [25],
core-linkage [23], Gaussian mixture model [26], and hierarchical
density-based cluster analysis [27] to visualize or indicate the degree of
segregation.
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An obvious limitation occurs when there are subtle or even negligible
elemental segregations, as can be the case for local chemical ordering
(LCO) [28] or 2D stacking faults [29] that have been reported as chal-
lenging to analyze. Deciphering these elusive microstructures in 3D
would help establish a concrete structure-property relationship,
enabling the manipulation of these structures to design advanced ma-
terials. For example, LCO exhibits a different atomic occupation
compared to the matrix, which increases the local component fluctua-
tion and thereby decreases the mobility of dislocations [30]. Similarly,
LCO can also reduce the width of extended dislocations, explaining why
the experimental stacking fault energy is higher than the calculated
value [31]. Besides, LCO can affect the atomic spin and orbital magnetic
moments, thereby altering the thermal, electrical, and magnetic prop-
erties of materials [32,33]. The key to characterizing these elusive
microstructural features requires exploiting the partial structural infor-
mation within APT data.

Following reconstruction, APT data takes the form of a 3D point
cloud along with the atomic or ionic identity [34,35]. APT’s chemical
sensitivity is in the range of 10–100 ppm, but its spatial information is
anisotropic due to the trajectory aberrations (the resolution of the best
scenario is 0.3 nm in the lateral direction and 0.1 nm in the depth di-
rection) [36,37]. In addition, 20 %–65 % of the ions are randomly lost,
because of the limited open area of the particle detector or due to grids
with limited transparency on the path of the ions. As a result, the mining
of the remaining high-quality yet partial crystallographic information
requires expertise, sophisticated tools, and remains both
time-consuming and user-dependent [38–41]. Machine-learning-based
algorithms are being developed to improve data extraction, simplify
and automate data analyses, including user-independent mass spec-
trometry analysis [42–45], intelligent interface detection [19,46,47], or
more complete APT data analysis workflow [48,26].

Another example is the analysis of the partial structural information
retrained within APT data [49]. This is typically analyzed through the
use of spatial distribution maps (SDMs). The generation of a single SDM
requires the integration of signals from a certain volume of atoms (1–2
nm), and the 3D structural data is reduced to 1D- of 2D-histograms
enabling the quantification, along specific crystallographic orienta-
tions, of inter-atomic distances. Systematically generating and analyzing
SDMs large datasets from which millions of SDM patterns require
automated analysis workflows as recently enabled by machine-learning
[50,51], including for challenging LCO detection [28,52,53].

With APT’s point cloud being intrinsically 3D, it is natural to extend
these methodologies for extracting microstructural features directly to
3D, going beyond conventional analyses that start with a data dimen-
sionality reduction into 1D/2D descriptors, causing potential informa-
tion loss [28,37]. Our recent work demonstrated the possibility of
applying a 3D convolutional neural network (CNN) to analyze voxelized
APT data to segment the 3D distribution of L12-type nanoprecipitates
from a disordered FCC matrix [54]. However, the required data region
was limited to specific crystallographic poles and did not address situ-
ations where no clear elemental segregations exist. Moreover, the nature
of voxelization limited the size range of the recognized domain using
CNN, thus not reaching down to the single-atom scale.

Here, we propose a 3D point-cloud-based neural network, named
AtomNet, to handle the information at the single-atom level without
voxelization to reveal different nanoscale microstructures. AtomNet is
based on PointNet [55], which can effectively and robustly handle point
cloud data. Prior knowledge about continuous phase distribution is also
introduced to AtomNet for better recognition ability. First, AtomNet is
tested by 3D imaging nanoprecipitates in an AlLiMg alloy used as a
benchmark, and we showcase its ability beyond previous work that
would only work in the highest spatial resolution. Then, the more
challenging case of the detection of L10-type LCOs in red gold, which has
a composition close to equiatomic AuCu, for which previous
segregation-based analysis isosurface failed to identify ordered domains.
Finally, the ability of AtomNet to indicate the positions of stacking faults

is explored in a Co-based superalloy. The advantages and limitations of
AtomNet are discussed, along with directions for future developments.

2. Materials and methods

2.1. Materials

APT data of Al-6.79Li-5.18Mg (at.%, thereafter) alloy annealed at
150 ◦C for 8 h was selected as a benchmark, as it has been previously
used in Ref. [38,54,56]. The data was collected on the Cameca LEAP
3000XSi with a 55 % detection efficiency [56]. A deformed
Au-46.8Cu-5.3Ag red gold [57] and Co-based superalloy (Co-32N-
i-8Al-5.7W-6Cr-1.8Ta-2.8Ti-0.1Hf-0.4Si) alloy were chosen to show the
LCO and defects recognition ability of AtomNet, respectively. The
former APT measurement was performed on a LEAP 5000XS with an 80
% detection efficiency, while the latter was on a LEAP 5000XR with a 52
% detection efficiency. All site-specific (along the {002}) needle-like
specimens were prepared using the FEI Helios focused ion beam with
a Ga ion source. The APT experiments were performed in laser pulsing
mode at 50–60 K, 0.8–1.0% detection rate, 40–45 pJ laser energy, and
125–250 kHz pulse rate. APSuite 6.3 was used for all initial re-
constructions by tuning two important parameters, i.e. the field factor
and image compression factor according to the method introduced in
Ref. [58,59].

2.2. Feature engineering

Appropriate feature engineering is a cornerstone of machine learning
[60]. APT data has two primary components: the Euclidean spatial co-
ordinates (X, Y, and Z) of each atom of the point cloud; the other is the
mass-to-charge information of each atom to identify the chemical spe-
cies. Inspired by how scientists distinguish different crystal structures
with specific elemental site occupations, a simple and efficient feature
extraction method is proposed. For each atom, we extracted its relative
3D atomic position relative to the nearest neighbor (NN), i.e. ΔX ΔY ΔZ,
as shown in Fig. 1a. N (neighbor) and S (self) represent the elemental
species of neighboring atoms and the selected atom itself, respectively.
Here we use A, B, C … to represent different elements. Compared with
voxelization methods, AtomNet exhibits great advantages as shown in
Fig. S1, with minimized memory utilization and completely accurate
localization. Voxelization will inevitably cause shifts because of the grid
approximation. A higher voxelization length can reduce the shifts at the
expense of squared (2D) or cubic (3D) memory. By avoiding voxeliza-
tion, AtomNet can deal with random-shape inputs.

We also studied the relationship between neighbor atom numbers
and model performance, as plotted in Fig. S2. As the NN increases, the
validation AUC score increases. Because of a combination of limited
spatial resolution and limited detection efficiency of APT [61,62], there
is a need to define the number of NN (nearest neighbor) beyond the first
shell. Even assuming no losses from imperfect efficiency, when the
number of NN is low, i.e. 8, even the first shell (12NN in FCC) cannot be
entirely captured and AtomNet would inevitably fail to learn the
structural information. 32NN-128NN leads to validation AUC scores
over 0.90. When the NN reaches 128, the validation AUC score becomes
stable, which means distant atoms do not provide additional informa-
tion for AtomNet to judge structures. In Fig. S3, we visualized the
recognition ability of different NNs. It is consistent with the AUC score in
Fig. S2, in which a larger NN makes fewer erroneous predictions. A
128NN configuration appears to be an optimal choice. However, the
required memory (RAM) would be approximately four times larger
compared to using the 32NN, which makes 128NN inefficient and
impractical to deploy on our personal computers. Following the feature
update strategy, a 32NN configuration can effectively handle noisy
atoms, thereby ensuring its reasonability. A lower NN configuration,
such as 16NN, is theoretically impractical for LCO analysis since it
cannot encompass the entire second shell (18NN in FCC). A higher NN
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configuration, such as 64NN, can reduce the number of noisy atoms and
achieve a test AUC score of 0.871. However, it still cannot surpass the
32NN with the feature update (test AUC score: 0.901) and requires
approximately double the RAM. For other crystal systems, like BCC and
HCP, similar tests would need to be performed to determine the best NN.

2.3. Workflow of AtomNet

PointNet is a popular 3D neural network that handles point clouds
directly and efficiently, respecting the permutation invariance of inputs
[55]. This avoids generating large amounts of sparse data and losing
information that was encountered when using the CNN-based strategy to
transform point clouds into regular 3D voxels, 2D images or 1D curves
[37,54]. Here, we propose AtomNet, which utilizes PointNet as a
fundamental building block, to identify challenging nanoscale micro-
structures in APT data. It is worth noting that the name, AtomNet, has
been used in the biological field [63], although its structure differs

entirely from what is used in this work. As shown in Fig. 1b, the applied
PointNet block mainly consists of 2 T-Nets, 3 MLPs and 1 MaxPool layer.
The T-Net allows affine transformations such as translation, rotation,
shearing, and so on. It was originally designed to ensure 3D spatial
invariance. T-Net consists of 3 Conv1D, 2 Dense, 1 MaxPool and 1
Transformation layers, followed by the original input dotting with a
transformation matrix to complete the affine transformation. MLP
stands for the multi-layer perceptron with 2 to 3 wt shared Conv1D or
Dense layers. MLP is the primary computational processing unit, and
traditional artificial neural networks could be constructed only with it.
MaxPool is a pooling or aggregating layer that stores the maximum
value and discards others, providing interactions within nearby atoms.
After training the first PointNet block, AtomNet shows moderate pre-
dictive ability, for example, with the obtained AUC (area under the
receiver operating characteristic curve) value being 0.78 in the Au-Cu
alloy.

To further improve model performance, a feature updating strategy

Fig. 1. Overview of the proposed AtomNet architecture. (a) The details of feature engineering of each atom. The left part shows the schematic of sampling in-
formation from neighboring atoms in APT data. The right part shows the input feature matrix of the “A” atom. (b) Architecture of AtomNet model. From left to right,
AtomNet, PointNet block and T-Net are painted successively. Brackets in AtomNet indicate data shape and in T-Net mean the number of filters/neurons. All activation
functions are “Relu” except the output layer which uses “Sigmoid”. (c) Visualization of nanoparticles before/after feature updating. Green atoms represent a correct
prediction, while red atoms represent an incorrect prediction. (d) Feature updating for incorporating prior knowledge to improve accuracy. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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was utilized to introduce prior knowledge, as an inductive bias [64] to
help model learn specific notions efficiently. Here, the notion refers that
precipitates, LCOs or distinct phases usually consist of continuous and
compact groups of atoms. If most of the neighbor atoms belong to the
specific phase, the target atom would also belong to the same phase. The
original features were updated after the first PointNet block, as shown in
Fig. 1b. Then the updated features were fed into the second PointNet
block, and a higher AUC of 0.86 was obtained in the Au-Cu alloy. Fig. 1c
visualizes the results before and after the first feature update, suggesting
that the number of incorrectly predicted atoms has been greatly
reduced. Fig. 1d shows the detail of feature update, by adding/updating
predictions from the last PointNet block. Theoretically, this iteration can
be repeated to get better performance, at the expense of heavy compu-
tations. A detailed test is provided in Section 2.5.

2.4. Simulated data bank

As a supervised algorithm, AtomNet requires reliable training data-
sets. Here, a pipeline is proposed to generate synthetic APT point cloud
datasets by simulating the trajectory aberration and imperfect detection
efficiency encountered in APT experiments [58]. As shown in Fig. 2, the
simulation can be concluded as 4 steps: create perfect structures, add
specific domains, rotate, and add noise. In step 1, a perfect 3D
FCC-matrix superlattice was built with a size of 4 × 4 × 4 nm3. The
structure originated from a single cell and expanded into a cube,
maintaining periodicity. First, 1 vertex atom ({0, 0, 0}) and 3 face center
atoms ({0.5, 0.5, 0}, {0.5, 0, 0.5}, {0, 0.5, 0.5}) were identified. Sub-
sequently, these 4 atoms were expanded into the FCC structure using

‘for’ loops. In step 2, different kinds of domains were inserted. Spherical
L12 (Al0.75Li0.2Mg0.05), L10 (AuCu), and L12 (Co0.4Ni0.35Al0.095W0.043X,
X representing all remaining elements) nano-domains were embedded
into an FCC matrix of Al-Li-Mg, Au-Cu and Co-based superalloys,
respectively. Stress-related lattice distortions from a lack of coherency
are neglected, since our simulations are performed on a rigid lattice, and
offsets within APT data arising from trajectory aberrations are usually
much more significant than the distortion from a lack of coherency. The
lattice distortion induced by stress should be considered when investi-
gating precipitates with incoherent interfaces with the matrix, particu-
larly focusing on distortions along the depth direction with a high
resolution. In step 3, the superlattice was rotated to simulate experi-
mental data along different crystallographic orientations, allowing to
simulate regions of high and low spatial resolution (i.e. near and away
from crystallographic poles). As listed in Table 1, AlLiMg alloy was
randomly rotated to±90◦ to simulate all possibilities of crystallographic
orientations. While for the other two systems, the rotation along the x

Fig. 2. Pipeline of simulated APT data. Adding some specific nano-structures (Al0.75Li0.2Mg0.05 nanoparticles here) into a perfect FCC matrix, then rotating and
disturbing to simulate the crystallographic orientation and trajectory aberration encountered in APT data, respectively.

Table 1
Parameters of simulated data in different alloying systems.

Alloys L12/L10-
domain
radius (nm)

Rotation (◦) Detection
efficiency

Trajectory aberration
(nm)

X/Y Z X/Y Z

Al-Li-Mg 1.2–2.0 ±90 ±90 40 %− 80 % 0.2–0.5 0.08–0.02
Au-Cu 0.8–1.2 ±3 ±90 40 %− 80 % 0.2–0.5 0.08–0.02
Superalloy 1.4–2.0 ±3 ±90 40 %− 80 % 0.2–0.5 0.08–0.02
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and y axis was limited to ±3◦ and along the z axis was randomly chosen
between ±90◦ to simulate experimental data along the {002} pole. Note
that the local rotations along x and y are intended to reflect the local
distortion of the atomic planes along the pole [61]. Rotation, being a
linear transformation, is efficiently achieved by applying a rotation
matrix. In step 4, atoms were disturbed and discarded to simulate the
noise. Gaussian noise was added to shift atoms in 3D to simulate tra-
jectory aberration, with a Gaussian distribution having a standard de-
viation of 0.2–0.5 nm in the x/y directions and 0.08–0.2 nm in the z
direction. Certain fractions of atoms were removed to simulate the
detection efficiency, with a random value between 20 % and 60 %. All
steps are compiled into Python codes, available at https://github.co
m/bookofstrange/AtomNet.

2.5. Training details

AtomNet was implemented by the TensorFlow-GPU 2.10.0 backend
on Python 3.9.7. Training/validation/testing data contained 80/10/10
cubes with a 4/4/10 nm length, respectively. Training and validation
data are limited to under 4 nm, to increase the simulation diversity and
decrease the computational cost. The cube length of 4 nm is decided by
the maximum domain size set to 4 nm. The training/validation ratio is
set by the standard protocol, which is 8/1. Each 4-nm cube included
1500–3800 atoms, depending on the detection efficiency. After a thor-
ough tuning procedure, the chosen loss function was BinaryCrossEn-
tropy and the optimizer was Adam (adaptive moment estimation) with a
learning rate of 10− 3. BinaryCrossEntropy (H) can be calculated as
below:

H = −
1
N

∑N

i=1
yi⋅ln(p(yi)) + (1 − yi)⋅ln(1 − p(yi)) (1)

Where N is the total sample number, yi is the ith label, and p(yi) is the ith
predicted probability of being true. AUC was used as the metric to
measure unbalanced datasets (the ratio of atoms between the labeled
L12/L10-domain and the matrix is close to 1:4). Loss/BinaryCrossEn-
tropy is a differentiable function that helps gradient descent during
training. Metric/AUC is the decisive factor of model performance. For
the training procedure, the chosen batch size was 256, and callbacks
were used to monitor and save the best model. An Au-Cu example of the
evolution of AUC and loss is shown in Fig. 3. The change in background
color indicates the feature updating by training another PointNet block.
The obtained AUC value in the validation dataset increases significantly
from about 0.78 to 0.86 after the first update due to the introduced prior

knowledge, while the loss increases from about 9.22 to 9.45 at the same
time. The higher loss may be related to the newly added dimension,
which introduces more variables and uncertainties. Thus, we pay more
attention to AUC instead of loss when evaluating the obtained classifi-
cation model [65]. Based on the balance between the AUC value and
computation costs, the number of PointNet blocks in the Al-Li-Mg,
Au-Cu, and Co-based superalloy is 2, 3, and 2, respectively.

3. Application of AtomNet

3.1. Nanoprecipitates in AlLiMg

Nanoscale precipitates play a critical role in influencing the me-
chanical properties of alloys primarily through precipitation hardening
mechanism [1,2,12,66]. Quantifying these nanoprecipitates is beneficial
for establishing microstructure-property relationships that can help
further in designing advanced materials [67,68]. The Al-Li-Mg dataset
used in Ref. [38,56] was used as a benchmark to test AtomNet. Fig. 4a
shows an example of the simulated L12-type Al3(Li, Mg) particles with a
radius of 1.2–2 nm embedded in a disordered FCC matrix. AtomNet
accurately predicted if an atom belongs to the L12 phase, as shown in
Fig. 4b. Isosurface can also capture these nanoprecipitates but some of
them are shrunk in size, as shown in Fig. 4c. After performing once
feature updating strategy mentioned in Section 2.3, the final AUC score
is 0.890±0.033. The AUC reflects how well the model is trained on
unbalanced datasets (See Section 2.5), but not sufficient to judge the
recognition ability for each class.

Recall and precision metrics were used to further assess the recog-
nition ability, as displayed in Fig. 4c and d. Recall is a metric that reflects
how many positive samples can be detected, while precision tracks the
reliability of predictions, defined as below:

Recall =
Total number of correctly predicted oredered atoms

Total number of truely oredered atoms
(2)

Precision =
Total number of correctly predicted oredered atoms

Total number of predicted oredered atoms
(3)

AtomNet obtained an overall recall and precision of 0.79 and 0.72
(Fig. 4), while isosurface had an overall recall and precision of 0.51 and
0.73. The metric difference is consistent with the visualization: the
lower recall of the isosurface method leads to fewer atoms being
recognized, resulting in an apparent size shrinkage. It is interesting to
note that both recall and precision of Li are higher than those of Al and
Mg elements, which can be explained by its higher tendency for

Fig. 3. Training and validation of AtomNet. (a) AUC and (b) loss of AtomNet with epochs in the Au-Cu system. The background color will change after adding
another PointNet block with the updated features. The orange star marks the final choice. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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partitioning between the ordered precipitates (20 at.%) and the disor-
dered matrix (5 at.%). This first example showcases AtomNet’s capa-
bility for reliably identifying L12-ordered precipitates in simulated
datasets, and some initial advantages compared to isosurface.

AtomNet was then applied to the experimental data, both close to
and away from the {110} pole, in regions-of-interest indicated in the
detector hit map shown in Fig. 5a. Analysis of structural information in
APT can normally be done only in regions near poles, i.e. where the
corresponding crystallographic planes are imaged. Fig. 5b shows
nanoprecipitates captured by AtomNet, at the {110} pole. Fig. 5c shows
the distribution of L12 particles marked by an 8 at.% Li isosurface. The
AtomNet prediction closely matches the isosurface result, with similar
average size and spatial locations.

AtomNet is also consistent with the previous CNN method (Fig. 5d)
[38]. It’s a voxelization method and can only work along specific pole
sites. The prediction is based on cubes of a certain size, so the interface
between the matrix and the nanoparticles is facetted. Instead, AtomNet
sets out from every single atom and thus can retain the intrinsic nature
(nearly atomic resolution) of APT data. Moreover, the blue box in Fig. 5d
marks one missing nanoprecipitate via CNN, although it ought to exist
(compared with Fig. 5b and Fig. 5c). Third, as compared to previous
CNN result, some noisy points/atoms remain via AtomNet due to its
single-atom nature, which may be eliminated with a clustering algo-
rithm by setting the minimum number of atoms in a cluster.

We further obtained the spatial distribution maps along the depth
direction (z-SDMs) [69] of Al-Al pairs of the recognized L12 particles and
remaining matrix, as shown in Fig. 5e. The matrix has an interplanar
distance of 0.14 nm while the L12 nanoparticle has an interplanar dis-
tance of 0.28 nm. This difference relates to the atomic occupancy of Al,
which is random in FCC and face-centered in L12, as discussed in
Ref. [56].

Poles are not always visible or planes imaged, and this has limited

the application of previous approaches to small reconstructed volumes
near poles. As Fig. 5f and g reveal, AtomNet can also detect precipitates
in the subset of the data in which atomic planes are not imaged, and
these agree well with segmentation based on isosurface. Although
AtomNet was trained using spherical particles, this example demon-
strates that non-spherical domains (Fig. 5f) can be identified.

3.2. Local chemical orderings in red gold

The last case study exhibits obvious elemental segregations, which
can also be handled using other approaches. Here, we will further
explore the performance of AtomNet in a more challenging case with
LCOs. Red gold is generally considered to have a transformation from
FCC to the ordered L10 phase, which hardens the material but limits its
workability [57]. An interesting shape memory effect is also related to
this L10 phase [70]. In-situ synchrotron X-ray diffraction technique
indicated the presence of LCOs by observing weak peaks [57] or peak
dissymmetry [71], however the characterization of the early stage of L10
ordering remains challenging due to the lack of obvious segregation,
coherent interfaces with the matrix, and the small size of the ordered
domains (typically below 2 nm). Here we apply AtomNet to capture
these tiny L10-type LCOs. Note that the isosurface approach cannot work
here due to the absence of obvious compositional differences between
LCOs and FCC matrix.

First, AtomNet was tested on simulated datasets. As displayed in
Fig. 6a, we built several L10 LCO domains with a diameter of 1.6 nm
embedded in FCC matrix. After simulating the 40 % detection efficiency,
a domain would only contain in the range of 50 atoms, making its
detection arduous compared to larger precipitates as in Al-Li-Mg. This
analysis achieved an AUC score of 0.822±0.052 on test datasets when
using the default threshold of 0.5, while the predicted LCOs experienced
significant size shrinkage in Fig. 6b (the average radius is reduced from

Fig. 4. Performance of AtomNet on the simulated AlLiMg test datasets. (a) An example of some simulated L12 nanoprecipitates. (b) and (c) are the corresponding
predicted results of AtomNet and the 8 at.% Li isosurface, respectively. Only atoms from nanoprecipitates are shown. (d) Recall and (e) precision from different
elemental species, respectively. 10 cubes with a length of 10 nm were analyzed to obtain a statistical result with the default classification threshold of 0.5 (a more
detailed discussion about the choice of thresholds will be given later).
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about 0.8 nm to about 0.6 nm). To improve the shape and size accuracy
of predicted LCOs, different thresholds were compared. At a lower
threshold of 0.3, Fig. 6c, the size of the detected LCOs looks closer to the
ground truth compared to those obtained with a threshold of 0.5,
although it appears to get more noise. A higher threshold of 0.7, Fig. 6d,
only leaves a few atoms per domain due to the strict classification cri-
terion. We also assessed the relationship between threshold and recall/
precision, which showed a trade-off in Fig. 6e and Fig. 6f. As the
threshold increases, the precision tends to increase while the recall tends
to decrease. Recall shows howmany of positive samples (LCOs here) can
be found. Precision shows the probability of being true (LCOs here) from
all recognized samples. Detecting out (recall) is the precondition of
recognizing right (precision). Since LCOs are not easy to detect, guar-
anteeing a higher recall is the better choice. When the threshold is 0.3/
0.5/0.7, accordingly, the recall and precision are (0.72 0.52)/(0.53
0.69)/(0.28 0.87). A threshold of 0.3 leads to recall exceeding 0.7 and
maintains precision at 0.5. That means 72 % of true LCO atoms will be
successfully detected and only 48 % of the detected samples are fake. By
adding recall and precision when the threshold is 0.2/0.3/0.4/0.5/0.7,
one obtains 1.20/1.24/1.23/1.22/1.15, which again points to a
threshold of 0.3 being the optimal value. Henceforth, the threshold of

0.3 is finally decided for this case.
Fig. 7a shows the obtained distributions of 3D L10 LCO domains

along the {100} pole, and in Fig. 7b each identified domain is displayed
with a separate color. Note that the clustering method in APSuite 6.3
was applied to assess the size distribution of LCO domains with a
maximum separation distance of 0.4 nm and a minimum number of ions
in the cluster of 3. The domain appears spherical. Fig. 7c plots the z-
SDMs of different elemental pairs in the matrix (FCC) and LCO domains.
Both peak-to-peak distances of Au-Au and Cu-Cu z-SDMs are half than
those in LCOs, which is consistent with the expected crystal structures
(FCC and L10). The distribution of size (number of atoms) versus count
of LCOs is given in Fig. 7d, and compared with that from a chemically
randomized dataset. The latter was generated by maintaining the x, y,
and z coordinates but randomly shuffling the mass-to-charge and the
associated elemental identities [28,52]. We compare the size distribu-
tions of four randomized datasets with each other based on the contin-
gency coefficient (μ) [52]. The upper limit of the obtained μ being near
0.25 is regarded as a baseline for these randomized size distributions in
experimental data. After analyzing the experimental data, an average
value of 0.270±0.011 was obtained, which suggests the occurrence of
non-statistical L10-LCOs in this system. A fraction of LCO domains with

Fig. 5. Validations on AlLiMg experimental data. (a) 2D detector hit map to highlight the pole and non-pole sites for further analysis. The orange circle marks {110}
pole, while the yellow circle is non-pole. Reconstructions are based on pole (b, c, d) and non-pole (f, g) respectively. (b) is the prediction by AtomNet. Here only
nanoprecipitates are displayed. (c) is the isosurface method to show nanoparticles on Li maps. The concentration threshold is 8 at.% Li. (d) Prediction with previous
CNN method [30]. Blue box in (d) marks a missing nanoprecipitate. (e) z-SDMs of Al-Al pair of nanoprecipitates and the remaining matrix from (d). (f) and (g) are
predictions by AtomNet and isosurface respectively, at non-pole sites. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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>65 APT-counted atoms (> 1.1 nm in diameter) exist in the experi-
mental data while no significant sign in the randomized dataset. This
suggests that these small LCO domains with sizes below 65 atoms are
primarily formed statistically and randomly in this studied alloy.

3.3. Stacking faults in a deformed co-based superalloy

Stacking faults (SFs) are 2D crystallographic defects along which the
stacking of {111} close-packed planes is out of order [72,73]. SFs reduce
the dislocation mobility in single crystal superalloys, and affect their

Fig. 6. Trade-off between recall and precision in simulated Au-Cu test dataset with L10 LCOs. (a) Ground truth of simulated L10 LCOs with a diameter of 1.6 nm. The
matrix is hidden. (b), (c), and (d) are corresponding predictions by AtomNet with different thresholds (represented by “Th” with the value from 0 to 1). (e) and (f) The
evolutions of recall and precision with varied thresholds, respectively. 10 cubes with a length of 10 nm were analyzed to obtain the statistical result.<AuQuery:
Please check,Part designations in figure legends should be in normal typeface (not bold face).>
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creep responses [74,75]. Recent studies also suggested that deformation
faults could be used to further design metastable alloys [8,72,76], as
they can serve as the loci for local phase formation and transformation
[77–79]. This motivates the third application of AtomNet. Assessing the
potential presence of SFs within APT data is however challenging, and
has often required the use of correlative electron microscopy [29], and
depends on the degree of elemental segregations to the SFs, which is
unknown beforehand and can be subtle. Here, we considered a deformed
Co-based superalloy as an example to explore the potential of AtomNet
on recognizing unforeseen patterns associated with defects like SFs.
Since SFs are usually associated with dislocations and potential segre-
gations, simulating realistic SFs remains challenging. Besides, phase
structure or atomic occupation has infinite permutations in material
science. Using AtomNet to search for SFs without simulating SFs
explicitly was a way to test AtomNet’s behavior in such a context. The
training data only consists of the L12 phase (Co0.4Ni0.35Al0.095W0.043X)
and FCC matrix. In case AtomNet converged quickly by elemental in-
formation, we adjusted the component of matrix and precipitate to be
the same, forcing AtomNet to focus on structural information and giving
a sign when the atomic occupation is different (L12 here). Fig. 8a shows
data containing primarily a L12-ordered γʹ precipitate, with only a small
volume of the FCC γ–matrix. Based on previous reports [29,80,81], SFs
have so far been sought by depletion in the Al concentration projection
map, as shown in Fig. 8a, in which subtle planar variations are
observable.

Here, two zones marked in Fig. 8a were analyzed using AtomNet to
automatically search the sites of SFs. In Zone 1 (Fig. 8b), a reduction in
the density map of ordered domains is marked by the red arrow, indi-
cating a zone in which the atomic organization is not the L12 phase and
thus possibly a SF. Zone 2 (Fig. 8c) exhibits a vertical wide zone with a

low density of L12-ordered domains, marked by the gray arrow, which
was found to go through the entire volume and corresponds to a crys-
tallographic pole. Another zone with a lower density marked by the
green arrow can be associated with a SF. AtomNet can hence indicate the
position of defects, even without relevant training data.

4. Discussion

In this work, a point-cloud-based AtomNet was proposed to intelli-
gently dig out microstructural information hidden within APT data. We
successfully applied it in a series of FCC-based case studies with nano-
structures spanning from 3D to 2D. AtomNet offers several advantages
over previous methods based on isosurface thresholding [34,35] or
CNN-assisted APT analyses [38,54]. First, unlike previous CNN methods
based on voxelization, AtomNet handles every single atom. For instance,
the segmentation from AtomNet exhibits a smooth phase boundary
while previous methods show an obvious jagged boundary (Fig. 5c, d).
Moreover, previous methods partially focus on either the compositional
differences, i.e. isosurface, or the structural changes, CNN-APT [38].
AtomNet considers both compositional and structural information
simultaneously, by integrating features from 32 nearest neighbors with
respect to each atom. These features were transformed and trained via a
PointNet block to tackle some challenging situations – including, for
instance, precipitates imaged away from regions in which atomic planes
are imaged in the case of the AlLiMg alloy (Fig. 5), small LCO domains
without obvious compositional segregation in Au-Cu (Fig. 7). Third,
AtomNet can indicate nanostructures that do not exist in the training
datasets, like SFs in the Co-based superalloy. In this case, the composi-
tion of the matrix and precipitates was the same in the simulated data, to
focus AtomNet only on the structural information. Thus, AtomNet will

Fig. 7. 3D distribution of L10-typed LCOs in Au-Cu along the {100} pole. (a) Elemental distributions predicted by AtomNet. (b) Corresponding cluster distribution in
(a). (c) Au-Au and Cu-Cu z-SDMs from L10-typed LCOs in (a) and remaining FCC matrix. The right part displays the ideal crystal structure of matrix (FCC) and LCOs
(L10). (d) Size distribution of L10-typed LCOs in (b). A chemical-randomized dataset is compared. The inserted table gives a μ value, a parameter that indicates the
degree of randomization.<AuQuery: Please check,Part designations in figure legends should be in normal typeface (not bold face).>
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respond to those never-seen defects by judging the occupations of atoms.
Better performance could be achieved if these defects could be simulated
and then used to train AtomNet. Last but not least, AtomNet still works
well in non-spherical nanodomains whose composition differs from the
simulated one like Figs. 5 and 7, further demonstrating its robustness.

Nevertheless, AtomNet has some limitations. For a specific alloy,
relevant training data need to be acquired from either experiments or
simulations. While conventional methods like isosurface only require
manual analysis and trial and error. Of course, this cannot work in the
case of Au-Cu with the existence of LCOs.

For the Au-Cu case, the classification threshold was adjusted to test
the performance of the recognition model. A trade-off between the recall
and precision (corresponding to the size and count accuracy, respec-
tively) is inevitable (Fig. 6e and f). When choosing a low threshold
(Fig. 6c), AtomNet achieves a high recall, i.e., a high size accuracy,
which is desired for size-focused research. However, the corresponding
precision is low and AtomNet falsely classifies more random atoms as
ordered ones, i.e., over-recognition phenomenon. By selecting a high
threshold (Fig. 6d), AtomNet will get a high precision, i.e., a high count
accuracy, which is better for number-density-focused research. For some
tasks like detecting L12 from FCC in the AlLiMg with obvious segrega-
tion and relatively large size (above 2-nm diameter), selecting the
default threshold of 0.5 would be appropriate for the most time (Figs. 4
and 5). For some challenging tasks like recognizing L10 LCOs in the Au-
Cu with weak segregation degree and small size (below 2-nm diameter),
a lower threshold, like 0.3, can ensure that atoms belonging to the
hidden nanostructures are recognized as complete as possible. To further
validate the reasonability of the selected threshold of 0.3, we analyzed
the z-SDMs of the atoms with a threshold between 0.3 and 0.5. The
double interplanar spacing still existed for this part of data like Fig. 7c,
suggesting its nature of L10-typed structure.

Our previous work [28,52] has the ability to detect LCOs, even
smaller chemical short-range orders (approx. 0.5 nm in radius), focusing

more on structural information. However, as highlighted in the intro-
duction, this necessitates the transformation of 3D point cloud data into
1D signals, a computationally intensive process that is circumvented in
the proposed AtomNet. While AtomNet facilitates the detection of LCOs
in the Au-Cu alloy, its optimal performance lies in characterizing
chemical medium-range orders, approximately 0.6 nm in radius.
AtomNet exhibits less satisfactory performance in recognizing smaller
chemical short-range orders, attributed to the disturbance caused by
lateral atoms with lower resolution.

The current approach deals with FCC-based alloys, but it can be
easily extended to other structures (BCC, HCP) without limiting the
number of components. This would broaden the capability and appli-
cation of AtomNet, including e.g. compositionally-complex alloys or
recognizing grain boundaries in nanocrystalline materials. Moreover,
better performance of AtomNet could be achieved with more realistic
training datasets, which can be synthesized via advanced generation
models like generative adversarial networks [82] and diffusion models
[83]. Finally, the recognized accuracy of AtomNet is dependent on the
data quality, like the detection efficiency and spatial resolutions. With
the improvement of data quality, the boundary of AtomNet can be
pushed to more complex situations, even for the detection of 1D (like
dislocations) and 0D (like vacancies) nanoscale features.

5. Conclusions

In this work, we designed a 3D deep neural network named AtomNet
to intelligently mine hidden nanoscale 3D/2D features from APT data in
various FCC-based metallic materials. During training, a crucial feature
updating strategy was introduced to achieve a better recognition ability.
AtomNet considers both the compositional and structural information,
and enables to recognize different microstructures at the singe-atom
level, ranging from nanoprecipitates in the AlLiMg, LCOs in the Au-
Cu, and even 2D SFs in the Co-based superalloy. AtomNet outperforms

Fig. 8. Exploration in a deformed Co-based superalloy (Co0.4Ni0.35Al0.095W0.043X, X represents remaining elements) with SFs. (a) Traditional 2D Al concentration
projection map to indicate potential sites of SFs. Two zones inside the L12 phase were analyzed by the proposed AtomNet. Predictions of AtomNet in (b) zone 1 and
(c) zone 2 with atom (up) and density (bottom) maps. Arrows indicate the sites of SFs and the pole. The classification threshold is 0.5.
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previous isosurfaces and CNN-APT methods in its ability to detect
nanoprecipitates independently of the presence of crystallographic ori-
entations and to reveal small LCOs without obvious elemental segrega-
tion. AtomNet has the ability to display unforeseen structures that are
not present in the training data, such as SFs in the Co-based superalloy.
In the near future, AtomNet will be extended to include other crystal
structures (BCC, HCP) and more complex compositions, and enable the
detection of grain boundary and dislocation.
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