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1 | General introduction

Our world is full of regularities. Big ones, such as the rising and setting of the

sun, or the transitioning of the seasons, and infinitely many small ones, such as

which leg a spider moves first, the ripples in a lake after a drop of rain falls in, and

the rhythmic breath of your sleeping pet. Many animals are really good at learn-

ing different patterns and probabilities from the things they observe (Santolin

& Saffran, 2018). Seals, for example, can recognize different rhythms (Verga,

Sroka, Varola, Villanueva, & Ravignani, 2022), zebra finches learn the probabil-

ity of the next note in their own song (Chen & ten Cate, 2015), and tamarin

monkeys can learn a statistical relationship between two vowels, even when

there is another sound in between (Newport, Hauser, Spaepen, & Aslin, 2004).

Humans are extraordinarily good at learning about their environment. One as-

pect of human life that clearly displays this, is our ability to communicate our

thoughts in a structured way: with language.

To produce and understand language, there are lots of rules and regularities

that we must know, ranging from the correct intonation to signal a question, to

the correct order of adjectives in a phrase like “the big white car”. The aspect

of language that arguably best demonstrates our extraordinary human capacity

for learning about our environment, is the syntax: our ability to combine mor-

phemes, words and phrases such that the resulting combination carries a specific

meaning. This ability is very powerful. Our words can be combined in infinitely

many ways: we can understand very short sentences, and very long ones, and

sentences that we have never heard before. At the same time, while we create

phrases and sentences out of a sequence of words, the words themselves do not

disappear. They remain available to us at all times. The human ability to create

and analyze sentence structure is unprecedented. But how do we do it?

There are multiple views of which (neural) mechanisms underlie our capacity

to form and understand sentences with a wide array of different structures. In

this dissertation, I will focus on two specific ones. The first strand of research has

focused on our ability to build syntactic structure as the result of learning and

using sequential statistics, such as transitional probabilities between different

units (e.g., Frank & Bod, 2011; Frank & Christiansen, 2018; Frost, Armstrong, &
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Christiansen, 2019; McCauley & Christiansen, 2019). Upon this view, the use of

abstract, hierarchical structure is not (always) necessary to understand what is

being said or signed; we can make do with just the sequential statistics between

phonemes, words, or phrases. The other has modeled the role of syntactic struc-

ture as the necessary inference of a separate level of representation that is hier-

archically structured and abstracts away from the lexical items itself (Brennan &

Hale, 2019; Everaert, Huybregts, Chomsky, Berwick, & Bolhuis, 2015; Lo, Tung,

Ke, & Brennan, 2022; Martin, 2016, 2018; Matchin & Hickok, 2020); in other

words, the phrase structure rules. Upon this view, knowledge of syntax is not

tied to the specific words or morphemes. The rules operate over syntactic cat-

egories such as Noun, Verb, and higher-level categories like Noun Phrase (NP)

and Verb Phrase (VP). The interpretation of the input crucially depends on the

output of this rule-like system.

Despite the relative absence of reconciliation between these two views of syn-

tactic structure, work in the fields of psycholinguistics and neurolinguistics has

provided evidence for the involvement of both types of knowledge in the pro-

cess of language comprehension. On the one hand, sequential statistical infor-

mation such as the probability that one word follows another has been found to

be a good predictor of the time needed to read a word (Aurnhammer & Frank,

2019; Lowder, Choi, Ferreira, & Henderson, 2018; Monsalve, Frank, & Vigliocco,

2012), but also of some measures of brain activity (Armeni, Willems, van den

Bosch, & Schoffelen, 2019; Gillis, Vanthornhout, Simon, Francart, & Brodbeck,

2021; Nelson, Dehaene, Pallier, & Hale, 2017; Weissbart, Kandylaki, & Reichen-

bach, 2019). On the other hand, it has been shown that models of these types

of data are better when some kind of information about the syntactic structure

is included (Monte-Ordoño & Toro, 2017; Nelson, El Karoui, et al., 2017; Roark,

Bachrach, Cardenas, & Pallier, 2009; Toro, Sinnett, & Soto-Faraco, 2011; van

Schijndel & Schuler, 2015). In addition, changes in the structure of the input

have been found to affect brain activity, as well: for example, neural recordings

of a person listening to language change depending on whether they are lis-

tening to words, phrases or sentences (Bai, Meyer, & Martin, 2022; Coopmans,

de Hoop, Hagoort, & Martin, 2022; Kaufeld, Bosker, et al., 2020; Ten Oever,

Kaushik, & Martin, 2022).

When we consider all of these findings together, we must conclude that both

distributional and abstract, hierarchical syntactic information play a role in lan-

guage comprehension – and that both shape the way the brain responds to input.

An adequate theory of language comprehension must therefore account for both
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views: human brains are incredible probabilistic engines, and they are capable of

producing hierarchical, abstract representations. In this dissertation, I approach

language comprehension from such a perspective. I investigated how lexical

distributional information, such as surprisal and word frequency, and syntactic

information jointly shape the process of language comprehension. Investigating

this question can help us to understand which mechanisms play a role in the

brain’s capacity to infer hierarchical structure from a highly variable sequential

signal. I approach this question various ways.

In Chapter 2, I asked two main questions that surround the use of distri-

butional information. Firstly, I asked why lexical surprisal – a metric of word

probability given the preceding context - works well as a predictor for human

behavioral and neural data. To explore this, I used simulation with a toy gram-

mar and recurrent neural networks (RNN), varying both word frequency values

and the grammar of the input language. Secondly, I asked how the results from

studies that used lexical surprisal as a predictor can inform mechanistic theories

of language comprehension.

In Chapter 3, I present results from an analysis project of magnetoencephalog-

raphy (MEG) data. I investigated whether the presence of syntactic structure

affects how low-frequency neural activity represents lexical information. I did

this by extracting a purely lexical response from two different conditions: sen-

tences and word lists (scrambled versions of the sentences). Using temporal

response functions (TRFs), a multivariate linear regression approach, it is possi-

ble to model responses to different aspects of the stimulus simultaneously. This

approach allowed me to disentangle signatures of lexical processing from other

processes, such as the response to the acoustics of the stimulus. I modeled the

response to lexical information with word frequency, the unigram probability of

a word, and compared these responses between the sentence and word list con-

ditions in sensor space and in source space. The results from this study speak to

how top-down knowledge of the structure of a sentence affects lower-level (i.e.,

closer to the sensory input) processing – in this case, lexical processing.

In Chapter 4, I approached the interplay between lexical distributional infor-

mation and syntactic information from another perspective: instead of investi-

gating whether lexical information is processed differently given the availability

of syntactic information, here, I investigated whether the probability of a word

in context affects the use of syntactic information. This question is interesting

from two perspectives. The first perspective is language comprehension as an in-

stantiation of cue-based inference, in which statistical knowledge and syntactic
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knowledge both function as cues. According to this perspective, the statistical

probability of a word and grammatical knowledge of the receiver should both

affect the process of comprehension. The second perspective is the recent view

that surprisal from various statistical language models can capture all sorts of

psycholinguistic effects. With this in mind, in this study I investigated whether

lexical surprisal affects the computation of subject-verb agreement in an online

self-paced reading paradigm. The results of this study provide insight into how

distributional and morphosyntactic cues are weighted during language compre-

hension (specifically, reading).

In Chapter 5, I asked again whether lexical probabilistic information affects

syntactic processing, but this time using the approach used in Chapter 3. In

this study, I analyzed MEG data from a naturalistic listening paradigm: partici-

pants were listening to an audiobook in the scanner. This dataset was the result

of a joint effort of the research group. We created several annotations of the

audiobooks, among which a minimalist syntactic parse. Using TRF-models, I ex-

tracted responses to those syntactic annotations for words that were associated

with high- or low surprisal values. Like in Chapter 3, I compared the resulting

responses to each other. I repeated this procedure for two types of language

models: a short-context trigram model, and GPT2, a model that captures long-

context variability. The presence of any differences between the high- and low

surprisal responses to syntactic annotations suggests that lexical probability af-

fects the process of syntactic structure building.

Chapter 6 presents an overview of several sets of simulations that complement

and inform the analyses presented in Chapters 3 and 5. The goal of the simu-

lations was to assess whether any effects found in the analyses from Chapters 3

and 5 could be attributable to properties of either the data or the linear model

that were unrelated to the theoretical phenomenon under consideration. These

simulations help situate the interpretation of the findings presented in the the-

sis. In this Chapter, I specifically address the following four questions. (1) How

does the interstimulus interval (ISI) affect the reconstruction accuracy of the

TRF model? (2) If a feature enhances reconstruction accuracy in one frequency

band, but not the other, does that mean that the response is in this frequency

band? (3) Are different feature values able to extract the same TRF waveform?

(4) Is the TRF suitable to model interactions between features in time?

In Chapter 7, I summarize the findings of the preceding Chapters, discuss the

results from Chapters 3, 4, and 5 given the theoretical interpretation of surprisal

in Chapter 2, and interpret these results in different theoretical frameworks that
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leverage time in the computations underlying language comprehension. I end

with a proposal for a computational model that has the potential to explain how

statistical information informs the process of structure building.





2 | What’s surprising about surprisal

Abstract

In the computational and experimental psycholinguistic literature, the mecha-
nisms behind syntactic structure building (e.g., combining words into phrases
and sentences) are the subject of considerable debate. Much experimental work
has shown that surprisal is a good predictor of human behavioral and neural
data. These findings have led some authors to model language comprehension
in a purely probabilistic way. In this Chapter, we use simulation to exemplify
why surprisal works so well to model human data, and to illustrate why exclu-
sive reliance on it can be problematic for the development of mechanistic the-
ories of language comprehension, particularly those with emphasis on meaning
composition. Rather than arguing for the importance of structural or distribu-
tional information to the exclusion or exhaustion of the other, we argue more
emphasis should be placed on understanding how the brain leverages both types
of information (viz., statistical and structured). We propose that distributional
information is an important cue to the structure in the message, but is not a sub-
stitute for the structure itself - neither computationally, formally, nor conceptu-
ally. Surprisal and other distributional metrics must play a key role as theoretical
objects in any explanatory mechanistic theory of language processing, but that
role remains in the service of the brain’s goal of constructing structured meaning
from sensory input.
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2.1 Introduction

When we understand language, the task presented to the brain is to transform

physical signals in the environment: from a continuous stream of speech or sign

we perceive discrete words, and combine them into phrases and sentences to

form a structured and meaningful message. How exactly we perceive phrases

and sentences from words (and morphemes), is the subject of considerable de-

bate. A wealth of recent experimental work has shown that lexical distributional

information is an incredibly good predictor of both behavior (e.g., reading times)

and neural activity (e.g., EEG recordings) during language comprehension (e.g.,

Aurnhammer & Frank, 2019; Frank, 2013; Gillis et al., 2021; Monsalve et al.,

2012; Weissbart et al., 2019). At first blush, this state of affairs seems to neces-

sitate that distributional information play a decisive role in comprehension; a

conclusion drawn by many (among others, e.g., Armeni et al., 2019; Heilbron,

Armeni, Schoffelen, Hagoort, & de Lange, 2022; Kuperberg & Jaeger, 2016). At

the same time, there is ample evidence that human linguistic abilities go far be-

yond what even the largest probabilistic language models can do: we effortlessly

interpret sentences that we never heard before – to wit, we understand just fine

what was not likely, in fact, this is probably how we receive new information

during conversation. As such, distributional information cannot be the whole

story to language comprehension.

In this Chapter, we will outline how the current focus on distributional in-

formation can sometimes be at cross purposes with uncovering the mechanisms

that explain how we understand. Starting from central assumptions in theoret-

ical linguistics, here we use simulation to show that distributional metrics on

their own (1) do not form a mechanistic account for the capacity we seek to

explain, and (2) cannot straightforwardly be compared to theory-driven predic-

tors in analysis due to distributional metrics effectively being the data, itself,

through a filter. Nevertheless, we know that both structure and statistics matter

to the brain, both writ large and in the minutiae of language processing (e.g.,

Ding, Melloni, Zhang, Tian, & Poeppel, 2016; Nelson, El Karoui, et al., 2017;

Weissbart et al., 2019). Thus, rather than arguing for the importance of one to

the exclusion or exhaustion of the other, we argue that more emphasis should

be placed on how the brain leverages both to reach understanding, and on how

both shape processing. We propose that distributional information is an impor-

tant cue to the structure in the message, but is not a substitute, functionally or

otherwise, for the structure itself. Using surprisal and other distributional met-
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rics as theoretical objects, and especially as explanans, lies at cross purposes with

the goal of an explanatory and mechanistic theory of language comprehension.

2.2 How to describe a sequence

Humans, like other organisms, strive to reduce uncertainty in their environment

by learning, and by anticipating incoming sensory input (e.g., Friston, 2012;

Hasson, 2017). In the case of quasi-sequential sensory input, which language is

(both signed and spoken), there are multiple ways to learn about what was just

perceived and to anticipate what comes next. One way to learn about our en-

vironment is by counting occurrences of the sensory events, remembering their

sequential order, and tracking how often a given event follows another (e.g.,

Aslin & Newport, 2014; Linzen, Siegelman, & Bogaerts, 2017; Saffran, Newport,

& Aslin, 1996). This is distributional information.

2.2.1 Characteristics of probabilities (an introduction to

information theory)

Distributional information for language comes in at least two flavors: surprisal

and entropy. The two metrics are related, but differ in their predictive value, and

have very distinct functional interpretations. Entropy is a measure of uncertainty

about potential outcomes of future events, while surprisal is a post-hoc measure

of event expectancy. In language research, surprisal and entropy are typically

calculated over sequences of words.1

Surprisal is calculated by taking the negative log-transformation of probability

information of the word. In many cases, this is the conditional probability of the

word: the probability of word given the N previous words. If a word is very

likely to appear given the context, surprisal is low; it is high when the word does

not often appear in the given context. In information theory, surprisal is also

called (Shannon) Information (I) (Shannon, 1948). This is directly tied to the

term ‘surprisal’: if a word is very likely to appear, the amount of information

gained is low.2 Here, we will on occasion use I to denote surprisal. The equation

of surprisal is shown in 2.1 below. As is shown in 2.2 below, entropy is the

weighted sum over the surprisal values of all the words that could appear in the

1Other measures of surprisal and entropy exist, but the lexical estimate plays a prominent role
in recent research.

2In psycholinguistics, this measure is often called transitional probability (TP). This term usually
does not refer to surprisal obtained from neural network models.
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position of the word in question. In other words, it is the average surprisal of all

possible continuations; the expected amount of information for a continuation.

Entropy depends both on the number of optional words, and on their probability

distribution. If there are a lot of options, or if they all have the same probability

of appearing, entropy will be high. On the other hand, if there are few options, or

one of them has a much higher probability than the others (= lower surprisal!),

entropy will be low. As such, entropy is a quantification of the uncertainty about

what the transitional probability to the next word will be.

I (wi|wi−n...wi−1) = − log (p (wi|wi−n...wi−1)) (2.1)

H (wi|wi−n...wi−1) = −
∑

p (wi|wi−n...wi−1) log (p (wi|wi−n...wi−1)) (2.2)

2.2.2 The power of surprisal

Distributional measures like (lexical) surprisal and entropy have been shown to

be unequivocally robust predictors of brain activity and behavior. For example,

higher surprisal values and a larger decrease in entropy both tend to lead to

slower reading times (Aurnhammer & Frank, 2019; Frank, 2013; Hale, 2006;

Levy & Gibson, 2013; Linzen & Jaeger, 2016; Pimentel, Meister, Wilcox, Levy, &

Cotterell, 2022; Smith & Levy, 2013). Corpus studies and computational models

suggest that (backward) surprisal contains information about phrase structure

(McCauley & Christiansen, 2019; Thompson & Newport, 2007). More recently,

advances in neuroimaging and computational modeling alike have shown that

oscillations in the delta, beta, and gamma bands show sensitivity to lexical sur-

prisal (Gillis et al., 2021; Weissbart et al., 2019), that entropy reduction cor-

relates with temporal lobe activity (Nelson, Dehaene, et al., 2017), and that

surprisal and word frequency are tracked over and above acoustic and speech

segmentation representations (Gillis et al., 2021). Furthermore, gamma power

has been observed to increase when a word is highly predictable, but not to in-

crease when it is not so predictable (Molinaro, Barraza, & Carreiras, 2013; Wang,

Zhu, & Bastiaansen, 2012). In other words, surprisal and entropy are good pre-

dictors for behavioral and neurophysiological measurements – and the number

of findings increases every day (see Figure 2.1 below).

But the power of distributional information does not stop there. Some effects

that are attributed to linguistic structure can be evoked by statistical regularities
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Figure 2.1: Number of publications between 1980 and 2022 that mention the
keywords ‘Surprisal’ or ‘Surprisal & Language’, obtained from Dimen-
sions.ai on 15/05/2023.

as well. In a seminal paper, Ding et al. (2016) showed that the occurrence rate

of linguistic structures (syllables, phrases and sentences) in speech are reflected

in power in the neural signal at the corresponding frequencies. This effect was

originally suggested to reflect the construction of linguistic units: the brain en-

codes abstract linguistic information. Nevertheless, since its publication several

studies have shown that the low-frequency frequency tagging effects can be in-

duced by transitional probability information alone (Bai et al., 2022; Batterink

& Paller, 2017).

Evidence for the importance of distributional patterns in language (prior to

the surge of large language models, e.g., Aslin & Newport, 2012; Elman, 1991;

Monsalve et al., 2012; Saffran, Aslin, & Newport, 1996) has led to accounts that

model (aspects of) language comprehension using distributional information,

such as surprisal theory (Hale, 2001, 2016; Levy, 2008a; Levy & Gibson, 2013)

and entropy reduction theory (Hale, 2006). In these theories, surprisal and/or

entropy reduction are minimally taken to be an estimate of processing effort:

comprehenders make use of probabilistic knowledge to predict both the struc-

ture of the input they have just heard or seen, and what they may encounter next.

Processing difficulty varies according to the deviations from these predictions.
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Surprisal theory may not reject the notion of abstract syntactic structure (Hale,

2001, 2006; Levy, 2008a): instead, it is, in essence, agnostic about the repre-

sentations and mechanisms that lead to structure-dependent interpretation, or

language comprehension. Proponents of Surprisal Theory are explicit about this.

E.g., Futrell, Gibson, and Levy (2020) posit:

“In addition to providing an intuitive information-theoretic and Bayesian

view of language processing, surprisal theory has the theoretical ad-

vantage of being representation-agnostic: The surprisal of a word in

its context gives the amount of work required to update a probability

distribution over any latent structures that must be inferred from an

utterance. [...] This representation-agnosticism is possible because the

ultimate form of the processing cost function [...] depends only on the

word and its context, and the latent representation literally does not

enter into the equation.” (Futrell et al., 2020, p. 4)

By consequence, authors often refrain from drawing conclusions about the

computational, algorithmic or implementational levels of language comprehen-

sion, which are not the focus of Surprisal Theory. There are some extensions

of Surprisal Theory that do include specifications of the cognitive architecture

underlying comprehension: Brouwer, Delogu, Venhuizen, and Crocker (2021)

provide a probabilistic instantiation of a ‘Retrieval-Integration Account’, a model

that contains explicit levels of representation and two mechanisms: ‘retrieval’,

the use of a word form and the context to access word meaning; and ‘integration’,

the mapping of the word meaning and the prior context onto a representation of

the utterance. Another proposal that goes beyond the notion of modeling pro-

cessing difficulty rather than the mechanisms underlying process of language

comprehension, is the work by Frank and colleagues. This work uses surpri-

sal to focus on (the cognitive reality of) representational levels during language

comprehension. Such studies question the necessity of abstract representations

and (hierarchical) syntactic structure during language comprehension (Frank,

2013; Frank & Bod, 2011; Frank, Bod, & Christiansen, 2012; Frank & Chris-

tiansen, 2018), but again do not offer an account of how surprisal values come

to reflect comprehension nor of how particular meanings are perceived, but not

others.

We highlight the representation-and-mechanism-agnosticism of distributional

estimates, but our aim is to not criticize the literature around Surprisal Theory.

Instead, we have two main objectives. Firstly, we wish to point the field of the
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neurobiology of language to the issues that surround the use of distributional

estimates that are representation-agnostic, both from a psychological and from

a cognitive neuroscientific perspective. More specifically, these issues arise be-

cause we are trying to explain the process of language comprehension, rather

than describe it, with a model. Secondly, by focusing on syntactic representa-

tions, we will show that results obtained using surprisal or entropy, because they

are representation-agnostic, do not warrant conclusions about the latent factors

driving the surprisal estimates (as in Frank & Bod, 2011; Frank et al., 2012;

Frank & Christiansen, 2018).

The goal is not to discourage the use of distributional estimates in our field

– in our view they are a core, crucial ingredient. In fact, in our models, dis-

tributional information derived from linguistic experience likely plays a role

in shaping the process of language comprehension (e.g., Martin, 2016, 2020;

Meyer, Sun, & Martin, 2020b; Slaats, Weissbart, Schoffelen, Meyer, & Martin,

2023). However, as we will see below, despite this role, the exclusive focus on

representation-agnostic distributional information (no matter the level of repre-

sentation or model used) may obscure the mechanism we need to explain how

we understand.

2.2.3 Characteristics of structure: explaining compositional

meaning

One of the crucial mechanisms that our field seeks to explain is our capacity for

syntax. Syntactic information is a description of the abstract collocation, con-

stituency or dependency relations, and domains over which functions apply in

human language. This information, these patterns, are the result of a system

that can be described by rules: the grammar of a language. Decades of research

in theoretical linguistics has provided insights into aspects of the grammar that

are necessary to explain human competence in language production and compre-

hension. Firstly, central to the grammar is that the rules are structure-dependent

rather than item-dependent: the rules apply to grammatical categories (‘parts-

of-speech’) and other rules, and not to the words themselves. Secondly, the

structures generated by the grammar are hierarchical. This is a consequence

of the observation that syntactic operations apply to constituents – (groups of)

words that share a particular grammatical function – rather than to individual

words (e.g. substitution: ‘yesterday I saw [my best friend]’ --> ‘Yesterday I saw

[her]’). In some cases, the same sequence of words can have more than one in-
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terpretation depending on the hierarchical relation between the elements; e.g.

‘[old men] and women’ vs. ‘old [men and women]’; and ‘Robin saw [the woman

with the binoculars]’ vs. ‘Robin saw [the woman] with the binoculars’. These

sequences are structurally ambiguous. Of course, only a subset of all possible

word sequences is structurally ambiguous, but phrases are parsed hierarchically

in all cases (Cinque, 2004; Coopmans, de Hoop, Kaushik, Hagoort, & Martin,

2021; Everaert et al., 2015; Jackendoff, 1972).

Assuming the presence of syntax – an abstract, structure-dependent rule sys-

tem that applies hierarchically – in language provides an explanation for the

striking linguistic capacity to generalize, produce, and understand. Our know-

ledge of syntax is what allows us to produce and understand combinations of

words that we have never perceived together, or to create sentences with novel

words (e.g., Gertner, Fisher, & Eisengart, 2006). Most importantly, however,

syntax is one of the elements that determine the meaning of a sentence, another

being the meanings of the individual words (principle of compositionality). This

capacity distinguishes language from other perception-action systems and makes

language behavior difficult to account for (see Martin (2020) and Everaert et al.

(2015) for discussion). The study of (a computational theory of) syntax has a

long history in formal linguistics, but how this capacity is realized in mind and

brain, at the algorithmic and implementational level, is an answer the field still

aims to find – or should aim to find.

2.3 Surprisal is a perfect descriptor, but not a

mechanism

Using simulation, we show that lexical surprisal values can reflect variance that

finds its origin in the capacity we seek to explain (syntax), but despite this, these

values themselves do not encode syntactic structure. Instead, surprisal likely

contains information that derives from this structure. See the supplementary ma-

terials at https://osf.io/xp3r7/ and the code at https://github.com/
sslaats/surprisal for the details of the used corpora and the model archi-

tectures. The statistical tests reported are two-tailed t-tests and Pearson’s corre-

lation. The simulations described below serve an exemplifying purpose. Using

a different model architecture will likely lead to numerically different results.

https://osf.io/xp3r7/
https://github.com/sslaats/surprisal
https://github.com/sslaats/surprisal
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2.3.1 Syntactic structure affects surprisal values

In the style of Elman (1991), we designed a phrase-structure grammar with

27 words and 4 parts-of-speech. We trained a long short-term memory model

(LSTM) on the sentences generated with this grammar (see Figure 2.2 for an

example). To study the effect of structure, we trained a second LSTM on the same

sentences, but with the words scrambled within each sentence. This method of

scrambling maintains word frequency estimates, word frequency per sentence,

and sentence length, but removes all sentential structure. Both models were

tested on sentences generated by the grammar that were not part of the training

set.

Figure 2.2: Example sentence generated using a small context-free grammar. The
sentence reads: “the farmer that finds a toddler loves a scientist”.

Compared to training on scrambled input, providing an LSTM model with

structured input decreases surprisal values by 1.03 bit on average (Mstruct = 1.86,

sdstruct = 0.99; Mscram = 2.88, sdscram = 1.08; t(62854) = 124.08, p < 0.001;

CI = [1.01, 1.04], Cohen’s d = 0.98, power = 1; Figure 2.3). This illustrates

that syntactic structure in the input impacts surprisal values. Nevertheless, the

distributions of surprisal values for the structured and scrambled models are

highly correlated (ρ(31426) = .92, p < 0.001), suggesting that the frequency

of each individual word – constant between training corpora – does the heavy

lifting when it comes to surprisal estimation.
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Next, we tested whether these findings scaled to a larger corpus with a wider

lexicon and a variety of sentence types. To this end, we repeated the same pro-

cedure with a larger model, trained on 700.000 words from an English corpus

(OpenSubtitles 2018; Lison & Tiedemann, 2016). Though smaller, here, too we

observe a difference between the distributions (Mstruct = 6.42, sdstruct = 4.27;

Mscram = 7.00, sdscram = 3.68; t(160916) = 29.18, p < 0.001; CI = [0.54, 0.62],
Cohen’s d = 0.15, power = 1), with structured input decreasing the surprisal

values by 0.58 bit on average (sd 1.82; Figure 2.4). Also here, however, we

observed a high correlation (ρ(80457) = 0.91, p < 0.001) between the surpri-

sal values estimated using the scrambled and structured model. In conclusion,

syntactic structure affects the surprisal values of a large, naturalistic corpus in

qualitatively similar ways to the effects observed in a small, constructed corpus.

Thus, we conclude that (1) a decrease in surprisal is a general effect of the pres-

ence of language-like structure in sequences; and that (2) a large part of the

variance in surprisal values stems from unigram probability information.

2.3.2 Surprisal does not lead to syntax

Can the underlying structure of a sequence (i.e., the latent syntactic structure

that gives rise to the surface word order) be identified based on surprisal alone?

To answer this question, we trained and tested two additional LSTMs on the

Spanish translation of the OpenSubtitles corpus (structured and scrambled), and

Figure 2.3: The presence of syntactic structure lowers the surprisal values of the
words in sentences generated by a phrase structure grammar. Surprisal
values for each word in the test set for both structured (teal) and
scrambled (pink) models.
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Figure 2.4: The presence of syntactic structure lowers the surprisal values of the
words in sentences from the English OpenSubtitles 2018 corpus. Sur-
prisal values for each word in the test set for both structured (teal)
and scrambled (pink) models.

we used a Random Forest Classifier to classify whether (groups of) surprisal

values were coming from English or Spanish. This procedure was repeated on

the scrambled variants of the models.

The classifier performed above chance (structured: 63.8% (unigram) to 74.1%

(10-gram)), indicating that surprisal values contain enough information for a

classifier to distinguish between the two languages. However, this was also the

case for the scrambled models (scrambled: 66.2% (unigram) to 84.2% (10-

gram)), suggesting that structure is not the driving factor behind this above-

chance performance. Instead, the classification appeared to be driven by unique-

ness of surprisal values: each surprisal value was uniquely attributable to one or

the other language. To remove this confound, we repeated the analysis with sur-

prisal values rounded to the nearest 1 decimal. Doing so severely deteriorated

the classification (structured 52.92% (unigram) to 67.98% (10-gram); scram-

bled: 58.46% (unigram) to 82.31% (10-gram)). In sum, (groups of) surprisal

values contain enough information for a classifier to decide whether these values

are coming from Spanish or from English, but this classification is crucially not

dependent on structural properties of the language.3

Taken together, these two simulations paint the following picture. Lexical

surprisal obtained from an LSTM encodes “structure” in the input, as is shown

3As stated by (Luce, 2003, p. 185), “the elements of choice in information theory are absolutely
neutral and lack any internal structure; the probabilities are on a pure, unstructured set whose
elements are functionally interchangeable.”
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by a general decrease in surprisal. Nevertheless, patterns of surprisal values

stemming from two structurally different languages are not classifiable on the

basis of structural properties. This suggests that (patterns in) surprisal values can

capture regularity in language in general, but do not encode language-specific

aspects of structure.

Figure 2.5: Z-scored surprisal values from the structured and scrambled models
(English and Spanish). Observe the high peak in distribution in both
languages; these are surprisal values for words that most often ap-
pear at the start of a sentence (Spanish: ‘no’; English: ‘I’)

2.3.3 Understanding does not depend on surprisal

Consider the following Dutch sentences in (1). In each case, the verb lag (‘lay’)

is singular, hence asking for a singular subject to the sentence. The subject is dif-

ferent for every sentence: it is either semantically different (man or goldfish), or

it is morpho-syntactically different (singular or plural). The subjects are printed

in boldface.

(1) a. Er

There

lag

lay

een

a

goudvis

goldfish[sin]

op

in

straat

street

(I = 15.4 bits)

’A goldfish[sin] was lying in the street’

b. Er

There

lag

lay

een

a

man

man

op

in

straat

street

(I = 7.1 bits)

‘A man was lying in the street’

c. *Er

There

lag

lay

een

a

goudvissen

goldfish[pl]

op

in

straat

street

(I = 21.9 bits)

‘A goldfish[pl] was lying in the street’
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d. *Er

There

lag

lay

een

a

mannen

men

op

in

straat

street

(I = 14.9 bits)

‘A men was lying in the street’

For every sentence, the surprisal value of the subject was calculated using a

trigram model created with SRILM (Stolcke, 2002) trained on the Dutch Open-

Subtitles 2018 corpus (Lison & Tiedemann, 2016). In other words, the surprisal

value captures the surprisal of the subject in the context of the words ‘lag’, ‘een’ –

both requiring the next word to be a singular noun. The first observation is that

the surprisal of the subject ‘goldfish[sin]’ is higher than the surprisal of the subject

‘man’: 15.4 and 7.1 bits, respectively. This is expected: ‘man’ is more frequent.

If we change ‘man’ to its plural ‘men’, or ‘goldfish’ to its plural, the sentences

become erroneous. In this case, surprisal value increases with approximately 7

bits, as well.

What is striking about this example is that the surprisal of the plural subject

‘men’ is similar to that of ‘goldfish[sin]’ – despite the plural subject rendering the

sentences grammatically incorrect and, as such, uninterpretable without repair.

Although we may not often encounter a goldfish on the street, this sentence is

perfectly intelligible. This illustrates a crucial feature of language: understand-

ing does not depend on surprisal (See also: van Schijndel & Linzen, 2021).4

This highlights a crucial gap between distributional estimates such as surpri-

sal and entropy and what understanding logically entails: reaching a single, in-

terpretable representation of the input. Meaning can only arise when a stable

representation has been formed. After all, probability distributions are not intel-

ligible. Instead, the brain needs to converge on a discrete representation of the

elements and the structure to reach understanding. Even if a large part of signal

processing is probabilistic, at some point the brain has to ‘decide’ or converge on

a stable interpretation of what we are hearing, reading, or seeing. In fact, this is

4Values obtained from neural network models show the same pattern. Here, we use English sen-
tences, and score them using the model from the English simulations described above (context
of 10 words). Surprisal of *men is lower than perfectly intelligible kite.

a. On the street lies a kite (I = 14.46 bits)

b. On the street lies a man (I = 2.94 bits)

c. *On the street lies a kites (I = 16.45 bits)

d. *On the street lies a men (I = 7.88 bits)

More specifically, it shows that probability and grammaticality are theoretically distinct: the
grammaticality of a sentence can change without affecting the surprisal values.
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of one of the brain’s main features: it can take in probabilistic information and

map it onto deterministic representations.5

To summarize, surprisal values are sensitive to structure in the input, but they

do not uniquely capture the structure that generated the sequence, or grammat-

ical well-formedness. These observations lead us to conclude that distributional

metrics are not suitable as explanans for the core capacities of language.

2.4 How surprisal can obscure the view

Several studies that have used both predictors of syntactic structure and surprisal

in their models have drawn conclusions similar to those outlined above: syntac-

tic structure is necessary to create the best model of the data (Brennan & Hale,

2019; Brennan, Stabler, Van Wagenen, Luh, & Hale, 2016; Kapteijns & Hintz,

2021; Nelson, El Karoui, et al., 2017). Nevertheless, these studies report that

distributional estimates, such as surprisal, explain more of the variance in the sig-

nal than do the syntactic predictors. The reason for this finding is that surprisal

(even lexical) reflects variance from many latent factors. This is a consequence

of the fact that surprisal estimates depend fully on the identity of the unit es-

timated. If we want to estimate the surprisal of a word, we need to know the

identity of that word. This is the representation-agnostic character mentioned in

the introduction: surprisal can – and will – parametrically reflect variation stem-

ming from any domain or representational level of language, including syntax.

5This statement is closely tied in with the question what mental representations of abstract con-
cepts are like – and whether (large) language models “have” abstract representations. They do,
in fact, not, as was already pointed out by Fodor and Pylyshyn (1988). For example, our original
toy grammar chose a word with the correct part-of-speech 78% of the time. While this means
that the model has learned something about the regularities of the language, this does not mean
that the model has learned what a noun is. More sophisticated distributional representations,
such as the internal states of neural networks, can be called ‘abstract’ in the sense that a given
pattern does not directly correspond to any individual item (e.g., when number of dimensions
is reduced to below the number of types in the input). This does not mean that the model has
an abstract representation, however. For example, two synonyms may have the same vector in
a word2vec model, but that does not mean that the word2vec model understands ‘synonymy’;
the model only represents that these words are likely to occur in the same contexts, statistically
speaking (and this disregards the fact that some synonyms can be used in different contexts
– such as different registers –, despite having the same referential meaning!). If the internal
states of a sophisticated distributional model reveal a pattern that is consistent across all words
that are synonyms of another word, then we could say that this model statistically approaches
the concept ‘synonymy’. Nevertheless, this representation does not exist if we do not provide
the model with a synonym. For humans, on the other hand, the concept ‘synonymy’ persists in
the absence of synonyms. The same holds for other subconscious knowledge of language, such
as what a noun is, or what plurality means.
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We demonstrate this by changing our toy grammar in two ways: by adapting

the grammar itself, or by changing word frequency. To edit the grammar, we

changed the order of the constituents in verb phrases. The complement (a noun

phrase or a complementizer phrase) now precedes the verb. In other words, we

have changed the grammar from “SVO” (subject-verb-object) to “SOV” (subject-

object-verb); see Figure 2.6 for an example sentence. Like in the scrambling

models, doing so preserves the word frequency values as well as the number of

words per sentence, but drastically changes the structure of the language. The

model trained on this SOV-language was subsequently tested on the exact same

test set as the previous models (structured and scrambled).

Figure 2.6: Example sentence generated using a small context-free grammar in
which the constituent structure was changed to SOV. The sentence
reads: “the mother the scientist that the bird discovers hears.” In
the original subject-verb-object structure, that would be: “the mother
hears the scientist that discovers the bird.”

Again, the resulting surprisal values from this SVO-trained model were sig-

nificantly higher than those obtained using the original structured model (see

Figure 2.7)6 (MSVO = 1.86, sdSVO = 0.99; MSOV = 3.29, sdSOV = 2.73; t(62854)

= 87.79, p < 0.001; CI = [1.41, 1.47], Cohen’s d = 0.7, power = 1) – unsur-

prising, because a large number of word-to-word transitions that were present

in the test set were definitely not present in the training set by virtue of being

6Notice that this SOV model is also structured.
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ungrammatical.7 The correlation between the results from the structured model

and the SOV-model was lower, but nevertheless still there (ρ(31426) = 0.44,

p < 0.001), indicating that unigram probability drives the pattern of surprisal

values to an important extent.

Instead of changing the syntax, we can also change the word frequency val-

ues.8 To do this, the word frequency parameters were changed for a few words

in the original SVO grammar. Specifically, the frequency of the words ‘woman’,

‘discovers’, and ‘a’ was adjusted to be twice as high as the other words in their

syntactic category.9 We then tested this model on the same test set again, and

indeed: there was a significant difference between these distributions (MSVO =
1.86, sdSVO = 0.99; MWF = 1.91, sdWF = 0.97; t(62854) = 6.78, p < 0.001; CI =
[0.04, 0.07], Cohen’s d = 0.05, power = 1), while the correlation between the

original- and the word frequency adjusted estimates was still high (ρ(31426) =
0.84; p < 0.001); see Figure 2.8.

Figure 2.7: A different syntactic structure in the training input increases the sur-
prisal values of the words in sentences generated by a phrase structure
grammar. Surprisal values for each word in the test set for both SVO
(teal) and SOV (yellow) models.

Indeed, both of these changes to the input/output relation – either the syn-

tactic structure underlying the word sequences, or the frequency with which a

word in a given category is selected – change the surprisal values we observe.
7This was crucially not the case in the scrambled model; any word-to-word transition was pos-
sible.

8Obviously, word frequency itself is a distributional variable. This toy grammar does not have
a semantics, pragmatics, or any other linguistic parameter that we can tweak; here, the word
frequency parameter is causal for word frequency within a category. See the supplementary
materials for details.

9Essentially, this means that the lexical entropy in the training corpus is lower.
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Logically, beyond syntax, lexical surprisal values can reflect variability from all

kinds of sources: lexical category, syntactic structure, the pragmatic- and se-

mantic context, priming, and so on (viz., any variable that affects word choice

or word form). More than anything else, surprisal is a reflection of language

data – which is also what we provide to our participants by presenting stimuli.

Surprisal values are calculated by passing the data through a distributional filter,

and thus are a prism or reflection of the data itself.10

Expressing the data through a distributional filter without being able to tease

apart which variables in the data are contributing to a particular estimate of

surprisal poses a problem when we want to use surprisal in combination with

our readouts (e.g., behavioral, neural) to theorize about the cognitive architec-

ture of the human language system. This is because while using a predictor that

is derived from the data passed through a distributional filter may make it the

most powerful predictor, it relegates the reasons why it is such a good predic-

tor difficult to impossible to interpret: where do the effects come from? What

linguistic factors create dynamics in surprisal? These observations should and

do have important consequences for the way we develop our psycholinguistic

theories, and for how surprisal comes into play in them. In short, surprisal does

Figure 2.8: Surprisal values for each word in the test set from the corpora obtained
with the original structured model and a model trained on a corpus that
was adjusted for word frequency. Surprisal values for each word in the
test set for both original (teal) and word-frequency altered (yellow)
models.

10Devlin (2001, p. 21), cited in (Luce, 2003, p. 183): “Shannon’s theory does not deal with
‘information’ as that word is generally understood. Instead, it deals with data-the raw material
out of which information is obtained.”
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not allow us to draw conclusions about the potential mechanisms at work, e.g.,

in composition, even when its ability to predict the readout is robust.11

2.5 Theory is always wrong

Syntactic predictors in statistical models of reaction times or neural data are at

a disadvantage even before running the model: the way they are constructed

depends on a theory of syntax and of how this structure is implemented in the

brain (Martin, 2020). Where surprisal values follow naturally from counting

large numbers of words in a corpus,12 to create a syntactic predictor one must

choose between numerous syntactic theories (for example, a minimalist or con-

structivist approach), make assumptions about the parsing strategy the brain

employs to reach this structure (for example, ‘left-corner’ or ‘top-down’; Bren-

nan et al., 2016), and, finally, assume that the brain does not make any errors

when parsing the input, for example when encountering ambiguous sentences

(a so-called ‘perfect oracle’).

Any of these theory-driven assumptions will change the predictive power of

the syntactic feature. This is not a problem in and of itself, but this becomes

a problem when comparing it to a data-driven feature like surprisal. A data-

driven estimate will perform better than a theory-driven estimate – because the

data do not err, the theorizer does (Guest & Martin, 2021). These errors, or

rectifications to those errors (when a theory-driven change to a feature affects

the goodness of fit, or when an explicit experimental manipulation has a certain

effect on responses) provide an opportunity to adjust our theory. By contrast,

using surprisal as an explanation prevents us from looking at the influence from

latent factors by reflecting variance that stems from these factors as a second-

order variable. In this way, combined with representation-agnosticism, exclusive

focus on surprisal as a predictor serves to obscure the mechanisms that explain

behavioral and neural responses, and the view on the casual structures of human

languages that shape its instantiation in the mind and brain.

11For a discussion of whether large neural networks can be a “mechanistic account” of cognition,
see Guest and Martin (2023).

12This may or may not be a simplification of what deep learning models are doing; see Carlini
et al. (2021).
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2.5.1 Pax grammatica

As discussed in section 2.2.3, the meaning of a linguistic expression is a function

of the meaning of the individual words and the way they are combined. If the

goal of the field is to understand how we understand, we must have a mecha-

nistic account of this process, not only a predictive one. We need to understand

what the relevant representations of the input are, how the brain represents

them, and how the brain moves from one type of representation to another.

To be more precise, we want to know (among other things), (if and) how our

brain stores and accesses (quasi)lexical items, how these (quasi)lexical items are

combined using knowledge of syntactic and semantic structure, (if and) how the

representation of the ‘words’ is separable from syntactic structure, and how the

brain represents the “end product” (the meaning of the utterance).

Surprisal, or the principles underlying the calculation of surprisal – alone - can-

not serve as a mechanism for language comprehension, but the factors that give

rise to surprisal effects likely play an outsized and valuable role in the building

of a mechanistic theory of language comprehension. Consider Figure 2.9 be-

low. When the brain moves from representing the words in the bottom row to

phrases and sentences in the rows above, something is done to the information.

The probabilistic relation between the words ‘the, ‘train’ and ‘arrived’, repre-

sented by the red arrows, may carry (non-deterministic) information about how

the words are structurally related in the phrase or sentence – for example, if the

surprisal of ‘arrived’ is relatively high, this can signal the beginning of a new

phrase (see Martin, 2016). But what mechanism is responsible for constructing

the phrase (there are different proposals for this process, ranging from ‘construc-

tion’ to ‘merge’), and (how) can this mechanism be implemented by the brain?
13

Despite the arguments laid out in this Chapter, the notion that surprisal is not

equivalent to structural information, composition, or comprehension, is not at

all in conflict with the use of distributional information in sensory processing.

In fact, that humans can make use of distributional information in their envi-

ronment is undeniable: in the absence of any other sources of information such

as meaning, prosody, or knowledge of linguistic structure, we are capable of us-

ing statistical information to segment the input stream, and, as such, ‘break in’

to the realm of language (Aslin & Newport, 2012; Aslin, Saffran, & Newport,

13Obviously, the mechanism cannot be prediction. Firstly, we are perfectly capable of under-
standing sentences where some words have high surprisal (i.e., where the language model
was wrong!); and secondly, and most importantly, predicting an item does not entail under-
standing of the input. See e.g. Huettig and Mani (2016).
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1998; Batterink & Paller, 2019; Newport et al., 2004; Saffran, Aslin, & Newport,

1996; Saffran, Newport, & Aslin, 1996; Thompson & Newport, 2007; Trecca et

al., 2019).

2.5.2 Toy model

In the process of comprehension, distributional information can play a similar

role. Such an architecture could work as follows. For the purposes of this toy

model, we assume a set of representational levels (not exhaustive by any means):

phonetic, phonemic, syllabic, lexical, phrasal, sentential, and discourse-level.

There is much evidence that linguistic levels of representation are separable in

brain and behavior (e.g., Bai et al., 2022; Gwilliams, Linzen, Poeppel, & Marantz,

2018; Kaufeld, Bosker, et al., 2020; Krauska & Lau, 2023; Leonard & Chang,

2014; Marslen-Wilson & Tyler, 2007; Mesgarani, Cheung, Johnson, & Chang,

2014; Slaats et al., 2023; Ten Oever, Carta, Kaufeld, & Martin, 2022; Tezcan,

Weissbart, & Martin, 2023). For simplicity, we will focus only on how the brain

performs combination (Pylkkänen, 2019) of units at a given level to infer the next

level of representation. Within a given level of representation, then, we assume

that the brain represents a sequence of units within this level of representation,

in the spirit of either working memory, resonance (Jafarian & De Persis, 2015),

attractors (Pascanu & Jaeger, 2011), or by retaining activation corresponding to

Figure 2.9: Schematic representation of the process of syntactic inference (left) and
the differences between the outcome of this process (top right) and the
outcome of lexical distributional information (bottom right). The sur-
prisal values are fictional.
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a unit of representation (Gwilliams, Poeppel, Marantz, & Linzen, 2018). In other

words, previous input shapes the system in some way: either we retain several

words prior to the processing current word, or the processing of previous words

has changed the ongoing dynamics of the system such that the processing of the

current word is shaped by these dynamics.

We propose that the brain represents probabilistic information within and

across levels (viz., sequentially between phonemes, between words, between

phrases, and bi-directionally between phonemes and words, words and phrases,

etcetera) through path dependence. Path dependence means that the set of possi-

ble trajectories through state space is delimited by past trajectories (see Guest &

Martin, 2021; Martin, 2020). By representing a sequence of units in this way, we

gain access to transitional information, as well as information about how a spe-

cific unit relates to the level above; e.g., how likely it is for /χ/ to be the start of a

word. Extrapolating crucial effects from acquisition research (Aslin et al., 1998;

Saffran, 2001; Thompson & Newport, 2007), we assume that we remain capa-

ble of using this probabilistic information to infer the underlying structure that

gave rise to the sequence – a.k.a., to transform the information into the next

level of representation (see Martin (2020) for pseudocode). This could mean

the use of phonemic information to infer words (e.g., Tezcan et al., 2023), or

words to infer phonemic information (e.g., Martin, Monahan, & Samuel, 2017),

or words to infer phrase structure or vice versa (Baese-Berk, Dilley, Henry, Vinke,

& Banzina, 2019; Bai et al., 2022; Marslen-Wilson & Tyler, 1980; Thompson &

Newport, 2007; van Alphen & McQueen, 2001).

What is crucial about this toy model is that probabilistic information is a fac-

tor, but it does not correspond to the representational levels themselves, nor to

the computations that underlie the transformation of information that will even-

tually lead to a structured representation of the inferred meaning. Nevertheless,

making use of probabilistic information as a cue to the level above (and, poten-

tially, below; see Martin (2016) and Marslen-Wilson and Welsh (1978)) implies

that these measures will affect the computations that do lead to the transfor-

mation of information, such as the inference of a phrase from words. Most of

the findings in the domain of probabilistic information suggest effects of time,

with most notably high surprisal being associated with longer reading times (Au-

rnhammer & Frank, 2019; Brothers & Kuperberg, 2021; Frank & Bod, 2011;

Kapteijns & Hintz, 2021; Luke & Christianson, 2016; Monsalve et al., 2012),

slower word recognition (Balling & Baayen, 2012), and so on. These findings

suggest that probabilistic information may be a temporal modulator in the pro-
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cess of comprehension, affecting the time-course of the computations that lead

to comprehension.

Rather than being the mechanism that leads to comprehension of what was

said, we propose that lexical surprisal is a cue to detecting the presence and

absence of phrase boundaries – much like how transitional probabilities were

viewed by Saffran, Newport, and Aslin (1996). Indeed, as mentioned in section

2.2.2, (backward) surprisal contains information about phrase structure (Mc-

Cauley & Christiansen, 2019; Thompson & Newport, 2007). This means that the

surprisal of a given word can provide the recipient information about whether

a phrase boundary is likely there, similar to prosody, co-articulation, and others

(Martin, 2016, 2020),14 and is not an index of the process of composition itself.

From a practical perspective, this suggests we should study interactions between

(lexical) probabilities and syntactic operations rather than modelling surprisal

and entropy as main effects – not only in behavior (e.g., Fine, Jaeger, Farmer, &

Qian, 2013) but also in neuroimaging.

2.5.3 Open questions

For a human (brain) to be sensitive to a probabilistic estimate of any linguis-

tic representation, this representation first needs to come into mental existence.

What the nature of this representation is, and how it is inferred, are the difficult

questions our field should aim to answer. The role of distributional cues is a part

of the answer, and much about this aspect of the process is unknown. There is no

consensus with respect to the nature of statistical information in the brain (how

does the brain represent probability and/or uncertainty in general terms?), nor

is it known what the brain ‘computes’ statistical information over (which rep-

resentations are probabilistic, and why?), and what mechanism is responsible

for this ‘computation’ (how does the brain keep track of probability?). In the

field of language specifically, and cognitive science more generally, an important

question is how the brain is capable to bootstrap structure (such as syntax) from

statistics on the one hand. The reverse question is also open: does the brain re-

14The status of cue rather than mechanism should hold at other levels of representation, too
(e.g., syllables, phonemes, phrases). Distributional information describes behavioral and neu-
roimaging data at all levels, ranging from the lower-level phonemic surprisal all the way to the
higher-level syntactic estimates of surprisal (Brennan & Hale, 2019; Di Liberto, O’Sullivan, &
Lalor, 2015; Heilbron et al., 2022). Being distributional estimates, the same problem holds:
they prevent us from studying the underlying mechanism. For example, when recognizing
words, the probabilistic relation between phonemes can provide information about where the
input stream should be segmented into words – but it does not tell us how segmentation works
at a mechanistic level, let alone how we recognize those segments as words.



2 What’s surprising about surprisal 39

fine probabilistic representations with structured knowledge, and if so, how does

this work? We urge the field to consider these questions when using surprisal as

a predictor for linguistic data.

2.6 Conclusion

In this Chapter, we have argued that the current focus on distributional informa-

tion in the psycholinguistic and neurolinguistic literature may prevent us from

uncovering the mechanisms we need to explain how we understand in two ways.

Firstly, we have shown that distributional and syntactic information are function-

ally inseparable, because distributional information derives (in part) from syn-

tactic information. Secondly, we have shown that being a filter on many sources

of linguistic information, makes surprisal, entropy, and other distributional esti-

mates robust and reliable predictors of human data. Nonetheless, distributional

metrics are not suitable as explanans for the core capacities of language. Adopt-

ing surprisal and other distributional metrics as theoretical objects may instead

distract us from the goal of an explanatory and mechanistic theory of language

comprehension. We instead propose to view distributional information as a cue

to the next level of abstraction; an aide to the mechanisms that we aim to un-

cover.
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2.7 Appendix

Methodological information for simulations. All code is available on https://
github.com/sslaats/surprisal.

2.7.1 Toy grammar simulations

The corpus was generated using a miniature phrase-structure grammar with four

parts-of-speech: verbs (V), nouns (N), determiners (Det) and complementizers

(Comp). The rules are displayed in (1).

(1) Phrase-structure rules

a. S --> NP VP

b. CP --> Comp S

c. NP --> Det N’

d. N’ --> N

e. N’ --> N CP

f. VP --> V NP

g. VP --> V CP

Using a small vocabulary of 27 words (see table 2.1 below), we generated a

corpus of 10.000 sentences. The number of subordinate clauses was restricted

to 5 irrespective of their binding position to avoid unrealistically long sentences

and, more practically, an infinite loop.

Table 2.1: Vocabulary used for the simulations.

Part of speech Words

Complementizer that

Determiner a, the

Noun woman, dog, goat, president, bird, colleague, mother, toddler, scientist, child, farmer, painter, cat

Verb loves, discovers, reveals, notices, assumes, indicates, finds, senses, guarantees, teaches, hears, understands

Scripts used for these simulations:

• grammar.py: specifies the toy grammar (phrase-structure rules)

• simulate-corpus.py: uses the grammar to generate n sentences for train-

ing of the LSTM model

https://github.com/sslaats/surprisal
https://github.com/sslaats/surprisal
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• train-model.py: train model on toy grammar

• train-random-model.py: train model on scrambled output of toy gram-

mar

• test-model.py: test model trained on toy grammar

• compare-models.py: compares the surprisal values on the test set be-

tween scrambled and structured models

• language.csv: the vocabulary & POS to use for simulate-corpus.py

The model weights for these simulations are in the subfolder ‘model-weights’;

the training corpora are in the folder ‘corpora’. Surprisal values for the test sets

are in the folder ‘results’. All on https://osf.io/xp3r7/.

2.7.1.1 Simulation: ‘syntax leads to surprisal’

Model training & testing We split the corpus into a training- and testing set

with a ratio of 80/20, and used the training set to train a recurrent neural net-

work model with an embedding layer of 10 nodes, a hidden LSTM layer of 64

nodes, and a linear layer mapping back to the word space. The learning rate was

0.1 and we used negative log likelihood loss as implemented in PyTorch (Paszke

et al., 2019).

This yielded a ‘structured model’; the input to the LSTM model was generated

by a grammar. We also created a ‘scrambled model’. To create the scrambled

training set, we randomly shuffled the words within each sentence from the

training set. This method preserves word frequency across the corpus, individ-

ual sentence length, and the number of words from a certain part-of-speech in

each sentence, but removed all structure. We then trained an LSTM model with

the same architecture as the structured model to obtain the scrambled model.

For both the structured and the scrambled model, the input required a 10-word

context, meaning that we extracted 10grams for every sentence prior to training.

We estimated surprisal values for every word in the test set using the scrambled

and the structured model. The test set was identical in both cases (the output

from the grammar).

Results As mentioned in the main text and shown in Figure 2.3, one can clearly

see that providing the LSTM model with structured input (the blue bars) de-

creases surprisal values by 1.06 bit on average (t = 127.08, p < 0.001). This

https://osf.io/xp3r7/
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clearly shows that surprisal values can reflect syntactic structure. Nevertheless,

the correlation between the surprisal values from the scrambled and structured

models is 0.92 (p < 0.001).

Model predictions The random model predicts the correct word approximately

16% of the time. The model defaults to predicting determiners with the occa-

sional complementizer; these are the most frequent words in the corpus, and will

therefore most often be correct. These two categories make up 45% of the total

corpus, and there are three options: ‘the’, ‘a’, and ‘that’. Out of these 45%, the

network is correct at chance; 1/3rd of the time. This yields 15% correct – so the

model essentially performs at chance. The same is the case for the accuracy in

part-of-speech; there are four options, and the model predicts the correct part-

of-speech 27% of the time. For the structured model we see a slightly different

pattern. The model predicts the correct word in approximately 28% of the cases.

This model also defaults to a small set of words (noun = ‘scientist’, sometimes

‘child’; verb = ‘finds’), but these words match the correct part-of-speech 78% of

the time; most of the failures are in the complement of the VP or NP, where a

complementizer or a determiner are both good continuations of the sentence.

2.7.1.2 Simulation: ‘surprisal obscures the view’, syntax

To edit the grammar, we changed the order of the constituents in verb phrases.

The complement (a noun phrase or a complementizer phrase) now precedes

the verb. In other words, we have changed the grammar from “SVO” (subject-

verb-object) to “SOV” (subject-object-verb); see Figure 2.6 in the main text for

an example sentence. Doing so preserves the word frequency values as well as

the number of words per sentence, but drastically changes the structure of the

language.

Model training and testing The model parameters were the same as the pre-

vious simulation. The model trained on this SOV-language was subsequently

tested on the exact same test set as the previous models (structured and scram-

bled).

Results The resulting surprisal values were significantly higher than those ob-

tained using the original structured model15 (t=87.79, p < 0.001) – unsurpris-

ing, because a large number of word-to-word transitions that were present in the

15Notice that this SOV model is also structured.
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test set were definitely not present in the training set because they were ruled

out by the grammar16. The correlation between the results from the structured

model and the SOV-model was lower, but nevertheless still there (ρ = 0.44, p

< 0.001). In other words, a difference between the syntax of the input to the

model and the sentences or words the model is tested on, will lead to higher

surprisal values.

Model predictions Lexical accuracy was 20.4%, lower than the original model;

also the POS accuracy was lower than the original model (58.9%).

2.7.1.3 Simulation: ‘surprisal obscures the view’, word frequency

The word frequency parameters were adjusted for a few words in the original

SVO grammar. Specifically, we adjusted the frequency of the words ‘woman’,

‘discovers’, and ‘a’ to be twice as high as the other words in their syntactic cate-

gory (nouns, verbs, and determiners, respectively). Essentially, this means that

the lexical entropy in the training corpus is lower.

Model training and testing The model parameters were the same as the pre-

vious simulation. The model trained on this WF-adjusted-language was subse-

quently tested on the exact same test set as the previous models (structured and

scrambled).

Results We then tested this model on the same test set again, and indeed: there

was a significant difference between these distributions (t = 6.78, p < 0.001),

while the correlation between the original- and the word frequency adjusted

estimates was still high (ρ = 0.84; p < 0.001). See Figure 2.8 in the main text.

Lexical accuracy was slightly lower than the original (27.9%); POS accuracy was

te same (76.3%).

2.7.2 Natural language simulations

The corpora used for these simulations were obtained from the OpenSubtitles

project (Lison & Tiedemann, 2016).

Scripts used for these simulations:

16This was crucially not the case in the scrambled model; any word-to-word transition was pos-
sible.
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• preprocessing-opensubtitles.py: sentence & word tokenization and in-

terpunction removal of OpenSubtitles corpus

• train-model-natural-1layer.py: train model on OpenSubtitles corpus

• test-model-natural.py: test model trained on OpenSubtitles corpus

• correlation-natural.py: compares the surprisal values on the test set be-

tween scrambled and structured models

• clustering.py: use a RandomForestClassifier to classify surprisal values as

coming from Spanish or English

The weights for these models can be made available upon request. The cor-

pora can be downloaded from https://opus.nlpl.eu/OpenSubtitles-v2018
.php. Surprisal values for the test sentences can be found in the folder ‘results’.

2.7.2.1 Simulation: ‘syntax leads to surprisal’, part II

Model training & testing We trained a recurrent neural network with a 300-

node embedding layer, a 600-node LSTM-layer, and a linear layer on approxi-

mately 118.000 English sentences (roughly 800.000 words) to predict the next

word using a context of 10 words on a sentence-by-sentence basis. and a linear

layer mapping back to the word space. The learning rate was 0.1 and we used

negative log likelihood loss as implemented in PyTorch (Paszke et al., 2019).

Like before, we trained two models: a structured model, trained on intact sen-

tences from the corpus; and a scrambled model, trained on sentences in which

the word order was randomized. This method of scrambling maintains word

frequency estimates, word frequency per sentence, and sentence length, but re-

moves all sentential structure. We tested both models on the same test set of

10.000 sentences (approximately 70.000 words).

Results While the difference between the random and the structured models

is much smaller, here too we observe a difference between the distributions (t =
29.18, p < 0.001); the mean difference in surprisal values is 0.58 bit (sd 1.82).

Here too, however, we observed a correlation of 0.91 (p < 0.001) between the

surprisal values estimated from the scrambled and structured model. See Figure

2.4 in the main text.

https://opus.nlpl.eu/OpenSubtitles-v2018.php
https://opus.nlpl.eu/OpenSubtitles-v2018.php
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2.7.2.2 Simulation: ‘surprisal does not lead to syntax’

For this simulation, we trained two additional models on the Spanish translation

of the English corpus. This was a corpus of approximately 116.000 sentences

(roughly 800.000 words).

Model training & testing The training and testing procedures were identical

to those of the English model.

Classification Before classification, we z-scored the surprisal values to account

for the possibility that one of the languages is generally more surprising than the

other. Subsequently, we trained a Random Forest Classifier (100 estimators as

implemented in Scikit-Learn (Buitinck et al., 2013) on 80% of these sentences

to predict whether the surprisal values belonged to English or to Spanish. Since

structure may be encoded in patterns of surprisal values rather than the individ-

ual values, we did this for a range of groups of surprisal values (from unigrams

to 10-grams). The distribution of the surprisal values is visible in Figure 2.5 in

the main text.

Results We found that the classifier was able to predict with 63.8% accuracy

if a single surprisal value belonged to the English or the Spanish grammar, and

this increased to 74.1% for groups of 10 surprisal values With chance at 50% and

10.000 testing items, this means that the classifier performs above chance. We

could have stopped here, and concluded that we were wrong: surprisal values do

map back onto structure. But alas, we did not. We trained the same classifier on

the results from the Spanish and English scrambled models (the words shuffled

within each sentence; see the distribution in Figure 2.5 in the main text). Despite

these models not containing any structural information, the classifier performed

at 66.2% for unigram surprisal values, and performance increased to 84.2% for

10 surprisal values. Apparently, surprisal values from the scrambled model are

easier to attribute to one or the other language than those from the structured

models.

Why do these classifiers work at all? Structure is not the driving factor, ap-

parently. No, specific surprisal decimal values appeared to be one of the driving

factors. The surprisal values were uniquely attributable to one or the other lan-

guage due to high specificity of the values. In other words, each surprisal value

was unique to either Spanish or English, and the classifier learned this (par-

tially). We tested if the pattern in groups of surprisal values was strong enough
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for the classifier to attribute the values to either language by rounding all val-

ues to 1 decimal. This preserves a potential structure-specific pattern, but re-

moves the uniqueness. This change decreased the classifier’s accuracy in both the

structured- and the scrambled model (structured: accuracy ranges from 52.92%

(unigram) to 67.98% (10-gram); scrambled: accuracy ranges from 58.46% (un-

igram) to 82.31% (10-gram)), but the accuracy values were still higher for the

scrambled model than for the structured model.



3 | Delta-band neural responses to individual

words are modulated by sentence processing1

Abstract

To understand language, we need to recognize words and combine them into
phrases and sentences. During this process, responses to the words themselves
are changed. In a step towards understanding how the brain builds sentence
structure, the present study concerns the neural readout of this adaptation. We
ask whether low-frequency neural readouts associated with words change as a
function of being in a sentence. To this end, we analyzed an MEG dataset by
Schoffelen et al. (2019) of 102 human participants (51 women) listening to sen-
tences and word lists, the latter lacking any syntactic structure and combinatorial
meaning. Using temporal response functions and a cumulative model-fitting ap-
proach, we disentangled delta- and theta-band responses to lexical information
(word frequency), from responses to sensory- and distributional variables. The
results suggest that delta-band responses to words are affected by sentence con-
text in time and space, over and above entropy and surprisal. In both conditions,
the word frequency response spanned left temporal and posterior frontal areas;
however, the response appeared later in word lists than in sentences. In addition,
sentence context determined whether inferior frontal areas were responsive to
lexical information. In the theta band, the amplitude was larger in the word
list condition around 100 milliseconds in right frontal areas. We conclude that
low-frequency responses to words are changed by sentential context. The re-
sults of this study illustrate how the neural representation of words is affected
by structural context, and as such provide insight into how the brain instantiates
compositionality in language.

1Adapted from Slaats, S., Weissbart, H., Schoffelen, J.-M., Meyer, A. S., & Martin, A. E. (2023).
Delta-band neural responses to individual words are modulated by sentence processing. The
Journal of Neuroscience, 43(26), 4867-4883. doi:10.1523/JNEUROSCI.0964-22.2023.
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3.1 Introduction

During language comprehension, listeners recognize words, retrieve stored in-

formation about them, and use this knowledge to combine the words into phrases

and sentences. Psycholinguistic experiments have long shown that the behav-

ioral responses to words change under the influence of the syntactic and senten-

tial context that the words appear in (e.g., Katz, Boyce, Goldstein, & Lukatela,

1987; Marslen-Wilson & Welsh, 1978; Tyler & Wessels, 1983). In a step towards

understanding how the brain builds sentence structure, the present study con-

cerns the neural readout of this process. We ask (1) whether low-frequency

neural readouts associated with words systematically change as a function of

being or not being in a sentence context; and (2) whether neural readouts are

modulated by purely lexical properties over and above sensory and distributional

variables. We do this by contrasting MEG responses to words in sentences with

word lists, the latter lacking any syntactic structure or coherent lexical and com-

binatorial meaning.

In psycholinguistic models, language comprehension is instantiated as a cas-

caded process in which information can flow bidirectionally (Marslen-Wilson &

Welsh, 1978; Martin, 2016, 2020). Put simply, this means that speech sounds

cue stored representations of words, and while the next words are being rec-

ognized, the retrieved information about words cues representations of phrase

and sentence structure. At the same time, the already formed representations of

sentences, phrases, and words cue lower-level representations: the information

flows in two directions.

As words are being combined into phrases and sentences, then, responses

to words change as a consequence of the top-down information flow. Indeed, a

long tradition of research in psycholinguistics has shown that words in sentences

are recognized faster than those same words appearing in isolation (Marslen-

Wilson & Welsh, 1978; Tyler & Wessels, 1983). This effect is so powerful that it

reduces effects of properties of the words themselves, such as word frequency. In

isolation, highly frequent words are recognized faster than low-frequency words.

In sentence context, this effect tends to be reduced: low-frequency words are

recognized faster in sentence context than in isolation, while there is little change

in recognition times for the high-frequency words (Schuberth & Eimas, 1977;

Simpson, Peterson, Casteel, & Burgess, 1989).

To gain a full understanding of human sentence comprehension, the field cur-

rently faces the challenge of integrating these findings with knowledge of neural

processing. Although recent studies provide insight into the neural correlates of
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sentence structure (e.g., Bai et al., 2022; Brennan & Martin, 2020; Coopmans et

al., 2022; Ding et al., 2016, 2018; Kaufeld, Bosker, et al., 2020; Meyer, Henry,

Gaston, Schmuck, & Friederici, 2017; Nelson, El Karoui, et al., 2017; Tavano et

al., 2022; Ten Oever, Carta, et al., 2022), much about the process of building

these structures remains unknown (see Ten Oever, Kaushik, and Martin (2022)

for discussion). Furthermore, while we know that the neural signal is sensitive

to lexical information (Armeni et al., 2019; Brodbeck, Hong, & Simon, 2018;

Brodbeck, Presacco, & Simon, 2018; Broderick, Anderson, Di Liberto, Crosse, &

Lalor, 2018; Heilbron et al., 2022; Weissbart et al., 2019), we do not know how

neural responses to words are transformed in the process of comprehension.

In this study, therefore, we aim to add to our understanding of how the brain

leverages linguistic information when building sentence structure by finding a

neural readout of the context effect on responses to words – above and beyond

statistical predictability effects as quantified through entropy and surprisal. To

this end, we analyzed a published MEG dataset by Schoffelen et al. (2019) of 102

participants listening to sentences and word lists. Despite these conditions being

the main experimental manipulation in this open data set, they have not pre-

viously been directly compared. Using temporal response functions (TRFs), we

disentangled delta- and theta band responses to individual words from responses

to the speech envelope and word onsets, as well as entropy, and surprisal. This

method allowed us to model any differences between the conditions that go be-

yond our difference of interest (structured/unstructured), and, as such, control

for them. We compared the responses to individual words between word lists

and sentences. Any differences between the lexical responses in these conditions

reflect the effect of structure building on the processing of words.

The lexical response was modeled using word frequency. We chose this feature

because word frequency is a proxy for the likely familiarity of the listener with

the word and relatedly of ease of processing. Any modulation as a consequence

of word frequency, therefore, captures the presence of word identity information

in the signal. Furthermore, word frequency is unigram – in other words, it does

not depend on the context. Therefore, the value corresponding to a given word is

the same in a sentence and a word list. Differences between the neural readout of

both conditions will therefore be due to the sentence context supplying structure

and meaning, and not to the predictor itself.

We hypothesized that the delta-band responses to word frequency would be

different in word lists and sentences as a consequence of the (in)availability of

sentence context (Huizeling, Arana, Hagoort, & Schoffelen, 2022; Meyer, 2018;
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Meyer, Sun, & Martin, 2020a; Meyer et al., 2020b). Studies that investigated

the presence of lower-level features in the neural signal as a function of the

availability of linguistic information suggest that lower-level features are repre-

sented by the delta-band neural signal more reliably when higher-level informa-

tion is available. For example, mutual information between the speech signal

and the neural signal is higher in the presence of structure and meaning (Coop-

mans et al., 2022; Kaufeld, Bosker, et al., 2020; Ten Oever, Carta, et al., 2022);

and the strength of speech tracking is dependent on the listener’s knowledge of

the language (Blanco-Elorrieta, Ding, Pylkkänen, & Poeppel, 2020; Molinaro &

Lizarazu, 2018), and general comprehension (Keitel, Gross, & Kayser, 2018).

Following these results, we expected a stronger presence of the word frequency

response (the lower-level feature) in the sentence condition than in the word list

condition (the higher-level information) in the delta band specifically. Theta-

band effects tend to be found as a function of acoustic rather than abstract lin-

guistic manipulations (Blanco-Elorrieta et al., 2020; Etard & Reichenbach, 2019;

Molinaro & Lizarazu, 2018; Sohoglu, Peelle, Carlyon, & Davis, 2012). In this

study, we expected to observe this distinction between delta and theta-band ac-

tivity through an absence of effects in the theta band.

3.2 Materials and methods

To answer our research question, we analyzed a part of the open-access large

multimodal MEG dataset (N=204) MOUS (Mother of all Unification Studies)

published by Schoffelen et al. (2019). In addition, we performed two types of

control analyses; an analysis of a dataset published by Ten Oever, Carta, et al.

(2022) and a set of simulations. Methods for all analyses are described below.

3.2.1 Participants

A total of 102 native speakers of Dutch (51 men, 51 women) with a mean age of

22 (range: 18 to 33) were included in this analysis. In this half of the dataset,

participants were presented with the stimuli auditorily (as opposed to the other

half, where stimuli were presented visually). All participants were right-handed,

reported normal hearing, had normal or corrected-to-normal vision, and had no

history of neurological, developmental or linguistic deficits. All participants pro-

vided informed consent and the study was approved by the local ethics commit-

tee (CMO – the local “Committee on Research Involving Human Subjects” in the
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Arnhem-Nijmegen region) and followed guidelines of the Helsinki declaration.

Participants took part in an fMRI and an MEG session, during which they listened

to sentences and word lists. Only the MEG data are included in the present study.

3.2.2 Materials

The complete set of stimuli consisted of 360 natural Dutch sentences of 9 to

15 words (mean: 11.6) with varying syntactic structures, and 360 word lists.

To create the word lists, the words from the sentences were scrambled such

that more than two consecutive words did not form a coherent fragment. The

stimuli were recorded by a female native speaker of Dutch. The sentences were

pronounced naturally. The word lists were pronounced with neutral prosody and

a clear pause between each word. The files were recorded in stereo at 44100

Hz. The sentences had an average duration of 4.27 seconds (sd. 0.61), and

the word lists of 7.67 seconds (sd. 1.04). During the post-processing, the audio

files were low-pass filtered at 8500 Hz and normalized such that all the audio

files had the same peak amplitude and peak intensity. In the word list condition,

the individual words were spliced together with variable silence between them.

This created conditions with different acoustic properties. We address this issue

in sections 3.2.4, 3.2.6, and 3.2.7 below. In both conditions, the transition from

silence to speech was ramped at the onset and offset with a rise/fall time of

10ms. Word onsets and offsets were determined manually for each audio file

using the Praat software (Boersma & Weenink, 2018).

The stimuli were divided over two sets, set A and set B. During the MEG ses-

sion, participants were presented with 120 sentences from set A and 120 word

lists from set B (or the reverse). Across participants, all stimuli were presented

the same number of times in the sentence and word list condition.

3.2.3 Procedure

Prior to the task, participants read a written instruction and were allowed to ask

clarification questions. The experimenter emphasized that the sentences and

word lists should be attended carefully, and discouraged attempts to integrate

the words in the word list condition. To familiarize the participants with the

task, all participants performed a practice block with stimuli not included in the

study. During the MEG measurement, the stimuli were presented in 24 blocks,

alternating between sentence blocks (each containing 5 sentences) and word

list blocks (each containing 5 word lists). The starting block type (either sen-
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tences or word lists) was randomized across participants. At the start of each

block there was a 1500ms presentation of the block type: ‘zinnen’ (sentences) or

‘woorden’ (words). The inter-trial interval was jittered between 3200-4200ms.

During this period, an empty screen was presented, followed by a fixation cross.

In order to assure participants paid attention to the stimuli, 20 percent of the

trials were followed by a ‘Yes’/’No’ question about the content of the preceding

sentence/word list. Half of the questions on the sentences addressed the con-

tent of the sentence (e.g.: ‘Did grandma give a cookie to the girl?’) whereas the

other half, and all of the questions about the word lists, addressed one of the

main content words (e.g.: ‘Was a grandma mentioned?’). Participants answered

the question by pressing a button for ‘Yes’/’No’ with their left index and middle

finger, respectively. While the tasks were not identical between the conditions,

the randomized order of appearance of question types ensured that participants

could not approach the sentences any differently from the word lists: any sen-

tence or list trial could be followed by the word monitoring task.

The stimuli were presented via plastic tubes and ear pieces to both ears. The

hearing threshold was determined individually for each participant prior to the

experiment, and the stimuli were presented at an intensity of 50 dB above the

hearing threshold.

The experiment was run using the Presentation® software (Version 16.0, Neu-

robehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). MEG was contin-

uously recorded with 275-channel axial gradiometer system (CTF) at a sampling

frequency of 1200 Hz (cut-off frequency of the analog anti-aliasing low-pass fil-

ter was 300 Hz). Three head localizer coils were attached to the participant’s

head (nasion, left- and right ear canals) to determine the position of the head

relative to the MEG sensors. The head position was monitored throughout the

measurement. If needed, the participant was asked to reposition in order to

correct for head position changes during breaks. The audio signal of the stim-

uli presented in the scanner were recorded along with the MEG data using an

ADC-channel.

Structural MRI images for source reconstruction were acquired using a T1-

weighted magnetization-prepared rapid gradient-echo (MP-RAGE) pulse sequence

with the following acquisition parameters: volume TR = 2300 ms, TE = 3.03

ms, flip-angle = 8 degrees, 1 slab, slice-matrix size = 256 x 256, slice thickness

= 1 mm, field of view = 256 mm, isotropic voxel size = 1.0 x 1.0 x 1.0 mm.

A vitamin-E capsule was placed as fiducial behind the right ear to allow visual

confirmation of left-right consistency.
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3.2.4 MEG preprocessing

The MEG data were preprocessed with custom-written MATLAB scripts using

the FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011, Donders

Institute for Brain, Cognition and Behaviour, Radboud University, the Nether-

lands. See http://fieldtriptoolbox.org). Before filtering, the data were

epoched from audio onset to audio offset. The epochs were baseline-corrected

and band-pass filtered into the designated frequency band using a windowed-

sinc Finite Impulse Response (FIR) filter (15 second data-padded), after which

they were resampled to 120 Hz for TRF estimation.

The frequency band of interest was defined on the basis of the rate of occur-

rence of words in the stimuli, the differences in speech-brain coherence between

conditions, and the literature (e.g., Blanco-Elorrieta et al., 2020; Donhauser &

Baillet, 2020; Molinaro & Lizarazu, 2018; Weissbart et al., 2019). The word rate

in the word listswas 1.5 Hz (sd. 0.1), and in the sentences 2.7 Hz (sd. 0.3). To

compute speech-brain coherence, we first computed the broadband speech en-

velope by taking the absolute value of the Hilbert transform of the speech signal,

low-passing it at 20 Hz and scaling the output between 0 and 1. We computed

the magnitude squared coherence estimate of the broadband speech envelope

and the MEG signal using Welch’s method. The differences between word lists

and sentences were estimated using a cluster-based permutation test. This re-

vealed three peaks in the low-frequency signal; one between 1 and 3 Hz, one

between 4.5 and 7 Hz, and one between 9.5 and 12 Hz. See Figure 3.1 below

(see also: Lam, Schoffelen, Uddén, Hultén, & Hagoort, 2016). On the basis of

these clusters and frequency bands analyzed in the literature (e.g., Donhauser &

Baillet, 2020), we analyzed two frequency windows: delta (0.5-4 Hz) and theta

(4 – 10 Hz). To account for differences in speech-brain coherence that were

exclusively due to acoustic differences between the conditions, we included the

speech envelope as a predictor in all the models of the data (see the modulation

spectra in Figure 3.1 below). Details of the models are presented in sections

3.2.6 and 3.2.7.

3.2.5 Source reconstruction

MRI images were co-registered to the MEG headspace coordinate system by

aligning the positions of the pre-auricular points and the nasion MEG coil to the

MRI images using the MNE-Python coregistration GUI. For each participant, we

reconstructed the cortical surface using the watershed algorithm from Freesurfer.

http://fieldtriptoolbox.org
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Figure 3.1: Speech-brain coherence and modulation spectra. A. Speech-brain co-
herence. Shaded area indicates standard deviation. Black bars in-
dicate frequencies that were part of clusters that contributed to the
significant difference between sentence- and word list coherence. B.
Modulation spectra of the broadband speech envelopes (part of the
TRF base model). The modulation spectra were obtained by concate-
nating the stimuli per stimulus type and performing a fast Fourier
transform on snippets of 5 seconds. The resulting spectra were aver-
aged.

We created a surface-based source space with ‘oct6’ spacing, meaning approxi-

mately 5 mm was between the source points. This generates 4098 sources per

hemisphere. We created a single-layer BEM-model with surface ico downsam-

pling of 5120, from which the lead field was computed. The sources were recon-

structed using a scalar LCMV beamformer approach with a unit-noise gain beam-

former to deal with depth bias. The data covariance used for computing LCMV

filters was whitened using the covariance matrix of resting state data. The rest-

ing state data was band-pass filtered into the appropriate frequency band (i.e.,

0.5-4 Hz for the delta band, and 4-10 Hz for the theta band). After application

of the LCMV beamformer filters to the epoched MEG data, the source-localized

epochs were morphed to fsaverage for group statistics. These source-localized,

morphed epochs were then entered into the pipeline for temporal response func-

tion estimation. Source localization failed for 11 participants due to convergence

issues for the noise covariance matrix or missing resting state data (Nsource = 91).

3.2.6 Temporal response functions

In order to characterize the effect of linguistic structure and meaning on the

neural response, we estimated temporal response functions (TRFs) to different

acoustic and linguistic features. This approach has been used to determine re-
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sponses to different linguistic features, ranging from the speech envelope and

phonemic information (Di Liberto et al., 2015; Donhauser & Baillet, 2020), to

lexical information (Broderick et al., 2018; Weissbart et al., 2019) and even syn-

tactic embedding (Nelson, El Karoui, et al., 2017). The response function of

interest here is the response to word frequency, as this is a unigram feature and

therefore has the same per-word values in both conditions.

The TRFs were estimated using linear regression. We modelled the neural

response by convolving the TRF kernel with the stimulus representation signal.

In summary, this method reduces to a multivariate multiple linear regression,

where we used lagged time series of stimulus features as predictors. The model

equation reads as:

yc(t) =
∑∑

x f (t)β f (t −τk) +η(t) (3.1)

Where {yc}t , {x f }t , {β f }t represent the recorded MEG signal of channel c, the

input feature f and its temporal response function respectively. {η}t is a gaussian

noise process accounting for measurement noise. We are using a time discrete

representation of each signal, where their values are sampled at discrete time

intervals tk =
k
Fs

, with sampling frequency Fs. This linear model can be easily

rewritten in its vectorized form and further concatenated such that we model

at once all channel equations independently. We estimate the coefficients of the

TRFs β̂ f by minimizing the squared error between the measured MEG signals and

the reconstructed signal obtained from equation (1) while keeping the norm of

TRFs coefficients, ||β ||2 low to avoid overfitting. This minimization problem is

solved in a closed form by:

β̂ = (X T X +λId)
−1X T Y (3.2)

Where Y ∈ RN×C is the matrix representation of the measured MEG signal (for

C channels arranged column-wise, each with N data samples); β̂ ∈ R(K .F)×C con-

tains the estimated TRFs with K lags, F features for all C channels; X ∈ RN×(K .F)

is a matrix containing all lagged feature time series of length N; λ is a regu-

larization coefficient and Id the identity matrix. The regularisation coefficient is

needed to avoid overfitting which in this case translates to the square matrix X T X

not being full rank. Numerically, small eigenvalues or simply ill-conditioned ma-

trices suffice to make the inversion unstable and thus will require regularization.

In our case this happens when features present some amount of autocorrelation

(as columns of X are time-lagged version of other columns. Continuous regres-
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sors such as the acoustic envelope (see section 3.2.7 “Stimulus Representation”)

will present strong autocorrelation and thus call for regularization.

In equation 3.1, the vector of weights β f (t) represents the coefficients param-

eterizing the temporal response functions. They form a time course reminiscent

of an event related potential that tells us at which point in time (and, potentially,

where) a feature modulates the neural signal. Thus, an increase at a certain lag

for a given feature reflects an increase in the associated brain response to this

feature at that given sensor and at the given time lag after stimulus onset. The

concept of stimulus onset, especially for a continuous regressor such as the en-

velope, here reduces to a situation where the brain would be stimulated by an

impulse of sound. Eventually, we estimate, from a system identification perspec-

tive, the transfer function mapping input to output when the brain is considered

as a linear time-invariant system.

To evaluate how our models perform at reconstructing the neural data, we

computed the Pearson’s correlation coefficient between the true data and data

reconstructed using the estimated TRFs. The correlation between the recon-

struction and the original MEG indicates how much of the variance in the neural

signal is explained by the features. The TRFs were not estimated on the same

portion of data used to score the model. As further explained in section 3.2.8

“model fitting”, we used a nested cross-validation procedure to tune the regular-

ization parameter, estimate the TRF coefficients and finally score the resulting

model. Unless specified otherwise, all analyses described below were done with

custom made Python scripts using MNE-Python (Gramfort et al., 2013). The

whole analysis was conducted both in sensor- and in source space.

3.2.7 Stimulus representation

Its multivariate character makes the TRF especially suitable for the current anal-

ysis: it allows for controlling for differences between conditions that are not

currently under discussion by modelling them. To characterize the speech signal

and part of its linguistic content, we constructed five different features: word

frequency (the feature of interest), and four control features; the speech enve-

lope, word onsets, entropy, and surprisal.

The speech envelope feature was computed for each stimulus by taking the ab-

solute value of the Hilbert transform and down sampling it to 120 Hz to match

the down-sampled MEG sampling rate. The envelope feature was added to rep-

resent the acoustic response and as such captures the difference between condi-
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tions observed in the cerebro-acoustic coherence that was caused by differences

in the acoustic input (see Figure 3.1 A and B).

The word onset feature was added to capture broadly any time-locked response

to word onset for which the variance is not already explained by other features.

As such, this feature can also capture any effects of segmentation that were dif-

ferent between the conditions. The word onsets and offsets were transcribed

manually for each stimulus. We used a train of unit impulses, where the feature

signal is one at the word onset sample and zero otherwise:

x(t) =
∑

words

δ (t − tonset) (3.3)

These impulse trains were convolved with a Gaussian kernel with a standard

deviation of 15ms. Such temporal smoothing has the effect of inflating the auto-

correlation of the signal. We designed the width of this smoothing such that the

smoothed impulses end up with energy spanning a comparable frequency band

as to our continuous regressor (envelope). The Fourier Transform of a gaussian

is also a gaussian, and the 15ms standard deviation of the temporal smoothing

kernel equates to a spectral standard deviation of 21.22Hz. This ensured that

all features required a similar degree of regularization in the regression analysis,

and made it possible to include impulse-like features such as word onsets and

the envelope in the same regularized regression. Notably, this also translates

into some uncertainty about or knowledge of the exact word onset timings.

Like the word onset feature, the word frequency feature was constructed as an

impulse train of zeros everywhere but at word onset. Here we used the respective

word frequency value to modulate the height of the impulses. We used the log-

transformed value of occurrence per million words, obtained from the SUBTLEX-

NL corpus (Keuleers, Brysbaert, & New, 2010):

xwf (t) =
∑

words

− log (p (w))×δ (t − tonset) (3.4)

where P(w) represents the unigram probability estimated from occurrence per

million words.

If a word did not exist in the corpus, the fallback value of 0.301 (log/million)

was used, corresponding to the lowest word frequency in the corpus. The values

were z-scored across all stimuli. The resulting signal was convolved with the

same Gaussian kernel as the word onset feature.

The entropy feature consists of lexical entropy, a weighted probability measure

that quantifies the uncertainty about the upcoming word on the basis of the
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previous words. It provides a numeric answer to the following question: given

the n previous words, with what degree of certainty can we predict the upcoming

word?

H (wi|wi−n...wi−1) = −
∑

p (wi|wi−n...wi−1) log (p (wi|wi−n...wi−1)) (3.5)

The value was derived from a trigram model trained on the NLCOW2012 cor-

pus using WOPR (van den Bosch & Berck, 2009). If a value was missing, the

average of all entropy values was used. Like the word frequency feature, the en-

tropy values were z-scored relative to all stimuli and inserted in a stick function,

after which the stick function was convolved with the same Gaussian window.

This feature was added to ensure that any effects on the word frequency feature

were of a compositional semantic and structural nature, rather than a proba-

bilistic one.

The surprisal feature reflects how surprising a given word is in its immediate

context. From an information-theoretic perspective, this reflects the informa-

tion content, or self-information, of a word. It was calculated as the log10-

transformation of the conditional probability of a word, which was taken from

the same trigram model as the entropy values. This means that surprisal is al-

ways based on the two preceding words: given the two preceding words, how

high was the chance that the observed word would, indeed, appear? If the

chance was low, surprisal is high. The feature was constructed in the same way

as the word frequency and entropy features; the values were z-scored across

all stimuli, inserted in a stick function at word onsets, and convolved with the

Gaussian window.

I (wi|wi−n...wi−1) = − log10 (p (wi|wi−n...wi−1)) (3.6)

Since the three numerical lexical features (frequency, entropy, surprisal) might

be correlated to some extent, we need to assert that the degree of multicollinear-

ity present in our stimulus representation will not hinder the TRF coefficient in-

terpretation. We checked whether the Variance Inflation Factor (VIF) was below

5 (considered a relatively conservative measure of multicollinearity; Sheather,

2009; Tomaschek, Hendrix, & Baayen, 2018). The VIF was computed by cor-

relating the z-scored entropy, surprisal, and word frequency values, and taking

the diagonal of the inverted correlation matrix. This was done for all the stimuli,



3 Neural responses to words in- and out of sentences 59

and for both conditions separately. The VIF was never higher than 5; the highest

VIF was for Surprisal at 4.8 in the word list condition.

3.2.8 Model fitting

The features were fitted in a cumulative manner to assess the contribution of

each feature. This led to a total of seven models per frequency band: an Envelope

model, consisting of only the speech envelope; an Onset model, consisting of the

speech envelope and the word onset features; and a Frequency model, consisting

of the speech envelope, word onset, and word frequency features; an Entropy

model, containing the speech envelope, word onset, and entropy features; a

Surprisal model, consisting of the speech envelope, word onset, and surprisal

features; and cross-combinations of those with- and without the word frequency

feature. An overview of all models and the corresponding features is displayed

in table 3.1 below.

Before model fitting, the data was split pseudo-randomly into a training- and

testing set at an 80/20 ratio. Care was taken that the sentences and word lists

were evenly divided across the training and test sets. The sentence- and word

list models were each trained on 96 out of 120 trials. The regularization pa-

rameter was optimized individually per participant, frequency band and model

(but not per condition) using an eight-fold cross-validation procedure with 20

log-spaced values around the eigenvalues of the covariance matrix of the lagged

speech envelope (λ = 60470.9) ranging from λ × 10-3 to λ × 103. The best

regularization parameter was determined as the value for which the average

(across sensors) reconstruction accuracies were highest. Occasionally, recon-

struction accuracies would not increase with a higher degree of regularization;

instead, increasing the regularization would leave the reconstruction accuracy at

the same value, until overregularization occurred and reconstruction accuracy

went down. In this case, the highest lambda value before a drop in accuracy

occurred was chosen to ensure some degree of regularization. Each model was

fitted on the complete training set using the regularization parameter from the

cross-validation procedure, yielding the TRFs.

In the analysis of the source-localized MEG data, the manipulations were sim-

plified due to computational limitations. The two maximal models were fitted,

with word frequency as the only difference: the Entropy/Surprisal model, con-

sisting of the speech envelope, word onsets, entropy, and surprisal features; and

the full model, consisting of all features. The cross-validation procedure was
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brought down to five-fold with ten log-spaced values around the eigenvalue of

the stimuli (60470.9) ranging from λ × 10-2 to λ × 102 .

3.2.9 Model evaluation

Each model was evaluated by convolving the estimated TRFs with the unseen

stimuli from the test data set. This yields, in essence, a prediction of the neu-

ral signal according to the model. The predicted neural signal was then corre-

lated with the original neural signal from the test set using the Pearson product-

moment correlation on a sensor-by-sensor or source-by-source basis. For every

individual participant, this yielded a set of sensor- or source-based reconstruction

accuracies for each model.

Table 3.1: The fitted encoding models.

Model name Feature
Envelope Word onset Entropy Surprisal Word frequency

Envelope ×
Onset × ×
Entropy × × ×
Surprisal × × ×
Frequency × × ×
Entropy / Surprisal × × × ×
Entropy / Frequency × × × ×
Surprisal / Frequency × × × ×
Full × × × × ×

Note. An × indicates that a feature was included in the model.

The TRF analysis has two deliverables: first, the TRF (the development of the

estimated coefficients across time), which is an ERP-like waveform that captures

how the neural signal changes as a function of (e.g.) word frequency; and, sec-

ond, the reconstruction accuracy, which is a metric of model fit. Here, we wanted

to know (1) whether the responses to word frequency differ between sentences

and word lists in time and space, so we compared the TRFs between conditions;

and (2) whether the presence of the word frequency response differed between

sentences and word lists, so we tested whether the word frequency predictor

contributed differently to the reconstruction accuracy of a model in the two con-

ditions.

Throughout, evaluation for statistical significance of the difference between

TRFs was done using cluster-based permutation tests. Cluster-based permuta-

tion tests address the null hypothesis of exchangeability across conditions by a

Monte Carlo estimate of the randomization distribution of a cluster-based test

statistic, optimizing statistical sensitivity while controlling the false alarm rate.
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Here, we used the T-statistic as the test statistic. In these tests, we create ma-

trices of all sensors and samples. Then, we compute the difference between

two conditions and express it as a T-statistic for each of these data points. The

T-values are thresholded at an a priori threshold, and the thresholded T-values

are summed across clusters on the basis of spatial and temporal adjacency. The

significance of the resulting largest cluster’s test statistic is compared to 1024

of similarly obtained test statistics, after random permutation of the condition

labels. We used the function spatio_temporal_cluster_test from the MNE-Python

library (Gramfort et al., 2013) with the t-statistic as the test statistic and 1024

permutations.

To assess whether the responses to word frequency differed qualitatively be-

tween conditions in sensor space, the difference between the word frequency

TRFs for the sentence and word list conditions was evaluated using a cluster-

based permutation test. In addition, to characterize the response in each con-

dition separately, we performed two cluster-based permutation tests with the

same methods in which we contrasted the response against zero in each condi-

tion separately. In total, we performed three cluster-based permutation tests on

the sensor TRFs: one on the difference between conditions, and one on the TRF

for each of the two condition separately (against zero). In all cases, we calcu-

lated the threshold on the basis of the t-distribution with a significance level of

5x10-8 with 101 (number of participants – 1) degrees of freedom. This equals

three times the recommended threshold for the number of participants. The

threshold was increased to yield the most informative results (i.e., to ensure not

every sensor and time-lag would be significant). Subsequent comparisons were

done with a threshold calculated using a Bonferroni adjusted significance level

(i.e., divided by two) to correct for multiple comparisons; all else was the same.

In addition, we wanted to evaluate whether there was a latency difference

between the responses in the two conditions. To this end, we compared the re-

sponses from the sentences and word list conditions in a cross-correlation. The

cross-correlation was done on the grand-average TRF waveforms of overlapping

sensors between conditions from the clusters resulting from the one-sample tests.

We sequentially cross-correlated each sensor, and normalized the values by di-

viding them by the maximal value from the cross-correlation for that sensor. We

then obtained the peaks for every sensor. This number corresponds to the “lag”

at which the two signals had the highest correlation, and show how different the

responses are in time. Subsequently, we shifted the sentence response in time

by the number of samples of the peak. We then correlated the shifted sentence
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response and the original word list response. To check for significance, we per-

formed the same procedure for randomly selected channels and repeated this

process 10000 times.

In source space, we compared the TRFs for word lists and sentences using a

cluster-based permutation test in two time-windows on the basis of the results

from the analysis in sensor space: 200-400ms and 500-700ms post stimulus on-

set (further: PSO), respectively. We did this to get a more reliable estimate of the

spatial distribution of the effects, although cluster-based permutation tests ac-

count only for a difference between the distribution overall, therefore any spatial

or temporal differences are approximations and inconclusive (Maris & Oosten-

veld, 2007; Sassenhagen & Draschkow, 2019). The threshold was set to the

t-distribution with an alpha of 0.025 (98.75 and 1.25th percentile) to correct for

multiple comparisons, with 90 (number of participants-1) degrees of freedom.

Sources along the medial wall were excluded.

In the sensor space analysis, the reconstruction accuracies were averaged over

sensors and submitted to a linear mixed model using lme4 in R (Bates, Mäch-

ler, Bolker, & Walker, 2015). The model had the factor condition (two levels:

sentence and word list), and a random intercept for participant. In addition,

the model contained three binomial factors frequency, entropy, and surprisal,

describing whether a feature was (1) or was not (0) in the model in order to

calculate a slope for each feature separately.

accuracies ∼ condi t ion·( f requenc y + ent rop y + surprisal)+(1|par t icipant)
(3.7)

We used a stepwise variable selection to evaluate the contribution of each of

these factors. To evaluate the contribution of a given factor (or interaction), a

model with the factor was compared to a model without it, and the goodness-

of-fit statistics were compared using a chi-square test. If the removal of a factor

did not decrease goodness-of-fit, the next factor was removed. When the re-

moval of a given feature or interaction significantly decreased model fit, the

removal of features was stopped. The prefinal model should then describe the

data best. As a final check, the AIC of the models was compared using the R-

package AICcmodavg (Mazerolle, 2020). Post-hoc t-tests were done between the

Entropy/Surprisal and Full model to evaluate whether the effects held between

the largest models.
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In source space, a cluster-based permutation test was done to localize the in-

teraction effect using the function permutation_cluster_test from the MNE-Python

library. The test statistic was an F statistic from a two-way ANOVA with factors

Condition (levels: word list, sentence) and Model (levels: Entropy / Surpri-

sal, Full) with a threshold determined using the function f_threshold_mway_rm,

equally from the MNE-Python library. The data was permuted 1024 times.

3.2.10 Control analysis I: data from Ten Oever, Carta, Kaufeld

& Martin (2022)

The word lists were presented with variable silences between words. The sen-

tences, on the other hand, were natural, with pauses occurring sparingly. This

caused differences of word rate and signal length between the conditions that

may affect our results. To examine potential effects of the pauses in the word

list condition, we analyzed a second dataset of 16 participants listening to word

lists and sentences using the same methods. Importantly, the word lists in this

condition were naturally spoken, as were the sentences. This means that there

were no pauses between the words in the word list condition, and there was

coarticulation between words (Kaufeld, Bosker, et al., 2020). The data were

supplied by Ten Oever, Carta, et al. (2022).

Participants A total of 20 native speakers of Dutch (4 men, 16 women with

a mean age of 39.5) participated in the experiment. Four participants were

excluded from this analysis due to a variety of reasons (e.g., session was not

completed). All participants were right-handed, reported normal hearing, had

normal or corrected-to-normal vision, and had no history of neurological, de-

velopmental or linguistic deficits. All participants provided informed consent.

The study was approved by the ethical Commission for human research Arn-

hem/Nijmegen (project number CMO2014/288). Participants were remuner-

ated for their participation.

Materials The stimuli were identical to the stimuli used in Kaufeld, Bosker, et

al. (2020). The experiment consisted of three conditions in total: sentences,

Jabberwocky, and word lists. Only the sentences and the word lists are analyzed

here. The stimuli consisted of 10 words, which were all disyllabic except for “de”

(the) and “en” (and). Sentences had a fixed syntactic structure of two coordinate

clauses: [Adj N V N conj Det Adj N V N], e.g. ‘timid heroes pluck flowers and the
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brown birds gather branches’. The word lists were scrambled versions of these

sentences, and care was taken that there were no plausible internal combinations

of words. The stimuli were recorded by a female native speaker of Dutch at a

sampling rate of 44.1 kHz (mono). After recording, any pauses were normalized

to ~150 ms in all stimuli and the intensity was scaled to 70 dB using the Praat

voice analysis software (Boersma & Weenink, 2018).

Participants were asked to perform four different tasks on these stimuli: a

passive listening task, a syllable recognition task, a word recognition task, and

a word combination recognition task. In this analysis, we did not distinguish

between tasks. For a description of the tasks performed, see Ten Oever, Carta,

et al. (2022).

Procedure At the beginning of each trial, participants were instructed to look

at a fixation cross presented at the middle of the screen on a grey background.

The audio was presented binaurally through tubes after an interval randomly jit-

tered between 1.5 and 3 seconds. One second after audio offset, the task prompt

(e.g., the syllables or words for recognition) was presented, which required par-

ticipants to press a button on a button box. There were eight blocks of approx.

8 minutes. After each block, participants could take a break, during which the

head position was corrected. MEG was recorded using a 275-channel axial gra-

diometer CTF MEG system at a sampling rate of 1200Hz. After the session, head

shape was collected using the Polhemus digitizer (using as fiducials the nasion

and the entrance of the ear canals as positioned with earmolds).

MEG preprocessing The MEG data were processed with custom-written Python

scripts using MNE-Python (Gramfort et al., 2013). As in the main analysis, the

raw MEG data was filtered using a windowed-sinc Finite Impulse Response (FIR)

filter between 0.5 and 4 Hz for the delta band, and 4 and 10 Hz for the theta

band, after which the data was epoched from audio onset to audio offset and

resampled to 120 Hz for TRF estimation.

Stimulus representation In this analysis, we used the envelope, word onset, and

word frequency representations from the main analysis. For a full description, see

section 3.2.7.

Model fitting We used the model-fitting approach described in section 3.2.8.

We fit three models: Envelope (with only the envelope feature), Onset (envelope
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and word onset features), and Frequency (envelope, word onset, and word fre-

quency features). The data was split pseudo-randomly into a training and a test-

ing set at an 80/20 ratio, ensuring that the sets contained 50% items from each

condition. The regularization parameter was optimized individually per partic-

ipant and model, using an eight-fold nested cross-validation procedure with 20

log-spaced values around 60000 (λ= 60000) ranging from λ× 10-2 to λ× 102.

Model evaluation For model evaluation, we used the procedure described in

section 3.2.9 of the main text.

Statistical analysis Like in the main analysis, we assessed whether the re-

sponses to word frequency qualitatively differed between conditions by eval-

uating the difference between the word frequency TRFs for the sentence and

word list conditions using a cluster-based permutation test. In addition, to char-

acterize the response in each of the conditions separately, we performed two

additional cluster-based permutation tests with the same methods in which we

contrasted the response against zero in each condition separately. In total, we

performed three cluster-based permutation tests on the TRFs: one on the dif-

ference between conditions, and one on the TRF for each condition separately

(against zero). In all tests, we calculated the threshold on the basis of the t-

distribution with a significance level of 0.05 with 16 (number of participants –

1) degrees of freedom. Only clusters with a p-value smaller than 0.01 were con-

sidered. Subsequent comparisons were done with a threshold calculated using

a Bonferroni adjusted significance level to correct for multiple comparisons; all

else was the same. For comparison to the main analysis, we also compared the

word onset response between conditions with the methods described above.

To evaluate the effect of word frequency in each condition, we compared the

reconstruction accuracies from the Onset and Frequency models in interaction

with condition. The reconstruction accuracies were averaged over all sensors

(conservative measure). After checking for normality and sphericity through

(1) visual inspection of QQ-plots and histograms, (2) statistical testing using the

Shapiro-Wilk test, Anderson-Darling test, and D’Agostino’s K2 test for kurtosis

and skewness as implemented in SciPy, and (3) the Mauchly test for sphericity

as implemented in Pingouin (Vallat, 2018) the averaged reconstruction accuracy

values were submitted to a repeated measures ANOVA using Statsmodels.
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3.2.11 Control analysis II: Simulations

Using simulations, we evaluated whether the inter-word interval impacts TRF

model evaluation. We did this by simulating raw MEG data consisting of a signal

(different impulse responses) and a variable amount of noise.

The simulated response was equivalent to the forward model, namely a noisy

output of a convolution between a predefined kernel (the ground truth for the

TRF estimate) and an impulse train (for the input signal). We generated those

data with variable amount of noise (i.e., explicitly manipulating the broadband

signal-to-noise ratio) and with varying inter-stimulus interval (ISI) while keeping

the signal length the same and the number of impulses, or events, constant (in

which case shorter inter-stimulus interval results in the end portion of the output

signal containing only noise).

We then scored the forward model by computing both the R2 score and the

Pearson’s correlation coefficient between the reconstruction by and the true sig-

nal using a test portion of the data, not used to estimate the coefficients β . Im-

portantly, we then computed the scores in two ways: (1) from the fixed signal

length data described above; since we also used a fixed number of impulses, or

events, this resulted in a portion of the stimulated output signal to contain only

noise; (2) or from a shortened signal, where we truncated all signals to the last

stimulus event. This resulted in shorter signals for shorter ISI.

3.2.12 Data and code accessibility

The code is available at https://osf.io/ky9bj/, with the exception of the

pre-processing scripts. The pre-processed data is available upon request. The

raw data can be downloaded from the Donders Repository at https://data
.donders.ru.nl/collections/di/dccn/DSC_3011020.09_236?0.

3.3 Results

3.3.1 Behavioral results

We compared participants’ responses to the task that was present in both con-

ditions, which targeted one of the main content words (e.g.: ‘Was a grandma

mentioned?’). To balance the number of trials included in the accuracy scores,

we took a random subset of questions from the word lists (12 or 13 trials). The

average proportion of correct responses was higher in the sentence condition

https://osf.io/ky9bj/
https://data.donders.ru.nl/collections/di/dccn/DSC_3011020.09_236?0
https://data.donders.ru.nl/collections/di/dccn/DSC_3011020.09_236?0
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(meansent = 0.88; sdsent = 0.08) than in the word lists (meanlist = 0.72; sdlist =
0.14; t = 10.08, p < 0.001), meaning that participants remembered the words

from the sentences better than the words from the word lists (see figure 3.2

below).

Figure 3.2: Accuracy scores for the behavioral task performed during the MEG
recording. The accuracy scores include responses to word monitoring
only. The word list accuracy scores are a random subset of the full
set of responses to balance the number of trials (n= 12) in the word
list and sentence conditions.

3.3.2 Delta band

Sensor-level analysis The cluster-based permutation test revealed differences

between word lists and sentences in three clusters between 0 and 700ms. Figure

3.3A suggests that the peak of the response to word frequency was delayed by

approximately 300ms in the word list condition. To evaluate if this was the

case, we conducted one-sample cluster-based permutation tests and computed

the cross-correlation between the two conditions for overlapping sensors from

the clusters in both conditions. The one-sample cluster-based permutation test

revealed a response in temporal areas in both conditions, that peaks around 250

milliseconds in the sentence condition, and around 600 milliseconds in the word

list condition (see Figure 3.3 B and C).

The cross-correlation on overlapping sensors between the two conditions (time-

courses and sensors visible in Figure 3.4A below) revealed a high correlation
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between the word list and the sentence responses at a delay of 330 milliseconds

(mean r = 0.9). Random sampling of sensors and lags revealed the distribution

shown in Figure 3.4D; the observed values are in the upper 0.05% percentile,

indicating that the observed correlation is likely not caused by chance.

Because we wondered whether the delay could be due to the differences in

presentation rate, we examined differences between the TRFs for the other word-

level feature that was numerically identical between conditions: word onsets

(unit-spike-train in both conditions). We compared the word onset response

from a model with only the envelope and word onset features. This model is

equivalent to an ERP analysis which corrects for overlapping event windows (as

is the case in the sentence condition) and controls for acoustic differences. A

small delay, of approximately 100ms, appears in this model. This delay is in ac-

cordance with findings of an ERP-analysis on high- versus low-constraining con-

texts (León-Cabrera, Rodríguez-Fornells, & Morís, 2017; Liu, Shu, & Wei, 2006).

Importantly, this model collapses over variance caused by the lexical features

included in the full model (word frequency, entropy, and surprisal). In other

words, this underspecified model attributes variance that is in fact due to word

frequency, entropy, or surprisal, to the word onset predictor. When we include

the other lexical predictors in the model and compared the conditions again, no

such difference between the word onset responses is observed (Figure 3.3D).

In this response, there were some differences around time-point zero, before

as well as slightly after; these differences may indicate differences in temporal

expectancy of word onset between conditions.
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Figure 3.3: Delta-band effects (sensor level). (A) The word frequency TRF in both con-
ditions in the delta band. Shown here is the mean of the sensors that were
included in clusters that were different between the two conditions. Black
bars indicate time points that contributed to clusters that allowed us to
reject the null-hypothesis. Shaded area indicates standard deviation. (B)
word frequency TRF in the sentence condition. Individual lines represent
sensors. Sensors in bold contributed to the clusters that allowed us to reject
the null-hypothesis. (C) word frequency TRF in the list condition. Individ-
ual lines represent sensors. Sensors in bold contributed to the clusters that
allowed us to reject the null-hypothesis. (D) The word onset TRF in both
conditions in the delta band. Shown here is the mean of the sensors that
were included in clusters that were different between the two conditions.
Black bars indicate time points that contributed to clusters that allowed
us to reject the null-hypothesis. Shaded area indicates standard deviation.
Vertical gray lines indicate the time points of the scalp maps.



70 3 Neural responses to words in- and out of sentences

A B

C D

Figure 3.4: Cross-correlation analysis. (A) TRF time-courses for shared sensors
between the sentence (solid lines) and word list (dashed lines).
Colors indicate sensor position. (B) Cross-correlation between the
sentence- and word list responses for overlapping sensors between
conditions from the clusters (scaled between -1 and 1). Colors in-
dicate sensor position. (C) The shifted response from the sentence
condition (solid lines) to overlap with the word list condition (dashed
lines). Colors indicate sensor position. (D) Kernel density plots of
means and standard deviations from correlations between randomly
selected sensors at shifted randomly selected lags; the red bar indi-
cates the values observed from the sensors selected after the cluster-
based permutation test shifted at the lags from the cross-correlation.
Coeff.: coefficient.

The reconstruction accuracies were evaluated with the model accuracies ~

condition · (frequency + entropy + surprisal) + (1|participant). The explanatory

value of the interaction between condition and each of the lexical factors was

evaluated; each interaction significantly improved model fit (frequency: χ2(1)

= 6.88, p < 0.01; entropy: χ2(1) = 4.48, p < 0.05; surprisal: χ2(1) = 7.24,

p < 0.01), so the full model was interpreted. The results of this model are

summarized in table 3.2 below.

Reconstruction accuracies were higher in the word list condition than in the

sentence condition (β = 1.67 · 10−2, SE = 9.43 · 10−4, t(1530) = 17.69, p <

0.01). As can be seen in Figure 3.5A, each feature contributed positively to the

reconstruction of the neural signal in the sentence condition; less so in the word
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list condition, hinting at an interaction effect. Indeed, the factor frequency inter-

acted with condition (β = 2.47·10−3, SE = 9.43·10−4, t(1530) = 2.63, p < 0.01),

showing that reconstruction accuracies improved more from the addition of the

word frequency predictor in the sentence condition, than in the list condition

(Figure 3.5B). Further, although we will not discuss these effects, entropy and

surprisal interacted with condition, as well (entropy: β = 2.00 · 10−3, SE =
9.43 · 10−4, t(1530) = 2.12, p < 0.05; surprisal: β = 2.54 · 10−3, SE = 9.43 ·
10−4, t(1530) = 2.69, p < 0.01).

Table 3.2: Results of the LME on the reconstruction accuracies in the delta band.

Factor β-coefficient SE df t-value p-value

(Intercept) 8.61·10-2 1.82·10-3 1306 47.22 ***

Word frequency 3.61·10-4 6.66·10-4 1530 0.54 n.s.

Surprisal 6.24·10-4 6.66·10-4 1530 0.94 n.s.

Entropy -3.88·10-4 6.66·10-4 1530 -0.58 n.s.

Condition -1.67·10-2 9.43*10-4 1530 -17.69 ***

Word frequency * condition 2.47·10-3 9.43·10-4 1530 2.63 **

Surprisal * condition 2.54·10-3 9.43·10-4 1530 2.69 **

Entropy * condition 2.00*10-3 9.43·10-4 1530 2.12 *

Note. SE: standard error; df: degrees of freedom; n.s. not significant; * p < 0.05; ** p <
0.01; *** p < 0.001

To gain more insight into the effect of frequency, we performed post-hoc t-

test comparing the two largest models (Entropy/Surprisal and Full). These tests

confirmed that the word frequency predictor enhanced reconstruction accuracy

in the sentence condition (t(101)=5.35; p < 0.01), but not in the word list

condition (t(101)=-0.15, p = 1) (Bonferroni-corrected).

Finally, we hypothesized that the higher reconstruction accuracy in the word

list condition was due to the salience of isolated words, possibly evoking a larger

auditory response. If this is true, a model with only the envelope predictor, and

no word-level feature, should also fit the list condition better. To evaluate this

hypothesis, we compared the reconstruction accuracies (averaged over all sen-

sors) for the Envelope model between conditions. This model was not included

in the analyses of the word frequency effect. And indeed, this was the case: re-

construction accuracies were higher for word lists than sentences using only the

envelope as predictor (t(101)=13.40, p < 0.01).

In sum, the response to word frequency differed between word lists and sen-

tences. The TRFs in sensor space revealed a left-lateralized frontotemporal re-

sponse to the feature that peaked around ~250ms post word onset in the sen-

tence condition, and around ~600ms in the word list condition. The sentence
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effect is in line with other studies that used word frequency as a feature in TRF

models of natural language comprehension (Brennan & Hale, 2019; Weissbart et

al., 2019). A cross-correlation analysis between a set of left (and one right) tem-

poral and frontal sensors that were involved in the response in both conditions

suggested that the word list response peaks ~300ms later. The reconstruction

accuracies in sensor space suggests that the word frequency predictor explains

more variance over and above acoustics, entropy, and surprisal in the sentence

condition, but not in the word list condition.

Source reconstruction In source space, we compared the TRFs for word lists

and sentences using a cluster-based permutation test in two time-windows on

the basis of the results from the analysis in sensor space: 200-400ms and 500-

700ms post stimulus onset, respectively. The cluster-based permutation test on

the TRFs from the source reconstructed MEG revealed two clusters in the early

time-bin, and four clusters in the late time-bin. In line with the analysis in sensor

space, coefficients were higher in the sentence condition than in the word list

Figure 3.5: Reconstruction accuracies in the delta band. (A) Reconstruction ac-
curacy difference with the envelope model for each model in the
sentence condition. Middle line indicates the median, the withe di-
amond indicates the mean. (B) Reconstruction accuracy difference
with the envelope model for each model in the word list condition.
Middle line indicates the median, the withe diamond indicates the
mean. (C) The interaction between condition and frequency on the
reconstruction accuracies. Values on the y-axis are the difference
with the envelope (as in A and B). Error bars represent the 95% con-
fidence interval. Entr.: entropy, surp: surprisal, freq: frequency.
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condition in the early time-bin (200-400ms PSO). These differences appeared

bilaterally in the posterior superior- and middle frontal gyrus (dorsolateral- and

dorsomedial prefrontal cortex) and cingulate gyrus (Figure 3.6A). In the right

hemisphere, the cluster extended to the inferior frontal gyrus (Figure 3.6A).

In the late time-bin (500-700ms PSO, Figure 3.6B), coefficients were higher

in the word list condition than in the sentence condition in three out of four

clusters. Those clusters appeared in the left hemisphere in the posterior temporal

lobe across the superior, middle, and inferior gyri/sulci, the temporal pole, and

the parahippocampal gyrus. In the right hemisphere, the effects appeared in

superior temporal, inferior parietal, and caudal frontal areas, as well as cingulate

gyrus. In a final cluster in the late time bin, the coefficients were higher in

the sentence- than in the word list condition. This cluster spanned left inferior

frontal areas, orbital cortex, as well as a small portion of the middle frontal

gyrus.

In addition, we observe a difference between the responses in left orbitofrontal

and ventrolateral prefrontal cortex – including the inferior frontal gyrus. In this

area, the response peaks in the late time-bin in the sentence condition only. That

this area is where we find a difference in late time lags is not surprising given

the large literature implicating the left inferior frontal cortex, or Broca’s area,

in syntactic processes processes (Friederici, 2011, 2012, 2015; Hagoort, 2013,

2015; Matchin & Hickok, 2020).

Given our finding that the word list response appeared delayed in comparison

to the response in the sentence condition, we also considered responses in the

sentence- and word list conditions separately through one-sample cluster-based

permutation tests. Here, we observed a widespread response in both conditions;

and indeed, this response appears in the early time window in the sentence con-

dition (Figure 3.6C), and in the late time window in the word list condition

(Figure 3.6F).

As we already observed in the contrast, in the late time window, the response

to word-internal information encompasses the left posterior superior- middle-

and inferior temporal gyrus (including parahippocampal gyrus) and the tem-

poral poles, as well as bilateral somatosensory areas in both conditions. These

areas are traditionally associated with lexical (and) semantic memory (Binder

& Desai, 2011; Hagoort, 2013, 2015). Furthermore, as we observed in the early

time-window, this response includes the bilateral dorsolateral prefrontal cortex.

These areas are part of the dorsal attention network and have been implied to

control activation and selection of information stored in temporoparietal cortices
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(Binder & Desai, 2011). In addition, like we observed in the contrast between

conditions, in the sentence condition a late response appears in the left inferior

frontal gyrus (Figure 3.6E). This response was absent in the word list condition.

We compared the reconstruction accuracies using a cluster-based 2x2 ANOVA.

There were no significant differences (all p > 0.1).

Taken together, these findings indicate that (1) much, but not all, of the re-

sponse to word internal information is shared between conditions in space; (2)

the response develops differently in time, with a delay in the word list condition;

and (3) word internal information modulates activity in the left inferior frontal

gyrus only in the presence of a coherent context.

3.3.3 Theta band

Sensor-level analysis In the theta band, the cluster-based permutation test re-

vealed no differences between the word list and sentence TRFs for the word

frequency feature (see Figure 3.7). The one-sample tests indicated, however, a

response between 100 and 200 milliseconds in the word list condition that was

absent in the sentence condition.

Like in the delta band, the full model was accuracies ~ condition · (frequency

+ entropy + surprisal) + (1|participant). Removing the interaction between

frequency and condition, or the interaction between surprisal and condition, de-

creased model fit (marginally; frequency: χ2(1) = 3.80, p = 0.051; surprisal:

χ2(1) = 3.95, p < 0.05), but removing the interaction between entropy and

condition did not (χ2(1) = 0.47, p = 0.49). We continued with the model accu-

racies ~ condition · (frequency + surprisal) + entropy + (1|participant). The AIC

comparison confirmed that this model was the best descriptor of the data. The

results of this model are summarized in Table 3.3.

In theta, too, there was a main effect of condition (β = 2.09 · 10−3, SE =
6.90 · 10−4, t(1530) = 3.02, p < 0.01), with reconstruction accuracies being

higher in the word list condition than in the sentence condition (see Figure 3.8).

In addition, there was a main effect of frequency (β = 1.17 · 10−3, SE = 5.64 ·
10−4, t(1530) = 2.07, p < 0.05) indicating that generally, the addition of word

frequency improved reconstruction accuracy. The interaction between frequency

and condition approached, but did not reach significance (β = 1.56 · 10−3, SE =
7.97 · 10−4, t(1530) = 1.95, p = 0.051), indicating a potential trend for the fre-

quency effect to be larger in the sentence condition than in the word list condi-

tion (Figure 3.7).
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Figure 3.6: Clusters from the delta-band TRFs in source space. Left column: early
time-window (200-400ms). Right column: late time-window (500-
700ms). (A) Top left: Differences between the word list and sentence
responses to word frequency in the early time window. Blue indicates
that coefficients sentence > word list; pink indicates word list > sen-
tence. (B) Top right: Differences between the word list and sentence
responses to word frequency in the late time window. Blue indicates
that coefficients sentence > word list; pink indicates word list > sen-
tence. (C) Middle left: sentence condition. TRF and spatial distri-
bution of one-sample cluster in early time-window. Time-window
is indicated in grey. (D) Middle right: sentence condition. TRF
and spatial distribution of one-sample cluster in late time-window.
Time-window is indicated in grey. (E) Bottom left: word list con-
dition. TRF and spatial distribution of one-sample cluster in early
time-window. Time-window is indicated in grey. (F) Bottom right:
word list condition. TRF and spatial distribution of one-sample clus-
ter in late time-window. Time-window is indicated in grey. Shaded
areas in blue and pink indicate SD.



76 3 Neural responses to words in- and out of sentences

Figure 3.7: Theta-band effects (sensor level). (A) The word frequency TRF in both
conditions in the theta band. Shown here is the mean of the sen-
sors that were included in clusters that were different between the
two conditions. Black bars indicate time points of those significant
clusters. Shaded area indicates standard deviation. (B) The word
frequency TRF in the sentence condition. Sensors in bold were sig-
nificant in the one-sample cluster-based permutation test. (C) The
word frequency TRF in the list condition. Sensors in bold were sig-
nificant in the one-sample cluster-based permutation test. Vertical
gray lines indicate the time points of the scalp maps.
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With respect to the other predictors, there was a positive effect of entropy

(β = 2.43 ·10−3, SE = 3.99 ·10−4, t(1530) = 1.95, p < 0.01), and an interaction

between condition and surprisal (β = 1.55 · 10−3, SE = 7.92 · 10−4, t(1530) =
1.99, p < 0.05), indicating that surprisal enhanced reconstruction accuracies

more in the sentence condition than in the word list condition.

Figure 3.8: Reconstruction accuracies in the theta band. A) Reconstruction accu-
racy difference with the envelope model for each model in the sen-
tence condition. Middle line indicates the median, the withe dia-
mond indicates the mean. (B) Reconstruction accuracy difference
with the envelope model for each model in the word list condition.
Middle line indicates the median, the withe diamond indicates the
mean. (C) The interaction between condition and frequency on the
reconstruction accuracies (p = 0.051, see section 3.3.3). Values on
the y-axis are the difference with the envelope (as in A and B). Er-
ror bars represent the 95% confidence interval. Entr.: entropy, surp:
surprisal, freq: frequency.

Again, we performed post-hoc t-tests comparing the two largest models (En-

tropy/Surprisal and Full) to gain more insight in the effect of word frequency on

the reconstruction accuracies. These showed that the word frequency predictor

enhanced reconstruction accuracies in the sentence condition (t(101) = 5.67; p

< 0.01), but not in the word list condition (t(101) = 1.48; p = 0.57). There

were no effects of condition for these two models (all p = 1).

Source-reconstruction Given that the permutation test in the sensor-based

analysis did not reveal any effects in the theta band and we could not select

time-bins a priori, we performed a cluster-based permutation test on the full

TRF. This revealed two clusters in the right hemisphere between 100 and 250ms.
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Table 3.3: Results of the LME on the reconstruction accuracies in the theta band.

Factor β-coefficient SE df t-value p-value

(Intercept) 4.02·10-2 1.29·10-3 1382 31.04 ***
Word frequency 1.17·10-3 5.64·10-4 1530 2.07 *
Surprisal 7.26·10-4 5.64·10-4 1530 1.29 n.s.
Entropy 2.43·10-3 3.99·10-4 1530 6.10 ***
Condition -2.09·10-3 6.90·10-4 1530 -3.02 **
Word frequency · condition 1.55·10-3 7.97·10-4 1530 1.95 n.s.
Surprisal · condition 1.59·10-3 7.97·10-4 1530 1.99 *

Note. SE: standard error; df: degrees of freedom; n.s. not significant; * p < 0.05; ** p <
0.01; *** p < 0.001

Both of these clusters reflect a larger amplitude across right frontal and tempo-

ral areas for the TRF in the word list condition than the sentence condition, as

can be seen in the plots of the time courses of the clusters in figure 3.9 below.

These effects, although visible in figure 3.7A-C, did not reach significance in the

sensor-analysis, potentially due to the stringent threshold (recommended value

multiplied by three) chosen there.

Figure 3.9: Clusters from the theta-band TRFs in source space. Blue indicates that
coefficients sentence>word list; pink indicates word list> sentence.
(A) top: right-lateralized cluster where TRF sentence>word list. (B)
bottom: right-lateralized cluster where TRF word list > sentence.
Shaded areas in blue and pink indicate SD.
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3.3.4 Control analysis I: Data from Ten Oever, Carta, et al.

(2022)

In the delta band, the cluster-based permutation test revealed no significant dif-

ferences between the word frequency response in the word lists and sentences.

To evaluate if this was due to there being no detectable responses or no differ-

ence between conditions, we performed one-sample cluster-based permutation

tests. Here we observed a response in the sentence condition over a large array

of left-posterior sensors that was significant from word onset to about 400 mil-

liseconds. The peak appears around 200 milliseconds (Figure 3.10A). Although

figure 3.10B suggests a potential response around 400 milliseconds in the word

list condition, there were no significant clusters. As in the main analysis, there

were no significant differences between conditions in the responses to word on-

set.

The absence of a difference between the conditions and the lack of a detectable

response in the word list condition alone make the results from this analysis dif-

ficult to interpret in relation to the main analysis. The large difference between

the sample sizes (N=102 vs N=16, respectively) may play a role in this differ-

ence. We performed a power analysis on the difference between the conditions in

the control analysis using the average t-values from the time-points and sensors

taken from the significant clusters from the same contrast in the main analysis.

This showed that power would increase on average by 30.7% when taking a

sample of 102 participants, with three clusters reaching a power of above 96%.

This suggests that the control analysis did not have enough power to reject or

confirm the hypothesis that the delay in the response in the word list condition is

caused by the different temporal dynamics in the original analysis. We therefore

refrain from drawing conclusions on the basis of this finding.

Nevertheless, the ANOVA on the reconstruction accuracies revealed a main

effect of model (F(1,15)=38.01; p < 0.01), indicating that the word frequency

predictor enhanced reconstruction accuracy, and an interaction between condi-

tion and model (F(1,15)=6.79; p < 0.05), suggesting that this effect was larger

for the sentence condition than for the word list condition (Figure 3.10C). There

was no main effect of condition (p = 0.16).

In the theta band, there were no significant effects on the TRF waveforms nor

on the accuracy values (figure 3.11).
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Figure 3.10: Delta-band effects in the extra data. (A) Word frequency TRF in the
sentence condition. Sensors in bold were significant in the one-
sample cluster-based permutation test. Black bars indicate time
points of the significant clusters. (B) Word frequency TRF in the
list condition. Sensors in bold were significant in the one-sample
cluster-based permutation test. Sensors in bold were significant in
the one-sample cluster-based permutation test. Black bars indicate
time points of the significant clusters (none). (C) The interaction
between condition and frequency on the reconstruction accuracies.
Values on the y-axis are the difference with the envelope (as in A
and B). Error bars represent the 95% confidence interval. Vertical
gray lines indicate the time points of the scalp maps.

3.3.5 Control analysis II: Simulations

In order to evaluate the effect of differences in inter-stimulus interval (i.e., pau-

ses), we simulated raw MEG data consisting of a signal (different impulse re-

sponses) and optional noise. Strikingly, the inter-stimulus interval has no direct

influence on the reconstruction score, although the length of the segment on

which we estimate the score does (Figure 3.12). In this case, the difference in

interstimulus interval – which eventually leads to a difference in data length –

shows how the bias in score observed between conditions is solely due to the dif-

ference in duration. The bias, however, is constant, and should be controlled for

when directly comparing models within conditions. Moreover, we actually ob-

serve the opposite effect in our MEG analysis: the absolute scores for the longer

segment of data (the word lists) are higher than the shorter segment of data (the

sentences). This means that our score differences exist above and beyond any

bias generated from the stimulus difference.
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Figure 3.11: Theta-band effects in the extra data. (A) Word frequency TRF in the
sentence condition. Sensors in bold were significant in the one-
sample cluster-based permutation test. Black bars indicate time
points of the significant clusters. (B) Word frequency TRF in the
list condition. Sensors in bold were significant in the one-sample
cluster-based permutation test. Sensors in bold were significant in
the one-sample cluster-based permutation test. Black bars indicate
time points of the significant clusters (none). (C) The (lack of an)
interaction between condition and frequency on the reconstruction
accuracies. Values on the y-axis are the difference with the envelope
(as in A and B). Error bars represent the 95% confidence interval.
Vertical gray lines indicate the time points of the scalp maps.

3.4 Discussion and conclusions

In this study, we asked whether low-frequency neural readouts associated with

words systematically changed as a function of being in a sentence context, and

whether neural readouts were modulated by purely lexical properties over and

above sensory- and contextual distributional variables. We contrasted responses

to word frequency for words in sentences with word lists, the latter lacking any

syntactic structure and combinatorial lexical meaning. We hypothesized that the

delta-band, but not theta-band, responses to word frequency would be different

in word lists and sentences as a consequence of the (in)availability of sentence

context. Specifically, following findings from speech tracking, we expected a

stronger presence of the word frequency response in the sentence condition.

Our findings showed that the delta band response to word frequency differs

between word lists and sentences in time and, albeit minimally, in space. In both

conditions, word internal information modulates a response across the left tem-
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Figure 3.12: Influence of interstimulus interval (ISI), data length, and noise on
score (reconstruction accuracy; R2). The left panel shows the (pro-
portional) influence of broadband signal-to-noise ratio (SNR) on
score. The right panel shows that for every interstimulus interval
value, the same score is measured if the data length is kept constant;
and the score deflated for longer signals as more noise is being eval-
uated in the scoring.

poral lobe and the frontal cortex. However, this response occurred about 300ms

earlier in the presence of coherent sentence context. In addition, in sentence

context, word internal information could be seen to modulate activity in the left

inferior frontal gyrus at around 600ms post word onset; a response that is absent

when a word is not embedded in a sentence. Furthermore, the word frequency

feature explains more variance over and above the other features in the sen-

tence condition than in the word list condition. In the theta band, there were

only minimal differences between the conditions. We will discuss our results in

more detail below.

In psycholinguistic theories of word recognition, word frequency is often mod-

eled as the baseline of activation or the prior probability of a word (e.g., the Lo-

gogen model (Morton, 1969); Cohort model (Marslen-Wilson, 1987); Shortlist-A

and B, (Norris, 1994; Norris & McQueen, 2008)). We assume therefore that the

neural readout associated with word frequency represents neural activity dur-

ing the process of word recognition. Our results provide direct evidence that

this process happens differently depending on whether the structure-building of

sentence comprehension is also occurring. We know that words are recognized

faster when they are embedded in a coherent sentence context (Marslen-Wilson

& Welsh, 1978; Tyler & Wessels, 1983); this is reflected in the delayed word list

response to word frequency (see also: Lam et al., 2016).
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Furthermore, the reconstruction accuracies in sensor space suggest that the

response to word frequency explains more variance in the sentence condition

than in the word list condition. This may seem contradictory to findings from

psycholinguistics. Indeed, the behavioral effect of word frequency, when as-

sessed with reaction time measures, diminishes in sentence context (Schuberth

& Eimas, 1977; Simpson et al., 1989; Tyler & Wessels, 1983). Put differently,

words with a low frequency are recognized more slowly than words with a high

frequency. This does not necessarily mean that lexical information explains less

variance in the neural signal. In fact, studies that consider metrics like mutual in-

formation between the brain and the speech signal find that the brain represents

aspects of the speech signal more reliably when more linguistic information is

present (e.g., Kaufeld, Bosker, et al., 2020; Ten Oever, Carta, et al., 2022), while

the acoustic information in speech matters less for word recognition when the

word is embedded in a sentence (Boothroyd & Nittrouer, 1988; Mattys, Davis,

Bradlow, & Scott, 2012). In general terms, these findings suggest that the brain

represents lower-level features more reliably when higher-level information can

be inferred, while the lower-level information itself becomes less important for

the outcome of the task. Indeed, that words are represented more robustly when

sentence context is provided is reflected in the accuracy scores on the word mon-

itoring task performed in this study: participants were more likely to correctly

remember whether a word was mentioned or not when they had been presented

with a sentence, than when they heard a word list.

There are two causes for this finding. Firstly, the perceptual salience of the

words in the word list condition leads to a large response to the speech envelope;

the response to lexical features then are of relatively lower power, and explain

less of the variance in the signal relative to the lower-level features. Secondly,

as a consequence of words being embedded in larger structures – phrases and

sentences – word frequency is likely present in a larger neural network in the

sentence condition than in the word list condition (Martin, 2020). The signal is

therefore reconstructed better in a wider array of sensors, leading to an overall

larger increase in reconstruction accuracies. As discussed below, the presence

of the effect in the control analysis favors the latter interpretation. The prop-

agation of lexical information to a wider network is additionally reflected in

the differences between conditions in the inferior frontal gyrus at approximately

600ms. This interpretation is consistent with findings that show that sentence

structure influences the dynamics and distribution of neural signals (Bai et al.,

2022; Blank, Balewski, Mahowald, & Fedorenko, 2016; Coopmans et al., 2022;
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Grodzinsky, Pieperhoff, & Thompson, 2021; Matchin, Brodbeck, Hammerly, &

Lau, 2019; Matchin, Liao, Gaston, & Lau, 2019; Schell, Zaccarella, & Friederici,

2017; Ten Oever, Carta, et al., 2022).

Importantly, both the TRF and the reconstruction accuracy effects of sentence

context on the representation of word-internal information are independent of

(1) the contextual probability predictors surprisal and entropy, and (2) sensory

information in the speech envelope. Each of these predictors are undoubtedly

important for how the neural signal represents lexical information (e.g.; sensory:

Doelling, Arnal, Ghitza, and Poeppel (2014); and probability: Weissbart et al.

(2019)). Given that these influences were accounted for by the encoding model,

the differences that remain imply a role for abstract structure and meaning on the

transformation of low-frequency neural readouts associated with words (or more

minimally, associated with purely lexical features). These conclusions are in line

with findings on the visual part of the dataset, not analyzed here (Huizeling et

al., 2022).

Striking also is the difference between the effects in the delta and theta band.

In the theta band, the responses to word frequency differed between conditions

only slightly: the amplitude of the response was larger in the word list condition

than in the sentences in the right frontal and temporal hemisphere around 100

milliseconds – possibly indicating that word frequency in interaction with con-

textual information tunes sensory sampling. The addition of the word frequency

predictor had a small effect on the reconstruction accuracies, which was present

only in the post-hoc analysis. In general, theta band activity appears to be more

sensitive to perceptual aspects of the stimulus than to linguistic aspects. For

example, tracking of sound by theta band activity persists even in the absence

of linguistic information (Molinaro & Lizarazu, 2018), while it is affected when

acoustic edges in the stimulus are experimentally manipulated (Doelling et al.,

2014). However, in line with the differences that we do see, Donhauser and

Baillet (2020) showed that the gain of early theta responses varies according

to the contextual uncertainty of speech. The results from the present analysis

are consistent with an account in which the theta band is important for speech

processing, but not as central for the representation of higher-level features such

as lexical-internal information. At the same time, the process reflected by theta

modulations during language comprehension is likely to be influenced linguistic

context.

In addition to the linguistic differences, there was a variable pause between

the words in the word list condition only. To examine the potential effect of
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this additional difference between the conditions on our results, we ran several

simulations. The simulations showed that the interstimulus interval (ISI) be-

tween events modelling word-like responses has no effect on model evaluation

and TRF estimation. However, there will be a constant bias in the model score

that is proportional to the broadband signal-to-noise ratio (where the noise is

the additive contribution beyond variance explained by the linear model). This

bias is not directly due to the differences in ISI, but rather to the fact that we are

integrating a larger portion of data in the list condition – thus more noise to con-

tribute to the score. As such, any model comparison contrasting scores within

condition will eliminate the constant bias. Furthermore, this bias leans toward

deflating the score of the model evaluated on the longest segment of data (the

word list condition). We found that with the envelope alone, the scores in the

list condition were higher than the scores of the sentence condition; this is in di-

rect contrast with the expectations from the simulations. From these simulations

we conclude therefore that the delay in the TRF waveform and the interaction

effect in the reconstruction of the neural signal are not just due to difference in

signal length between the word list and sentence condition. The next question

is, then: what are the potential cognitive effects of silence between the words?

There are three potential effects: (1) higher perceptual saliency of each word,

already mentioned above; (2) decreased word rate; and (3) absence of phono-

logical cues between words, such as prosody and co-articulation.2 We consider

phonological cues to be consequences of as well as cues to the sentence con-

text; they would be different between word lists and sentences in naturalistic

conditions as well. The first two, however, need some consideration.

As was mentioned above, the perceptual difference between two consecutive

words is much smaller than the difference between silence and a word. This

effect was visible in the speech-brain coherence for both conditions (Figure 3.1;

coherence was much higher in the word list condition in the delta band), and

caused overall higher reconstruction accuracy in the word list condition. Im-

portantly, in the analysis on a second dataset in which this difference between

conditions did not exist, the interaction effect between word lists and sentences

was replicated: the word frequency feature explained more variance over and

above the envelope- and word onset predictors in the sentence condition than

in the word list condition. Furthermore, we stipulated that a general delaying

effect on word processing generated by the decreased word rate in the word

2A reviewer suggested we add a prosody predictor. We constructed a prosody predictor by ex-
tracting the prosody contour using Parselmouth, a Praat wrapper for Python. Running the
analysis with this extra predictor did not qualitatively change the results.
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list condition would be visible at other features as well. Nevertheless, the word

onset feature – the only feature besides word frequency that was numerically

identical between conditions – did not show such difference. These findings

indicated that it was only the response to word-internal information that was

delayed, and suggests that the brain processes lexical information later in the

absence of a coherent sentence context.3 Taken together, this indicates that the

effects described in this work are unlikely to be driven by silence.

In summary, this study suggests that delta band, and to a lesser extent, theta

band, responses to word-internal information are affected by sentence context

in time and in space. Given that a difference in encoding of a strictly lexical fea-

ture persists when context-driven lexical features like entropy and surprisal are

added, we conclude that low-frequency responses to word internal information

are changed by sentential structure and meaning, and not by probabilistic dif-

ferences alone. In the delta band, a lexical response across the posterior and

anterior left temporal lobe and the bilateral parietal lobe, is delayed in the ab-

sence of sentence context. In addition, a word’s embedding in sentence context

determines whether inferior frontal areas are responsive to lexical information.

In the theta band, a larger amplitude in the word lists at about 100 milliseconds

across the right frontal and parietal areas suggests that linguistic information can

tune sensory sampling. In addition, this study shows that the TRF can be used to

model acoustic differences between stimuli when measuring higher-level linguis-

tic effects (see also Bai et al., 2022). The results of this study speak to how the

neural representation of words is affected by the linguistic structure of sentence

context, and as such provide beginning insight into how the brain instantiates

compositionality in language processing.

3Of course, the possibility that the brain performs linguistic computations conservatively in time
- at the highest speed necessary and lowest speed possible – is not excluded. Such a mechanism
would lead to any word-level processing beyond segmentation being ‘slowed down’ in the case
of decreased word rate or even word presentation in isolation. Further research is required to
examine this possibility.



4 | Surprisal is not enough: Additive effects of

grammaticality and lexical surprisal in

self-paced reading

Abstract

Language comprehension requires the integration of information from a wide
variety of sources, both from the input and retrieved from memory. The present
study contributes to a growing literature examining how probability and uncer-
tainty shape language comprehension in close collaboration with grammatical
knowledge. There is much evidence for the influence of abstract structure build-
ing and probabilistic processing alike. This suggests that the process of language
comprehension is not only shaped by morphosyntactic processing, or that it is
wholly determined by the statistical probability. Instead, it is likely that both
factors play a role. Here we asked about their impact during the process of
binding subject and verb in Dutch (subject-verb agreement). In an online self-
paced reading paradigm, we tested whether lexical surprisal affects the use of
grammatical information. The results indicated that both lexical probabilistic
information as well as grammatical information are needed to describe reading
time data from a subject-verb agreement paradigm. This is in direct contrast
with proposals that model this phenomenon and language comprehension more
generally using exclusively lexical probabilistic information. At the same time,
the results suggested that the morphosyntactic cue provided by the subject or
the verb in subject-verb agreement in Dutch is stronger than the cue of contex-
tual lexical probability as used here: the ungrammaticality effect was not altered
by lexical probability. In addition, the data provided some evidence that lexical
probability is leveraged more reliably when the constraints placed by the gram-
mar are obeyed. Taken together with previous findings, the results suggest a
process of language comprehension in which grammatical cues, as well as con-
textual probabilistic cues, are weighted on the basis of their reliability.



88 4 Grammaticality and lexical surprisal in self-paced reading

4.1 Introduction

Language comprehension requires the integration of information from a wide

variety of sources, both from the input and retrieved from memory. Two sources

that are important for the generation of linguistic meaning that both depend on

linguistic knowledge stored in memory are lexical and morphosyntactic know-

ledge. To form a clause, lexical information must be combined with morphosyn-

tactic information. How this happens at a mechanistic level is to date unknown.

An important step in the formation of a clause is the establishment of an agree-

ment relation between the subject and the verb. This process, subject-verb agree-

ment, has received considerable attention in the psycholinguistic literature, and

has given rise to a mechanistic account of sentence processing called cue-based

retrieval (Bock & Miller, 1991; Brehm, Hussey, & Christianson, 2020; Lewis, Va-

sishth, & Dyke, 2006; Nicol, Forster, & Veres, 1997; Pearlmutter, Garnsey, & Bock,

1999; Tanner, Nicol, & Brehm, 2014; Van Dyke & McElree, 2006; Vasishth, 2001).

On this view, subject-verb agreement is established by the retrieval of the pre-

ceding noun from memory on the basis of retrieval cues at the verb. At the same

time, current work on self-paced reading and other behavioral metrics suggests

that contextual lexical probability shapes the processing of language input in

a non-trivial way: words that are statistically unpredictable from the context

are consistently associated with longer reading times than words that are sta-

tistically predictable from the context (Aurnhammer & Frank, 2019; Brothers

& Kuperberg, 2021; Monsalve et al., 2012, among others). These findings are

interpreted in a model called surprisal theory (Hale, 2006, 2016; Levy, 2008a;

Levy & Gibson, 2013).

There is much evidence for abstract structure building and probabilistic pro-

cessing alike, both of which are reviewed below. This suggests that the process

of language comprehension is not only shaped by morphosyntactic processing,

or that it is wholly determined by the statistical probability. Instead, it is likely

that both factors play a role (Martin, 2016, 2020). Here we asked about their

impact during the process of binding subject and verb in Dutch. In an attempt

to understand the cognitive architecture for language that can give rise to both

effects of a morphosyntactic nature, and effects with a lexical probabilistic ori-

gin, we evaluate whether probabilistic contextually-driven lexical pre-activation

interacts with the establishment of subject-verb number agreement in Dutch. To

this end, we perform a self-paced reading study in which we pit probabilistic lex-

ical information against subject-verb agreement. The results are interpreted in
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light of models of language processing (production/comprehension): cue-based

retrieval, surprisal theory, and language processing as cue-integration.

4.1.1 Subject-verb agreement in comprehension

Subject-verb agreement, the systematic co-occurrence of agreement features be-

tween the subject and the verb, encodes a formal link between the subject and

the predicate. In Dutch, like other Germanic languages, there is subject-verb

agreement in number, as shown in example (1). In (1a), the subject de zwemster

‘the swimmer’ is singular, as is the verb won ‘won’; a correct agreement relation-

ship is established. Compare this to (1b), where de zwemster remains singular,

while the verb wonnen ‘won’ is now plural; this is an agreement error, and the

sentence is anomalous.

(1) a. De

The

zwemster

swimmerF,SIN

won

wonSIN

de

the

competitie.

competition

‘The swimmer won the competition.’

b. *De

the

zwemster

swimmerF,SIN

wonnen

wonPL

de

the

competitie.

competition

?’The swimmer wonPL the competition.’

c. De

The

zwemsters

swimmersF,PL

wonnen

wonPL

de

the

competitie.

competition

‘The swimmers won the competition.’

d. *De

The

zwemsters

swimmersF,PL

won

wonSIN

de

the

competitie.

competition

?’The swimmers wonSIN the competition.’

For sentence comprehension, this entails that upon encountering a plural noun

as a subject, such as zwemsters ‘swimmers’ in (1c), the reader or interlocutor can

expect a plural verb form (wonnen ‘wonPL’, in (1c)).

Although speaking, signing and writing requires establishing agreement be-

tween the subject and verb in every sentence, speakers, signers and writers oc-

casionally make agreement errors. This often happens when the subject noun

and the verb are separated by other materials containingnouns, which can func-

tion as candidates (attractors) for the agreement relation (Bock & Miller, 1991).
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This is a phenomenon known as agreement attraction. Consider the example in

(2) below.

(2) a. The key to the cabinet was locked in the desk.

b. The key to the cabinet *were locked in the desk.

c. The key to the cabinets was locked in the desk.

d. The key to the cabinets *were locked in the desk.

Studies in several languages have shown that speakers were more likely to

choose the wrong number on the verb when the first noun (the key) was sin-

gular, and the second noun was plural (the cabinet(s)) example (2c/d) than in

the reversed configuration (Bock & Miller, 1991) (i.e., cabinet; see (3)). This

asymmetry has been explained by the marked plural form inadvertently overrid-

ing the unmarked singular form upon establishing the agreement relation (Bock,

Eberhard, Cutting, Meyer, & Schriefers, 2001).

(3) a. The keys to the cabinet were locked in the desk.

b. The keys to the cabinet *was locked in the desk.

c. The keys to the cabinets were locked in the desk.

d. The keys to the cabinets *was locked in the desk.

In addition, there is a large literature on the processing of subject-verb agree-

ment in comprehension (Acuña-Fariña, Meseguer, & Carreiras, 2014; Hagoort,

Brown, & Groothusen, 1993; Lago, Acuña Fariña, & Meseguer, 2021; Mancini,

Postiglione, Laudanna, & Rizzi, 2014; Nicol et al., 1997; Pearlmutter et al., 1999;

Tanner & Bulkes, 2015; Tanner et al., 2014; Wagers, Lau, & Phillips, 2009). This

literature has shown that comprehenders are sensitive to subject-verb agreement

violations in the input. We will call this the ungrammaticality effect.

Pearlmutter and colleagues (1999) investigated subject-verb agreement in com-

prehension using a self-paced reading task. In this task, participants are asked

to read sentences. The sentence is not visible at once; instead, the participant

presses a button to reveal the next word (or phrase). Upon this button press,

the previous word (or phrase) disappears. The speed with which the partici-

pant moves from word to word has proven to be indicative of several linguistic

processes. For example, the speed of word reading depends on word length

(Barton, Hanif, Eklinder Björnström, & Hills, 2014), and participants read more

slowly when the sentence is ambiguous (Traxler, 2005). Similarly, in the study by
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Pearlmutter and colleagues, the self-paced reading task (and a subsequent eye-

tracking study) revealed the ungrammaticality effect: participants read verbs

with an agreement error more slowly than correct verbs.

Experiments using electroencephalography (EEG) have provided an additional

signature of the ungrammaticality effect (Hagoort et al., 1993; Osterhout &

Mobley, 1995; Tanner, Grey, & van Hell, 2017; Tanner et al., 2014). These

studies presented participants with grammatical and ungrammatical sentences

while their EEG was recorded. Ungrammatical sentences elicit a larger P600-

component (i.e., more positive values in a time-window between 400 and 800

milliseconds after word onset with a peak around 600 milliseconds) than gram-

matical sentences, which was in some cases preceded by a left-anterior negativity

(LAN) (Osterhout & Mobley, 1995).

The ungrammaticality effect, as shown with the P600 (+LAN) or reading

times, is relatively robust. It has been replicated in different languages, among

which Italian (Mancini et al., 2014), Spanish (Acuña-Fariña et al., 2014), and

Dutch (Hagoort et al., 1993). Wagers and colleagues (2009) showed that the in-

creased reading times for agreement errors persist until the third word after the

grammatical error. In addition, when the subject and verb are immediately ad-

jacent, ungrammaticality effects are found for both plural and singular subjects,

although the effect is larger for singular subjects. The difference between sin-

gular and plural subjects increases when the distance between the subject and

the verb is increased: practically, this means that the ungrammaticality effect

gets smaller for plural (but not singular) subjects when the subject and verb are

separated by intervening material (Wagers et al., 2009).

This number imbalance in comprehension – where an error appears more dif-

ficult to process when the subject is singular and the verb is plural rather than in

the reverse configuration – is reminiscent of the attraction effects found in pro-

duction: attractors (‘cabinets’) cause more speech errors when the head noun

(‘key’) is singular and the attractor is plural, than the other way around. And

indeed, attraction effects as well as the disbalance between singular and plural

have been found in comprehension as well. Nicol et al. (1997) presented par-

ticipants with sentences of the types in examples (2) and (3) and asked them

to perform several reading tasks (a maze task and a series of sentence classi-

fication tasks). The study revealed that participants read the sentences with a

singular head noun and plural attractors (mismatch condition) more slowly than

sentences with a singular head noun and a singular attractor (match condition),

showing the presence of agreement attraction in comprehension. Like in pro-
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duction, they found no effect of attractor match when the subject was plural. In

other words, during comprehension, participants show the same asymmetrical

pattern as during production.

Importantly, the presence of an attractor has the capability to reduce the un-

grammaticality effect (Wagers et al., 2009): if there is a number mismatch be-

tween the (singular) subject (‘key’) and the attractor (‘cabinets’), the difference

between a correct (singular) and incorrect (plural) number on the verb is smaller

than when there is no number mismatch between the subject and the verb. In

other words, the presence of attractors has the capacity to render a sentence

“less ungrammatical” for the reader. This effect has been shown to be visible

on the P600 as well, with reduced P600 amplitudes in agreement attraction

contexts (2c-d) relative to sentences were attraction effects are absent (2a-b)

(Tanner et al., 2014). While Wagers et al. (2009) did not report attraction ef-

fects in grammatical sentences, some studies suggest that attraction effects exist

in grammatical sentences too, although they are smaller than those in ungram-

matical sentences (Dillon, Mishler, Sloggett, & Phillips, 2013; Villata, Tabor, &

Franck, 2018).

These findings are usually interpreted in a cue-based retrieval model (Lewis et

al., 2006; Van Dyke & Lewis, 2003; Van Dyke & McElree, 2006; Vasishth, 2001).

The main thesis of cue-based retrieval is that the comprehender uses retrieval

cues to retrieve preceding words (often, the subject) from memory in order to

integrate the word into the sentence. Cues for retrieval are abstract syntactic

properties, such as [+subject] and [+singular] for a singular noun like ‘key’ in

(2a), and [-subject], [+singular] for ‘cabinet’ in that same sentence. These cues

are signaled by the verb. In other words, a verb with [subject] and [singular]
features requires a noun that has [+subject] and [+singular] to establish agree-

ment.

The retrieval process is hypothesized to be ‘direct access’ rather than a serial

search through memory because retrieval time has been found to be constant ir-

respective of the distance from the target (in: Martin, 2018). Instead, the mem-

ory representations that are to be retrieved are thought to be content addressable,

which means that memory representations are organized and retrieved on the

basis of their content directly, rather than on the basis of their linear distance

from the current input (Martin & McElree, 2008, 2009, 2011). Speakers use dif-

ferent features as cues to retrieve the appropriate representation from memory,

including syntactic, semantic, and morphological features. In the case of subject-

verb number agreement, these features on the verb are used as cues to retrieve
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the subject from memory and establish the dependency. Within this framework,

agreement attraction effects arise because some features of the verb correspond

to several preceding items in the sentence (the subject, but also the attractor),

leading to multiple representations to be considered in parallel and as such in-

terfering with retrieval. Similarly, the ungrammaticality effect is hypothesized to

arise because the syntactic position of the subject noun will match the syntactic

cues of the verb, but the number cues mismatch, creating interference during

the retrieval process (Lago et al., 2021).

Another well-known framework is the feature percolation model (Bock & Eber-

hard, 1993; Eberhard, 1997), briefly alluded to above, which was extended from

production to comprehension by Nicol and colleagues (1997). In this frame-

work, ungrammaticality effects must arise through the “backward checking” of

number features: given the features on the verb, the subject NP is checked for

a match. The agreement attraction effects are modeled to arise because the

number feature on the attractor percolates upward and changes the number

representation on the subject NP. In other words, instead of the head noun, the

attractor noun – both part of the same subject NP – now determines the number

of the subject. This leads to an error when checking the features. The asym-

metry between singular and plural is thought to arise from a markedness effect:

only the marked plural feature percolates upwards and affect the representation

of the head noun; the unmarked singular feature does not. Notice that the fea-

ture percolation model differs radically from the cue-based retrieval model: in

the feature percolation model, the memory representation of the head noun is

effectively altered, while it is not in the cue-based retrieval account.

Despite this large difference between the two accounts, neither of these pre-

dicts the difference between ungrammatical and grammatical attraction effects

in comprehension: there is stronger evidence for attraction effects in ungram-

matical sentences than in grammatical sentences (e.g., Wagers et al., 2009). The

feature percolation account predicts attraction effects should appear similarly in

ungrammatical and grammatical sentences. The cue-based retrieval account, on

the other hand, suggests that attraction affects may have the opposite direction-

ality in grammatical sentences: if the head noun and the attractor both share

their number feature with the verb, the retrieval of the head noun may be im-

peded due to stronger competition from the attractor.

A good explanatory model appears to contain aspects of both of these mod-

els. Yadav and colleagues (2023) performed a computational modeling study

in which they compared several implementations of the two accounts, includ-
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ing hybrid models containing aspects of both accounts. Comparisons between

model fit to the data of 17 studies looking into attraction effects in grammati-

cal sentences during comprehension suggested the data was best described by

a hybrid model, which contained feature percolation and grammar-driven cue-

based retrieval. In this model, percolation of the number feature on the attractor

sometimes affects the representation of the head noun before retrieval occurs. If

this happens, retrieval is impeded because the number feature on the head noun

no longer matches the number cue on the verb (Yadav et al., 2023).

In the present study, we built upon this literature and investigated whether the

subject-verb number agreement processing in grammatical- and ungrammatical

conditions can be affected – not only by intervening attractors, but also – by a

probabilistic contextual variable: lexical surprisal.

4.1.2 Lexical probability in comprehension

In recent years, influence of probabilistic contextual information on the compre-

hension of incoming linguistic material has (re)gained importance in linguistic

experiments and analyses. The general idea is that the probability of the input

given the immediate linguistic context plays an important role in shaping the

response to the current input, both in reading and in spoken and signed lan-

guage comprehension (Hale, 2001, 2006, 2016; Levy, 2008a, 2008b; Levy &

Gibson, 2013). Much of the evidence has come from studying the effect of the

probability of a word in context on reaction time measures such as self-paced

reading (Aurnhammer & Frank, 2019; Kapteijns & Hintz, 2021; Lowder et al.,

2018; Monsalve et al., 2012).

The probability of a word in context is often quantified using surprisal or en-

tropy (as proposed by Shannon (1948)). A word’s surprisal (in bits) is the base

two log-probability of a word given any number of preceding words and as such

quantifies the extent to which a word was expected (surprisal is low) or unex-

pected (surprisal is high). Entropy, on the other hand, is a quantification of the

uncertainty about the current word: it is the weighted average surprisal of all

possible continuations of the sentence given any number of preceding words. If

entropy is high, the uncertainty about the continuation is high – either because

there are many alternatives, or because all alternatives are equally likely and it

is difficult to pick one. If entropy is low, the uncertainty about the word is low

– either because there are few alternatives, or because one of the alternatives is

much more likely than the others.
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Both surprisal and (derivatives of) entropy have been found to predict read-

ing time measures. For example, higher surprisal is associated with longer read-

ing times in self-paced reading and eye-tracking studies (Aurnhammer & Frank,

2019; Brothers & Kuperberg, 2021; Frank & Bod, 2011; Lowder et al., 2018;

Luke & Christianson, 2016; Monsalve et al., 2012; Sharpe, Reddigari, Pylkkä-

nen, & Marantz, 2018), meaning that words that are less expected given the

recent context are read more slowly. Similarly, words that decrease the uncer-

tainty about the rest of the sentence – decrease of entropy – are also associated

with longer reading times (Frank, 2013). All of these studies suggest that the

probability of a word given the preceding words plays a role in the processing

of that word.

More relevant for the present study, Ryu and Lewis (2021) suggested that sur-

prisal from GPT2, a large language model based on Transformer architecture, is

useful for modeling psycholinguistic effects. They extracted surprisal values for

the stimuli from Wagers and colleagues (2009) and assessed whether the pat-

terns in the surprisal values matched the expected direction of the effects; i.e.,

higher surprisal values for conditions in which higher reading times are reported

in the literature. Indeed, the authors showed that surprisal values from GPT2

successfully simulate the presence of attraction effects. Surprisal values were

higher for ungrammatical target verbs than for grammatical ones; and interfer-

ence of attractors also drove up surprisal values.

In this light, it is unsurprising that surprisal and/or entropy are powerful pre-

dictors of human reading time data. Sometimes they are so powerful that it is

difficult to find separable effects of syntactic computations and effects of (lexical)

probability (e.g., Kapteijns & Hintz, 2021). This has reignited the old discussion

surrounding the necessity of abstract, hierarchical syntactic structure for a psy-

cholinguistic theory of language comprehension (Frank & Bod, 2011; Frank et

al., 2012; Frank & Yang, 2018; Pulvermüller & Assadollahi, 2007).

That lexical probability is a good predictor of human reaction time data fits

well with a framework called surprisal theory (Hale, 2001, 2006, 2016; Levy,

2008a, 2008b; Levy & Gibson, 2013). This theory has focused on modeling a

variety of effects observed in psycholinguistic studies of sentence comprehension

(e.g., syntactic ambiguity resolution) in a probabilistic framework. The main

aim of the framework is to predict where in a sentence the comprehender will

encounter processing difficulty. The theory is that listeners, signers and readers

make use of probabilistic knowledge to predict (1) the structure of the input they

have just encountered, and (2) what they may encounter next. The deviation
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from this prediction, as quantified by surprisal, should be the best predictor of

reading times. While surprisal theory is a successful descriptive theory, it lacks a

mechanistic component: what representations are used for surprisal estimation

(syntactic, lexical, or even syllabic? All of the above?), and how does the human

mind calculate and represent these values?

subsectionLanguage comprehension as (probabilistic) cue integration

In light of the evidence for the importance of probabilistic information during

language comprehension, several studies have examined if and how lexical prob-

abilistic information interacts with a variety of grammatical processes, including

grammatical agreement. Indeed, there is evidence that agreement is affected by

lexical probability. In a self-paced reading experiment, Brehm, Hussey & Chris-

tianson (2020) examined the role of word frequency of the attractor on attrac-

tion effects. The study revealed that word frequency indeed affects attraction:

high-frequency nouns did not elicit attraction effects, while low-frequency nouns

did. In other words, for low-frequency nouns, the reading times on the verb dif-

fered between singular and plural, but they did not do so for high-frequency

nouns. This suggests that lexical probability (at least of the attractor) plays a

role in the establishment of morphosyntactic relations.

Furthermore, Loerts and colleagues (2013) studied the interaction between a

different kind of agreement – gender agreement – and lexical probability in an

ERP study. The authors presented participants with Dutch sentences in which

cloze-probability was manipulated, such that the context was either highly con-

straining (i.e., the target word was predictable from the context) or not con-

straining (i.e., the target word could not be predicted from the context). The

target word was a noun that was preceded by a determiner or an adjective, a con-

struction which in Dutch requires gender agreement. This agreement relation

was manipulated to be correct or incorrect, to elicit a P600 (i.e., an ungramma-

ticality effect). The study revealed that the P600 appeared earlier in conditions

where the word was predictable from the context. This again suggests that lex-

ical predictability interacts with morphosyntactic processing.

Departing from the cue-based retrieval framework, Campanelli and colleagues

(2018) studied the interaction between memory retrieval and contextual pre-

dictability in a study with object relative clauses. The authors manipulated the

predictability of the target verb that agreed with the target subject of the object

relative clause (high/low predictability condition). At the same time, partici-

pants were presented with a list of three nouns that they did or did not need

to remember during the presentation of the stimulus sentence (load/no load
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condition). In some cases, the list contained a noun that would be a plausible

candidate for the subject of the target verb (interference/no interference). The

study revealed that the interference effect induced by the memorization of a list

of nouns was cancelled out by a highly predictable verb (i.e., the interference

effect was only in the low predictability condition). The authors suggest that

accumulated evidence may selectively pre-activate the subject noun in mem-

ory and make it more available for retrieval compared to the distractors, con-

sequently minimizing interference. This is in line with the hypothesis that the

(distributional) relevance of an element given the context determines the level

of pre-activation of this element (Campanelli et al., 2018).

Similarly, Tung and Brennan (2023) used EEG to show that lexical predictabil-

ity affects the use of linguistic cues during ellipsis resolution in Mandarin Chi-

nese. In contrast to Campanelli and colleagues, who manipulated the predictabil-

ity of the verb, and Brehm and colleagues, who manipulated the frequency of

the attractor, this study manipulated the predictability of the target by changing

the verb. In addition, the authors manipulated the grammaticality of the tar-

get, and the semantic relatedness of the distractor to invoke interference effects.

They investigated how the semantic relatedness of the distractor and the pre-

dictability of the target affect the difference between grammatical and ungram-

matical ellipsis resolution (reminiscent of Loerts et al. (2013)). They showed

that the P600-effect as a result of the grammaticality manipulation was affected

by both the semantic relatedness of the distractor and the predictability of the

target: when the target was predictable, the P600-effect was reduced, and more

so when interference from the distractor was high. These findings are in line

with those from Campanelli and colleagues (2018).

Given the importance of the findings from the agreement literature and the

strong effects of probability, and taking into account the observed interactions,

Martin (2016; 2018; 2020) proposed a model that integrates the architecture of

the cue-based retrieval model with probabilistic processing. This model, entitled

language processing as cue integration (LPCI), suggests that language compre-

hension is a process of cue-based inference. The cues can come from the input

signal (be it text, sign, or speech) and from linguistic representations stored in

memory (e.g. grammatical knowledge, lexical knowledge). In the model, the

linguistic representations are hypothesized to form a hierarchy of levels, with

levels ranging from phonetic features to phrases and larger sentential or event

structures. Each level of representation is a cue to higher levels of representa-

tion, creating a cascaded architecture in which activation can spread to higher
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levels before inference of a given level is complete. For example, syllabic repre-

sentations are cues to lexical representations, lexical representations cue phrasal

representations, and so forth. The representation that results from this cascade

of cue-based inference is an abstract, hierarchical representation of the inferred

meaning.

The relationship between a given cue and the “target” (i.e., the higher level

of representation), and by consequence, the representations themselves, are hy-

pothesized to be probabilistic in nature; some cues have a higher reliability than

others. This has the advantage that the model can account for inference at higher

levels of representation both when processing at a given stage is not complete

(e.g., lexical decision before the end of a word; Grosjean, 1980), or cannot be

completed (e.g., a phoneme is hidden by a cough, and yet the word is perceived;

Warren, 1970). Similarly, through this mechanism the probability of a lexical

item may affect the formation of relations between lexical items, such as subject-

verb agreement.

4.1.3 The present study

In the present study, we used self-paced reading to examine whether the proba-

bility of the target word given the context (i.e., the lexical surprisal) affects the

establishment of subject-verb agreement. We presented participants with sen-

tences in which the target word for the establishment of the agreement relation

(in this case, the subject noun) either did or did not agree with the preceding

verb in number to elicit the ungrammaticality effect. In addition, the target noun

was manipulated such that it had low- or high surprisal given the sentence con-

text (a preposition phrase, the verb, and a definite determiner). An example

stimulus is shown in table 4.1 below.

These manipulations allow us to ask whether the lexical probability of the tar-

get noun affects the processing of subject-verb agreement. The models outlined

above (cue-based retrieval, surprisal theory, and LPCI) make different predic-

tions when it comes to such an experimental paradigm.

Cue-based retrieval The current theory of cue-based retrieval predicts a slow-

down for the ungrammatical relative to the grammatical sentence: the mismatch

between the number cue of the noun and the preceding verb interfere with re-

trieval, causing a slowdown. The model does – to our knowledge – not readily

include an architecture to make predictions about whether the surprisal of the

target will interfere with this process.



4 Grammaticality and lexical surprisal in self-paced reading 99

Table 4.1: Example stimulus set.

Cat. surprisal Agr. Context Target Spill-over region Surprisal WF*

Low Correct In de herfst controleert de beheerder de bomen op ziektes 11,2 2,00
In the fall checks the steward the trees for illnesses
"In the fall, the steward checks the trees for illnesses"

Low Incorrect In de herfst controleert de beheerders de bomen op ziektes 13,4 1,26
In the fall checks the *stewards the trees for illnesses
*"In the fall, the stewards checks the trees for illnesses"

High Correct In de herfst controleert de blondine de bomen op ziektes 19,16 2,00
In the fall checks the blonde woman the trees for illnesses
"In the fall, the blonde woman checks the trees for illnesses"

High Incorrect In de herfst controleert de blondines de bomen op ziektes 22,21 1,40
In the fall checks the blonde women the trees for illnesses
*"In the fall, the blonde women checks the trees for illnesses"

Note. Log10 word frequency from the SUBTLEX-NL corpus.

(A) Cue-based retrieval hypothesis

• RTincorr > RTcorr

Surprisal theory While surprisal theory aims to explain when a processing dif-

ficulty will arise, the lack of a specific mechanistic ‘back-end’, so to speak, makes

it relatively difficult to derive specific predictions. Let us go over the problem.

The simplest prediction that surprisal theory could make is that reading times

are fully proportional to surprisal. Since lexical surprisal captures lexical prob-

ability, and ungrammatical sequences of words have low probability, this metric

of surprisal should capture the ungrammaticality that arises from an agreement

manipulation (and they do; see below). However, it is possible that surprisal

values are extracted from some representation of the syntactic parse (e.g., Levy,

2008a). In this case it depends on the instantiation of agreement in this parser

whether or not there is a difference of surprisal for the grammatical and ungram-

matical sequences. In other words, what the surprisal value of the target noun

is (and, therefore, how well it predicts our reading time data), depends wholly

on the representation of the stimulus the surprisal value is calculated over.

For simplicity, we assume a strict version of surprisal theory, most reminiscent

of what is advocated by Frank and colleagues (Frank & Bod, 2011; Frank et al.,

2012; Frank & Christiansen, 2018). This framework proposes a lexicalist view

on sentence processing. Under this assumption, lexical surprisal should fully pre-

dict reading times. Given that surprisal captures ungrammaticality as explained

above, surprisal values should capture this slowdown, as well; a prediction that
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is directly in line with the findings from Ryu and Lewis (2021). In other words,

the ungrammaticality effect does not need to be modelled separately.

(B) Surprisal theory hypothesis (strong)

• RT ~ surprisal

• RTincorr_low = RTcorr_high

LPCI As outlined above, the LPCI model combines aspects from cue-based re-

trieval with a probabilistic view on language processing. The model predicts that

lexical distributional information affects processing of the target noun, with a fa-

cilitative effect if a word is expected in the context (low surprisal). In addition,

according to this model, the comprehender uses linguistic cues from memory

to process the input. In line with the cue-based retrieval model, therefore, a

grammaticality effect is expected, with longer reading times for the ungram-

matical relative to the grammatical condition. Besides these two predictions,

however, the model makes another prediction: lexical probability and agree-

ment may have contradicting forces, leading to an interaction effect. A lexical

probabilistic cue may activate the target noun and thus ease its processing, but

the number feature on the noun is not congruent with the number feature on

the verb, as such creating a processing difficulty. The result of these two forces

working simultaneously could result in a smaller ungrammaticality effect for low-

surprisal words than for high-surprisal words. Importantly, however, the lexical

and phrase-level representations generated during reading are separable in this

model. This predicts that the incorrect and correct agreement conditions do not

have the same reading times, even when the lexical surprisal values are identical.

(C) LPCI hypotheses

• RTincorr > RTcorr

• RT ~ surprisal

• RTincorr_high – RTcorr_high > RTincorr_low – RTcorr_low

• RTincorr_low ̸= RTcorr_high
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4.2 Methods

4.2.1 Participants

88 Dutch native speakers were recruited form the participant pool of the Max

Planck Institute for Psycholinguistics, Nijmegen, the Netherlands. All partici-

pants had normal or corrected-to-normal hearing and reported no neurologi-

cal disorders, dyslexia, SLI or other language disorders. Participants provided

informed consent and received monetary compensation for their participation

(=C6,-). The study was approved by the ethics board of the Faculty of Social Sci-

ences of Radboud University under the umbrella approval assigned to prof. dr.

Antje S. Meyer (ECSW2014-1003-196).

4.2.2 Materials

We used a 2 x 2 within-participant design with the factors ‘surprisal’ with two

levels (high surprisal, low surprisal) and ‘agreement’ with two levels (correct

subject-verb number agreement, incorrect subject-verb number agreement). The

stimuli consisted of 40 quadruplets of sentences. Across the four versions of a

sentence the target word was manipulated for agreement and surprisal; i.e., a

given sentence frame (the pre-target words and spill-over region) was used to

create an item for every condition (‘low surprisal/correct’, ‘low surprisal/incor-

rect’, ‘high surprisal/correct’, ‘high surprisal/incorrect’. This ensured that the

same sentence frame occurred in once each condition. The two manipulations

were shown in table 4.1 above. All sentences followed an initial P – det – N –

V – det – N structure, with the final noun (the sixth word) being the subject of

the sentence and the target word. Adding an adjunct to the beginning of the

sentence impedes the subject to move to its preferred position in first position.

This is because Dutch is a verb-second language: in a declarative root clause, the

verb will end up in second position. As a consequence, the verb can precede

the subject when the first position is filled. This leads to a V-S-O order. In such

sentences, a reader or interlocutor who encounters a plural verb form can expect

a plural NP as a grammatical subject. Agreement was manipulated between

verb and the subject, which always directly followed each other (a determiner

intervenes between the subject noun). The agreement error was plural in half

of the items and singular in the other half.

The structure described above – specifically, the preverbal preposition phrase

– was chosen to ensure enough context to drive surprisal values on the tar-
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get. Since surprisal depends in part on the frequency of the word itself and

(therefore) tends to correlate with word frequency (Slaats et al., 2023, see also

Chapters 2 and 3 in this dissertation), having enough context allows for the se-

lection of words that have different surprisal values but relatively similar word

frequency values. This was done in the following way.

A potential low surprisal context + target combination (both correct and in-

correct) was submitted to a script that extracted the surprisal value of the target

word from a version of GPT2 that was retrained for Dutch (de Vries & Nissim,

2021). If the surprisal value for the correct target (in table 4.1: ‘beheerder’) was

below 12, the word frequency value was used to extract from the SUBTLEX-NL

corpus (Keuleers et al., 2010) the 100 words that were nearest to the target in

their word frequency value. These were then combined with the potential con-

text and their surprisal values were derived from the Dutch version of GPT2.

The words that had a surprisal value of above 14 were returned by the script

for human evaluation. A word that led to a context-target combination that was

grammatical and plausible was chosen for the stimulus, as long as the incorrect

number of this word had a similar word frequency as the low surprisal incorrect

number alternative. In continuation, an end to the sentence was added to match

the context and both targets as well as possible. Since agreement effects tend to

be found up until the third spill-over word (Wagers et al., 2009), the end of the

sentences consisted of four words: three for the spill-over, and one for the wrap-

up effect (longer reading times on the last word of a sentence; Just & Carpenter,

1980).

In general, the aim was to keep the surprisal values of incorrect/low surprisal

stimuli below 14 bits. This could not always be ensured, however: in 8 sets, the

incorrect/low surprisal had a surprisal value that was higher than 14 bits. In

all cases except one, however, the correct/high surprisal values were still higher

than the incorrect/low surprisal values. In the one exception, the incorrect/low

surprisal value was 14.47 bits, while the correct/high surprisal value was 14.08

bits.

The correct sentences were judged for plausibility on a 7-point Likert scale by

5 native speakers of Dutch, who also provided informed consent. Sets in which

one or more sentences were judged to be fairly implausible (with a mean below

4.0) were removed; this led to a selection of 40 sets. The stimuli were divided

over four lists, such that each list contained one item from every set. In this way,

participants were never presented with the same sentence frame or target word

more than once. There were no surprisal or word frequency differences between
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Figure 4.1: The distribution of surprisal and word frequency values on the target
word. (A) Surprisal values for the target word per condition. (B)
Word frequency values for the target word per condition. (C) Surpri-
sal values for the target word per stimulus list. (D) Word frequency
values for the target word per stimulus list.

lists (Fsurprisal(3, 36) = 0.099, psurprisal = 0.96; FWF(3, 36) = 0.092, pWF = 0.96;

see also Figure 4.1C and D).

A two-way ANOVA on the surprisal values with factors surprisal (‘low’, ‘high’)

and agreement (‘correct’, ‘incorrect’) performed with Statsmodels in Python 3.7

(Seabold & Perktold, 2010) revealed that there was an interaction between the

agreement and surprisal factors (F(1,1) = 6.57, p = 0.01) on the surprisal value,

in addition to main effects of agreement (F = 27.01, p < 0.01) and surprisal

category (F = 275.60, p < 0.01). This suggests that surprisal values are higher

in the high surprisal category than the low surprisal category – as intended –,

that incorrect agreement leads to higher surprisal values – which is inevitable,

since language models are trained on correct agreement (almost) exclusively

–, and that the effect of agreement on surprisal values is stronger in the low

surprisal category than the high surprisal category. This can be seen in Figure

4.1A. We will get back to this in the analysis. The two-way ANOVA on the word

frequency values revealed no effects (all p > 0.1).
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The filler sentences were 90 grammatical sentences taken from Creemers and

Meyer (2022) and 30 grammatical sentences from a large-scale MEG/fMRI study

(Schoffelen et al., 2019). 60 sentences from Creemers and Meyer (2022) made

reference to two characters; 20 of those included a pronoun that was ambiguous

with respect to its referent. The remaining 30 sentences from this set contained

only one character. The 30 sentences from the MEG/fMRI study all contained a

subordinate clause. Otherwise, the structures were varied. The filler sentences

were the same in the four lists. With 120 grammatical fillers, 20 grammati-

cal test items and 20 ungrammatical test items the study had a ratio of 14,3%

ungrammatical sentences, which is similar to other agreement studies with self-

paced reading (e.g., Wagers et al., 2009). In total, the experiment consisted of

1793 words, which is an average of 11.21 words per sentence. All experimental

sentences contained 10 words. All sentences are shown in appendix I, 4.6.

4.2.3 Procedure

The experiment was performed online using Frinex (Framework for Interactive

Experimentation), a tool for web experiments developed at the Max Planck In-

stitute for Psycholinguistics. Participants were sat behind their own computer

and read the sentences in a word-by-word self-paced reading paradigm.

Upon pressing the control key, the first word of the sentence appeared. The

other words appeared masked; instead of the letters, a corresponding number of

dashes was shown on the screen. The space bar was used to proceed to the next

word. The previous word was masked again. Participants read 6 sentences in

a practice phase. These sentences were all followed by a comprehension ques-

tion addressing the content of the sentence, in which participants were forced

to choose between two options by a button press. In the test phase, 20% of

the sentences were followed by a comprehension question. The questions were

evenly divided over trial types. The position of the correct answer was balanced.

12 experimental sentences were followed by a question. These questions never

addressed the target word, and the references to the context and the spill-over

region were balanced.

Each participant read one out of four lists. Due to the nature of the Frinex

software, the order of these lists was fixed (this is accounted for in the analysis;

see 4.2.4below). The experimental trials were pseudo-randomly interspersed

across the whole list of 160 items; care was taken there were always two or

more filler items in between two experimental trials.
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4.2.4 Analysis

We recorded reading times (RTs) for every word, and responses to the compre-

hension questions. We then calculated the participants’ accuracy on the compre-

hension questions. All participants had accuracy scores of above 75% (mean:

93.3%; standard deviation: 3.9%). The data of all 88 participants was included

in the analysis. We analyzed the RT-data word by word, in which we separately

inspected effects of surprisal and agreement at the target word and the three

spill-over words. The RT-data was analyzed with linear mixed-effects models

using the lme4 package (Bates et al., 2015) in R (version 4.3.1). P-values were

computed using the lmerTest package (Kuznetsova, Brockhoff, & Christensen,

2017).

Preprocessing Unreasonably short and long latencies (<100 ms and >2500

ms) were excluded prior to analysis, which resulted in a loss of 0.5% of the

data. Response times were log-transformed (natural log) in order to reduce the

positive skew that is inherent to reading times (Baayen & Milin, 2010). Log

response times more than 2.5 standard deviations from the condition mean (per

participant) were excluded. The responses to one sentence were not recorded

correctly for one participant. In total, there was a loss of 2.77% of the data.

The log-transformed RTs were regressed against several factors that are of-

ten found to affect RT-data in self-paced reading experiments: word frequency

(higher word frequency predicts faster RTs; Schilling, Rayner, & Chumbley, 1998),

word length (in number of letters; longer words predict slower RTs; Barton et

al., 2014), and the position of the sentence in the stimulus list (sentences pre-

sented later in the list predict faster RTs; Hofmeister, 2011). The word frequency

estimates were the Zipf values from the SUBTLEX-NL database (Keuleers et al.,

2010). The estimates of word length and list position were log-transformed with

a natural logarithm and centered; the word frequency factor was centered. All

words from the test sentences (i.e., not only the target word and the spill-over

region) were used for these models.

Since word length and word frequency have been found to interact such that

the effect of frequency is larger for longer words (Barton et al., 2014; Johnson &

Rayner, 2007; McGinnies, Comer, & Lacey, 1952; Postman & Adis-Castro, 1957),

we performed model comparison on this regression, as well, starting out with

a model in which word length and word frequency interact, and comparing it

to a model that did not include this interaction. The comparison revealed that

an interaction between word frequency and list position and a main effect of
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sentence order in the fixed effects, with random slopes for word length and

word frequency, provided the best fit to the data (χ2(1) = 228.21; p < 0.01).

This model showed a main effect of word frequency, with faster RTs for words

of higher frequency (β = -6.33·10-3, SE = 3.04·10-3, t(33790) = -2.08, p =
0.037), a main effect of list position, with faster RTs for words at later positions

(β = -1.06 ·10-1, SE = 5.77·10-3, t(88.04) = -18.32, p < 0.01), and, in line with

previous findings, an interaction between word length and word frequency (β =
2.88·10-2, SE = 1.90·10-3, t(33980) = 15.13, p < 0.01). The per-word residuals

of this model for the target word and the spill-over region were submitted to

further analysis.

Statistical analysis Because of the interaction between the surprisal category

(‘low’, ‘high’) and agreement (‘correct’, ‘incorrect’) on the surprisal values of the

target word mentioned in section 4.2.2 above, the residual RTs were analyzed

for effects of agreement and surprisal in two ways: once with a categorical factor

of surprisal (‘low’, ‘high’), and once with a continuous factor of surprisal (numer-

ical). By including surprisal as a numerical factor we model the differences in

surprisal value between the agreement-groups. For this reason, we describe the

analysis with surprisal as a continuous factor here, and include the results for

the categorical surprisal factor in appendix II, 4.7.

For each word and surprisal factor, we used a maximal-to-minimal model com-

parison approach. The maximal model included surprisal, agreement and the

interaction. In addition, the model included a number factor (‘singular’, ‘plu-

ral’) which coded the correct inflection of the noun given the verb, in interaction

with agreement to account for any potential differences between plural and sin-

gular correct nouns on the ungrammaticality effect. Departing from this model

we step-wise removed factors. We first reduced the random effects structure fol-

lowing the ‘keep it maximal’ principle. We fitted every model with the maximal

random effects structure possible given the paradigm and model (by-participant

intercept, by-participant slopes for agreement, surprisal, number, agreement *

number, and agreement * surprisal), and all possible combinations of these. We

adopted the largest random effects structure (i.e., the highest number of param-

eters) that converged and was non-singular (Barr, Levy, Scheepers, & Tily, 2013).

If two models with the same number of random factors both converged, we used

the Akaike Information Criterion (AIC) to determine which model best fitted the

data. Having chosen the random effects structure for the maximal fixed effects

structure, we reduced the fixed effects structure by comparing each model to a
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version with fewer fixed factors using a chi-square test. In this case, if there was

no difference between two models, the factor was removed.

In case of an interaction effect, estimated marginal means were extracted us-

ing the emmeans package. Simple-effects analyses were performed using the

joint_tests function. P-values were Bonferroni corrected for multiple compar-

isons.

4.3 Results

Table 4.2 and Figure 4.2 below provide an overview of the means and standard

deviations of the original reading times (after outlier rejection). As described

above, all analyses were performed on the residual log-transformed reading

times. These were the result of a regression of the log-transformed reading times

against factors list position, word length, and word frequency, as well as an inter-

action between the latter two. Any influence of these factors is removed. The

residuals are displayed in Figure 4.3.

We observed the following patterns. (1) There was an effect of agreement

in all analyzed regions (target, spill-over 1, spill-over 2, and spill-over 3), with

longer reading times in sentences with incorrect number agreement than sen-

tences with correct number agreement. At the target, the effect of agreement

was somewhat obscured by an effect of number: the agreement effect reversed

direction when the verb is plural (i.e., incorrect singular nouns were read faster

than the correct plural nouns). (2) Surprisal had a weaker effect than agree-

ment. We observed that higher surprisal values were associated with longer

reading times at the target, spill-over 1 and spill-over 2. At spill-over 1, surpri-

sal appeared to affect reading times only in grammatical conditions; there were

no other interactions between surprisal and agreement. (3) There was also an

effect of verb number. This effect was visible at the target, spill-over 1 and spill-

over 2, with longer reading times for words following plural verbs than words

following singular verbs. As mentioned in (1), the effect of number partially

overrode the effect of agreement at the target. At spill-over 1, the effect of num-

ber affects reading times in correct- but not incorrect sentences – reminiscent

of the effect of surprisal. The full results and model comparison statistics are

described below.
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Table 4.2: Means (and standard deviations) for reading times in the four analyzed
word positions.

Cat. surprisal Agr. Target Spill-over 1 Spill-over 2 Spill-over 3

Low Correct 332.24 (89.10) 342.84 (82.48) 338.72 (79.82) 349.32 (81.43)
Incorrect 347.21 (87.02) 398.83 (126.41) 386.10 (109.57) 383.66 (95.22)

High Correct 334.28 (96.49) 346.30 (82.44) 348.11 (83.33) 352.79 (87.43)
Incorrect 332.03 (98.93) 377.29 (136.29) 370.54 (102.08) 363.27 (95.06)

Note. Target: word position 5; spill-over 1-3: word positions 6-8.

Figure 4.2: (Unanalyzed) raw reading times in the analyzed window (word posi-
tions 5, 6, 7, and 8) in two agreement conditions (correct, incorrect)
and two surprisal conditions (high, low). Shaded areas represent 95%
confidence intervals. Grey dashed line indicates the target word.
Words in positions 4 and 9 were not analyzed (4 is pre-target, 9 shows
the increased RTs associated with the wrap-up effect).

4.3.1 Target word

Reducing the random effects structure revealed that the largest random effects

structure that lead to non-singular fit included random slopes for agreement and

a random intercept. Model comparison showed that the interaction between

surprisal and agreement did not contribute to model fit (χ2(1) = 0.05; p =
0.82). The main effect of surprisal did, however (χ2(1) = 11.55; p < 0.01),

as did the interaction between agreement and number (χ2(1) = 21.27; p <
0.01). The interpreted model included a fixed effect of surprisal, the interaction

between agreement and number, and it had by-participant random slopes for

agreement and a random intercept. This model, summarized in table 4.3 below,
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revealed a main effect of surprisal, indicating that higher surprisal values lead

to longer reading times at the target word. In addition, there was a main effect

of agreement, showing the ungrammaticality effect: incorrect nouns had longer

reading times than correct nouns. Unsurprisingly, these models also showed an

interaction between number and agreement.

Table 4.3: The output of the interpreted linear mixed effects model of the residual
log reading times at the target word (the subject). Model: residual log
RT ~ surprisal + noun_number · agreement + (1 + agreement | par-
ticipant).

Estimate Std. Error df t value p value

(Intercept) -1.28e-01 1.63e-02 1,01e 03 -7.83 1.19e-14 ***
Surprisal 3.22e-03 9.47e-04 3,32e 03 3.40 6.77e-04 ***
Agreement 3.72e-02 1.26e-02 3,17e 02 2.95 3.40e-03 **
Correct number 4.77e-02 1.15e-02 3,30e 03 4.16 3.22e-05 ***
Agreement * correct number -7.49e-02 1.62e-02 3,29e 03 -4.62 3.99e-06 ***

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

Simple effects comparisons revealed that the effect of agreement was in fact

reversed for sentences with a plural preceding verb: the incorrect singular nouns

were read faster than the correct plural nouns (F(1,274.96)=9.71, p < 0.01).

In sentences with singular preceding verbs, the ungrammaticality effect had the

expected directionality (F(1)=8.65, p < 0.05). Comparison in the opposite di-

rection (i.e., the effect of number per agreement condition) revealed that the

effect of number was significant in grammatical sentences, with plural nouns

following a plural verb being read more slowly than singular nouns following

singular verbs (F(1, 3300.94) = 17.31, p < 0.01); in the incorrect condition,

there was a trend for singular nouns following plural verbs to be read faster

than plural nouns following singular verbs (F(1, 3300.03) = 5.60, p = 0.072).

This can be seen in Figure 4.4D.

In sum, at the target word we observed an effect of surprisal in the expected

direction: higher surprisal values were associated with longer reading times.

In addition, there was an effect of agreement, with longer reading times for

ungrammatical than grammatical targets. This effect was partially overridden

by the effect of number, which shows up as plurals receiving longer reading

times than singulars. In the case of a plural verb, the effect of number on the

target was so strong that the ungrammatical singular noun was read faster than

the grammatical plural noun. There was no interaction between agreement and

surprisal.
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Figure 4.3: Residual log reading times in the analyzed window (word positions 5,
6, 7, and 8) in two agreement conditions (correct, incorrect) and two
surprisal conditions (high, low). The residuals are obtained from a
model that regressed the original reading times against list position,
word length, and word frequency. Shaded areas represent 95% con-
fidence intervals. Grey dashed line indicates the target word. Words
in positions 4 and 9 were not analyzed (4 is pre-target, 9 shows the
increased RTs associated with the wrap-up effect).

4.3.2 Spill-over 1

Two models converged and did not have singular fit: the models with either

random slopes for surprisal, or random slopes for agreement (but not both at

the same time). Comparison of the AIC values suggested that random slopes

for agreement yielded better fit to the data (AICagreement = 538.20; AICsurprisal =
593.04). Model comparison for fixed effects showed a trend for the interaction

between agreement and surprisal to contribute to model fit (χ2(1) = 3.41; p

= 0.065). Since this value approached significance and is the interaction of

interest, we will maintain this interaction and further reduce from there.

Reduction from the model that contains an interaction between surprisal and

agreement revealed that the interaction between agreement and number con-

tributed significantly to model fit (χ2(1) = 9.04; p < 0.01). This means that

here, we interpret the full model, with interactions between agreement and sur-

prisal, and agreement and number, a random intercept, and random slopes for

agreement. This model revealed main effects of agreement, surprisal, and num-

ber. The output is shown in table 4.4 below. The agreement effect showed that
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Figure 4.4: Pairwise comparisons for the interactions between agreement and sur-
prisal and agreement and number. Shaded areas represent 95% con-
fidence intervals. The vertical grey dashed line indicates the target
word (noun). (A) The ungrammaticality effect for the high- and low
surprisal categories. Y-axis corresponds to the difference between in-
correct and correct agreement. The zero-point on this axis, traced by
a horizontal dotted line, indicates no ungrammaticality effect. (B)
The ungrammaticality effect for singular and plural preceding verbs.
Y-axis corresponds to the difference between incorrect and correct
agreement. The zero-point on this axis, traced by a horizontal dot-
ted line, indicates no ungrammaticality effect. (C) The difference
between high surprisal and low surprisal for the correct and incor-
rect agreement conditions; i.e., the reverse of (A). Y-axis corresponds
to the difference between high surprisal and low surprisal. The zero-
point on this axis, traced by a horizontal dotted line, indicates no ef-
fect of surprisal. (D) The difference between sentences with a plural
and singular verb per agreement condition, i.e. the reverse of (B).
Y-axis corresponds to the difference between sentences with plural
and singular verbs. The zero-point on this axis, traced by a horizon-
tal dotted line, indicates no effect of verb number.
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words in ungrammatical sentences received longer reading times. The effect of

surprisal showed that higher surprisal values were associated with longer read-

ing times. The effect of number showed that words following plural verbs were

associated with longer reading times than words following singular verbs, as well

as a significant interaction between agreement and number plural. The interac-

tion between agreement and surprisal approached but did not reach statistical

significance.

Simple effects revealed that the effect of agreement existed for both plural and

singular verbs (singular: F(1,210.58) = 38.36, p < 0.01; plural: F(1,187.92) =
8.84, p < 0.05); see Figure 4.4B. The reverse configuration revealed that the in-

teraction between agreement and number was caused by a significant effect for

number in grammatical sentences, with plural nouns following plural verbs be-

ing read more slowly than singular nouns following singular verbs (F(1,3312.86)

= 7.37, p < 0.05), but not in ungrammatical sentences (F(1,3302.67) = 2.38, p

= 0.49), where singular and plural nouns incorrectly following plural and singu-

lar nouns, respectively, were read at similar speed; see Figure 4.4C. In addition,

and more importantly, simple effects of the interaction between agreement and

surprisal revealed that surprisal led to longer reading times in grammatical sen-

tences (F(1,3311.24) = 7.79, p < 0.05) but not in ungrammatical sentences

(F(1,3322.63) = 0.003, p = 1), causing the ungrammaticality effect to be larger

for low surprisal than high surprisal words; this can be seen in the second panel

of Figure 4.5 below, and, to some extent, in Figure 4.4A (per surprisal category).

In summary, at the first spill-over word we observed three main effects and

two interactions. There was a main effect of agreement: words following un-

grammatical targets received longer reading times than words in grammatical

sentences. In addition, there was a main effect of surprisal: higher surprisal val-

ues were associated with longer reading times. Finally, the main effect of number

suggested that generally speaking, words following plural verbs received longer

reading times than words following singular verbs. The effect of agreement in-

teracted with both surprisal and number. We observed that the effect of number

and the effect of surprisal were significant only in grammatical sentences.

4.3.3 Spill-over 2

In the second word following the target word, both random slope for number

and a model with only a random intercept converged and were non-singular.

However, upon running other fixed effects structures for reduction, the model

with a random slope for number led to singular fit. For this reason, we opted for
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Table 4.4: The fixed effects from the interpreted linear mixed effects model of the
residual log reading times at the first spill-over word. Model: residual
log RT ~ surprisal + noun_number · agreement + (1 + agreement |
participant).

Estimate Std. Error df t value p value

(Intercept) -9.2310-2 2.00e-02 2.52e 03 -4.61 4.24e-06 ***
Agreement 1.51e-01 3.35e-02 2.17e 03 4.51 6.80e-06 ***
Surprisal 3.72e-03 1.33e-03 3.31e 03 2.79 5.26e-03 **
Correct number 3.33e-02 1.23e-02 3.31e 03 2.72 6.63e-03 **
Agreement * surprisal -3.80e-03 2.06e-03 3.31e 03 -1.85 0.06465 .
Agreement * correct number -5.24e-02 1.74e-02 3.30e 03 -3.01 2.65e-03 **

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

Figure 4.5: Interaction between continuous surprisal and agreement for the differ-
ent word indices analyzed. The dots in the scatter plot show the
residual log reading times per test item averaged over participants.
N.B. the slopes shown in this figure were estimated over the averages
per item using numpy.polyfit for visualization purposes. These esti-
mates closely approach but do not directly correspond to the slopes
estimated in the linear mixed effects model, which are reported in
the text.

a random intercept only. Model comparison for fixed effects revealed no contri-

bution of the interaction between surprisal and agreement to model fit (χ2(1)=
0.14; p= 0.71), whereas surprisal (χ2(1)= 23.19; p< 0.01) did contribute. The

interaction between number and agreement did not improve model fit (χ2(1) =
1.04; p = 0.31). The main effect of number did contribute (χ2(1) = 6.07; p

< 0.05), as did agreement (χ2(1) = 58.54; p < 0.01). The interpreted model

contained fixed main effects of surprisal, agreement, and number, and a ran-

dom intercept. The output is shown in table 4.5 below. There were main effects

of agreement and surprisal, suggesting that both manipulations drive response

times. In addition, there was a main effect of number, with longer reading times

for nouns following plural verbs than nouns following singular verbs.

In sum, at the second spill-over words, no interactions remained. We observed

the effects of surprisal, agreement and number all in the same direction as in the
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Table 4.5: The fixed effects from the interpreted linear mixed effects model of the
residual log reading times at the second spill-over word. Model: residual
log RT ~ agreement + surprisal + correct number + (1 | participant).

Estimate Std. Error df t value p value

(Intercept) -9.12e-02 1.52e-02 1.80e 03 -6.01 2.27e-09 ***
Surprisal 4.57e-03 9.45e-04 3.38e 03 4.84 1.38e-06 ***
Agreement 6.43e-02 8.36e-03 3.38e 03 7.68 2.01e-14 ***
Correct number 2.01e-02 8.14e-03 3.38e 03 2.47 0.0138 *

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

previous two words: longer reading times are found for higher surprisal values,

ungrammatical sentences, and sentences with a plural verb, respectively.

4.3.4 Spill-over 3

At the third word after the target word – and the last one analyzed here – the

effect of surprisal appeared to subside. The only possible random effects struc-

ture was a random intercept. Comparison for fixed effects showed no contri-

bution from the interaction between agreement and surprisal (χ2(1) = 0.57;

p = 0.45), and no contribution from surprisal (χ2(1) = 1.53; p = 0.22) with

respect to model fit. The interaction between number and agreement also did

not contribute to model fit (χ2(1) = 0.86; p = 0.35), nor did the main effect of

number (χ2(1)= 0.48; p= 0.49). Agreement did contribute positively to model

fit (χ2(1) = 34.48; p < 0.01). The output of this model, with a random inter-

cept and a fixed effect of agreement, is shown in Table 4.6 below. The model

revealed a main effect of, with higher RTs for incorrect agreement, indicating

that slower reading times after an incorrect target word persists (at least) until

the third word after the agreement error. This can be seen in Figure 4.3 above.

In sum, at the last word analyzed, only the effect of agreement remained.

Table 4.6: The fixed effects from the interpreted linear mixed effects model of the
residual log reading times at the third spill-over word. Model: residual
log RT ~ agreement + (1 | participant).

Estimate Std. Error df t value p value

(Intercept) -2.86e-03 7.77e-03 1.57e 02 -0.368 0.713
Agreement 4.62e-02 7.84e-03 3.39e 03 5.887 4.32e-09 ***

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001
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4.4 Discussion

In this study, we aimed to gain insight into the cognitive architecture of language

that can give rise to both effects of morphosyntactic nature and effects with a

probabilistic origin. To this end, we evaluated whether contextually driven lex-

ical probability interacts with the establishment of subject-verb number agree-

ment in Dutch. We performed a self-paced reading study in which we pit proba-

bilistic lexical information against subject-verb number agreement, by construct-

ing sentences with high- and low surprisal target nouns that did or did not agree

in number with the verb. To construct a constraining context, and due to verb-

second constraints in Dutch, the verb preceded the target noun. On the basis

of three theoretical frameworks, hypotheses were formed: cue-based retrieval,

surprisal theory, and language processing as cue integration (LPCI). In brief, cue-

based retrieval models predict an ungrammaticality effect, with longer reading

times for incorrect agreement than for correct agreement. A strong interpreta-

tion of surprisal theory suggests that reading times should be captured by surpri-

sal alone; there should be no separable ungrammaticality effect. LPCI suggests

that both factors should affect reading times, and that the ungrammaticality ef-

fect may be smaller for low surprisal words than for high surprisal words as a

consequence of path dependence; however, the ungrammaticality effect cannot

be eliminated.

The results revealed that agreement and surprisal both affected reading times.

Incorrect agreement led to longer reading times on the whole time-window an-

alyzed (the target word and three spill-over words). This effect was found for

both plural and singular verbs, despite the effect being reversed for plural verbs

on the target word: singular nouns following plural verbs were read faster than

plural nouns following plural verbs. This was only the case at the target word;

the sign of the effect had the predicted directionality from the first spill-over re-

gion onward, with incorrect singular nouns receiving longer reading times than

correct plural nouns. In addition, higher surprisal values were associated with

longer reading times. This effect was observed most clearly when using con-

tinuous surprisal as a predictor, with the effect of surprisal present at the target

word and two out of three spill-over regions. There was only limited evidence for

an interaction between surprisal and agreement: at the first spill-over word was

there a marginal interaction between the two factors. Upon further analysis, this

interaction appeared to be driven by surprisal affecting reading times in gram-

matical sentences, but not in ungrammatical sentences. In the other regions of

interest there were no further interactions.
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4.4.1 Agreement and lexical predictability

The finding that both surprisal and agreement drive reaction times points toward

theories that incorporate both probabilistic and grammatical processing, such as

LPCI, and it excludes the strong interpretation of surprisal theory. Lexical sur-

prisal is capable of capturing agreement errors: indeed, surprisal is higher for

incorrect nouns (through essentially capturing the probability of a word form).

However, surprisal alone is not sufficient to account for a reader’s processing

of agreement errors. This shows that while surprisal predicts the correct direc-

tionality as shown by Ryu and Lewis (2021), a model that includes exclusively

lexical probabilistic relations such as GPT2 is not sufficient to account for the

comprehension of subject-verb agreement.

This finding is in line with a study by van Schijndel and Linzen (2021). There,

participants read temporarily ambiguous but grammatically correct sentences.

The study showed that while surprisal values predicted the location of a slow-

down in an ambiguous sentence, they severely underestimated the size of the ef-

fect. Crucially, their findings and ours are incompatible with some instantiations

of surprisal theory (Frank & Bod, 2011; Frank et al., 2012; Frank & Christiansen,

2018), which attempt to explain measures of linguistic processing difficulty (e.g.,

reading times) from a single mechanism: lexical probability.

Instead, our results point toward accounts that model language comprehen-

sion as a process that is shaped by both grammatical constraints (such as the

number match between subject and verb in subject-verb number agreement)

and probabilistic constraints (such as the probability of a word in context). Im-

portantly, our results suggest that the effect of grammaticality is not overridden

by lexical predictability.1 This is in line with models that include some bias to-

wards grammatical input, such as the LPCI (Martin, 2016, 2020), cue-based

retrieval models (Van Dyke & Lewis, 2003; Van Dyke & McElree, 2006; Vasishth,

2001), feature percolation models (Eberhard, 1997; Eberhard, Cutting, & Bock,

2005), and the hybrid model of the latter two as well as a grammaticality bias

model from the computational study by Yadav and colleagues (2023). In these

models, the language processing system is biased towards grammatical input in

different ways. In cue-based retrieval models and feature percolation models,

grammatical knowledge guides language comprehension by supplying abstract

features that cue retrieval of previous material from memory or trigger “feature

checking” mechanisms. In LPCI, the (grammatical) knowledge of language is

the stored information that is probabilistically cued by input, or internal repre-

1Importantly, that does not mean that the effects may not be affected in their magnitude.
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sentations are cued by equally grammatical higher-level representations. In this

framework, the grammaticality bias follows readily from the observation that a

given person’s acquired (abstract) knowledge of language is, indeed, grammat-

ical.

What these models share, and proposals such as strong interpretations of sur-

prisal theory lack, is that grammatical knowledge poses strong constraints on the

expected input (see also: Greco, Cometa, Artoni, Frank, & Moro, 2023). Indeed,

in the case of a strong grammatical constraint, lexical probability may be more

influential for processing within the limits of grammaticality. In other words,

lexical probability may exert a larger influence on the comprehension process

when the sentence is grammatical. In the present study, this was indicated by

the disappearance of the surprisal effect in ungrammatical conditions in the first

spill-over region. Such an interpretation is also in line with previous findings that

show attraction effects for ungrammatical, but not grammatical configurations

(Tanner et al., 2014; Wagers et al., 2009): alternative bindings in the sentence

are only sought for when the verb does not agree with noun that is in the correct

syntactic position to be the head noun of the subject NP. This implies that the

path that one needs to go down in order to interpret an incorrect sentence is not

one that can readily be taken on the basis of the canonical mechanisms; to go

off the beaten track, we might need to invoke additional mechanisms in order

to reconcile the conflict between the expected (grammatical) features and the

observed (ungrammatical) features.

At the same time, in contrast with our predictions on the basis of the LPCI,

the present results do not provide evidence for modulation of magnitude of the

ungrammaticality effect in subject-verb agreement by lexical probability. This is

in contrast with the findings by Tung and Brennan (2023), who showed that a

P600-effect as a result of incorrect ellipsis resolution could be reduced by higher

lexical predictability. There are numerous differences between this study and

ours, most notably that ellipsis resolution is very different from subject-verb

agreement from a grammatical perspective. Ellipsis resolution concerns sen-

tences in which information that has been supplied earlier, is omitted; consider

‘one’, which refers back to ‘a shirt’, in (4).

(4) The mother brought one[classifier] shirt that was next to the luggage, and

the daughter also brought one[classifier] to go on a trip.

The manipulation of grammaticality was done on a classifier in Mandarin Chi-

nese. This classifier exists in two types: one for individual objects, and one books
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and pamphlets. The classifier occurs before ‘shirt’, and it is the referent ‘one’ in a

context of ellipsis. Importantly, the classifier must be the same in both positions

in order to refer back to the shirt. The authors show that a P600 is triggered

when there is a mismatch between classifiers, and this P600 is modulated by the

predictability of the target given the verb (Tung & Brennan, 2023).

Interestingly, the LPCI itself provides an explanation for the difference be-

tween these studies. Notice that the occurrence of ellipsis itself is much less pre-

dictable than the (obligatory) occurrence of subject-verb agreement. For that

reason, the grammatical cue may not be as reliable in the case of ellipsis, as

such giving room for lexical probability to play a role. Indeed, this view is fully

consistent with the LPCI: knowledge of the grammar, just like the contextual

probability, can cue other (lower-level) representations (Kaufeld, Ravenschlag,

Meyer, Martin, & Bosker, 2020; Martin, 2016, 2020), and cues are weighted on

the basis of their reliability (Martin, 2016, 2020). In the case of subject-verb

agreement, the grammar very reliably cues a morphosyntactic representation of

the verb (or the subject, depending on the order; more on this below). In the

case of ellipsis, on the other hand, the grammar does provide constraints, but

given the greater uncertainty about the rest of the sentence, the reliability of

these constraints is lower.

As a logical consequence, this perspective suggests that the contextual proba-

bility cue used in this study was not strong enough to modulate the subject-verb

agreement effect. This leaves us with several open questions. Firstly, we do not

know whether it is possible to manipulate contextual lexical probability to such

an extent (i.e., by having more extreme values of surprisal) that it is reliable

enough to affect the ungrammaticality effect in its current form, or whether this

can only be done by reducing the reliability of the grammatical cue, for example

by introducing attractors. Secondly, it is unknown whether only lexical surprisal,

i.e., the probability of a word given the context, plays a role in this process, or

whether entropy, a metric of uncertainty about the surprisal values, is involved,

as well; after all, entropy can be considered a metric of the reliability of the

probabilistic cue.

4.4.2 Word order effects

An important difference between the present study and previous studies on

subject-verb agreement is the order of the constituents. In most studies, the

verb follows the subject (order subject-verb). In the present study, however, the

subject followed the verb. This is a consequence of our manipulation of surpri-
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sal. By starting the sentence with a prepositional phrase, we were able to create

sufficient context for the target – in this case, the noun – to be manipulated for

surprisal, while matching word frequency within a pair (see section 4.2.2 and

Appendix I, 4.6). However, a prepositional phrase in first position reveals the

verb second property of Dutch (and some other Germanic languages). Usually,

the subject and verb move all the way up to the highest two positions in the

structure. However, in our stimuli, the highest position is filled by the preposi-

tional phrase. The verb moves to the second position, but the subject remains

lower in the structure. Our results showed that this significant difference does

not affect the directionality of ungrammaticality effect previously found (Nicol

et al., 1997; Pearlmutter et al., 1999; Wagers et al., 2009), despite the effect now

being measured on the subject, and not on the verb as is habitual: subjects that

do not agree with the preceding verb are read more slowly than subjects that

do agree with the preceding verb. In general, these findings indicate that the

reversal of the subject and the verb do not qualitatively change the way differ-

ent linguistic pressures shape reading times (i.e., the directionality is identical),

though they may do so quantitatively (the slowdown may be larger or smaller).

Importantly, this qualitative similarity of the data to those of earlier studies does

not mean that the underlying mechanism that leads to a slowdown or speed-up

in reading times is the same in the case of VS and SV sentences.

According to (psycho)linguistic theory, the verb is inflected to establish a re-

lationship with the subject, and not the other way around. When the compre-

hender encounters an inflected verb, then, the expectations on the morphology

of the subject are very strong: after all, the subject must be hypothesized for

the verb to agree with it. This is especially true in some frameworks from theo-

retical linguistics (e.g., the minimalist tradition), in which the subject and verb

are hypothesized to both originate from a verb phrase as the specifier and the

head, respectively. The verb moves out of this structure to establish the agree-

ment relation with the subject (see: Franck, Lassi, Frauenfelder, & Rizzi, 2006).

Following this perspective, encountering an inflected verb first means that the

parser will have to build a verb phrase with a hypothetical subject in the spec-

ifier for the verb to agree with. Encountering the subject first does not require

the parser to hypothesize an inflected verb, however; the derivation process may

happen in its natural order. From a psycholinguistic perspective, hypothesizing

or prespecifying a number on the upcoming verb may not be beneficial: prob-

lems would arise when the noun appears to be part of a compound NP (Nicol et

al., 1997, p. 585).
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This suggests that the grammatical cue during subject-verb agreement may be

stronger when the verb precedes the subject. With respect to the present study,

this means that stronger probabilistic cues may be required to find an alteration

of the agreement effect in the case of verb-subject agreement than in the case of

subject-verb agreement. This hypothesis could be tested by repeating the present

study using a language without a verb second property, such as English, Spanish

or Mandarin Chinese.

4.4.3 Number effects

In potential contradiction with the hypotheses laid out in the previous section,

there is a factor that can affect the agreement effect in the verb-subject structure:

number. As is often found in studies of agreement with classical SVO structures

as well, we observed an imbalance of the number of the verb on the subject:

singular subjects incorrectly following plural verbs were read faster than plural

subjects correctly following plural verbs at the target word, while plural subjects

incorrectly following singular verbs are read more slowly than singular subjects

correctly following singular verbs. This reversal of the ungrammaticality effect

disappears after the target word. When we rank the reading times on the target

word from fastest to slowest for the different configurations, we find the follow-

ing: VsinNsin < VplNsin < VsinNpl < VplNpl. The reading times are ordered along

(1) the number of the subject and (2) the number of the verb. In essence, this

means that the slowdown associated with plural verbs and plural nouns relative

to singular verbs and singular nouns can override any effects of ungrammatical-

ity. At the first spill-over word, we again find an interaction between verb num-

ber and agreement: the difference between reading times for words following

plural verbs and singular verbs is significant only in the grammatical condition.

We will get back to this below. Notice that these findings are not associated with

word length or word frequency; the reading times were residualized for these

features prior to analysis.

The results are in line with the theory that plural number is marked relative

to singular number (Bock & Eberhard, 1993; Eberhard, 1997; Pearlmutter et al.,

1999). According to this theory, plurals contain a grammatical specification for

number, while singulars do not. At the target, number plays a greater role than

agreement, as can be seen in the ordering of the reading times above: the plural

verb – plural noun combination receives the longest reading times at the target.

In later regions (the spill-over words) the pattern changes slightly (more on this

below). That this feature can override the effect of number in early regions is not
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necessarily a surprise: after all, the number features on the noun and verb must

be determined before the agreement relation can be established (by retrieval or

feature checking).

To provide a full picture of the data, we performed the model-comparison

analysis using the number on the subject as a predictor in the linear mixed effects

model, instead of the number on the verb. Full output of the models is provided

in Appendix III, 4.8. This showed that plural subjects lead to slower reading

times than singular subjects at the target word (β = 3.75·10-2, SE = 8.10·10-3,

t(3310) = 4.63, p < 0.01) and the first spill-over word (β = 2.62·10-2, SE =
8.70·10-3, t(3300) = 3.01, p < 0.01), irrespective of the grammaticality of the

subject. At the second spill-over word, there was an interaction between the

number on the subject and agreement (β = -4.03·10-2, SE = 1.63·10-3, t(3380)

= -2.47, p < 0.05). Here, we observe a difference between plural and singular

subjects only in the incorrect sentences: singular subjects that incorrectly fol-

low plural verbs lead to longer reading times at the second-spill over word than

plural subjects that incorrectly follow singular verbs (F(1,3383.61) = 6.06, p =
0.056). This is not the case in grammatical sentences (F(1,3383.21) = 1.06; p

= 1). Any effect of the number of the subject disappears at the third spill-over

word. These findings are in line with findings by Wagers and colleagues (2009),

who employed a canonical subject-verb word order: in the study on subject-verb

agreement without attractors, the authors report that singular subjects lead to

larger ungrammaticality effects in later regions (i.e., after the critical verb) than

plural subjects do.

An interesting pattern within these results emerges in later regions. In the first

spill-over region, the number of the preceding verb plays a role in the grammat-

ical conditions; and in the second spill-over, the number of the following subject

plays a role only in the ungrammatical conditions. A model that accounts for

these effects is a model that contains both an early markedness effect for plu-

ral subjects and verbs, as well as a grammaticality bias that has preference over

the markedness effect in later regions. When the preceding verb is plural, our

knowledge of the grammar poses a strong constraint on the subject that is yet to

appear: it reliably cues the marked plural form. The strength of this grammati-

cal cue could dampen any effect the marked plural subject may have on reading

times. When the constraint is violated, however, the markedness effect can be

observed again: incorrect plural subjects lead to longer reading times than in-

correct singular subjects (in later stages). This reading of the results is in line

with the flexible weighting of cues in the LPCI model.
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4.5 Conclusion

The present study contributes to a growing literature examining how probabil-

ity and uncertainty shape language comprehension in close collaboration with

grammatical knowledge. The literature suggests that lexical probabilistic infor-

mation can affect how the comprehender leverages syntactic cues (Brehm et al.,

2020; Campanelli et al., 2018; Loerts et al., 2013; Tung & Brennan, 2023). The

results of the present study indicate that both lexical probabilistic information

as well as grammatical information are needed to describe reading time data

from a subject-verb agreement paradigm. This is in direct contrast with propos-

als that model this phenomenon and language comprehension more generally

using exclusively lexical probabilistic information (Frank & Bod, 2011; Frank et

al., 2012; Frank & Christiansen, 2018; Ryu & Lewis, 2021). At the same time,

the results suggest that the morphosyntactic cue provided by the subject or the

verb in subject-verb agreement in Dutch is stronger than the cue of contextual

lexical probability as used here: the ungrammaticality effect was not altered by

lexical probability. In addition, the data provide some evidence that lexical prob-

ability is leveraged more reliably when the constraints placed by the grammar

are obeyed. Taken together with previous findings, the results paint a picture in

which grammatical cues, as well as contextual probabilistic cues, are weighted

on the basis of their reliability (Martin, 2016, 2020). In the case of adjacent

subject-verb agreement, the grammatical cue is highly reliable. To study how

the effects of lexical probability and the establishment of subject-verb agreement

interact in more detail, further studies could employ larger contextual probabil-

ity effects, and alter the reliability of the syntactic cue by adding attractors to

the stimuli.
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4.6 Appendix I. Stimuli

Table 4.7: Experimental items.
Set Condition

surprisal

Condition

agreement

Context Target Spill-over Target sur-

prisal (bits)

Target

word

freq.

Verb num-

ber

2 Low Correct Vanwege de ziekte schrijft de dokter een briefje voor school 6,31 4,0283 singular

2 Low Incorrect Vanwege de ziekte schrijft de dokters een briefje voor school 10,46 2,8657 singular

2 High Correct Vanwege de ziekte schrijft de papa Een briefje voor school 17,42 3,9897 singular

2 High Incorrect Vanwege de ziekte schrijft de papa's een briefje voor school 22,24 2,5328 singular

4 Low Correct In de klas vertelt de docent een heel spannend verhaal 6,5 2,1761 singular

4 Low Incorrect In de klas vertelt de docenten een heel spannend verhaal 8,5 1,6335 singular

4 High Correct In de klas vertelt de prof een heel spannend verhaal 16,51 2,1818 singular

4 High Incorrect In de klas vertelt de profs een heel spannend verhaal 20,21 2,0294 singular

5 Low Correct Volgens de verslaggever lopen de ministers gelukkig geen gevaar meer 11,7 1,8633 plural

5 Low Incorrect Volgens de verslaggever lopen de ministers gelukkig geen gevaar meer 11,68 3,0523 plural

5 High Correct Volgens de verslaggever lopen de pony's gelukkig geen gevaar meer 15,18 1,8633 plural

5 High Incorrect Volgens de verslaggever lopen de pony gelukkig geen gevaar meer 14,94 2,3345 plural

6 Low Correct Bij het monument houden de bewakers zich aan de regels 11,62 2,9987 plural

6 Low Incorrect Bij het monument houden de bewaker zich aan de regels 14,71 2,9513 plural

6 High Correct Bij het monument houden de idioten zich aan de regels 18,25 3,0314 plural

6 High Incorrect Bij het monument houden de idioot zich aan de regels 19,17 3,7101 plural

7 Low Correct Tijdens het eten bespreken de zussen hun plannen voor morgen 11,69 2,7474 plural

7 Low Incorrect Tijdens het eten bespreken de zus hun plannen voor morgen 13,67 3,7582 plural

7 High Correct Tijdens het eten bespreken de dieven hun plannen voor morgen 14,91 2,7474 plural

7 High Incorrect Tijdens het eten bespreken de dief hun plannen voor morgen 16,03 3,1176 plural

8 Low Correct Op het schoolplein spelen de kleuters een heel lawaaiïg spel 7,7 1,716 plural

8 Low Incorrect Op het schoolplein spelen de kleuter een heel lawaaiïg spel 10,26 1,8633 plural



124
4

G
ram

m
aticality

and
lexicalsurprisalin

self-paced
reading

8 High Correct Op het schoolplein spelen de teamgenoten een heel lawaaiïg spel 17,8 1,716 plural

8 High Incorrect Op het schoolplein spelen de teamgenoot een heel lawaaiïg spel 21,46 1,4771 plural

9 Low Correct Bij de groothandel koopt de winkelier een enorme hoeveelheid bier 11,34 1,8195 singular

9 Low Incorrect Bij de groothandel koopt de winkeliers een enorme hoeveelheid bier 12,9 1,5798 singular

9 High Correct Bij de groothandel koopt de mafketel een enorme hoeveelheid bier 27,02 1,8195 singular

9 High Incorrect Bij de groothandel koopt de mafketels een enorme hoeveelheid bier 29,63 1,5563 singular

12 Low Correct In de herfst controleert de beheerder de bomen op ziektes 11,2 2 singular

12 Low Incorrect In de herfst controleert de beheerders de bomen op ziektes 13,4 1,2553 singular

12 High Correct In de herfst controleert de blondine de bomen op ziektes 19,16 2,0043 singular

12 High Incorrect In de herfst controleert de blondines de bomen op ziektes 22,21 1,3979 singular

13 Low Correct In de kantine kopen de jongeren alleen maar ongezond eten 11,08 2,6096 plural

13 Low Incorrect In de kantine kopen de jongere alleen maar ongezond eten 14,88 2,5289 plural

13 High Correct In de kantine kopen de tieners alleen maar ongezond eten 15,45 2,4997 plural

13 High Incorrect In de kantine kopen de tiener alleen maar ongezond eten 15,63 2,567 plural

14 Low Correct In dat ziekenhuis liggen de patiënten na het ernstige ongeluk 5,23 2,9523 plural

14 Low Incorrect In dat ziekenhuis liggen de patiënt na het ernstige ongeluk 9,85 3,1477 plural

14 High Correct In dat ziekenhuis liggen de vriendinnen na het ernstige ongeluk 15,23 2,9523 plural

14 High Incorrect In dat ziekenhuis liggen de vriendin na het ernstige ongeluk 14,88 3,8804 plural

15 Low Correct Na de vergadering moeten de advocaten snel naar een afspraak 10,72 2,9609 plural

15 Low Incorrect Na de vergadering moeten de advocaat snel naar een afspraak 12,16 3,6532 plural

15 High Correct Na de vergadering moeten de broeders snel naar een afspraak 14,09 2,9763 plural

15 High Incorrect Na de vergadering moeten de broeder snel naar een afspraak 15,49 3,1962 plural

17 Low Correct In de studio schildert de kunstenaar van vroeg tot laat 7 2,7076 singular

17 Low Incorrect In de studio schildert de kunstenaars van vroeg tot laat 9,66 2,1903 singular

17 High Correct In de studio schildert de kameraad van vroeg tot laat 16,72 2,6964 singular

17 High Incorrect In de studio schildert de kameraden van vroeg tot laat 17,68 2,4914 singular

18 Low Correct Door de muziek hoort de zanger het luide alarm niet 7,73 2,4362 singular

18 Low Incorrect Door de muziek hoort de zangers het luide alarm niet 10,67 1,8865 singular

18 High Correct Door de muziek hoort de boef het luide alarm niet 16,4 2,4546 singular
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18 High Incorrect Door de muziek hoort de boeven het luide alarm niet 16,92 2,5145 singular

19 Low Correct In de winter sjokt de beer door de verse sneeuw 11,58 3,0469 singular

19 Low Incorrect In de winter sjokt de beren door de verse sneeuw 11,94 2,6138 singular

19 High Correct In de winter sjokt de kampioen door de verse sneeuw 15,71 3,0554 singular

19 High Incorrect In de winter sjokt de kampioenen door de verse sneeuw 17,8 2,1335 singular

20 Low Correct In de parkeergarage stopt de auto plots met slippende banden 3,22 4,3017 singular

20 Low Incorrect In de parkeergarage stopt de auto's plots met slippende banden 5,23 3,2923 singular

20 High Correct In de parkeergarage stopt de vriend plots met slippende banden 15,31 4,3323 singular

20 High Incorrect In de parkeergarage stopt de vrienden plots met slippende banden 16 4,1627 singular

22 Low Correct In de bergen lopen de geiten altijd in de schaduw 11,12 2,2504 plural

22 Low Incorrect In de bergen lopen de geit altijd in de schaduw 14,82 2,549 plural

22 High Correct In de bergen lopen de schutters altijd in de schaduw 14,93 2,2455 plural

22 High Incorrect In de bergen lopen de schutter altijd in de schaduw 15,88 2,7931 plural

23 Low Correct Direct na aardrijkskunde moeten de leerlingen hun strafwerk gaan maken 4,87 2,7882 plural

23 Low Incorrect Direct na aardrijkskunde moeten de leerling hun strafwerk gaan maken 8,97 2,7551 plural

23 High Correct Direct na aardrijkskunde moeten de sukkels hun strafwerk gaan maken 17,82 2,7796 plural

23 High Incorrect Direct na aardrijkskunde moeten de sukkel hun strafwerk gaan maken 18,94 3,2541 plural

24 Low Correct Tijdens de ceremonie moeten de aanwezigen één voor één opstaan 5,95 1,9823 plural

24 Low Incorrect Tijdens de ceremonie moeten de aanwezige één voor één opstaan 9,63 1,6812 plural

24 High Correct Tijdens de ceremonie moeten de immigranten één voor één opstaan 16,24 1,9823 plural

24 High Incorrect Tijdens de ceremonie moeten de immigrant één voor één opstaan 19,46 1,716 plural

25 Low Correct Op de camping slaapt de gast van de grote bruiloft 11,41 3,3911 singular

25 Low Incorrect Op de camping slaapt de gasten van de grote bruiloft 8,75 3,3649 singular

25 High Correct Op de camping slaapt de getuige van de grote bruiloft 15,17 3,3948 singular

25 High Incorrect Op de camping slaapt de getuigen van de grote bruiloft 16,49 3,33 singular

26 Low Correct Met die schapen heeft de herder nog helemaal geen ervaring 8,97 2,415 singular

26 Low Incorrect Met die schapen heeft de herders nog helemaal geen ervaring 9,68 1,7404 singular

26 High Correct Met die schapen heeft de specialist nog helemaal geen ervaring 15,99 2,4099 singular

26 High Incorrect Met die schapen heeft de specialisten nog helemaal geen ervaring 16,59 2,0294 singular
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27 Low Correct Op het terras rent de ober van tafel naar tafel 6,85 2,6424 singular

27 Low Incorrect Op het terras rent de obers van tafel naar tafel 11,78 1,7559 singular

27 High Correct Op het terras rent de vrijgezel van tafel naar tafel 15,32 2,6454 singular

27 High Incorrect Op het terras rent de vrijgezellen van tafel naar tafel 15,76 1,9494 singular

28 Low Correct Op de zeebodem ligt de vis die vorige week stierf 9,75 3,3406 singular

28 Low Incorrect Op de zeebodem ligt de vissen die vorige week stierf 11,81 3,246 singular

28 High Correct Op de zeebodem ligt de soldaat die vorige week stierf 15,41 3,3655 singular

28 High Incorrect Op de zeebodem ligt de soldaten die vorige week stierf 14,59 3,3549 singular

29 Low Correct Vangwege het luchtalarm zoeken de bewoners direct een veilige plaats 7,1 2,4771 plural

29 Low Incorrect Vangwege het luchtalarm zoeken de bewoner direct een veilige plaats 13,61 1,9823 plural

29 High Correct Vangwege het luchtalarm zoeken de zwervers direct een veilige plaats 15,15 2,2279 plural

29 High Incorrect Vangwege het luchtalarm zoeken de zwerver direct een veilige plaats 15,31 2,4728 plural

30 Low Correct In de vrachtwagen liggen de pakketten voor de grote drogisterij 11,16 1,3802 plural

30 Low Incorrect In de vrachtwagen liggen de pakket voor de grote drogisterij 17,71 2,3284 plural

30 High Correct In de vrachtwagen liggen de parfums voor de grote drogisterij 21,29 1,3802 plural

30 High Incorrect In de vrachtwagen liggen de parfum voor de grote drogisterij 18,95 2,6785 plural

31 Low Correct In de kratten zitten de appels die afgeleverd moeten worden 11,46 2,4983 plural

31 Low Incorrect In de kratten zitten de appel die afgeleverd moeten worden 13,54 2,6503 plural

31 High Correct In de kratten zitten de kopieën die afgeleverd moeten worden 16,2 2,4955 plural

31 High Incorrect In de kratten zitten de kopie die afgeleverd moeten worden 17,58 2,8681 plural

32 Low Correct Op de A27 staan de vrachtwagens in een lange file 9 2,2695 plural

32 Low Incorrect Op de A27 staan de vrachtwagen in een lange file 11,85 2,8768 plural

32 High Correct Op de A27 staan de beroemdhedenin een lange file 17,99 2,2304 plural

32 High Incorrect Op de A27 staan de beroemdheid in een lange file 18,94 2,2718 plural

33 Low Correct Tijdens het protest beschermt de held de gevallen oude man 11,81 3,4165 singular

33 Low Incorrect Tijdens het protest beschermt de helden de gevallen oude man 12,17 2,8169 singular

33 High Correct Tijdens het protest beschermt de tante de gevallen oude man 16,64 3,4357 singular

33 High Incorrect Tijdens het protest beschermt de tantes de gevallen oude man 17,18 2,1644 singular

34 Low Correct In het televisieprogramma vertelt de acteur niet over het verleden 7,4 2,9633 singular
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34 Low Incorrect In het televisieprogramma vertelt de acteurs niet over het verleden 9,89 2,7597 singular

34 High Correct In het televisieprogramma vertelt de lafaard niet over het verleden 19,45 2,9542 singular

34 High Incorrect In het televisieprogramma vertelt de lafaards niet over het verleden 21,14 2,4065 singular

35 Low Correct De volgende morgen vertrekt de directeur naar de zonnige bestemming 7,79 3,1998 singular

35 Low Incorrect De volgende morgen vertrekt de directeuren naar de zonnige bestemming 15,7 1,6335 singular

35 High Correct De volgende morgen vertrekt de leugenaar naar de zonnige bestemming 20,69 3,194 singular

35 High Incorrect De volgende morgen vertrekt de leugenaars naar de zonnige bestemming 20,45 2,2856 singular

36 Low Correct Onder mijn bureau ligt de pen die ik kwijt was 9,31 2,9768 singular

36 Low Incorrect Onder mijn bureau ligt de pennen die ik kwijt was 12,19 2,0569 singular

36 High Correct Onder mijn bureau ligt de rat die ik kwijt was 15,1 2,9978 singular

36 High Incorrect Onder mijn bureau ligt de ratten die ik kwijt was 16,95 2,8854 singular

37 Low Correct Op de velden werken de boeren met een grote ploeg 7,36 2,8254 plural

37 Low Incorrect Op de velden werken de boer met een grote ploeg 9,06 2,8109 plural

37 High Correct Op de velden werken de personen met een grote ploeg 14,69 2,8325 plural

37 High Incorrect Op de velden werken de persoon met een grote ploeg 15,76 3,6146 plural

39 Low Correct Op het strand vliegen de meeuwen je om de oren 4,79 1,6128 plural

39 Low Incorrect Op het strand vliegen de meeuw je om de oren 16,39 1,4624 plural

39 High Correct Op het strand vliegen de volleyballen je om de oren 19,39 1,1461 plural

39 High Incorrect Op het strand vliegen de volleybal je om de oren 15,82 1,6128 plural

40 Low Correct In dat pretpark zijn de attracties eigenlijk niet in orde 8,43 1,699 plural

40 Low Incorrect In dat pretpark zijn de attractie eigenlijk niet in orde 10,22 1,9685 plural

40 High Correct In dat pretpark zijn de kwalificaties eigenlijk niet in orde 15,28 1,699 plural

40 High Incorrect In dat pretpark zijn de kwalificatie eigenlijk niet in orde 15,17 1,301 plural

41 Low Correct Naar die sportschool gaat de trainer nooit om te sporten 9,15 2,5527 singular

41 Low Incorrect Naar die sportschool gaat de trainers nooit om te sporten 12,22 1,6902 singular

41 High Correct Naar die sportschool gaat de kanjer nooit om te sporten 18,98 2,5514 singular

41 High Incorrect Naar die sportschool gaat de kanjers nooit om te sporten 19,47 1,5185 singular

43 Low Correct Vanwege de afmeldingen moet de familie het feest helaas afblazen 9,72 4,1239 singular

43 Low Incorrect Vanwege de afmeldingen moet de families het feest helaas afblazen 15,05 2,8439 singular
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43 High Correct Vanwege de afmeldingen moet de mama het feest helaas afblazen 18,67 3,9556 singular

43 High Incorrect Vanwege de afmeldingen moet de mama's het feest helaas afblazen 21,12 2,412 singular

44 Low Correct Op deze zeilboot vaart de schipper een rondje door Nederland 11,39 2,1584 singular

44 Low Incorrect Op deze zeilboot vaart de schippers een rondje door Nederland 16,86 1,1461 singular

44 High Correct Op deze zeilboot vaart de patriot een rondje door Nederland 20,3 2,1644 singular

44 High Incorrect Op deze zeilboot vaart de patriotten een rondje door Nederland 18,68 1,6812 singular

45 Low Correct Op die kinderboerderij werken de vrijwilligers aan de nieuwe hokken 9,8 2,4518 plural

45 Low Incorrect Op die kinderboerderij werken de vrijwilliger aan de nieuwe hokken 15,17 2,3997 plural

45 High Correct Op die kinderboerderij werken de experts aan de nieuwe hokken 15,41 2,444 plural

45 High Incorrect Op die kinderboerderij werken de expert aan de nieuwe hokken 18,4 2,8987 plural

46 Low Correct In dat vliegtuig veroorzaken de passagiers helaas een enorme chaos 9,32 2,8109 plural

46 Low Incorrect In dat vliegtuig veroorzaken de passagier helaas een enorme chaos 12,94 2,382 plural

46 High Correct In dat vliegtuig veroorzaken de ouderen helaas een enorme chaos 14,94 2,3181 plural

46 High Incorrect In dat vliegtuig veroorzaken de oudere helaas een enorme chaos 15,98 2,871 plural

47 Low Correct Met die auto rijden de coureurs naar hun beoogde startpunt 11,4 1,8692 plural

47 Low Incorrect Met die auto rijden de coureur naar hun beoogde startpunt 14,47 1,9494 plural

47 High Correct Met die auto rijden de pelgrims naar hun beoogde startpunt 14,08 1,8633 plural

47 High Incorrect Met die auto rijden de pelgrim naar hun beoogde startpunt 16,86 1,7709 plural

48 Low Correct In de achtertuin sluipen de boeven om ongezien te blijven 10,38 2,5145 plural

48 Low Incorrect In de achtertuin sluipen de boef om ongezien te blijven 13,7 2,4346 plural

48 High Correct In de achtertuin sluipen de misdadigers om ongezien te blijven 15,22 2,4609 plural

48 High Incorrect In de achtertuin sluipen de misdadiger om ongezien te blijven 17,12 2,5079 plural
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Table 4.8: Filler items.
Filler

num-

ber

Referent (if

applicable)

Sentence

F1 Ambiguous Abel leende Gijs het boek voor hij op vakantie ging

F2 Second Lisanne lachte Jordy uit toen hij de grap begreep

F3 First Twan praatte met Britt over de wedstrijd vlak voor hij een ongeluk kreeg

F4 Ambiguous Bas vertelde Hendrik over het probleem vlak voor hij het gebouw verliet

F5 Second Nora sprak met Ryan over de sollicitatie terwijl hij de koffers inpakte

F6 First Benjamin vroeg Veerle naar het geld toen hij de straat overstak

F7 Ambiguous Jasper knipoogde naar Felix toen hij het theater binnen liep

F8 Second Ella gaf het briefje aan David voordat hij de woonkamer in liep

F9 First Evert gaf het boek aan Maartje terug voordat hij naar Londen verhuisde

F10 Ambiguous Tom gaf de microfoon aan Kasper voor hij het podium over rende

F11 Second Nina knikte naar Florian terwijl hij de rechtszaal in liep

F12 First Martijn gaf het script aan Esther toen hij de studio binnen kwam

F13 Ambiguous Tim vertelde de grap aan Victor op het moment dat hij de ruimte in kwam lopen

F14 Second Johanna glimlachte naar Matthijs toen hij naar Denemarken besloot te fietsen

F15 First Fabian snauwde een bevel naar Tess toen hij de legerbasis op was gelopen

F16 Ambiguous Samuel kreeg een bos bloemen van Dirk toen hij naar Duitsland vertrok

F17 Second Rosalie ontving de brief van Pieter op het moment dat hij in Spanje aan het werk was

F18 First Thomas miste Isa vanaf het moment dat hij op tournee was gegaan

F19 Ambiguous Pim praatte met Thom over het tentamen terwijl hij een telefoontje kreeg

F20 Second Jasmijn vertelde Daan over de toets toen hij de universiteit verliet

F21 First Alexander sprak met Iris over de crisis vlak voor hij van Frankrijk naar Nederland reed

F22 Ambiguous Kevin vroeg Stijn naar de uitslag van het onderzoek vlak voor hij door rood reed

F23 Second Jennifer liet het boek aan Jochem zien toen hij naar cadeaus aan het zoeken was

F24 First Koen belde met Anna vlak voor hij het instituut verlaten had

F25 Ambiguous Lars vroeg Teun om een gunst voordat hij de geruchten te horen kreeg

F26 Second Elise neigde Maurits de waarheid te zeggen voordat hij op vakantie zou gaan

F27 First Sander liet Suzanne de muziek kiezen toen hij de vrachtwagen bestuurde

F28 Ambiguous Justin besloot Mike te trakteren omdat hij met verlof zou gaan

F29 Second Olivia beloofde Floris elke dag te bellen voordat hij de bus instapte

F30 First Joris gaf Larissa een High five terwijl hij de finish over rende

F31 Ambiguous Gerrit liet Mick wachten nadat hij de training had afgerond

F32 Second Romy verschafte Johan een alibi toen hij het politiebureau betrad

F33 First Oscar stuurde Nicole een email toen hij door ziekte thuis moest blijven

F34 Ambiguous Tobias belde met Tristan terwijl hij een salade bereidde

F35 Second Sanne fluisterde iets tegen Patrick voor hij het toneel betrad

F36 First Stefan vroeg Roos boodschappen te doen nadat hij de presentatie had gegeven

F37 Ambiguous Sebastiaan belde met Jens terwijl hij naar zee aan het fietsen was

F38 Second Josephine maakte een foto met Luc nadat hij de camera had gepakt

F39 First Wesley groette Karlijn op het moment dat hij het plein op wandelde

F40 Ambiguous Jonas gaf de zonnebrand aan Simon vlak voordat hij de zee inging

F41 Second Laura sprak met Willem af toen hij van vakantie terug was

F42 First Niels gaf de bal aan Nienke nadat hij een punt scoorde

F43 Ambiguous Joep zocht Berend op voordat hij op reis ging

F44 Second Michelle gaf Olivier een knuffel voordat hij het kunstwerk presenteerde

F45 First Thijs ging met Fenna naar de dierentuin omdat hij een ticket gewonnen had

F46 Ambiguous Ruben bezocht Mohamed in Zuid-Limburg toen hij een weekend vrij was

F47 Second Isabella verstond Max niet terwijl hij het gras aan het maaien was

F48 First Ties kon Jill niet bereiken vlak voordat hij het vliegtuig instapte

F49 Ambiguous Rutger zag Timo lopen nadat hij de supermarkt uitkwam

F50 Second Lynn bevestigde de afspraak met Jurre op het moment dat hij naar Griekenland vertrok

F51 First Rens bracht Maryam een kop koffie voordat hij op excursie ging
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F52 Ambiguous Luuk vroeg Johannes de deur af te sluiten toen hij het pand verliet

F53 Second Mila belde Rick op nadat hij de uitslag had gekregen

F54 First Maarten vloog Lizzy om de hals toen hij de trein uitstapte

F55 Ambiguous Sjoerd overlegde met Jeffrey voor hij het restaurant reserveerde

F56 Second Emily kreeg een uitnodiging van Dennis omdat hij de gastvrouw wilde helpen

F57 First Adam overwoog het bedrijf aan Yara te verkopen omdat hij een uitdaging zocht

F58 Ambiguous Bart stuurde Arthur een pakketje omdat hij naar Engeland was vertrokken

F59 Second Daphne vroeg Leon het geld terug te betalen voor hij op reis zou gaan

F60 First Jonathan fietste die nacht met Emma naar huis omdat hij de omgeving niet veilig vond

F61 N/A Amber ging die avond naar het ziekenhuis omdat ze pijn in haar benen had

F62 N/A Chantal nam een hond zodra ze met pensioen ging

F63 N/A Marieke boekte een vlucht om haar moeder in Griekenland op te zoeken

F64 N/A Femke haalde een onvoldoende voor de toets omdat ze niet geleerd had

F65 N/A Isabel had een vaccinatie nodig toen ze naar Vietnam ging

F66 N/A Anouk lachte uitbundig toen ze het goede nieuws te horen kreeg

F67 N/A Milou begon aan een nieuwe studie toen ze geen baan kon vinden

F68 N/A Myrthe ging naar de bouwmarkt zodra ze de sleutel van haar nieuwe huis had gekregen

F69 N/A Mandy haalde haar rijbewijs makkelijk omdat ze zo veel lessen had gehad

F70 N/A Manon belde de belastingdienst omdat ze geld terug zou krijgen

F71 N/A Eva schreef een boek omdat ze haar ervaringen graag wilde delen

F72 N/A Eline kreeg een groot cadeau van haar ouders toen ze dertig werd

F73 N/A Joyce kocht een nieuwe fiets omdat ze haar oude niet meer kon vinden

F74 N/A Lara luisterde naar de radio toen ze ontdekte dat haar tv niet meer werkte

F75 N/A Madelief was haar portemonnee vergeten toen ze boodschappen ging doen

F76 N/A Lisa ging op kraambezoek toen ze hoorde dat haar neefje was geboren

F77 N/A Lieke bakte een taart omdat ze zich verveelde

F78 N/A Maaike begon aan haar nieuwe baan zodra ze haar ontslag had ingediend

F79 N/A Renske kleedde zich om toen ze naar het restaurant ging

F80 N/A Pim ging naar de kapper toen zijn salaris gestort was

F81 N/A Lena hoopte op beter nieuws maar werd erg teleurgesteld

F82 N/A Naomi ging altijd op zaterdag naar yoga tot haar yogaschool failliet ging

F83 N/A Simone las altijd de krant om op de hoogte van het nieuws te blijven

F84 N/A Sophia beloofde beterschap maar ging daarna toch weer de fout in

F85 N/A Ilse sprak met een zachte stem om haar kinderen niet wakker te maken

F86 N/A Carmen probeerde een nieuw recept uit toen haar vrienden op bezoek kwamen

F87 N/A Pepijn moest plotseling verhuizen toen hij werd overgeplaatst

F88 N/A Jason verkocht zijn huis toen hij zijn hypotheek niet meer kon betalen

F89 N/A Milan overnachtte bij een vriend omdat hij zijn huissleutels kwijt was

F90 N/A Jack vermoedde dat er iets aan de hand was maar wist het niet zeker

F91 N/A Toen de barkeeper die de irritante klant bediende wegliep gingen de deuren open

F92 N/A Toen de manke dronkaard die de barkeeper betaalde lachte viel de kruk om

F93 N/A De rector die de stoere puber strafte was erg onredelijk

F94 N/A De overtreder die de smeris ontvlucht was is een kronkelig paadje ingerend

F95 N/A Gisteren had de brede bodyguard die de filmster beschermde een vrije dag

F96 N/A Jochem die altijd te hoog springt tijdens basketbal heeft zijn enkel bezeerd

F97 N/A De politieman die de agressieve kraker arresteert gaat hardhandig te werk

F98 N/A De geduldige dominee die de baby doopt begint te spreken

F99 N/A De detective die criminelen opspoort krijgt een vette beloning van de staat

F100 N/A De speurhond die de illegale drugs opspoort krijgt een koekje

F101 N/A De gedetineerde die de trage bewaker afschudt krijgt hulp van zijn handlanger

F102 N/A Niemand wist dat een gevaarlijke tornado ontstond die veel slachtoffers zou eisen

F103 N/A De employee die de ontsnapte dieven beschrijft is erg nauwkeurig

F104 N/A Het derde getal dat de oplettende toehoorder signaleert is zes

F105 N/A Mijn vriendin Mona is gek op jongens die gemixte drankjes kopen voor haar

F106 N/A Het vrouwtje dat verlaten poezen opvangt heeft ruzie met de buren

F107 N/A Onlangs gaf de jongeman die de populaire portier inhuurde een groot feest

F108 N/A Het elfje dat de sterke beren betoverde was erg vriendelijk
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F109 N/A De schilder die de knappe prinses tekent zit onder de verf

F110 N/A De kokkin die pap voor dakloze burgers kookt heeft geen zin meer

F111 N/A Nora die warme dekens voor arme mensen weeft is gelukkig

F112 N/A De raadsman die de wrede delinquent bijstond was op de radio

F113 N/A Joost grijpt de stoere kidnapper die de bange directrice ontglipt in zijn kraag

F114 N/A Ik sprak gisteren nog met Henk die de scheve torens ontworpen heeft

F115 N/A Toen de heilsoldaat die de zieke dakloze huisvestte de kamer binnenkwam schrok hij

F116 N/A De grootvader die de slinkse deugniet doorhad voelde zich bedrogen

F117 N/A Ik schrok toen de goedkope beunhaas die het achterste bordes repareerde lachte

F118 N/A De judoka die de dwaze belager vloerde was niet te houden

F119 N/A De bedrieger die de simpele taxateur misleidde voelde zich schuldig

F120 N/A De ontwerper die de koningin kleding verkoopt is erg creatief
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4.7 Appendix II. Results of the analysis using

categorical surprisal

The analyses described below follow the same structure as those in the main text,

with the only difference being that the surprisal factor used here is categorical

with two levels (‘low’ and ‘high’). This was the original design of the study, but

due to an interactive relation between the agreement and surprisal manipulation

(the effect of agreement on the surprisal values was larger in high surprisal than

in low surprisal stimuli), we decided to use continuous surprisal values as a

predictor instead. As can be seen in the results below, the pattern these analyses

reveal is similar, although the effect of the categorical surprisal variable is smaller

than that of the continuous surprisal variable.

4.7.1 Target word

Reducing the random effects structure revealed that the largest random effects

structure that lead to non-singular fit included random slopes for agreement and

a random intercept. Model comparison for the fixed effects structure showed

that the interaction between surprisal and agreement did not improve model fit

(χ2(1) = 1.58; p = 0.21), and surprisal did not do so either (χ2(1) = 2.37; p =
0.12). The interaction between agreement and number did contribute to model

fit (χ2(1) = 20.84; p < 0.01). The interpreted model included mains effect of

agreement and number as well as their interaction, random slopes for agree-

ment, and a random intercept. This model revealed a main effect of agreement

(β = 4.37·10-2, SE = 1.25·10-2, t(304.26) = 3.51, p < 0.01), with longer read-

ing times for words directly following an incorrect target word than for words

following a correct target word. In addition, there was a main effect of number,

with longer reading times of the target word in sentences in which the preceding

verb was plural compared to singular (β = 4.58·10-2, SE= 1.15·10-2, t(3297.89)

= 3.99, p < 0.01). There was also an interaction between these two factors (β

= -7.43·10-2, SE = 1.62·10-2, t(3294.04) = -4.57, p < 0.01). For a summary, see

Table 4.9 below.

Simple effects comparisons revealed that the effect of agreement was in fact

reversed for sentences with a plural preceding verb: the incorrect singular nouns

were read faster than the correct plural nouns (F(1,260.1)=6.56, p < 0.05). In

sentences with singular preceding verbs, the ungrammaticality effect had the

expected directionality (F(1)=12.31, p < 0.01). This interaction is clearly seen
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in figure 4.4B (word position 5). Comparison in the opposite direction (i.e., the

effect of number per agreement condition) revealed that the effect of number

was significant in grammatical sentences, with plural nouns following a plural

verb being read more slowly than singular nouns following singular verbs (F(1,

3300.30) = 15.94, p < 0.01); in the incorrect condition, there was a trend for

singular nouns following plural verbs to be read faster than plural nouns follow-

ing singular verbs (F(1, 3299.45)= 6.12, p= 0.054). This can be seen in Figure

4.4D in the main text.

Table 4.9: The output of the interpreted linear mixed effects model of the residual
log reading times at the target word (the subject). Model: residual log
RT ~ surprisal + correct_number * agreement + (1 + agreement |
participant).

Estimate Std. Error df t value p value

(Intercept) -8.48e-02 1.04e-02 1.98e 02 -8.18 3.45e-14 ***
Agreement 4.37e-02 1.25e-02 3.04e 02 3.51 5.17e-04 ***
Correct number 4.58e-02 1.15e-02 3.30e 03 3.99 6.66e-05 ***
Agreement * correct number 7.43e-02 1.62e-02 3.29e 03 -4.57 5.01e-06 ***

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

4.7.2 Spill-over 1

In the first word following the target, the largest random effects structure that

converged and did not yield singular fit included random slopes for agreement

and a random intercept. Model comparison for the fixed effects structure showed

that the interaction between surprisal and agreement did not improve model fit

(χ2(1)= 2.23; p= 0.14), and surprisal alone did not, either (χ2(1)= 1.75; p=
0.19). The interaction between agreement and number did contribute to model

fit (χ2(1) = 8.27; p < 0.01). The interpreted model included mains effect of

agreement and number as well as their interaction, random slopes for agree-

ment, and a random intercept. This model revealed a main effect of agreement

(β = 1.01·10-1, SE= 1.56·10-2, t(199.90)= 6.44, p< 0.01), with longer reading

times for words directly following an incorrect target word than words following

a correct target word. This effect is visible in Figure 4.3. In addition, there was a

main effect of number, with longer reading times of the target word in sentences

in which the preceding verb was plural (β = 3.11·10-2, SE = 1.23·10-2, t(3308)

= 2.53, p < 0.05). There was also an interaction between these two factors (β

= -5.01·10-2, SE = 1.74·10-2, t(3301) = -2.88, p < 0.01). See the output of the

model in Table 4.10 below.
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Simple-effects analyses showed that the ungrammaticality effect had the cor-

rect directionality for both numbers (singular verbs: F(1)=41.43, pcorr < 0.01;

plural verbs: F(1,179.92)=11.18, pcorr < 0.01). A comparison in the opposite di-

rection revealed that the effect of number was only significant in the grammatical

conditions (correct agreement: F(1,3311.51)=6.42, pcorr < 0.05; F(1,3300.99)

= 2.37, pcorr = 0.50). The interaction is shown in Figure 4.4D in the main text

(word position 6).

Table 4.10: The fixed effects from the interpreted linear mixed effects model of the
residual log reading times at the first spill-over word. Model: residual
log RT ~ agreement * correct number + (1 | participant).

Estimate Std. Error df t value p value

(Intercept) -4.2910-2 9.40e-03 2.99e 02 -4.57 7.27e-06 ***
Agreement 1.01e-01 1.56e-02 2.00e 02 6.44 8.51e-06 ***
Correct number 3.11e-02 1.23e-02 3.31e 03 2.54 1.13e-02 *
Agreement * correct number -5.01e-02 1.74e-02 3.30e 03 -2.88 4.03e-03 **

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

4.7.3 Spill-over 2

In the second word following the target word, the only random effects structure

that converged was a random intercept. Reduction of the fixed effects showed

that the interaction between agreement and surprisal did not contribute to model

fit (χ2(1)= 2.16; p= 0.14), whereas the main effect of surprisal (χ2(1)= 12.71;

p < 0.01) did. The interaction between number and agreement did not improve

model fit (χ2(1)= 1.15; p= 0.28). The main effects of number (χ2(1)= 4.75; p

< 0.05) and agreement (χ2(1) = 81.70; p < 0.01) both did contribute to model

fit. The interpreted model therefore contained main effects of surprisal, agree-

ment and number and a random intercept. The model showed a main effect of

agreement (β = 7.39·10-2, SE = 8.13·10-3, t(3760) = 9.09, p < 0.01), revealing

longer reading times after an agreement error relative to correct agreement; and

a main effect of surprisal (β = 2.90·10-2, SE = 8.13·10-3, t(3760) = 3.57, p <
0.01), showing that higher surprisal values lead to longer reading times. These

effects are both visible in Figure 4.3 in the main text, at word position 7. In

addition, there was an effect of number, again showing longer reading times are

associated with nouns that follow a plural verb (β = 1.77·10-2, SE = 8.14·10-3,

t(3770) = 2.18, p < 0.05).
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Table 4.11: The fixed effects from the interpreted linear mixed effects model of the
residual log reading times at the second spill-over word. Model: resid-
ual log RT ~ agreement + surprisal + correct number + (1 | partic-
ipant).

Estimate Std. Error df t value p value

(Intercept) -4.53e-02 9.55e-03 4.30e 02 -4.74 2.89e-06 ***
Surprisal 2.90e-03 8.13e-03 3.38e 03 3.57 3.61e-04 ***
Agreement 7.39e-02 8.13e-03 3.38e 03 9.09 <2e-16 ***
Correct number 1.77e-02 8.14e-03 3.38e 03 2.18 0.029 *

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

4.7.4 Spill-over 3

At the third word after the target word the effect of surprisal appeared to subside.

Using categorical surprisal, the largest random effects structure that yielded con-

verged models was a random intercept only. Model comparison showed that the

interaction did not contribute to model fit (χ2(1) = 2.33; p = 0.13), nor did

surprisal (χ2(1) = 2.09; p = 0.15). The interaction between number and agree-

ment did not contribute to model fit (χ2(1) = 0.86; p = 0.35), and the main

effect of number did not, either (χ2(1) = 0.48; p = 0.49). Agreement did con-

tribute to model fit (χ2(1) = 34.48; p < 0.01). The interpreted model included

a main fixed effect of agreement and a random intercept. This model showed an

effect of agreement (β = 4.62·10-2, SE = 7.84·10-3, t(3390) = 5.89, p < 0.01),

indicating that slower reading times after an incorrect target word persists (at

least) until the third word after the agreement error. This can be seen in Figure

4.3 in the main text. The results are summarized in table 4.12 below.

Table 4.12: The fixed effects from the interpreted linear mixed effects model of the
residual log reading times at the third spill-over word. Model: residual
log RT ~ agreement + (1 | participant).

Estimate Std. Error df t value p value

(Intercept) -2.86e-03 7.77e-03 1.57e 02 -0.368 0.713
Agreement 4.62e-02 7.84e-03 3.39e 03 5.887 4.32e-09 ***

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001
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4.8 Appendix III. Results of the analysis using the

number on the noun

The analyses described below follow the same structure as those in the main

text with the only difference being that the ‘number’ factor refers to the number

of the subject noun rather than the number of the verb. Notice that these two

factors could not be included in the same model with an ‘agreement’ factor, since

congruent number factors would indicate correct agreement, and incongruent

number factors would capture incorrect agreement. The surprisal factor used is

continuous.

4.8.1 Target word

The largest random effects structure that converged and was non-singular had

random slopes for agreement. Model comparison revealed that the interaction

between surprisal and agreement did not contribute to model fit (χ2(1)= 0.051;

p = 0.82), but the main effect of surprisal did (χ2(1) = 11.55; p < 0.01). The

interaction between agreement and the number of the noun did not contribute

to model fit (χ2(1) = 1.60; p = 0.21), but the number of the noun itself did

(χ2(1) = 21.27; p < 0.01). Agreement did not contribute to model fit (χ2(1) <
0.01; p = 0.99). The interpreted model contained main effects of surprisal and

the number of the noun. The model output is displayed in table 4.13 below.

Table 4.13: The fixed effects from the interpreted linear mixed effects model of the
residual log reading times at the target word. Model: residual log RT
~ surprisal + noun_number + (1 + agreement | participant).

Estimate Std. Error df t value p value

(Intercept) -1.21e-01 1.53e-02 1.38e 03 -7.94 4.17e-15 ***
Surprisal 3.15e-03 9.23e-04 3.29e 03 3.41 6.55e-04 ***
Noun_number 3.75e-02 8.10e-03 3.31e 03 4.63 3.90e-06 ***

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

4.8.2 Spill-over 1

The largest random effect structure that converged and was non-singular had

random slopes for surprisal and the number of the noun. In addition, three other

models converged and were non-singular, namely a model with random slopes

for surprisal, a model with random slopes for agreement, and a random inter-

cept only. Comparison of the AIC values revealed that the model with random
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slopes for agreement was best. Model comparison then revealed a marginal in-

teraction between surprisal and agreement (χ2(1) = 3.41; p = 0.065). Further

reduction from the model that included this interaction showed that the interac-

tion between the number of the noun and agreement did not contribute to model

fit (χ2(1) = 0.67; p = 0.41). The interpreted model contained an interaction

between agreement and surprisal and main effects of agreement, surprisal, and

the number of the noun. The model output is shown in table 4.14 below.

Table 4.14: The fixed effects from the interpreted linear mixed effects model of the
residual log reading times at the first spill-over word. Model: residual
log RT ~ agreement + surprisal + noun_number + (1 | participant).

Estimate Std. Error df t value p value

(Intercept) -8.79e-02 1.93e-02 2.39e 03 -4.555 5.50e-06 ***
Agreement 1.25e-01 3.19e-02 1.98e 03 3.918 9.22e-05 ***
Surprisal 3.67e-03 1.33e-03 3.31e 03 2.757 5.86e-03 **
Noun_number 2.62e-02 8.70e-03 3.30e 03 3.014 2.60e-03 **
Agreement * surprisal -3.78e-03 2.06e-03 3.31e 03 -1.840 0.066 .

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

4.8.3 Spill-over 2

The two models that converged and were non-singular were the one with ran-

dom slopes for surprisal and agreement, and the one with a random intercept

only. We initially performed model comparison with the large random slopes

model, but this led to singular fit in the other models. We therefore continued

with a random intercept only. Here, model comparison revealed that the inter-

action between agreement and surprisal did not contribute to model fit (χ2(1)

= 0.14; p = 0.71). The main effect of surprisal did (χ2(1) = 23.19; p < 0.01),

as did the interaction between the number of the noun and agreement (χ2(1)

= 6.11, p < 0.05). The interpreted model contained the interaction between

agreement and the number of the noun, as well as main effects of surprisal,

agreement, and the number of the noun. The model output is provided in table

4.15 below.

To investigate the interaction between agreement and the number on the

noun, we looked into simple effects. This revealed that the effect of agreement

was significant for both singular and plural nouns (singular: F(1,3380.66) =
52.33, p < 0.01; plural: F(1,3380.34) = 14.88; p < 0.01), but the effect of the

number of the noun was marginally significant after correction in ungrammati-
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Table 4.15: The fixed effects from the interpreted linear mixed effects model of the
residual log reading times at the second spill-over word. Model: resid-
ual log RT ~ agreement * noun_number + surprisal + (1 | partici-
pant).

Estimate Std. Error df t value p value

(Intercept) -8.67e-02 1.58e-02 1.96e 03 -5.49 4.60e-08 ***
Surprisal 4.56e-03 9.45e-04 3.38e 03 4.82 1.47e-06 ***
Agreement 8.40e-02 1.16e-02 3.38e 03 7.24 5.61e-13 ***
Noun number 1.18e-02 1.15e-02 3.38e 03 1.03 0.30
Agreement * noun_number -4.03e-02 1.63e-02 3.38e 03 -2.47 0.01 *

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

cal sentences only (F(1,3383.61) = 6.06, p = 0.056) with a total absence of the

effect in grammatical sentences (F(1,3383.21) = 1.06; p = 1).

4.8.4 Spill-over 3

The only model that converged and was non-singular was the model with a

random intercept only. Model comparison revealed that the interaction between

agreement and surprisal did not contribute to model fit (χ2(1) = 0.57; p =
0.45); neither did the main effect of surprisal (χ2(1) = 1.53; p = 0.22), the

interaction between agreement and number(χ2(1) = 0.49; p = 0.49), and the

main effect of number (χ2(1) = 0.85; p = 0.36). The main effect of agreement

did contribute to model fit (χ2(1) = 34.48; p < 0.01). The interpreted model

contained a main effect of agreement. The output is shown in table 4.16 below.

Table 4.16: The fixed effects from the interpreted linear mixed effects model of the
residual log reading times at the third and final spill-over word. Model:
residual log RT ~ agreement + (1 | participant)

Estimate Std. Error df t value p value

(Intercept) -2.86e-03 7.77e-03 1.57e 05 -0.37 0.71
Agreement 4.62e-02 7.84e-03 3.39e 06 5.89 4.32e-09 ***

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001



5 | Lexical surprisal shapes the time course of

syntactic structure building1

Abstract

When we understand language, we recognize words and combine them into
sentences. How do we do this? In this Chapter, we explore the hypothesis that
listeners use probabilistic information about words to build syntactic structure.
Recent work has shown that lexical probability and syntactic structure both mod-
ulate the delta-band (0-4 Hz) neural signal. Here, we investigated whether the
neural encoding of syntactic structure changes as a function of the distributional
properties of a word. To this end, we analyzed MEG data of 24 native speakers
of Dutch who listened to three fairytales with a total duration of 49 minutes. Us-
ing temporal response functions and a cumulative model-comparison approach,
we evaluated the contributions of syntactic and distributional features to the
variance in the delta-band neural signal. This revealed that lexical surprisal
values (a distributional feature), as well as bottom-up node counts (a syntac-
tic feature) positively contributed to the model of the delta-band neural signal.
Subsequently, we compared responses to the syntactic feature between words
with high- and low surprisal values. This revealed a delay in the response to the
syntactic feature as a consequence of the surprisal value of the word: high sur-
prisal values were associated with a delayed response to the syntactic feature by
150 to 190 milliseconds. The delay was not affected by word duration, and did
not have a lexical origin. These findings suggest that the brain uses probabilistic
information to infer syntactic structure, and highlight an importance for the role
of time in this process.

1Adapted from Slaats, S., Meyer, A. S., & Martin, A. E. (in press). Lexical surprisal shapes the
time course of syntactic structure building. Neurobiology of Language.
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5.1 Introduction

In order to understand language, we must recognize words and combine them

into larger linguistic units like phrases and sentences. This process is compli-

cated by the fact that as the sensory input unfolds, be it speech, sign, or text,

we must settle on an interpretation of the input (viz., perception and recogni-

tion) in addition to transforming or combining that input into larger meaning

units. At least two types of information can help us in this process, knowledge

about what we are perceiving (e.g., which linguistic unit, how that unit fits with

others) and knowledge about how likely it is to occur. These two types of infor-

mation can be roughly described as the structure of language and knowledge of

its statistical distribution. Over the past several decades, much psycholinguistic

research has focused on accounting for syntactic phenomena either as a form of

transitional probabilities between different linguistic units (e.g., Frank & Bod,

2011; Frank & Christiansen, 2018; Frost et al., 2019; McCauley & Christiansen,

2019), or as a separate level of representation that is hierarchically structured

and abstracts away from the lexical items itself (e.g., Brennan & Hale, 2019; Lo

et al., 2022; Matchin & Hickok, 2020), without much integration between the

two types of knowledge. Nevertheless, recent work in psycho- and neurolinguis-

tics has provided evidence that both types matter (Maheu, Meyniel, & Dehaene,

2022; Nelson, El Karoui, et al., 2017; Weissbart & Martin, 2023). We know

from perception and cognition that brains, both human and non-human, are in-

credible probabilistic engines (e.g., Santolin & Saffran, 2018), and that they are

capable of producing abstract, generalizable representations (e.g., Coopmans,

Kaushik, & Martin, 2023; Deacon, 1997; Doumas, Hummel, & Sandhofer, 2008;

Martin & Doumas, 2019a). Here, therefore, we test a framework where humans

use lexical distributional information to build abstract, hierarchical representa-

tions that give rise to meaning. It is an instantiation of cue integration (viz. Ernst

& Bülthoff, 2004; Marslen-Wilson & Tyler, 2007; Martin, 2016, 2020): word-by-

word statistics are cues for linguistic rules.

5.1.1 Statistical patterns in learning and comprehension

Psycholinguistic experiments have taught us that humans are capable of extract-

ing statistical regularities very quickly: infants and adults alike are able to extract

words, simple rules, and even non-adjacent dependencies from a continuous

stream of syllables after as little as two minutes of exposure using nothing more

than transitional probabilities (Aslin et al., 1998; Batterink & Paller, 2017, 2019;
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Gervain, 2014; Gómez, 2002; Isbilen, Frost, Monaghan, & Christiansen, 2022;

Saffran, Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996; Vouloumanos

& Werker, 2009). It has since been hypothesized that this capacity underlies our

extraction of syntactic rules: we use distributional cues to infer the structure

underlying the input (Rowland, Chang, Ambridge, Pine, & Lieven, 2012; Saf-

fran, 2001; Thompson & Newport, 2007). Early modeling work revealed exactly

these statistical patterns that language follows are a direct consequence of the

syntactic structure of the input (e.g., Elman, 1991, 1993). More recently, corpus

studies and computational models suggest that (backward) surprisal contains

information about the phrase structure of sentences (McCauley & Christiansen,

2019).

These findings culminated in models using those statistical patterns not just in

a theory of language acquisition, but also in a theory of language comprehension.

An influential example of such a theory is surprisal theory (Hale, 2001, 2006,

2016; Levy, 2008a, 2008b; Levy & Gibson, 2013). Surprisal theory broadly aims

to predict when comprehension difficulties arise. The underlying assumption is

that comprehenders make use of probabilistic information to predict both the

structure of the input they have just heard or seen, and what they might en-

counter next. The extent to which these predictions are correct is hypothesized

to determine the difficulty of processing. The model uses surprisal, the negative

log probability of a word (or other linguistic unit) given the context, as a quan-

tification of the validity of the predictions made. If surprisal is high on a given

word, this word was unexpected given the context, and processing difficulty (of-

ten indexed by slower reaction times in, for example, self-paced reading tasks)

is predicted to occur. Since surprisal can be calculated over any representation,

be it phonemic, lexical, or even structural, surprisal theory does not commit to a

representation of language. It is agnostic about the representations and mecha-

nisms that lead to structure-dependent interpretation (see Slaats & Martin, 2023

and Chapter 2).

Since the introduction of surprisal theory, distributional information has been

shown to account for much variance in models of behavior and neural activity

after learning as well (Armeni et al., 2019; Brennan & Hale, 2019; Hale, 2006,

2016; Hasson, 2017; Hasson & Tremblay, 2015; Heilbron et al., 2022; Levy &

Gibson, 2013; Smith & Levy, 2013), a trend that continues rapidly with the in-

troduction of large language models. For example, higher surprisal values and

a larger decrease in entropy are both associated with slower reading times (Au-

rnhammer & Frank, 2019; Frank, 2013; Linzen & Jaeger, 2016) – the process-
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ing difficulty from surprisal theory. More recently, neuroimaging experiments

have shown that oscillations at delta-, beta- and gamma bands track surprisal

(Weissbart et al., 2019), entropy reduction correlates with temporal lobe activ-

ity (Nelson, Dehaene, et al., 2017), and that surprisal and word frequency are

tracked over and above acoustic and speech segmentation representations (Gillis

et al., 2021). In other words, probability at the word level is a good predictor

for behavioral and neurophysiological measurements (Slaats et al., 2023).

But the power of distributional information does not stop there: some effects

that are attributed to linguistic structure can be evoked by statistical regulari-

ties as well. In a seminal work, Ding and colleagues (2016) showed that the

rate of occurrence of linguistic structures (syllables, phrases and sentences) is

reflected in power in the neural signal at the corresponding frequencies (4Hz,

2Hz, and 1Hz, respectively). This effect was widely adopted in the literature

as reflecting the construction of linguistic units: the brain encodes abstract lin-

guistic information. However, since its publication several studies have shown

that the low-frequency frequency tagging effects can be induced by transitional

probability information alone (Bai, 2022; Batterink & Paller, 2017).

This overwhelming evidence for the importance of distributional information

has reignited the debate on whether language acquisition and language com-

prehension alike are both rooted in sequential, statistical information (Frank

& Bod, 2011; Frank et al., 2012; Frank & Christiansen, 2018; Frank & Yang,

2018), rather than the hierarchical tree structures that are part of linguistic the-

ory (Chomsky, 1956, 1965; Everaert et al., 2015; Pollock, 1989; Rizzi, 1997,

i.a.). This is quite the departure from the early hypothesis in the statistical learn-

ing literature that statistics function as a cue rather than the instantiation of the

structure itself.

5.1.2 Syntactic structure in neural dynamics

Logically, however, statistics-only accounts struggle to explain language behav-

ior (Fodor & Pylyshyn, 1988; Hale et al., 2022; Martin, 2016, 2020; Slaats &

Martin, 2023). For one, listeners are able to understand sentences that include

words or combinations of words that they never encountered before. In line

with this observation, there is ample evidence for the use of abstract structure in

language learning and comprehension. For example, learners privilege abstract

knowledge of scope-taking over transitional probabilities when presented with a

structurally altered version of English (Culbertson & Adger, 2014), and are able

to infer abstract structure in the input after a single exposure (Marcus, Vijayan,



5 Lexical surprisal shapes the time course of syntactic structure building 143

Bandi Rao, & Vishton, 1999). Beyond that, everyday language production shows

that both children and adults produce utterances that they have not heard before

(Conwell & Demuth, 2007; Valian, 1986).

And indeed, neuroimaging studies have shown repeatedly that inferred struc-

tural information modulates activity in low frequency bands, particularly the

delta (<4Hz) band (Bai et al., 2022; Brennan & Martin, 2020; Kaufeld, Bosker,

et al., 2020; Lo et al., 2022; Meyer et al., 2017; Tavano et al., 2022; Ten Oever,

Carta, et al., 2022) and gamma band (Nelson, El Karoui, et al., 2017; Peña &

Melloni, 2012) – even when there are no acoustic markers of this structural in-

formation. For example, Bai and colleagues (2022) presented participants with

two different structures: phrases (de blauwe bal, ‘the blue ball’) and sentences

(de bal is blauw, ‘the ball is blue’). These two types of stimuli had the same num-

ber of syllables and indistinguishable power spectra, but the neural response

differed between the conditions in various ways: low-frequency (1-8 Hz) phase

coherence, <2Hz phase connectivity, and theta(4-10Hz)-beta(15-40Hz) phase-

amplitude coupling. These findings suggest that even small changes of syntac-

tic structure have large consequences for the (low-frequency) neural dynamics.

Similarly, Tavano and colleagues (2022) show that those syntactic categories,

phrases and sentences, generate a neural rhythm as reflected in inter-trial phase

coherence that is mathematically independent of the presentation rate of the

words.

Evidence for delta-band involvement in the process of structure building also

comes from studies comparing word lists and sentences (Lo et al., 2022; Lu, Jin,

Pan, & Ding, 2022; Slaats et al., 2023). Lu and colleagues (2022) presented par-

ticipants with sentences and word lists of animate and inanimate nouns that both

repeated at 1Hz to assess whether delta-band dynamics track semantic proper-

ties of words, or whether the changes are related to structural properties of the

stimulus. A lexical distributional approach as those advocated by Frank and col-

leagues (Frank & Bod, 2011; Frank et al., 2012; Frank & Christiansen, 2018;

Frank & Yang, 2018) would predict stronger 1- and 2Hz response peaks in the

word list condition than in the sentence condition; the opposite is predicted

by model that assumes a role for syntactic structure in delta-band activity. The

study showed that the 1Hz response peak was larger for sentences than for word

lists, suggesting again that low-frequency activity is modulated by or causal for

structure building. In a similar vein, Lo and colleagues (2022) showed that syn-

chronization to the sentential rhythm in the delta band only occurs when the

sentences are syntactically well-formed. Finally, Slaats and colleagues (2023)
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compared delta-band responses to individual words between word lists and sen-

tences, while controlling for effects of surprisal. This study showed that re-

sponses to words were affected in their temporal and spatial organization when

embedded in a sentence structure: the responses appeared earlier and activity

was propagated to left inferior frontal areas in the sentence condition only.

5.1.3 A time and space for both

Some studies pit the importance of structure or sequential probabilities against

each other (Brennan & Hale, 2019; Christiansen & Chater, 2015; Frank et al.,

2012; Frank & Yang, 2018). Frank and Bod (2011), for example, used probabilis-

tic language models that were trained to predict the next part-of-speech (POS)

with a hierarchical and sequential architecture to model reading time data. They

found that the hierarchical models did not account for variance over and above

sequential probability estimates, and suggested that human sentence process-

ing relies more on sequential than on hierarchical structure. Brennan and Hale

(2019), on the other hand, suggest that hierarchical structure is important dur-

ing language comprehension. They use several sequential models and a context-

free grammar to obtain surprisal for part-of-speech and use those to model EEG

data from naturalistic listening. In contrast to Frank and Bod (2011), they find

that the context-free grammar estimates predict EEG data over and above the

sequential models.

When we consider all of these findings together, we must conclude that both

distributional and abstract, hierarchical syntactic information play a role in lan-

guage comprehension – and that both shape the neural signal. Indeed, a study

by Roark and colleagues (2009) showed that models with separate lexical and

syntactic surprisal/entropy features are better at modelling RT data than models

that do not make this distinction. Similarly, Nelson, El Karoui, et al. (2017) found

that intracranial EEG signals differentially encode responses to probabilistic and

syntactic information. In line with these findings, several (statistical) learning

experiments suggest that the brain represents the statistical biases as well as ab-

stract rules (Maheu et al., 2022; Monte-Ordoño & Toro, 2017; Saffran, 2001;

Toro et al., 2011). A model in which probability plays a role, while structure

does too, is in line with one of the brain’s main features: it can map probabilistic

information onto deterministic representations (a relatively undisputed exam-

ple is categorical perception; Harnad, 2003) (Martin, 2020; Tenenbaum, Kemp,

Griffiths, & Goodman, 2011).
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Given this background, rather than contrast distributional information with

syntactic information, we investigate how these factors jointly shape the neural

signal. As in the statistical learning literature (e.g. Saffran, 2001; Thompson

& Newport, 2007), we ask if distributional information can serve as a cue for

syntactic structure during comprehension: contextual lexical distributional in-

formation should affect the quality of the neural signature of structure building.

Lexical probability thus should interact with abstract representations of sentence

structure. We ask (1) whether the neural encoding of linguistic structure changes

as a function of the distributional properties of a word, and (2) whether this in-

fluence can be linked to probabilities in the immediate context (two preceding

words) or rather to probabilities in the larger context. Following findings from

statistical learning and models of transitional probabilities (McCauley & Chris-

tiansen, 2019; Thompson & Newport, 2007) and in line with a model of language

comprehension proposed by Martin (2016; 2020) we hypothesize that the neu-

ral encoding of linguistic structure is affected by the probability of a word in the

context.

While this may appear a relatively straightforward question to answer, several

issues of both methodological and theoretical origin arise. The first issue con-

cerns the operationalization of contrasting a distributional factor with a latent

structural one. Problems arise because of the nature of lexical distributional in-

formation such as surprisal and entropy (discussed in depth in Chapter 2): these

values are affected by of any change that is made in the underlying structure.

If one wants to manipulate the latent syntactic structure underlying a sentence,

the surprisal values of the words will also change. Because of this issue, the

potential effects at hand are not easily captured in a factorial design. We solve

this problem by making use of variance of lexical distributional information and

syntactic structures that occurs naturally in continuous speech: we use tempo-

ral response functions (TRFs) to model responses to latent linguistic variables,

such as syntactic structure and lexical surprisal, in MEG data obtained using a

naturalistic listening paradigm.

The second issue concerns the broader theoretical questions concerning the

nature of distributional information in the brain: over which representation

does the brain store distributional information, and how is this implemented

mechanistically? While this particular study will not provide an answer to this

larger question, it will speak to two questions that follow from it. Specifically,

(1) which type of distributional information most faithfully captures the infor-

mation available to the brain, and (2) which of those plays a role in the process
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of the inference of latent linguistic structure? This question concerns estimates

derived from large language models like the GPT-family, those derived from sim-

pler models like long-short term memory networks, or the even simpler trigram

models. In this study we look into a version of GPT2 and a trigram model.

Separate predictions may be derived with regards to the two questions posed

above. With respect to question (1), one can expect models with a larger context

and potentially enhanced sensitivity to the latent factors driving the statistical

patterns to perform better when it comes to describing the neural signal gener-

ally as a consequence of capturing more sources of variance (and indeed, this

appears to be true (Heilbron, Ehinger, Hagoort, & de Lange, 2019) until a cer-

tain point (Kuribayashi, Oseki, Brassard, & Inui, 2022); (see also Futrell et al.,

2020)): a larger context and more parameters theoretically allow for captur-

ing more fine-grained sources of variance. Predictions concerning question (2),

on the other hand, are not so easy to derive. While we hypothesize generally

that lexical distributional information can affect the process of syntactic struc-

ture building as described above, it is unknown whether one would need long-

context, fine-grained variability to capture this hypothesized effect, or whether

the local context provides enough distributional information to capture it. The

statistical learning literature suggests that short-context probability, such as bi-

gram and trigram frequencies, can function as a cue for linguistic structure (Aslin

& Newport, 2012; Aslin et al., 1998; Frost et al., 2019; Gómez, 2002; Isbilen et

al., 2022; Knowlton & Squire, 1996; McCauley & Christiansen, 2019; Thompson

& Newport, 2007). For this reason, we hypothesize that any effect of lexical dis-

tributional information on the inference of syntactic should be observable using

a short-context metric such as trigram probability.

In summary, in the present study, we address the following questions: (1)

whether the neural encoding of linguistic structure changes as a function of the

distributional properties of a word, and (2) whether this influence can be linked

to probabilities in the immediate context (two preceding words) or rather to

probabilities in the larger context. We do this by analyzing MEG data of partic-

ipants who listened to fairytales. Using TRFs, we model the neural signatures

of syntactic structure building in the delta band, and compare those between

different distributional contexts (i.e., high versus low surprisal). In order to

characterize the lexical distributional information that is available to the brain,

we estimate lexical distributional information with two different language mod-

els: a trigram model, which uses only two words to estimate the predictability
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of the current word, and a Dutch version of GPT2, a large transformers model

that uses a very large context window.

5.2 Methods

5.2.1 Participants

24 right-handed native speakers of Dutch (18 female, 20-58 years old (mean

= 33.4)) were recruited from the participant pool at Radboud University Ni-

jmegen, the Netherlands. All participants reported normal hearing, had normal

or corrected-to-normal vision, and reported no history of language-related im-

pairments. Participants gave written informed consent. The experiment was ap-

proved by the Ethics Committee for human research Arnhem/Nijmegen (project

number CMO2014/288).

5.2.2 Materials

The stimuli consisted of three fairytales (one by Hans Christian Andersen, two

by the Brothers Grimm) read out at comfortable pace by female native speakers

of Dutch. Each story was divided into segments of approximately 5.5 minutes

(range 4:58 – 6:40), leading to 9 segments and a total duration of 49 minutes

and 17 seconds. Each segment was normalized for loudness using the FFmpeg

software (EBU R128 standard). The transcripts of the stories were checked for

consistency with the recordings, adjusted for spelling where necessary and sub-

sequently automatically aligned with the audio using the WebMAUS segmenta-

tion software to extract word onset time-points (Kisler, Reichel, & Schiel, 2017).

All stories contained a natural variation of words and sentence structures. In to-

tal, the stories contained a total of 8551 words in 791 sentences, with an average

length of 10.8 words (range 1-35, sd. 5.95).

5.2.3 Procedure and data acquisition

Participants were tested individually in a magnetically shielded room. They were

instructed to sit still and look at a fixation cross that was presented in the middle

of a screen while they listened passively to the fairytales. Each block started

with a 10-second period during which resting state data were recorded. After

each story segment, five multiple-choice comprehension questions were asked.

On average, participants’ accuracy was 88.1% (sd. 7.52%), indicating that they
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were paying attention to the content of the stories. The stimuli were presented

via plastic tubes and ear pieces to both ears. The experiment was run using

Psychtoolbox in Matlab (Brainard, 1997).

MEG data were recorded continuously with a 275-channel axial gradiome-

ter (CTF) system at a sampling frequency of 1200Hz. Three head localizer coils

were attached to the participant’s head (nasion, left- and right ear canals through

fitted ear molds) to determine the position of the head relative to the MEG sen-

sors. The head position was monitored throughout measurement and, if neces-

sary, corrected during breaks. In addition, eye movements and heartbeat were

recorded with additional EOG and ECG electrodes.

5.2.4 MEG preprocessing

Preprocessing was done with MNE-Python (version 0.23.1, Gramfort et al., 2013).

The MEG data were down sampled to 600 Hz and band-pass filtered at 0.5-40

Hz using a one-pass zero-phase, non-causal FIR filter. We interpolated bad chan-

nels using Maxwell filtering, and used ICA to eliminate artifacts resulting from

eye movements (EOG) and heartbeats (ECG). The data were segmented into

nine epochs time-locked to the onset and offset of the story audio recordings. At

some point in data collection, some channels of the scanner failed due to tech-

nical issues. We interpolated these channels for those participants to ensure the

same number of channels for all participants. In continuation, the epochs were

resampled to 200Hz and band-pass filtered between 0.5 and 4 Hz (the delta

band).

5.2.5 Temporal response functions

We modeled the neural signal using temporal response functions (TRFs) with

different acoustic and linguistic features. This approach has been used to distin-

guish between responses to different linguistic features, ranging from the speech

envelope and phonemic information (Di Liberto et al., 2015; Donhauser & Bail-

let, 2020; Tezcan et al., 2023), to lexical information (Slaats et al., 2023; Weiss-

bart et al., 2019) and even syntactic embedding (Nelson, El Karoui, et al., 2017).

In essence, the method is a multivariate multiple linear regression, where we

used lagged time series of different annotations of the stimulus as features. In

this way, it is possible to distinguish between variability in the signal that stems

from acoustic processing, lexical processing, and many others.

The equation of the model reads as follows:
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yc(t) =
∑∑

x f (t)β f (t −τk) +η(t) (5.1)

Where {yc}t , {x f }t , {β f }t represent the recorded MEG signal of a given chan-

nel c, the input feature f and its temporal response function, respectively. {η}t is

a gaussian noise process which accounts for aspects of the stimulus that are not

captured by the coefficients attributed to the features in the model. We solved

this equation using ridge regression (as opposed to, for example, boosting; Brod-

beck et al., 2023). This means that we estimated the coefficients of the TRFs β̂ f

by minimizing the squared error between the measured MEG signals and the

reconstructed signal obtained from equation (1) while keeping the norm of the

TRFs coefficients||β ||2 low to avoid overfitting. This minimization problem is

solved in a closed form by:

β̂ = (X T X +λId)
−1X T Y (5.2)

Where Y ∈ RN×C is the matrix representation of the measured MEG signal (for

C channels arranged column-wise, each with N data samples); β̂ ∈ R(K .F)×C con-

tains the estimated TRFs with K lags, F features for all C channels; X ∈ RN×(K .F)

is a matrix containing all lagged feature time series of length N; λ is a regu-

larization coefficient and Id the identity matrix. The regularisation coefficient

is needed to avoid overfitting, which in this case translates to the square matrix

X T X not being full rank. Numerically small eigenvalues or simply ill-conditioned

matrices can make the inversion unstable and therefore require regularization.

In TRF-models, this happens when features present some amount of autocor-

relation, as is the case in our models (e.g., the acoustic envelope is strongly

autocorrelated).

In equation (1), the vector of weights β f (t) represents the coefficients param-

eterizing the temporal response functions. They form a time course reminiscent

of an event related potential that tells us at which point in time (and, potentially,

where) a feature modulates the neural signal. Thus, an increase at a certain lag

for a given feature reflects an increase in the associated brain response to this

feature at that given sensor and at the given time lag after stimulus onset.

To evaluate how our models perform at reconstructing the neural data, we

computed the Pearson’s correlation coefficient between the true data and data

reconstructed using the estimated TRFs. The correlation between the recon-

struction and the original MEG indicates how much of the variance in the neural

signal is explained by the features. The TRFs were not estimated on the same
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portion of data used to score the model. As further explained in section 5.2.7

“Model fitting & Statistical analysis”, we used a nested cross-validation proce-

dure to tune the regularization parameter, estimate the TRF coefficients and

finally score the resulting model. Unless specified otherwise, all analyses de-

scribed below were done with custom made Python scripts using MNE-Python

(Gramfort et al., 2013).

5.2.6 Stimulus representations

To characterize the speech signal and latent linguistic features, we constructed

eight features that belong either to the base features or to the set of experimental

features. The base features are present in every model, and are used to remove

variance from factors that could potentially influence the results.

Base features The base features are speech envelope, word onset, and word fre-

quency.

The speech envelope feature was computed for each stimulus by taking the ab-

solute value of the Hilbert transform and down sampling it to 200 Hz to match

the MEG sampling rate. The envelope feature was added to represent the acous-

tic response and as such separate acoustic processing from linguistic processes

of interest: structure building.

The word onset feature was added to capture broadly any time-locked response

to word onset for which the variance is not already explained by other features.

To this end, we extracted word onset time-points using the WebMAUS segmen-

tation software (Kisler et al., 2017). We used a train of unit impulses, where the

feature signal is one at the word onset sample and zero otherwise:

x(t) =
∑

words

δ (t − tonset) (5.3)

These impulse trains were convolved with a Gaussian kernel with a standard

deviation of 15ms. Such temporal smoothing has the effect of inflating the au-

tocorrelation of the signal. We designed the width of this smoothing such that

the smoothed impulses end up with energy spanning a comparable frequency

band as to our continuous regressor (the speech envelope). The Fourier Trans-

form of a gaussian is also a gaussian, and the 15ms standard deviation of the

temporal smoothing kernel equates to a spectral standard deviation of 21.22Hz.

This ensured that all features required a similar degree of regularization in the

regression analysis, and made it possible to include impulse-like features such
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as word onsets and the envelope in the same regularized regression. Notably,

this also translates into some uncertainty about or knowledge of the exact word

onset timings.

Like the word onset feature, the word frequency feature was constructed as an

impulse train of zeros everywhere but at word onset. Here we used the respective

word frequency value to modulate the height of the impulses. We used the log-

transformed value of occurrence per million words, obtained from the SUBTLEX-

NL corpus (Keuleers et al., 2010):

xwf (t) =
∑

words

− log (p (w))×δ (t − tonset) (5.4)

where P(w) represents the unigram probability estimated from occurrence

per million words. If a word did not exist in the corpus, the fallback value of

0.301 (log/million) was used, corresponding to the lowest word frequency in

the corpus. The values were scaled (divided by their standard deviation) across

all stimuli. The resulting signal was convolved with the same Gaussian kernel

as the word onset feature.

Experimental features We designed five experimental features to investigate

the influence of contextual lexical distributional measures on structure building:

surprisal and entropy, the distributional features; and top-down, bottom-up and

left-corner node counts, the structural features.

The surprisal feature reflects how predictable a given word is in its context. It

is the (traditionally two-based) log-transformation of the conditional probability

of a word. If surprisal is low, the word was predictable given the context; if it is

high, the word was not predictable given the context. See the equation in 5.5.

I (wi|wi−n...wi−1) = − log10 (p (wi|wi−n...wi−1)) (5.5)

The entropy feature consists of lexical entropy, a weighted probability measure

that quantifies the uncertainty about the upcoming word on the basis of the

previous words. It provides a numeric answer to the following question: given

the n previous words, with what degree of certainty can we predict the upcoming

word? See the equation in 5.6.

H (wi|wi−n...wi−1) = −
∑

p (wi|wi−n...wi−1) log (p (wi|wi−n...wi−1)) (5.6)
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We generated these two metrics in two ways. For the long-context distribu-

tional information models, the values were derived from GPT2, a large-scale

transformers language model that was fine-tuned for Dutch (de Vries & Nissim,

2021). This version of GPT2 was fine-tuned using a context window of 128 to-

kens. Tokens do not map onto words in a one-to-one fashion. Instead, a token

can correspond to a word, but also to a morphological marker; for example,

the Dutch plural ‘s’ marker may be a token. As such, the context used for the

surprisal and entropy estimates will roughly correspond to a little under 128

words. For the short-context distributional information models, the values were

obtained from a trigram model created with SRILM (Stolcke, 2002) trained on

~1.2M words from the Dutch corpus from OpenSubtitles (Lison & Tiedemann,

2016). This model takes the preceding two words to estimate the surprisal (and

entropy) values of the target word. We used Kneser-Ney discounting with inter-

polation to estimate values for missing words or trigrams.

To extract neural signatures of structure building, we needed a feature that

reflected the syntactic structure underlying the input. To this end, we manually

parsed all sentences using a simplified version of X-bar theory (Carnie, 2013).

This entailed that we created a full X-bar structure for all noun phrases (NPs) and

verb phrases (VPs), but not for the other phrases unless intermediate projections

were filled. Using the full X-bar structure for NPs and VPs ensured that each

parse contained an explicit distinction between arguments and adjuncts, with

arguments being attached as a sister of the head and adjuncts occupying the

intermediate projection. An example of one of the resulting parses is displayed

in Figure 5.1.

From these parses we extracted node count estimates to function as the syn-

tactic features in our TRF models. Node counts have been found to effectively

represent syntactic complexity in the neural signal (Brennan et al., 2016; Giglio,

Ostarek, Sharoh, & Hagoort, 2024; Li & Hale, 2019; Nelson, El Karoui, et al.,

2017). Node counts can be computed in different ways, depending on the algo-

rithm the parser is hypothesized to use to reach the structured representation.

We calculated node counts according to three algorithms: a top-down algorithm

(further: top-down), a bottom-up algorithm (further: bottom-up) and a left-

corner algorithm (further: left-corner). The top-down parsing method is max-

imally predictive. Upon encountering a word, all nodes governing this word

to the right are assumed to be built. For example, if the parser encounters the

determiner ‘the’ in the sentence ‘the train arrived’ (see tree structure in Figure

5.2), the parser will build not only the determiner, but also the NP and the VP,
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Figure 5.1: A parsed sentence from the stimuli. The sentences were parsed accord-
ing to an adapted minimalist paradigm. The sentence reads (non-
literally): ‘the weather was lovely on the countryside’. This is the
first sentence of one of the stories by Anderson.

hence a node-count of 3. The bottom-up method is completely non-predictive:

in this method, the parser will build only the nodes it has seen all evidence for.

That means that the NP from our example will not be built until the noun ‘train’

has been seen. The left-corner algorithm is a mixture of these two. This mildly

predictive parsing method will project a constituent as soon as the first item is

found, but no constituents above this are built. In the case of the train, this

means that the NP is built when the determiner has been seen, but the VP will

only be built once the whole NP has been seen.

As can be seen in Figure 5.1 above, the parses we created contained traces of

moved elements. These traces do not have acoustic correlates in the signal. In

order to represent the structure they are part of, we assigned their node counts

to other words within the sentence. Specifically, we added the node count of

the trace to the node count of the word following it. This strategy was chosen

because we reasoned that the location of these traces can be inferred after their

position.

Since the linguistic features (frequency, entropy, surprisal, bottom-up node

count, top-down node count, left-corner node count) might be correlated to

some extent, we need to assert that the degree of multicollinearity present in our

stimulus representation will not hinder the TRF coefficient interpretation. We
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Figure 5.2: Node counts per word according to top-down, bottom-up and left-
corner parsing algorithms.

checked whether the Variance Inflation Factor (VIF) was below 5 (considered a

relatively conservative measure of multicollinearity; Sheather, 2009; Tomaschek

et al., 2018). The VIF was computed by correlating the z-scored entropy, sur-

prisal, word frequency, and node count values, and taking the diagonal of the

inverted correlation matrix. This was done for all the stimuli. The VIF was higher

than 9.7 for left-corner due to high positive correlations with both bottom-up and

top-down, we did not include left-corner in our models. After removal of this

feature, all VIF-values were lower than 3.5 (see Appendix 5.6 for the correlation

matrices of the used features). Like the word frequency feature, the other fea-

tures were scaled and inserted in a stick function, after which the stick function

was convolved with the same Gaussian window.

5.2.7 Model fitting & Statistical analysis

Any TRF analysis has two deliverables: firstly, the TRF (the development of the

estimated coefficients across time), which is an ERP-like waveform that captures

how the neural signal changes as a function of a feature of interest (in our case,

the features of interest are the node-count responses); and, secondly, the re-

construction accuracy. This is a metric of model fit (Pearson’s correlation, as

explained in section 5.2.5 above). We use the second deliverable, the reconstruc-

tion accuracy, to assess whether our used features are relevant for a description

of the neural signal, and the first deliverable to evaluate whether syntactic struc-

ture building processes are affected by the lexical distributional context.
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The current analysis consists of two parts: the “main effects”-analyses, and the

“interaction”-analyses. In the main effects-part, we conducted an analysis on the

reconstruction accuracy across the whole scalp to assess the contribution of each

of the features individually, as well as a comparison between the effects of sur-

prisal and entropy from our different language models (trigram and GPT2). We

did this to ensure all the effects that were included in the interaction analysis

were relevant for the neural signal, i.e., to ensure that main effects were present

before we investigated interactions. In the interaction-part, we conducted anal-

yses on the TRFs from models that consider the interaction between estimates of

lexical probability and syntactic structure building. The two parts are described

in more detail below.

In the main effects-analyses, we estimated TRF models for all combinations of

the features of interest over and above a ‘null’ model that included the envelope,

word onset and word frequency features. The models and their features are

summarized in Table 5.1 below. All models were fitted with surprisal and entropy

features estimated from a trigram model and GPT2.

Table 5.1: The fitted encoding models in the main effects-analyses.

Feature
Model name Envelope Word

onset
Word
freq.

Surprisal Entropy Bottom-
up

Top-
down

main_null × × ×
main_surprisal × × × ×
main_entropy × × × ×
main_distributional × × × × ×
main_topdown × × × ×
main_bottomup × × × ×
main_topdown_bottomup × × × × ×
main_surprisal_topdown × × × × ×
main_surprisal_bottomup × × × × ×
main_surprisal_topdown_bottomup × × × × × ×
main_entropy_topdown × × × × ×
main_entropy_bottomup × × × × ×
main_entropy_topdown_bottomup × × × × × ×
main_distributional_topdown × × × × × ×
main_distributional_bottomup × × × × × ×
main_distributional_topdown_bottomup × × × × × × ×

Note. An × indicates that a feature was included in the model.

Estimating all feature combinations allowed us to estimate a slope of the given

feature irrespective of the presence of other features. We did this by averaging

the reconstruction accuracies of the resulting model across sensors (i.e., one

value per participant per model) and submitting these averages to linear mixed

models using the lme4 in R (Bates et al., 2015). These models contained a

binomial factor for each of the features of interest (surprisal, entropy, bottom-

up, and top-down), indicating whether or not a feature was present in the model.
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We estimated large linear mixed effects models in which all factors interacted

with each other. A model with a full random effects structure was not possible

(because there were not enough observations), so we fit this large model four

times with each time three out of four factors in the random effects structure.

On each large model we performed model comparison using the step function

from the LmerTest package (Kuznetsova et al., 2017). This function reduces the

random- and fixed effects structure of a model in a maximal-to-minimal fashion.

We then compared the resulting best models for their AIC value, and report the

model with the lowest AIC value below.

Because the effects of every feature may differ across the scalp, we also esti-

mated the slope of every feature by averaging the per-sensor reconstruction ac-

curacy values over all the models that did- or did not include a given feature. For

example, to examine the effect of entropy, we averaged per participant, per sen-

sor over all the models that include entropy to obtain one ‘with-entropy’-value for

every sensor for every participant, and we averaged per participant, per sensor

over all the models that do not include entropy to obtain one ‘without-entropy’-

value for every sensor for every participant (see table 5.1 above). Per feature,

that means we obtained two values for every sensor: one with the feature, and

one without. We then evaluated any difference between these using a cluster-

based permutation test between these values using permutation_cluster_test from

the MNE-Python library.

Cluster-based permutation tests address the null hypothesis of exchangeability

across conditions by a Monte Carlo estimate of the randomization distribution

of a cluster-based test statistic, optimizing statistical sensitivity while controlling

the false alarm rate. Here, we used the T-statistic as the test statistic. In these

tests, we create matrices of all sensors (and, in the case of TRF-waveforms) sam-

ples. Then, we compute the difference between two conditions and express it

as a T-statistic for each of these data points. The T-values are thresholded at

an a priori threshold, and the thresholded T-values are summed across clusters

on the basis of spatial (and temporal) adjacency. The significance of the result-

ing largest cluster’s test statistic is compared to a pre-defined number of simi-

larly obtained test statistics, after random permutation of the condition labels.

Throughout this study, we permuted the values 10.000 times using a t-test as

the test-statistic with a threshold of 1.714 (based on 24 participants).

In the interaction-analyses, we estimated interactions between the features

that were chosen on the basis of the main-effects analysis. To foreshadow this,

the chosen features were surprisal and bottom-up. All models contained the
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speech envelope, word onsets, word frequency, and surprisal features. To evalu-

ate the effect of lexical surprisal on the process of structure building, we split the

bottom-up feature by the median of surprisal (derived from the trigram model

or GPT2). Doing so in one model yielded two separable responses (the model

‘bottomup_split_surprisal’ from Table 5.2 below): a node count TRF for low-

surprisal words, and a node count TRF for high-surprisal words. We then com-

pared these resulting TRFs using a cluster-based permutation test implemented

as spatio_temporal_cluster_test from the MNE-Python library. Any differences be-

tween the TRF waveforms can be interpreted as differences in the low-frequency

neural readout of structure building between words with low- or high surprisal

values.

Table 5.2: The fitted encoding models in the interaction effects-analyses.

Feature
Model name Envelope /

Word onset
/ Word
freq.

Surprisal Bottom-up
/ high
surprisal

Bottom-up
/ low sur-
prisal

Bottom-up
/ random 1

Bottom-up
/ random 2

bottomup_low_surprisal × × ×
bottomup_high_surprisal × × ×
bottomup_split_surprisal × × × ×
bottomup_split_random × × × ×

Note. An × indicates that a feature was included in the model.

Further, to assess the variance explained by the low- versus high-surprisal re-

sponse to structure building, we fit two additional models: a model with only the

bottom-up values for high surprisal words, and a model with only the bottom-up

values for low-surprisal words. The reconstruction accuracy values from these

models were compared to the model ‘main_surprisal’ from the main effects anal-

ysis: this model is identical to those computed here, except for the presence of

(half of) the bottom-up node count feature. The difference in reconstruction

accuracy between these models – i.e., the increase in reconstruction accuracy as

a result of the addition of the bottom-up node count feature – was subsequently

compared between the low- and high surprisal models using a cluster-based per-

mutation test.

In continuation, we wanted to evaluate the reliability of the effects on the

TRF waveform (any differences between the low- and high surprisal node count

TRFs) using the reconstruction accuracy values. Because dichotomizing the

node-count feature on the basis of a continuous variable is likely far from the

true interaction in the neural signal (the brain probably does not divide words

into low- or high surprisal categories), a direct comparison of the reconstruction
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accuracy values from the split feature to an intact feature did not seem a fair

comparison. Therefore, we decided to perform evaluation of the effect by com-

paring the model ‘bottomup_split_surprisal’ to an equivalent model in which the

split was performed randomly (i.e., the words were randomly distributed over

two sets).

After obtaining the differences using the cluster-based permutation test and

confirming them through the reconstruction accuracy values, we wanted to eval-

uate whether there was a latency difference between the responses to bottom-

up node count for low- or high surprisal words. To do this, we compared the

TRFs for bottom-up node count for the low- and high surprisal words in a cross-

correlation. This cross-correlation was performed on the grand-average TRF

waveforms of the sensors that were part of the significant clusters resulting from

the cluster-based permutation test that compared the two responses. In other

words, the sensors were the ones that contributed to the significant difference be-

tween the two distributions. We sequentially cross-correlated each sensor, and

normalized the values by dividing them by the maximal value from the cross-

correlation for that sensor. We then obtained the positive peaks for every sensor.

The peak corresponds to the “lag” at which the two signals had the highest corre-

lation, and shows how different the two responses are in time. Subsequently, we

took the most frequently occurring peak value, and shifted one of the two TRF

waveforms to match the other one, and computed the correlation. To check for

significance, the same procedure was repeated for randomly selected channels

and time-lags 10.000 times.

5.3 Results

5.3.1 Main effects: Whole-brain averages

The model comparison approach on the whole-brain average reconstruction ac-

curacies of the trigram models (shown left in Figure 5.3) showed that a model

with several interactions between the factors surprisal, entropy, top-down and

bottom up was the best descriptor of the data. Specifically, there were interac-

tions between entropy and surprisal, entropy and top-down, surprisal and top-

down, and the two syntactic features. The model formula is shown in Equation

(5.7) below. Full model-comparison statistics are provided in Appendix 5.7.
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accuracies ∼ent rop y + surprisal + topdown+ bot tomup

+ ent rop y · surprisal + ent rop y · topdown

+ surprisal · topdown+ topdown · bot tomup

+ (1+ topdown · bot tomup · surprisal|sub jec t)

(5.7)

The results of this model showed a significant negative effect of entropy (β

= -6.81·10-4, SE = 5.37· 10-5, t(237) = -12.69, p < 0.01), indicating that en-

tropy decreased the reconstruction accuracy of the signal. There was a further

negative effect of top-down (β = -8.88· 10-4, SE = 1.51·10-4, t(25.23) = -5.87,

p < 0.01), similarly suggesting that this feature decreased the reconstruction

accuracy of the signal. Bottom-up, on the other hand, had a positive effect on

the reconstruction accuracy (β = 1.03·10-3, SE = 3.25·10-4, t(22.99) = 3.19, p

< 0.01), as did surprisal (β = 3.65· 10-4, SE = 1.31·10-4, t(26.24) = 2.79, p <
0.01). In addition, there were several interactions between features. There was

an interaction between entropy and surprisal (β = 5.02·10-4, SE = 6.20·10-5,

t(237) = 8.10, p < 0.01) and between top-down and all the other features: en-

tropy (β = 1.49·10-4, SE = 6.20· 10-5, t(237) = 2.40, p < 0.05), surprisal (β

= 3.45·10-4, SE = 8.33·10-5, t(24.72) = 4.14, p < 0.01), and bottom-up (β =
7.77· 10-4, SE = 7.85·10-5, t(43.24) = 9.98 p < 0.01). This suggests that the

respective benefit from adding entropy, surprisal or bottom-up may be affected

by the presence of top-down. The full output of the linear mixed model is shown

in table 5.3.

The model comparison approach on the whole-brain average reconstruction

accuracies of the GPT2-models (shown on the right in Figure 5.3) revealed a

similar pattern. Indeed, the same model fit best to the data. The full model is

displayed in Equation 5.8 below. Again, model comparison statistics are pro-

vided in Appendix 5.7.

accuracies ∼ent rop y + surprisal + topdown+ bot tomup

+ ent rop y · surprisal + ent rop y · topdown

+ surprisal · topdown+ topdown · bot tomup

+ (topdown · bot tomup · surprisal|sub jec t)

(5.8)

Using GPT2, there was also positive effect of surprisal (β = 1.20· 10-3, SE

= 6.63·10-5, t(28.20) = 6.46, p < 0.01) and of bottom-up (β = 7.95· 10-4, SE
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= 3.03·10-4, t(23.82) = 2.63, p < 0.05). In addition, top-down significantly

decreased average reconstruction accuracy of the signal (β = -9.03· 10-4, SE

= 1.37·10-4, t(39.23) = -6.61, p < 0.01), as did entropy (β = -3.89· 10-4, SE

= 6.63·10-5, t(282.80) = -5.87, p < 0.01). Here, too, there were interactions

between surprisal and entropy (β = -2.61·10-4, SE = 7.65· 10-5, t(282.80) =
3.41, p < 0.01), and between top-down and the other features (entropy: β =
1.97· 10-4, SE = 7.65·10-5, t(282.80) = 2.57, p < 0.05; surprisal: β = 1.53·10-4,

SE = 7.65·10-5, t(282.80) = 1.99, p < 0.05; bottom-up: β = 8.43·10-4, SE =
7.65· 10-5, t(282.80) = 11.01, p < 0.01), suggesting that the effect of top-down

may be less negative when bottom-up is part of the model. The full output of

the linear mixed model is displayed in table 5.4 below.

Figure 5.3: The difference in reconstruction accuracy (delta Pearson’s R) between
the base model (speech envelope, word onsets, word frequency) and
the other fitted models (see Table 5.1) for trigram models and GPT2-
models.) Abbreviations: surp.: surprisal; entr.: entropy; t.d.: top-
down; b.u.: bottom-up.

Table 5.3: Results from the linear mixed effects model evaluating the main effects
on trigram models.

Coeff. Std. Error df t value p value

(Intercept) 1.14e-01 4.70e-03 23.08 24.25 < 2e-16 ***
Entropy -6.81e-04 5.37e-05 237.00 -12.69 < 2e-16 ***
Surprisal 3.64e-04 1.31e-04 26.24 2.79 9.70e-03 **
Top-down -8.88e-04 1.51e-04 25.23 -5.87 3.86e-06 ***
Bottom-up 1.03e-03 3.25e-04 22.99 3.19 4.12e-03 **
Entropy * Surprisal 5.02e-04 6.20e-05 237.00 8.10 2.92e-14 ***
Entropy * Top-down 1.49e-04 6.20e-05 237.00 2.40 0.02 *
Surprisal * Top-down 3.45e-04 8.33e-05 24.72 4.15 3.47e-04 ***
Top-down * Bottom-up 7.77e-04 7.85e-05 43.24 9.89 1.12e-12 ***

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001
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Table 5.4: Results from the linear mixed effects model evaluating the main effects
on GPT2 models.

Coeff. Std. Error df t value p value

(Intercept) 1.14e 01 4.63e-03 23.14 24.45 < 2e-16 ***
Entropy -3.89e-04 6.63e-05 282.80 -5.87 1.22e-08 ***
Surprisal 1.20e-03 1.86e-04 28.20 6.46 5.25e-07 ***
Top-down -9.03e-04 1.37e-04 39.23 -6.61 7.31e-08 ***
Bottom-up 7.95e-04 3.03e-04 23.82 2.63 0.01 *
Entropy * Surprisal 2.61e-04 7.65e-05 282.80 3.41 7.54e-04 ***
Entropy * Top-down 1.97e-04 7.65e-05 282.80 2.57 0.01 *
Surprisal * Top-down 1.53e-04 7.65e-05 282.80 1.99 0.05 *
Top-down * Bottom-up 8.43e-04 7.65e-05 282.80 11.01 < 2e-16 ***

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

To assess any differences between the trigram and GPT2-estimates of surprisal

and entropy, we selected the models that included only these estimates (the

top four models from table 5.1: main_null, main_entropy, main_surprisal and

main_distributional) and subjected the average reconstruction accuracy for each

participant, model and language model to a linear mixed model with the factors

entropy, surprisal, language model (trigram or GPT2), and their interactions.

We performed model comparison on fixed and random effects in the same way

as above. Model comparison statistics are provided in Appendix 5.7.

The best model had the following structure:

accuracies ∼model · ent rop y · surprisal

+ (1+model · surprisal|sub jec t)
(5.9)

This model revealed the same effects on surprisal and entropy as shown above;

a positive effect of surprisal (β = 1.32· 10-3, SE= 1.10·10-4, t(28.08)= 5.53, p<
0.01) and a negative effect of entropy (β = -2.22· 10-4, SE= 1.04·10-6, t(115)=
-2.15, p < 0.05). In addition, there was an interaction between language model

and surprisal (β = 9.61·10-4, SE = 2.35·10-4, t(35.76) = 4.09, p < 0.01), sug-

gesting that the increase of reconstruction accuracy as a result of surprisal was

larger in the GPT2-models than in the trigram models, and an interaction be-

tween language model and entropy (β = 4.85 * 10-4, SE = 1.47·10-4, t(115.00)

= 3.31, p < 0.01), indicating that the effect of entropy was more negative for

the trigram models than the GPT2-models. Finally, there was a three-way in-

teraction between language model, entropy and surprisal (β = 4.28·10-4, SE =
2.07· 10-4, t(115.00) = 2.07, p < 0.05). Post-hoc comparisons revealed that

this was because the interaction between entropy and surprisal was significant
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for the trigram models, but not for the GPT2-models (GPT2-models: F(1,92)

= 0.35, pBonferroni = 1; trigram models: F(1,92)=12.34, pBonferroni < 0.01). The

interaction between entropy and surprisal in the trigram models was driven by

an effect for entropy only when surprisal was not in the model (no surprisal:

F(1,92) = 46.59, pBonferroni < 0.01; surprisal: F(1,92) = 3.45, pBonferroni = 0.27).

The full model output is shown in table 5.5.

Table 5.5: Results from the linear mixed effects model comparing GPT and trigram
models.

Coeff. Std. Error df t value p value

(Intercept) 1.14e 01 4.86e-03 23.01 23.38 < 2e-16 ***
Language model -6.58e-15 1.10e-04 85.52 0.00 1.00
Entropy -2.22e-04 1.04e-06 115.00 -2.15 0.03 *
Surprisal 1.32e-03 2.38e-04 28.08 5.53 6.55e-06 ***
Language model * entropy -4.85e-04 1.47e-04 115.00 -3.31 1.25e-03 **
Language model * surprisal -9.61e-04 2.35e-04 35.76 -4.09 2.33e-04 ***
Entropy * surprisal 8.61e-05 1.47e-04 115.00 0.59 0.56
Language model * entropy * surprisal 4.28e-04 2.07e-04 115.00 2.07 0.04 *

Note. Signif. codes: * p < 0.05; ** p < 0.01; *** p < 0.001

In summary, the features surprisal and bottom-up had positive effects on the

whole-brain average reconstruction accuracy. The features entropy and top-

down appear to bring down the whole-brain average reconstruction accuracy

values. In addition, the presence of the top-down feature affects the relative

benefit (or detriment) of the other features. Furthermore, the GPT2-derived

surprisal features are a better predictor for the delta-band neural signal than the

trigram-derived surprisal features.

5.3.2 Main effects: Cluster-based permutation tests

To gain some insight into the spatial distribution of the effects described above,

we computed the per-participant per-sensor averages for the models that did-

or did not include a given feature.2 As can be observed in Figures 5.4 and 5.5

2This was done after attempting to fit a linear mixed model on each sensor separately with
maximal per-participant random effects, in order to extract a coefficient for every feature (per
subject, per sensor) that was independent from the other features rather than averaging across
all models. This approach has failed so far, on the one hand due to the limited number of
observations per participant (after all, there is only one reconstruction accuracy value per par-
ticipant), and on the other hand due to almost non-existing between-participant variability for
some features (most notably, entropy), leading to infinite values in the model. This approach
is to be explored further: fitting the models separately on each story part separately could be
a good option for this, as such obtaining a TRF and a reconstruction accuracy value for every
story (per participant, per sensor). However, the exploration is beyond the scope of this thesis
Chapter.
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below, the general pattern is the same as in the analysis on the whole-brain av-

erage reconstruction accuracies: bottom-up and surprisal contribute positively

to model fit, while entropy and top-down do not. Both bottom-up node counts

and surprisal values contribute to model fit in large, bilateral clusters, although

the bottom-up node count feature notably contributes more to model fit in the

left hemisphere. As for surprisal, it is clear that both GPT2-derived and trigram

surprisal values contribute to model fit in almost all sensors. The pattern of im-

provement is slightly different between the two, with less contribution around

auditory areas from the trigram surprisal values. The difference was not tested

statistically, so we do not draw conclusions on the basis of this. Both measures

of entropy appear to decrease model fit bilaterally. The top-down node count

feature is a curious case: there is no evidence for an improvement, but the de-

crease is significant only in the right hemisphere when the additional features

are drawn from GPT2-models.

Figure 5.4: Trigram models. Scalp maps of the t-values resulting from the contrast
between the averages of all models that contain a specific predictor (e.g.,
top-down) and all models that do not contain this predictor. Each scalp
map represents this contrast for a different feature. White dots on the
scalp map indicate the sensors that contributed to the clusters that
allowed us to reject the null hypothesis (i.e., the difference is not 0).

With respect to our first question, these analyses revealed that as a general

predictor of the delta-band neural signal, surprisal estimates from large mod-

els like GPT2 outperform the short-context trigram models. In addition, from a

methodological perspective, the above analyses clearly show the non-trivial ef-

fect the addition of some features to the TRF-model can have on the reconstruc-

tion accuracy of other features using ridge regression specifically, even when

these features are not dangerously correlated as indicated by the Variance Infla-

tion Factor. For the purposes of the rest of the present study, these analyses have

provided sufficient evidence for the positive contributions of bottom-up node

count and lexical surprisal features in a model of the delta-band neural signal.
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We will therefore continue further analyses on these two features, and remove

top-down node count and lexical entropy from our models.

5.3.3 Interaction effects

To investigate whether the process of syntactic structure building is affected by

lexical distributional information, we split the bottom-up node count feature

into two features: bottom-up node count for low surprisal words (i.e., words

that are statistically relatively predictable from the context) and high surprisal

words (i.e., words that are statistically (i) relatively unpredictable or (ii) unpre-

dicted from the context). We then compared the resulting TRFs, which capture

the neural response to bottom-up structure building, between these surprisal-

conditions. Differences between the TRFs provide insight into how the process

of structure building may be mediated by distributional information.

Trigram models When using a simple trigram model for surprisal estimation

and using those values to divide the words over ‘high surprisal’ and ‘low surpri-

sal’ categories, the cluster-based permutation test reveals a widespread differ-

ence between the TRFs. The clusters that contributed to the difference between

the distributions had a bilateral distribution across the scalp, although the ef-

fects were most pronounced in the left-frontal area. The clusters were spread

out across the entire time-window, meaning that the effects were visible slightly

before word onset and lasted approximately one second after word onset. As can

be observed in Figure 5.6 below, the response to bottom-up node count appears

Figure 5.5: GPT2-models. Scalp maps of the t-values resulting from the contrast
between the averages of all models that contain a specific predictor (e.g.,
top-down) and all models that do not contain this predictor. Each scalp
map represents this contrast for a different feature. White dots on the
scalp map indicate the sensors that contributed to the clusters that
allowed us to reject the null hypothesis (i.e., the difference is not 0).
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to be slowed down and increased in magnitude in high-surprisal words relative

to the low-surprisal words.

The pattern on the reconstruction accuracy values was slightly different. De-

spite this large difference between the bottom-up node count response to high-

and low surprisal words, the cluster-based permutation test revealed no differ-

ence between a model that split the bottom-up node count feature by surprisal

and a model that split the bottom-up node count feature randomly. In addition,

a comparison between the relative benefit of the high- and low-surprisal bottom-

up node count features revealed that the high-surprisal bottom-up node count

feature explained more variance in the delta-band neural signal than did the

low-surprisal feature (see Figure 5.7C). Comparing the effects of these halves

of the bottom-up feature separately (i.e., a model with only the high surprisal

bottom-up feature versus a model that did not include this feature; a model with

only the low surprisal bottom-up feature versus a model that did not include this

feature) did not reveal any effects (Figure 5.9A and B).

Figure 5.6: The bottom-up node count TRF for high surprisal (in red) and low
surprisal (in blue) with surprisal from the trigram model as the di-
viding estimate. Individual lines represent sensors. The displayed
sensors contributed to the clusters that allowed us to reject the null-
hypothesis. Black bars indicate time points that contributed to clus-
ters that allowed us to reject the null-hypothesis. Vertical gray bar
is the time-point of the scalp map displayed on the right. The scalp
map shows the difference between the coefficients from the high-
and low surprisal words. White dots on the scalp map indicate the
sensors that contributed to the clusters that allowed us to reject the
null-hypothesis at the time-point of the gray bar.
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GPT2-models When using a complex language model (GPT2) to divide words

over ‘high surprisal’ and ‘low surprisal’ categories, the general pattern on the

TRFs was similar. The cluster-based permutation test revealed a widespread

difference between the bottom-up node count responses for low-surprisal and

high-surprisal words. The clusters that contributed to this difference had a wide

temporal distribution, with clusters between before word onset to 500 millisec-

onds after word onset, and a cluster at the end of the time window – approx-

imately from 700 milliseconds onwards. Again, the most prominent difference

was in left temporal/frontal sensors. Visual inspection of the TRFs (Figure 5.8)

suggests, again, a later response to the bottom-up node count feature for high-

surprisal words than for low surprisal words.

The pattern on the reconstruction accuracies was inconclusive. The cluster-

based permutation test comparing the reconstruction accuracy values for models

with a random split of the bottom-up node feature to the model with a surprisal-

based split of the bottom-up node count feature revealed no effects. There were

also no effects for the separate node-count predictors on the reconstruction of

the neural signal relative to a base model, nor was there a difference between

these differences.

Taken together, the results from the interaction analyses suggest that even a

short-context surprisal value affects the timing of structure building (in a bottom-

up fashion). The lack of effects on the reconstruction accuracy values make the

Figure 5.7: Trigram models. Scalp maps of the t-values resulting from the con-
trast between the model main_surprisal and the model with only low
surprisal bottom-up node counts (A; leftmost panel) or high surprisal
bottom-up node counts (B; middle panel). The rightmost panel (C) de-
picts the contrast between those contrasts, i.e. the difference in increase
of reconstruction accuracy between high- and low surprisal bottom-up
node counts. Red values show that the high surprisal bottom-up node
counts explain more variance. White dots on the scalp map indicate
the sensors that contributed to the clusters that allowed us to reject
the null hypothesis (i.e., the difference is not 0).
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results difficult to interpret: apparently, a systematic split for node count by

surprisal does not lead to a significantly higher reconstruction accuracy than a

random split for node count. This suggests that the effect is small – or there may

be confounding factors that obscure the state of affairs.

Figure 5.8: The bottom-up node count TRF for high surprisal (in red) and low sur-
prisal (in blue) with surprisal from GPT2 as the dividing estimate. In-
dividual lines represent sensors. The displayed sensors contributed
to the clusters that allowed us to reject the null-hypothesis. Black
bars indicate time points that contributed to clusters that allowed
us to reject the null-hypothesis. Vertical gray bar is the time-point
of the scalp map displayed on the right. The scalp map shows the
difference between the coefficients from the high- and low surprisal
words. White dots on the scalp map indicate the sensors that con-
tributed to the clusters that allowed us to reject the null-hypothesis
at the time-point of the gray bar.

5.3.4 Correction for word duration

Indeed, there are several factors that potentially correlate with (or are causal

of) surprisal. One of the correlating factors that is not in itself causal of surpri-

sal values in a way that, for example, word frequency might be, is particularly

interesting for our current finding: the factor of word duration. Indeed, higher

surprisal values tend to be associated with longer word durations (Mahowald,

Fedorenko, Piantadosi, & Gibson, 2013; Piantadosi, Tily, & Gibson, 2011); this

is also the case in our data (trigram-models: duration of high-surprisal words is

significantly higher than the duration of low surprisal word; t(8548) = 49.14,

p < 0.01, meanhigh(SD) = 0.32s (0.16); meanlow(SD) = 0.17s (0.12); signifi-

cant positive correlation between duration and surprisal ( ρ = 0.59; p < 0.01);

GPT2-models: duration of high-surprisal words is significantly higher than the
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duration of low surprisal word; t(8548) = 37.55, p < 0.01, meanhigh(SD) =
0.31s (0.17); meanlow(SD) = 0.19s (0.13); significant positive correlation be-

tween duration and surprisal (ρ = 0.42; p < 0.01). This suggests that the later

response to node counts could – very simply – be an effect of slower processing

of longer words (New, ferrand, pallier, & brysbaert, 2006; Tyler, Voice, & Moss,

2000).

To examine whether word duration could explain our effects, we extracted the

TRFs for bottom-up node count only for words that were matched for duration.

We did this by computing a histogram (100 bins) for word duration in both low-

and high surprisal conditions, and extracting the overlap between these two

distributions. We then took a random subsample of words from both the low- and

high surprisal conditions such that the resulting distribution of word durations

was the same in both conditions. This resulted in a subset of approximately half

of the words (4556 out of 8550 words). The distributions and their overlap are

displayed in Figure 5.9 below. All words selected in this analysis came from

the yellow shaded distribution, creating two sets of words that differed in their

surprisal value along the median, but that had near-identical distributions of

word duration. We then used only these words to compute the bottom-up TRF

in low- and high surprisal conditions, as well as a random split (like above).

Figure 5.9: The histograms of word duration. (100 bins between 0.0 and 1.25
seconds) split along the median of surprisal (low surprisal in blue,
high surprisal in red). The yellow shaded area is the overlapping
distribution from which words were selected to correct for differences
in word duration.

Trigram models Despite this extensive subsampling, the cluster-based permu-

tation test revealed a significant difference between the responses to bottom-
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up node count. The clusters that contributed to this difference had a left fron-

totemporal distribution and were constrained to a relatively early time window

– between 50 and 450 milliseconds. Visual inspection of the waveforms again

suggested a temporal shift in the response to bottom-up node count, with the

bottom-up node count response delayed for high-surprisal words relative to low-

surprisal words; see Figure 5.10.

The assessment of significance through the reconstruction accuracy values

showed a clearer image this time: the cluster-based permutation test that as-

sessed difference between a systematic split by surprisal and a random split of

the bottom-up node count values came back significant, with reconstruction ac-

curacies higher when the bottom-up node count values were split by the median

surprisal values than when they were split randomly. See Figure 5.11 below.

Despite this difference being significant, there were no differences between the

contribution of the bottom-up node count feature for low or high surprisal words.

This difference did exist before controlling for word duration (see 5.3.3).

The significantly different reconstruction accuracy values between models with

randomly split bottom-up predictors and surprisal split bottom-up predictors

confirms the effects found on the TRF-waveforms: a model that allows for vari-

ation between words on the basis of surprisal leads to a better description of the

signal than a model that allows variation randomly. This suggests that the tem-

poral shift we observe visually is indeed there. To look into this in more detail, we

computed the cross-correlation between the high and low surprisal bottom-up

node count responses for the sensors that contributed to the difference between

the two distributions.

The cross-correlation on the sensors that were part of the clusters (depicted in

Figure 5.10) revealed that the time-point at which the correlation was highest

for most sensors was at 150 milliseconds post word-onset. The average corre-

lation between the shifted low-surprisal (as shown in Figure 5.12C below) and

the original high-surprisal response was 0.73 (sd = 0.28), with a maximum of

0.95. This high correlation for a large subset of channels, which did not exist for

random selections of channels and time-shifts (see Figure 5.12D) suggests that

the response to high surprisal words was delayed by 250 milliseconds relative

to the low surprisal words. At the same time, the relatively high variance be-

tween channels may indicate either that the temporal shift is not uniform (i.e.,

not all readouts of structure-building (potentially with different neural sources)

are temporally affected by contextual surprisal) or that some readouts of struc-

ture building from different neural sources respond qualitatively different as a
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function of surprisal (i.e., shifting them in time in any direction will not increase

the correlation).

GPT2-models Despite the subsampling, the difference between high- and low

surprisal bottom-up node count responses remained also when the split was

based on GPT2-extracted surprisal values. The cluster-based permutation test

showed a difference between the two time-courses. Clusters that contributed

to this difference were once again prominent in left-frontotemporal areas and

spanned a wide time-window, with one cluster ranging from word onset to ap-

proximately 550 milliseconds, and a second cluster in a late time-window, from

around 700 milliseconds onwards (Figure 5.13). As in the analysis on the split

by trigram surprisal, excluding words on the basis of an extremely long or short

duration clarified the picture: splitting the bottom-up node count feature on the

basis of surprisal led to higher reconstruction accuracy than splitting the bottom-

up node count feature randomly (Figure 5.14).

Figure 5.10: The bottom-up node count TRF for high surprisal (in red) and low
surprisal (in blue) with surprisal from the trigram model as the di-
viding estimate, after correction for word duration. Individual lines
represent sensors. The displayed sensors contributed to the clusters
that allowed us to reject the null-hypothesis. Black bars indicate
time points that contributed to clusters that allowed us to reject the
null-hypothesis. Vertical gray bar is the time-point of the scalp map
displayed on the right. The scalp map shows the difference between
the coefficients from the high- and low surprisal words. White dots
on the scalp map indicate the sensors that contributed to the clus-
ters that allowed us to reject the null-hypothesis at the time-point
of the gray bar.
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While there was no difference between the high- and low surprisal bottom-up

node count features when it comes to variance explained before correcting for

word duration, there was a difference now: low-surprisal bottom-up node counts

explained more variance than the high-surprisal counterpart (Figure 5.15). This

is in stark contrast with the findings on the trigram models, where we observed a

larger contribution to the reconstruction accuracy for the high-surprisal bottom-

up node counts that disappeared after correcting for word duration.

To further investigate the potential temporal shift of the response as a function

of surprisal, we performed a cross-correlation analysis. The cross-correlation re-

vealed that the time-point at which the correlation was highest for most sensors

was at 190 milliseconds post word-onset. The correlation was 0.71 on average

(sd = 0.29), with a maximum of 0.93. As before, the high correlation – which

did not exist for a random subset of channels and time-points, see Figure 5.16D

– suggests that the response indeed varies in time as a function of lexical surpri-

sal. Again, relatively large variance suggests that this may not be the case for all

sensors in the selection: the temporal shift may not be the same for all sensors,

or the response qualitatively differs between low- and high surprisal words for

some sensors.

When we jointly consider all of the results above, a pattern emerges. Firstly,

there is a clear indicator that temporal properties of a readout of structure build-

Figure 5.11: Scalp-map of the t-values resulting from the contrast ‘Systematic split
of the bottom-up predictor’ vs. ‘random split of the bottom-up predic-
tor’ using surprisal from the trigram model as the dividing estimate.
White dots on the scalp map indicate the sensors that contributed
to the clusters that allowed us to reject the null hypothesis (i.e., the
difference is not 0).
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ing, extracted with bottom-up node counts, are affected by lexical surprisal:

structure building operations are performed later when the surprisal of the word

to be integrated in the sentence is higher relative to when the surprisal of that

word is lower. When we consider a split by the median, this temporal shift ap-

pears quite big: between 150 and 200 milliseconds. This is confirmed by the

reconstruction accuracy values: reconstruction accuracy values are higher when

the bottom-up node count feature is split systematically using surprisal, than

when the feature is spit randomly.

Secondly, when it comes to the amount of variance explained by structure-

building operations, the pattern is affected by word duration. When we do not

Figure 5.12: Cross-correlation results for the trigram models, after selection for
word duration. (A) top left: bottom-up TRF time-courses for the
sensors from the cluster-based permutation test between high sur-
prisal (in red) and low surprisal (in blue). (B) top right: cross-
correlation between the high- and low surprisal bottom-up re-
sponses for the sensors from the clusters (scaled). Colors indicate
sensors. (C) bottom left: the shifted response from the low surprisal
condition (in blue) to overlap with the high surprisal condition (in
red). (D) bottom right: kernel density plots of means and standard
deviations from correlations between randomly selected sensors at
shifted randomly selected lags; the red bar indicates the values ob-
served from the sensors selected after the cluster-based permutation
test shifted at the lags from the cross-correlation.
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Figure 5.13: The bottom-up node count TRF for high surprisal (in red) and low
surprisal (in blue) with surprisal from GPT2 as the dividing estimate,
after correction for word duration. Individual lines represent sensors.
The displayed sensors contributed to the clusters that allowed us
to reject the null-hypothesis. Black bars indicate time points that
contributed to clusters that allowed us to reject the null-hypothesis.
Vertical gray bar is the time-point of the scalp map displayed on the
right. The scalp map shows the difference between the coefficients
from the high- and low surprisal words. White dots on the scalp map
indicate the sensors that contributed to the clusters that allowed us
to reject the null-hypothesis at the time-point of the gray bar.

Figure 5.14: Scalp-map of the t-values resulting from the contrast ‘Systematic split
of the bottom-up predictor’ vs. ‘random split of the bottom-up predic-
tor’ using surprisal from GPT2 as the dividing estimate. White dots on
the scalp map indicate the sensors that contributed to the clusters
that allowed us to reject the null hypothesis (i.e., the difference is
not 0).
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correct for word duration, we observe a larger variance explained by bottom-up

node count for high surprisal than for low surprisal, but only when surprisal is

extracted from a trigram model; there is no difference when surprisal is extracted

from GPT2. However, after correction for word duration, we observe that the

difference found for the trigram models disappears – i.e., high surprisal bottom-

up node count no longer explains more variance than low-surprisal bottom-up

node count – and the reverse pattern is seen for the analysis using GPT2: here,

low surprisal bottom-up node counts appear to explain more variance than the

high surprisal bottom-up node counts.

These observations pattern with the amplitudes of the TRF waveforms. In

the trigram model, before correcting for word duration, the amplitude of the

node count-response to high-surprisal words is larger than the amplitude of the

response to low-surprisal words (see Figure 5.6). This difference appears to dis-

appear after correction for word duration (see Figure 5.10). At the same time,

there is no obvious amplitude difference between the high- and low surprisal

node-count responses from the GPT2-model (Figure 5.8), while the low-surprisal

bottom-up node count has an obviously larger amplitude after correction for

word duration (Figure 5.13). Taken together, this suggests a non-trivial rela-

tionship between word duration, language model for surprisal estimation, and

response amplitude. We will return to this in the discussion.

Figure 5.15: GPT2 models after correction for word duration. Scalp maps
of the t-values resulting from the contrast between the model
main_surprisal and the model with only low surprisal bottom-up
node counts (A; leftmost panel) or high surprisal bottom-up node
counts (B; middle panel). The rightmost panel (C) depicts the con-
trast between those contrasts, i.e. the difference in increase of re-
construction accuracy between high- and low surprisal bottom-up
node counts. Red values show that the high surprisal bottom-up
node counts explain more variance. White dots on the scalp map
indicate the sensors that contributed to the clusters that allowed us
to reject the null hypothesis (i.e., the difference is not 0).
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5.3.5 The role of word recognition

A 150 to 190 millisecond shift in response time begs the question to what extent

the delay is driven by lexical contextual information directly affecting structure-

building operations. After all, there is an important process that – in an inter-

active, cascaded model of language comprehension – occurs prior to or simul-

taneously with the generation of syntactic structure: word recognition. A word

that is predictable from the context is recognized faster (Grosjean & Itzler, 1984)

and read faster (Amenta, Hasenäcker, Crepaldi, & Marelli, 2023; Aurnhammer

& Frank, 2019). In a cascaded architecture, then, an earlier completing or faster

Figure 5.16: Cross-correlation results for the GPT2 models, after selection for word
duration.(A) top left: bottom-up TRF time-courses for the sensors
from the cluster-based permutation test between high surprisal (in
red) and low surprisal (in blue). (B) top right: cross-correlation
between the high- and low surprisal bottom-up responses for the
sensors from the clusters (scaled). Colors indicate sensors. (C) bot-
tom left: the shifted response from the low surprisal condition (in
blue) to overlap with the high surprisal condition (in red). (D) bot-
tom right: kernel density plots of means and standard deviations
from correlations between randomly selected sensors at shifted ran-
domly selected lags; the red bar indicates the values observed from
the sensors selected after the cluster-based permutation test shifted
at the lags from the cross-correlation.
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process of word recognition could affect the time-course of the inference of syn-

tactic structure.

To investigate this, we performed the same contrast for high- versus low sur-

prisal on a feature that captures the presence of lexical information in the neural

signal: word frequency (Slaats et al., 2023). That is, this time, we split the word

frequency feature into two separate features on the basis of the surprisal values

(high-surprisal word frequency, low-surprisal word frequency). Again, we only

performed this analysis for the words obtained from the overlapping distribu-

tions of word length to exclude the possibility that word duration drives any of

the effects.

Trigram models Interestingly, the cluster-based permutation test revealed that

the word frequency response differed between high- and low surprisal words,

suggesting that there is indeed a difference in lexical processing between high-

and low surprisal words. This is further confirmed by a higher reconstruction ac-

curacy for a split of word frequency by surprisal than a random split of word fre-

quency (see Figure 5.17 below). However, this difference is crucially not tempo-

ral in nature. In fact, it appears to be one of amplitude: coefficients are higher for

the low-surprisal words than for the high-surprisal words. The cross-correlation

on the sensors that differed between conditions revealed that the correlation be-

tween the word frequency response to high- and low surprisal words was highest

at a delay of zero milliseconds. This indicates that there is no detectable time-

shift, which can be clearly observed in Figure 5.18A, B and C. The correlation

between the two responses was not high on average (mean = 0.22), though

there was considerable variance: with a standard deviation of 0.44, some chan-

nels had a Pearson’s correlation coefficient of 0.97 between the two conditions,

though more than 45% of the channels had a correlation coefficient lower than

0.2.

GPT2-models When using GPT2 to divide words over high- and low surprisal

condition, we again observe a difference between the responses that appears

mostly one of amplitude (see Figure 5.19A, left upper corner). However, the

difference between a GPT2-split and a random split does not reach significance.

If we use the sensors that are part of clusters that contribute to the significant

difference between the two responses to perform a cross-correlation, we observe

a similar pattern as for the trigram model. The highest correlation between the

two responses was at a time-lag close to zero: the two responses were most simi-
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lar at a delay of -30 milliseconds – which positions the response to high-surprisal

words slightly before the response to low-surprisal words. In other words, de-

spite there is a timing effect here, this effect is in the opposite direction. These

analyses suggest therefore that temporal differences in the process of lexical re-

trieval are not the cause of the delayed response to bottom-up structure building

– though qualitative differences between the processes can still play a role.

5.4 Discussion

In this study, we investigated how the delta-band neural signal represents and

exploits lexical distributional information in the process of syntactic structure

building during auditory language comprehension. We approached this question

in two main sub questions. Firstly, we asked whether trigram- or GPT2-derived

estimates of lexical surprisal are a better model of the delta-band neural signal

during language comprehension. Secondly, we asked whether the delta-band

neural readout of syntactic structure building changes as a function of the distri-

butional properties of a word, and if this influence can be linked to probabilities

based on the immediately preceding words (as reflected in surprisal and entropy

Figure 5.17: Scalp-map of the t-values resulting from the contrast ‘Systematic split
of the word frequency predictor’ vs. ‘random split of the word fre-
quency predictor’ using surprisal from the trigram model as the divid-
ing estimate.White dots on the scalp map indicate the sensors that
contributed to the clusters that allowed us to reject the null hypoth-
esis (i.e., the difference is not 0).
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estimates from a trigram model), or rather to the larger context (as reflected in

GPT2-models).

To answer these questions, we used a modelling approach and a naturalis-

tic listening paradigm. We presented participants with audiobooks while we

recorded their MEG, and analyzed the resulting data using temporal response

functions (TRFs). This linear regression approach allowed us to study high-level

processes during language comprehension, while controlling for lower level pro-

cesses like speech tracking. Our analysis consisted of two parts: a main-effects

analysis to evaluate which features modeled the delta-band neural signal most

Figure 5.18: Cross-correlation results for the trigram models on the word frequency
feature, after selection for word duration. (A) top left: word fre-
quency TRF time-courses for the sensors from the cluster-based per-
mutation test between high surprisal (in red) and low surprisal (in
blue). (B) top right: cross-correlation between the high- and low
surprisal word frequency responses for the sensors from the clus-
ters (scaled). Colors indicate sensors. (C) bottom left: the shifted
response from the low surprisal condition (in blue) to overlap with
the high surprisal condition (in red). (D) bottom right: kernel den-
sity plots of means and standard deviations from correlations be-
tween randomly selected sensors at shifted randomly selected lags;
the red bar indicates the values observed from the sensors selected
after the cluster-based permutation test shifted at the lags from the
cross-correlation.
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accurately; and an interaction analysis, to evaluate whether lexical distributional

information affects the process of syntactic structure building (the inference of

syntactic structure).

5.4.1 Describing the delta band neural signal: Surprisal and

bottom-up node counts

The main effects-analysis showed that the features that contributed positively

to models of the data were bottom-up node counts and lexical surprisal. These

features were used for further analysis in the interaction-analysis. This finding

Figure 5.19: Cross-correlation results for the GPT2 models on the word frequency
feature, after selection for word duration. (A) top left: word fre-
quency TRF time-courses for the sensors from the cluster-based per-
mutation test between high surprisal (in red) and low surprisal (in
blue). (B) top right: cross-correlation between the high- and low
surprisal word frequency responses for the sensors from the clus-
ters (scaled). Colors indicate sensors. (C) bottom left: the shifted
response from the low surprisal condition (in blue) to overlap with
the high surprisal condition (in red). (D) bottom right: kernel den-
sity plots of means and standard deviations from correlations be-
tween randomly selected sensors at shifted randomly selected lags;
the red bar indicates the values observed from the sensors selected
after the cluster-based permutation test shifted at the lags from the
cross-correlation.



180 5 Lexical surprisal shapes the time course of syntactic structure building

is in accordance with studies that used other features to model the delta-band

neural signal, such as phonemes: the delta-band signal is modelled better with

surprisal than with entropy, while the opposite is true for the theta band (4-8/10

Hz) (Donhauser & Baillet, 2020; Mai & Wang, 2023). That the delta-band neural

signal is influenced by syntactic structure is known (Kaufeld, Bosker, et al., 2020;

Lo et al., 2022; Lu et al., 2022; Slaats et al., 2023), but which parsing strategy

yields the best predictors for the delta-band neural signal is an open question.

Some studies suggest that bottom-up parsing strategies are more predictive of

the neural signal (Giglio et al., 2024; Nelson, El Karoui, et al., 2017), others

found no difference (Brennan et al., 2016), and there is even evidence for im-

portance of the top-down strategy in favor of bottom-up (Coopmans, 2023). It is

likely that the exact paradigm (production, comprehension) methodology (EEG,

fMRI, iEEG, MEG) and analysis choices (source localization, TRF-estimation al-

gorithm, etc) influence the outcome of this comparison. In our study, bottom-up

node counts had good performance, and for this reason, we continued with this

feature.

Furthermore, the main-effects analysis revealed that surprisal extracted from

GPT2, a large language model that was fine-tuned for Dutch using a context-

window of 128 tokens (~ 128 words), performed better in our TRF model of

the data than surprisal calculated using a trigram model, despite both of the

metrics performing well. This finding is in line with previous findings by Heil-

bron and colleagues (2019), who compared TRFs and reconstruction accuracy

for trigram- and GPT2-estimates in continuous listening in English. As in the

present study, the authors showed that GPT2-derived surprisal estimates per-

formed much better than trigram surprisal estimates.

An important open question is why GPT2-derived surprisal estimates perform

better. From a psychological perspective, a possibility is that the brain repre-

sents both long- and short context distributional information during language

comprehension (potentially independently from each other; Goodkind & Bick-

nell, 2021). Surprisal estimates from the fine-tuned GPT2-model are sensitive to

variability at a distance of 128 tokens. This means that a word’s relation to the

overall discourse is represented in those probability estimates, while this relation

is hardly captured by probability at a short distance of two words. At the same

time, though, GPT2-estimates do not exclude the probability of a word given the

immediate context, as the two previous words are obviously part of the input to

estimate surprisal for the current word. This means that GPT2-estimates of sur-

prisal capture some of the same regularities as the trigram model. In that sense,
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GPT2 captures not only long-context effects, but also short-context effects. We

must not overinterpret this result: this difference does not mean that the model

architecture of GPT2 is “more human” than the trigram model. In fact, we know

that GPT2 can represent long-context effects that are beyond what humans can

maintain in memory (see Guest & Martin, 2023). Within reason, therefore, we

can conclude that the results from the trigram- and GPT2-models show that the

delta-band neural signal covaries with surprisal estimates that find their origin

in both short- and long contexts during language comprehension.

5.4.2 Computation of structure in time

The aim of this study was to assess whether the neural encoding of linguistic

structure changes as a function of the distributional properties of a word, and

whether this influence can be linked to probabilities in the immediate context

(two preceding words) or rather to probabilities in the larger context (opera-

tionalized using GPT2). To this end, we extracted responses to annotations of

syntactic structure, and we evaluated whether these responses differed between

words that were statistically predictable (low surprisal) and words that were

statistically relatively unpredictable (high surprisal).

The analysis revealed that distributional properties of a word affected the pro-

cess of syntactic structure building in the temporal domain. Even after correcting

for word duration, the response to a metric of syntactic structure – bottom-up

node count – occurred earlier for words that were statistically predictable given

the context (low surprisal) than for words that were unpredictable given the

context (high surprisal). This effect was clearly visible using a simple, short-

context metric of lexical distributional information: trigram surprisal. A cross-

correlation on the grand average waveforms indicated that the neural signature

of structure building occurred ~150 milliseconds earlier for low-surprisal words

than for high-surprisal words. The temporal effect was slightly larger when us-

ing surprisal from GPT2, the operationalization of long-context surprisal: in this

case, the neural signature of structure building was observed ~190 milliseconds

earlier for low-surprisal words relative to high-surprisal words.

In an interactive, cascaded model of language comprehension, word recog-

nition is hypothesized to occur prior to or simultaneously with the inference

of syntactic structure (Marslen-Wilson & Welsh, 1978; Martin, 2016, 2020). Be-

cause words that are predictable from the context are recognized and read faster

than words that are not predictable (Amenta et al., 2023; Aurnhammer & Frank,

2019; Grosjean & Itzler, 1984), it was deemed necessary to evaluate whether
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there is a difference in the time course of lexical processing between the high-

and low-surprisal words: if such a difference existed in the data – or, more specif-

ically, if signatures of lexical processing appeared earlier for low-surprisal than

for high-surprisal words -, it is possible that the effects observed for structure

building do not reflect modulation of the structure building process by contex-

tual distributional information directly. Instead, such a finding would open the

possibility that contextual distributional information affects lexical processing in

time, which could in turn affect structure building. However, a comparison be-

tween the high- and low-surprisal alternates of a response that has been related

to lexical processing (word frequency; Slaats et al., 2023) revealed no tempo-

ral differences. In other words, the present analysis provided no evidence for

temporal modulation of lexical processing as a consequence of contextual distri-

butional information. This suggests that the temporal dynamics of lexical pro-

cessing do not directly affect the process of structure building, and makes it more

likely that the contextual distributional information directly affects the process

of structure building. However, that is not to say that lexical processing does

not play a role: it is possible – and even likely – that other differences between

processes at the lexical level that are not visible as delays will affect the process

of structure building.

Taken together, these results indicate that the contextual probability of a word

affects the computation of linguistic structure in time, with structural informa-

tion being inferred either earlier or faster when a word is expected in a given

statistical context. The last two words appear to be quite informative for this

process, although longer context distributional information also plays a role.

5.4.3 What & when are not independent

The temporal effects shown in this study are in line with a model proposed by

Ten Oever and Martin (2021; 2024). The model situates itself in the framework

of neural oscillations serving a functional role in language comprehension. Be-

sides activity in the delta- and gamma bands outlined above, oscillatory activity

in other frequency ranges has been suggested to play a key role in language pro-

cessing, most notably the theta band (Doelling et al., 2014; Ghitza, 2013; Ghitza,

Giraud, & Poeppel, 2012), but also the alpha and beta bands (Lam et al., 2016;

Zioga, Weissbart, Lewis, Haegens, & Martin, 2023), 2023), giving rise to various

theories of the mechanisms underlying oscillations for language (e.g., Brennan

& Martin, 2020; Meyer, 2018; Rimmele, Morillon, Poeppel, & Arnal, 2018). An

important open question in the formation of these theories is how ongoing oscil-
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lations can track language – a signal that is pseudorhythmic rather than purely

rhythmic. Ten Oever and Martin (2021) propose that the pseudorhythmicity in

speech carries information about the linguistic content. This works as follows.

Imagine we are concerned with tracking the word rate. An ongoing oscillator

tracks the average word rate. Now, the phase of the ongoing oscillation at which

a word arrives, carries information about its predictability: if the word arrives

early, i.e., before the most excitatory moment in the cycle, the input is likely

predictable from the context. On the other hand, if the input arrives relatively

late – i.e., after the most excitatory moment in the cycle – the word is likely

to be less predictable from the context. This allows the language system of the

comprehender to anticipate unpredictable input.

Obviously, the current study does not speak to this directly, as our readout does

not provide information about phase, and our study concerns high-level linguis-

tic operations, which are not (yet) explicitly embedded in the model the authors

proposed. What the present results do indicate is that contextual information

does not only affect the timing of word production, it also affects the timing

of higher-level operations. This is much in line with what Ten Oever & Martin

suggest; an extension of their proposal, perhaps. Ten Oever & Martin (2021)

suggest that a neural population that corresponds to a linguistic unit in the in-

ternal language model of an individual (their individually acquired structural

and statistical knowledge of language) may be sensitized if that exact linguistic

unit is predictable from the context. By consequence, this population may be ac-

tive earlier, on a less excitable phase of the ongoing oscillation. According to the

present results, lexical distributional information does not necessarily activate

neural populations that represent lexical information earlier (relative to word

onset). A higher lexical probability does, however, more quickly activate neural

populations that play a role in representing the syntactic structure underlying

the input.

5.4.4 Long- and short-context effects on structure building

Interestingly, most of the temporal delay or shift that we observe in the high-

and low surprisal node count responses is captured by the simple trigram models

(150 milliseconds). This suggests that local statistical relations between words

have a large impact on the process of syntactic structure building. However, not

all of the temporal effect is captured by simple trigram surprisal estimates: GPT2-

based models suggest that the temporal difference in the response to bottom-

up node count can be as large as 190 milliseconds. Why does this difference
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exist? We propose that short-context statistical relations are the strongest cue

for structure building. At the same time, the short-context statistical relations

may be affected by probability in the discourse context. We hypothesize that this

causes the larger difference captured by the GPT2-based models: words that are

predictable given the larger discourse context. The fine-tuning of GPT2 for Dutch

used a context of 128 tokens, which means that surprisal estimates are sensitive

to words that appeared less than 128 words ago. Importantly, our stimuli were

fairytales. This means that they contained words and word sequences that are

locally unpredictable, but globally predictable. For example, in one of the stories,

the main character is a duckling that can speak (“[...], zei het eendje”, which

translates to “[...], said the duckling”). We situate these findings with those

from Nieuwland & Van Berkum (2006), who show that the discourse context

can eliminate N400-effects in sentences with anomalies of animacy (e.g., “the

peanut was in love”). Importantly, the fact that GPT2 captures regularity in the

global context and humans do, too (and trigram models do not), does not mean

that the mechanism underlying this representation is shared or even necessarily

similar between GPT2 and humans (Guest & Martin, 2023).

5.4.5 Word duration, surprisal estimate, and response

amplitude

Besides the clear finding of a temporal delay as a function of surprisal that does

not depend on word duration, and is not a direct consequence of temporal delays

at the lexical level as a function of surprisal, we observe a pattern in the response

amplitude and explained variance that appears to depend on word duration.

The pattern is as follows: before correction for word duration, we observed a

larger amplitude and larger variance explained for high surprisal than for low

surprisal in the trigram models. These differences did not (clearly) exist in the

GPT2-models. After correction for word duration, the pattern shifts: there are

no clear differences between high- and low surprisal response amplitude and

variance explained for the trigram models. In the GPT2-models, however, we

find larger response ampitude for low surprisal than for high surprisal bottom-

up node count responses, and a similar effect on the variance explained. If we

group these findings for simplicity, we can conclude that correcting for word du-

ration decreases the amplitude for the high-surprisal words. The parallel between

response amplitude and variance explained suggests that they are connected: it
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is possible that a response explains more of the variance in the signal, if it has a

larger amplitude.

These findings confirm that there is a relationship between surprisal and word

duration, which has been known for a while (Mahowald et al., 2013; Piantadosi

et al., 2011). Beyond this, however, it also suggests that word duration and

surprisal together drive response amplitudes to higher-level features like syntac-

tic structure building. The present data do not allow us to draw conclusions

about this relation, though there are several possibilities for how the factors re-

late to each other. It is important to keep in mind that lexical surprisal contains

influences from different latent factors, one being syntactic structure (Slaats &

Martin, 2023). Syntactic predictability has been found to affect the duration

of utterances, with less predictable structures yielding longer utterances (Ku-

perman & Bresnan, 2012; Moore-Cantwell, 2013). It is possible, then, that the

duration of the word is itself a cue towards the syntactic structure, and by proxy,

it is possible that we have affected the syntactic predictability of the words and

constituents in the high- and low surprisal categories. What effect this variable

itself should have on the neural response to bottom-up node counts is unclear,

although our results suggest that the effect is mostly one of response amplitude,

with less predictable, longer words receiving larger amplitudes. Studies with

highly controlled stimuli may provide further insight into these relationships.

Here, we wish to suggest only that many different aspects of the stimulus, even

its duration, likely play a role even in high-level stages of the process of language

comprehension (see also Martin, 2016).

5.5 Conclusion

Over the past several decades, much psycholinguistic research has focused on

accounting for syntactic phenomena either as a form of transitional probabili-

ties between different linguistic units (e.g., Frank & Bod, 2011; Frank & Chris-

tiansen, 2018; Frost et al., 2019; McCauley & Christiansen, 2019), or as a sepa-

rate level of representation that is hierarchically structured and abstracts away

from the lexical items itself (e.g. Brennan & Hale, 2019; Lo et al., 2022; Matchin

& Hickok, 2020), without much integration between the two types of linguistic

knowledge. In this study, we aimed to test a framework where humans use lexi-

cal distributional information to build abstract, hierarchical representations that

give rise to meaning as an instance of cue-integration. Specifically, we asked

whether the low-frequency neural encoding of linguistic structure changes as a
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function of the distributional properties of a word, and whether this influence

can be linked to probabilities in the immediate context (two preceding words)

or rather to probabilities in the larger context (operationalized using GPT2). We

did this by extracting delta-band responses to syntactic node count using tempo-

ral response functions, and comparing these responses between high- and low

surprisal words. Our results showed that lexical distributional information in-

deed affects the process of syntactic structure building as indexed by delta-band

neural responses to node count, and that it did so in the temporal domain: the

delta-band response to structure building was delayed by 150 to 190 millisec-

onds for words that are statistically unpredictable given the context (high sur-

prisal) relative to words that are statistically predictable given the context. This

delay appeared not to be driven by temporal changes in lexical processing as

indexed by word frequency. In addition, we have shown that most of this effect

is captured when using trigram surprisal (150 out of a maximum 190 millisec-

onds). Our findings speak to theories that model language comprehension as a

cascaded process in which cues at different levels are used to infer higher-level

representations (Marslen-Wilson & Welsh, 1978; Martin, 2016, 2020), and the-

ories that link abstract linguistic knowledge to the temporal properties of speech

(Ten Oever & Martin, 2021, 2024).
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5.6 Appendix I. Correlation matrices for feature

values

5.6.1 Trigram models

Figure 5.20: Correlation matrix and VIF-values for the trigram values.
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5.6.2 GPT2-models

Figure 5.21: Correlation matrix and VIF-values for the GPT2-values.
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5.7 Appendix II. Model comparison statistics as

output by step (LmerTest) from the ‘Main

effects’ analysis

5.7.1 Trigram models

5.7.1.1 Random effects sttructure: 1 + top down * bottom up * surprisal |

participant

Table 5.6: Random effects for structure 1 + top down * bottom up * surprisal |
participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 53 2177.04 -4248.07

topdown * bottomup * surpri-

sal in (1 + topdown * bot-

tomup * surprisal | subject)

0 45 2163.49 -4236.99 27.08 8 6.84e-04

Table 5.7: Fixed effects for random effects structure 1 + top down * bottom up *
surprisal | participant.

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

entropy surprisal * topdown * bottomup 1 7.52e-08 1 226.28 0.80 0.37

entropy * surprisal * bottomup 2 1.00e-08 1 253.98 0.11 0.74

entropy * surprisal * topdown 3 1.33e-08 1 232.02 0.14 0.71

surprisal * topdown * bottomup 4 1.44e-08 1 40.41 0.15 0.70

entropy * topdown * bottomup 5 2.43e-08 1 233.10 0.26 0.61

surprisal * bottomup 6 6.15e-08 1 50.27 0.67 0.42

entropy * bottomup 7 1.20e-07 1 235.96 1.30 0.26

entropy * surprisal 0 6.06e-06 1 236.97 65.60 2.92e-14

entropy * topdown 0 5.33e-07 1 236.97 5.77 0.02

surprisal * topdown 0 1.59e-06 1 24.72 17.19 3.47e-04

topdown * bottomup 0 9.03e-06 1 43.25 97.85 1.12e-12
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5.7.1.2 Random effects structure: 1 + top down * bottom up * entropy |

participant

Table 5.8: Random effects for structure: 1 + top down * bottom up * entropy |
participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 53 2097.24 -4088.48

topdown * bottomup * en-

tropy in (1 + topdown * bot-

tomup * entropy | subject)

1 45 2097.08 -4104.16 0.32 8 1.00

topdown * entropy in (top-

down + bottomup + entropy

+ topdown * bottomup + top-

down * entropy + bottomup *

entropy | subject)

2 38 20967.00 -4118.00 0.16 7 1.00

bottomup * entropy in (top-

down + bottomup + entropy

+ topdown * bottomup + bot-

tomup * entropy | subject)

3 32 2096.57 -4129.14 0.85 6 0.99

topdown * bottomup in (top-

down + bottomup + entropy

+ topdown * bottomup | sub-

ject)

4 27 2094.84 -4135.68 3.47 5 0.63

topdown in (topdown + bot-

tomup + entropy | subject)

0 23 2050.64 -4055.27 88.41 4 2.87e-18

bottomup in (topdown + bot-

tomup + entropy | subject)

0 23 1893.74 -3741.49 402.19 4 9.35e-86

entropy in (topdown + bot-

tomup + entropy | subject)

0 23 2088.14 -4130.27 13.40 4 9.46e-03

Table 5.9: Fixed effects for random effects structure 1 + top down * bottom up *
entropy | participant

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

entropy * surprisal * topdown * bottomup 1 7.52e-08 1 276.00 0.38 0.54

entropy * surprisal * bottomup 2 1.00e-08 1 277.00 0.05 0.82

entropy * surprisal * topdown 3 1.33e-08 1 298.59 0.05 0.82

surprisal * topdown * bottomup 4 2.03e-08 1 279.00 0.10 0.75

entropy * topdown * bottomup 5 2.43e-08 1 298.53 0.09 0.76

surprisal * bottomup 6 6.15e-08 1 281.00 0.32 0.57

entropy * bottomup 7 1.20e-07 1 282.00 0.62 0.43

entropy * topdown 8 5.33e-07 1 283.00 2.77 0.10

entropy * surprisal 0 6.06e-06 1 284.00 31.31 5.19e-08

surprisal * topdown 0 2.78e-06 1 284.00 14.36 1.84e-04

topdown * bottomup 0 1.42e-05 1 284.00 73.22 7.39e-16
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5.7.1.3 Random effects structure: 1 + top down * surprisal * entropy |

participant

Table 5.10: Random effects for structure: 1 + top down * surprisal * entropy |
participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 53 1898.36 -3690.72

topdown * surprisal * entropy

in (1 + topdown * surprisal *

entropy | subject)

1 45 1898.31 -3706.63 0.09 8 1

surprisal * entropy in (top-

down + surprisal + entropy

+ topdown * surprisal + top-

down * entropy + surprisal *

entropy | subject)

2 38 1898.29 -3720.59 0.04 7 1

topdown * entropy in (top-

down + surprisal + entropy

+ topdown * surprisal + top-

down * entropy | subject)

3 32 1898.28 -3732.56 0.02 6 1

topdown * surprisal in (top-

down + surprisal + entropy +
topdown * surprisal | subject)

4 27 1898.17 -3742.34 0.22 5 1

entropy in (topdown + surpri-

sal + entropy | subject)

5 23 1897.68 -3749.35 0.99 4 0.91

topdown in (topdown + sur-

prisal | subject)

0 20 1889.76 -3739.52 15.83 3 1.23e-03

surprisal in (topdown + sur-

prisal | subject)

0 20 1893.43 -3746.85 8.50 3 0.04

Table 5.11: Fixed effects for random effects structure 1 + top down * bottom up *
entropy | participant

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

entropy * surprisal * topdown * bottomup 1 7.52e-08 1 322.00 0.08 0.77

entropy * surprisal * bottomup 2 1.00e-08 1 263.16 0.01 0.92

entropy * surprisal * topdown 3 1.33e-08 1 324.00 0.01 0.90

surprisal * topdown * bottomup 4 2.03e-08 1 325.00 0.02 0.88

entropy * topdown * bottomup 5 2.43e-08 1 326.00 0.03 0.87

surprisal * bottomup 6 6.15e-08 1 327.00 0.07 0.79

entropy * bottomup 7 1.20e-07 1 328.00 0.14 0.71

entropy * topdown 8 5.33e-07 1 329.00 0.60 0.44

surprisal * topdown 9 2.78e-06 1 330.00 3.14 0.08

entropy * surprisal 0 6.06e-06 1 287.85 6.53 0.01

topdown * bottomup 0 1.42e-05 1 287.85 15.27 1.16e-04
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5.7.1.4 Random effects structure: 1 + bottom up * surprisal * entropy |

participant

Table 5.12: Random effects for structure: 1 + top down * bottom up * entropy |
participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 53 2091.65 -4077.30

bottomup * surprisal * en-

tropy in (1 + bottomup * sur-

prisal * entropy | subject)

0 45 1967.07 -3844.15 249.15 8 2.61e-49

Table 5.13: Fixed effects for random effects structure 1 + bottom up * surprisal *
entropy | participant

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

entropy * surprisal * topdown * bottomup 1 7.52e-08 1 275.92 0.38 0.54

entropy * surprisal * bottomup 2 9.90e-09 1 224.52 0.05 0.82

entropy * surprisal * topdown 3 1.33e-08 1 277.97 0.07 0.79

surprisal * topdown * bottomup 4 2.03e-08 1 278.98 0.10 0.75

entropy * topdown * bottomup 5 2.43e-08 1 279.99 0.13 0.72

surprisal * bottomup 6 5.78e-08 1 110.22 0.30 0.59

entropy * bottomup 7 1.13e-07 1 157.34 0.59 0.44

entropy * topdown 8 5.33e-07 1 282.84 2.77 0.10

entropy * surprisal 0 5.04e-06 1 62.02 26.06 3.39e-06

surprisal * topdown 0 2.78e-06 1 283.81 14.37 1.83e-04

topdown * bottomup 0 1.42e-05 1 283.81 73.27 7.24e-16
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5.7.1.5 Best models for every random effects structure configuration &

their AIC-value

Table 5.14: Best models for every random effects structure configuration & their
AIC-value

Largest model Chosen model df AIC

r_values ~ entropy * surprisal * top-

down * bottomup + (1 + topdown *

bottomup * surprisal | subject)

r_values ~ entropy + surprisal + top-

down + bottomup + entropy * surpri-

sal + surprisal * topdown + topdown *

bottomup + (1 + topdown * bottomup

* surprisal | subject)

46 -4372.50

r_values ~ entropy * surprisal * top-

down * bottomup + (1 + topdown *

bottomup * entropy | subject)

r_values ~ entropy + surprisal + top-

down + bottomup + entropy * surpri-

sal + surprisal * topdown + topdown

* bottomup + (topdown + bottomup +
entropy | subject)

19 -4273.29

r_values ~ entropy * surprisal * top-

down * bottomup + (1 + topdown *

surprisal * entropy | subject)

r_values ~ entropy * surprisal + top-

down * bottomup + (topdown + sur-

prisal | subject)

14 -3885.84

r_values ~ entropy * surprisal * top-

down * bottomup + (1 + bottomup *

surprisal * entropy | subject)

r_values ~ entropy * surprisal + top-

down * bottomup + surprisal * top-

down (1 + bottomup * surprisal * en-

tropy | subject)

45 -4214.86
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5.7.2 GPT2 models

5.7.2.1 Random effects sttructure: 1 + top down * bottom up * surprisal |

participant

Table 5.15: Random effects for structure 1 + top down * bottom up * surprisal |
participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 53 2122.21 -4138.41

topdown * bottomup * surpri-

sal in (1 + topdown * bot-

tomup * surprisal | subject)

1 45 2121.76 -4153.52 0.89 8 1.00

topdown * bottomup in (top-

down + bottomup + surprisal

+ topdown * bottomup + top-

down * surprisal + bottomup

* surprisal | subject)

2 38 2120.75 -4165.49 2.03 7 0.96

topdown * surprisal in (top-

down + bottomup + surprisal

+ topdown * surprisal + bot-

tomup * surprisal | subject)

3 32 2118.98 -4173.96 3.53 6 0.74

topdown in (topdown + bot-

tomup + surprisal + bot-

tomup * surprisal | subject)

0 27 2062.52 -4071.05 112.91 5 9.94e-23

bottomup * surprisal in (top-

down + bottomup + surprisal

+ bottomup * surprisal | sub-

ject)

0 27 2113.00 -4172.00 11.96 5 0.04

Table 5.16: Fixed effects for random effects structure 1 + top down * bottom up *
surprisal | participant.

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

entropy * surprisal * topdown * bottomup 1 5.46e-08 1 276.00 0.39 0.53

entropy * surprisal * topdown 2 3.29e-09 1 295.37 0.01 0.90

surprisal * topdown * bottomup 3 5.97e-09 1 300.20 0.03 0.87

entropy * topdown * bottomup 4 5.48e-08 1 278.99 0.39 0.53

entropy * surprisal * bottomup 5 4.59e-07 1 302.44 2.08 0.15

surprisal * bottomup 6 1.03e-08 1 37.23 0.07 0.79

entropy * bottomup 7 2.98e-07 1 281.83 2.13 0.15

entropy * surprisal 0 1.63e-06 1 282.83 11.60 7.54e-04

entropy * topdown 0 9.27e-07 1 282.83 6.59 0.01

surprisal * topdown 0 5.58e-07 1 282.83 3.97 0.05

topdown * bottomup 0 1.71e-05 1 282.83 121.30 1.04e-23
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5.7.2.2 Random effects structure: 1 + top down * bottom up * entropy |

participant

Table 5.17: Random effects for structure: 1 + top down * bottom up * entropy |
participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 53 1999.12 -3892.23

topdown * bottomup * en-

tropy in (1 + topdown * bot-

tomup * entropy | subject)

0 45 1990.44 -3890.87 17.36 8 0.03

Table 5.18: Fixed effects for random effects structure 1 + top down * bottom up *
entropy | participant

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

entropy * surprisal * topdown * bottomup 1 5.46e-08 1 275.97 0.15 0.70

entropy * surprisal * topdown 2 3.29e-09 1 272.02 8.28e-02 0.93

surprisal * topdown * bottomup 3 5.97e-09 1 277.99 0.02 0.90

entropy * topdown * bottomup 4 5.18e-08 1 110.16 0.14 0.71

entropy * surprisal * bottomup 5 4.59e-07 1 279.02 1.23 0.27

surprisal * bottomup 6 1.59e-08 1 280.96 0.04 0.84

entropy * bottomup 7 2.42e-07 1 98.84 0.62 0.43

surprisal * topdown 8 5.58e-07 1 282.71 1.51 0.22

entropy * topdown 9 9.31e-07 1 127.57 2.37 0.13

entropy * surprisal 0 1.63e-06 1 283.96 4.40 0.04

topdown * bottomup 0 1.63e-05 1 171.87 44.00 4.10e-10
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5.7.2.3 Random effects structure: 1 + top down * surprisal * entropy |

participant

Table 5.19: Random effects for structure: 1 + top down * surprisal * entropy |
participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 53 1899.59 -3693.18

topdown * surprisal * entropy

in (1 + topdown * surprisal *

entropy | subject)

1 45 1899.48 -3708.96 0.23 8 1.00

surprisal * entropy in (top-

down + surprisal + entropy

+ topdown * surprisal + top-

down * entropy + surprisal *

entropy | subject)

2 38 1899.47 -3722.94 0.02 7 1.00

topdown * entropy in (top-

down + surprisal + entropy

+ topdown * surprisal + top-

down * entropy | subject)

3 32 1899.41 -3734.83 0.11 6 1.00

topdown * surprisal in (top-

down + surprisal + entropy +
topdown * surprisal | subject)

4 27 1899.15 -3744.3 0.53 5 0.99

entropy in (topdown + surpri-

sal + entropy | subject)

5 23 1897.15 -3748.29 4.00 4 0.41

topdown in (topdown + sur-

prisal | subject)

6 20 1894.13 -3748.27 6.02 3 0.11

surprisal in (surprisal | sub-

ject)

0 18 1876.60 -3717.20 35.07 2 2.42e-08

Table 5.20: Fixed effects for random effects structure 1 + top down * bottom up *
entropy | participant

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

entropy * surprisal * topdown * bottomup 1 5.46e-08 1 322.00 0.06 0.80

entropy * surprisal * topdown 2 3.29e-09 1 323.00 3.72e-02 0.95

surprisal * topdown * bottomup 3 5.97e-09 1 324.00 6.75e-02 0.93

entropy * topdown * bottomup 4 5.48e-08 1 325.00 0.06 0.80

entropy * surprisal * bottomup 5 4.59e-07 1 326.00 0.52 0.47

surprisal * bottomup 6 1.59e-08 1 327.00 0.02 0.89

entropy * bottomup 7 2.98e-07 1 328.00 0.34 0.56

surprisal * topdown 8 5.58e-07 1 329.00 0.64 0.42

entropy * topdown 9 9.27e-07 1 330.00 1.06 0.30

entropy * surprisal 10 1.63e-06 1 331.00 1.87 0.17

entropy 11 2.47e-06 1 332.00 2.83 0.09

surprisal 0 4.65e-05 1 23.00 52.93 2,1e-07

topdown * bottomup 0 1.71e-05 1 333.00 19.41 1,43e-05
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5.7.2.4 Random effects structure: 1 + bottom up * surprisal * entropy |

participant

Table 5.21: Random effects for structure: 1 + top down * bottom up * entropy |
participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 53 2085.14 -4064.29

bottomup * surprisal * en-

tropy in (1 + bottomup * sur-

prisal * entropy | subject)

1 45 2084.99 -4079.98 0.30 8 1.00

surprisal * entropy in (bot-

tomup + surprisal + entropy

+ bottomup * surprisal + bot-

tomup * entropy + surprisal *

entropy | subject)

2 38 2083.37 -4090.75 3.24 7 0.86

bottomup * entropy in (bot-

tomup + surprisal + entropy

+ bottomup * surprisal + bot-

tomup * entropy | subject)

3 32 2081.03 -4098.06 4.68 6 0.58

bottomup * surprisal in (bot-

tomup + surprisal + entropy

+ bottomup * surprisal | sub-

ject)

4 27 2077.69 -4101.38 6.68 5 0.25

bottomup in (bottomup+ sur-

prisal + entropy | subject)

0 23 1895.11 -3744.23 365.15 4 9.38e-78

surprisal in (bottomup + sur-

prisal + entropy | subject)

0 23 1980.33 -3914.66 194.72 4 5.12e-41

entropy in (bottomup + sur-

prisal + entropy | subject)

0 23 2059.91 -4073.82 35.56 4 3.57e-07

Table 5.22: Fixed effects for random effects structure 1 + bottom up * surprisal *
entropy | participant

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

entropy * surprisal * topdown * bottomup 1 5.46e-08 1 276.00 0.28 0.60

entropy * surprisal * topdown 2 3.29e-09 1 277.00 0.02 0.90

surprisal * topdown * bottomup 3 5.97e-09 1 278.00 0.03 0.86

entropy * topdown * bottomup 4 5.48e-08 1 279.00 0.28 0.60

entropy * surprisal * bottomup 5 4.59e-07 1 280.00 2.36 0.13

surprisal * bottomup 6 1.59e-08 1 281.00 0.08 0.78

entropy * bottomup 7 2.98e-07 1 282.00 1.53 0.22

surprisal * topdown 8 5.58e-07 1 283.00 2.86 0.09

entropy * surprisal 0 1.63e-06 1 284.00 8.29 4.28e-03

entropy * topdown 0 9.27e-07 1 284.00 4.71 0.03

topdown * bottomup 0 1.71e-05 1 284.00 86.70 3.6e-18
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5.7.2.5 Best models for every random effects structure configuration &

their AIC-value

Table 5.23: Best models for every random effects structure configuration & their
AIC-value

Largest model Chosen model df AIC

r_values ~ entropy * surprisal * top-

down * bottomup + (1 + topdown *

bottomup * surprisal | subject)

r_values ~ entropy + surprisal + top-

down+ bottomup+ entropy * surprisal

+ entropy * topdown + surprisal * top-

down + topdown * bottomup + (top-

down + bottomup * surprisal | subject)

25 -4292.74

r_values ~ entropy * surprisal * top-

down * bottomup + (1 + topdown *

bottomup * entropy | subject)

r_values ~ entropy + surprisal + top-

down+ bottomup+ entropy * surprisal

+ topdown * bottomup (1 + topdown

* bottomup * entropy | subject)

44 -4041.09

r_values ~ entropy * surprisal * top-

down * bottomup + (1 + topdown *

surprisal * entropy | subject)

r_values ~ surprisal + topdown * bot-

tomup + (surprisal | subject)
9 -3924.08

r_values ~ entropy * surprisal * top-

down * bottomup + (1 + bottomup *

surprisal * entropy | subject)

r_values ~ entropy + surprisal + top-

down+ bottomup+ entropy * surprisal

+ entropy * topdown + topdown * bot-

tomup + (bottomup + surprisal + en-

tropy | subject)

19 -4235.94

5.7.3 Trigram vs GPT2

In the tables below, the variable ‘lm’ stands for ‘language model’.

5.7.3.1 Random effects structure: 1 + entropy * surprisal | participant

Table 5.24: Random effects for structure: 1 + entropy * surprisal | participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 19 985.01 -1932.02

entropy * surprisal in (1 + en-

tropy * surprisal | subject)

1 15 984.90 -1939.80 0.22 4 0.99

entropy in (entropy + surpri-

sal | subject)

2 12 984.31 -1944.61 1.19 3 0.76

surprisal in (surprisal | sub-

ject)

0 10 972.00 -1924.01 24.61 2 4.54e-06
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Table 5.25: Fixed effects for random effects structure 1 + entropy * surprisal | par-
ticipant

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

lm * entropy * surprisal 1 5.49e-07 1 138.00 1.84 0.18

lm * entropy 2 8.78e-07 1 139.00 2.93 0.09

entropy * surprisal 3 1.08e-06 1 140.00 3.56 0.06

entropy 0 4.74e-06 1 141.00 15.34 1.40e-04

lm * surprisal 0 6.69e-06 1 141.00 21.63 7.55e-06

5.7.3.2 Random effects structure: 1 + model * entropy | participant

Table 5.26: Random effects for structure 1 + model * entropy | participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 19 977.36 -1916.71

lm * entropy in (1 + lm * en-

tropy | subject)

1 15 975.83 -1921.66 3.06 4 0.55

entropy in (lm + entropy |

subject)

2 12 974.77 -1925.55 2.11 3 0.55

lm in (lm | subject) 0 10 972.00 -1924.01 5.54 2 0.06

Table 5.27: Fixed effects for random effects structure 1 + top down * bottom up *
surprisal | participant.

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

lm * entropy * surprisal 1 5.49e-07 1 138.00 1.52 0.22

lm * entropy 2 8.78e-07 1 139.00 2.42 0.12

entropy * surprisal 3 1.08e-06 1 140.00 2.96 0.09

entropy 0 4.74e-06 1 141.00 12.77 4.82e-04

lm * surprisal 0 6.69e-06 1 141.00 18.01 3.96e-05

5.7.3.3 Random effects structure: 1 + model * surprisal | participant

Table 5.28: Random effects for structure: 1 + model * surprisal | participant

Effect Elimin. params npar logLik AIC LRT df p value (χ2)

<none> 19 1023.36 -2008.73

lm * surprisal in (1 + lm * sur-

prisal | subject)

0 15 999.73 -1969.47 47.26 4 1.35e-09

Table 5.29: Fixed effects for random effects structure 1 + model * surprisal | par-
ticipant

Effect Elimin. params Sum.Sq NumDF DenDF F value p value

lm * entropy * surprisal 0 5.49e-07 1 115.00 4.27 0.04
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5.7.3.4 Best models for every random effects structure configuration &

their AIC-value

Table 5.30: Best models for every random effects structure configuration & their
AIC-value

Largest model Chosen model df AIC

r_values ~ lm * entropy * surprisal +
(1 + entropy * surprisal | subject)

r_values ~ lm * surprisal + entropy +
(surprisal | subject)

9 -1987.92

r_values ~ lm * entropy * surprisal +
(1 + lm * entropy | subject)

r_values ~ lm * surprisal + entropy +
surprisal + (lm | subject)

9 -1969.71

r_values ~ lm * entropy * surprisal +
(1 + lm * surprisal | subject)

r_values ~ lm * entropy * surprisal +
(1 + lm * surprisal | subject)

19 -2007.73
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Abstract

This Chapter presents an overview of several sets of simulations that provide
insight into the possibilities and the limits of the temporal response function as
used in Chapter 3 and 5 of this dissertation. The general aim of the simulations
was to assess whether any effects found in the TRF-analyses could be attributable
to properties of either the data or the linear model that were unrelated to the
theoretical phenomenon under consideration. The simulations revealed the fol-
lowing. Firstly, comparing reconstruction accuracy values between conditions
is most reliable when the signals from the two conditions have the same dura-
tion and share the same number of responses. Secondly, any differences between
frequency bands resulting from band-specific TRF-models can be interpreted reli-
ably. Thirdly, in the case of two different (linguistic) conditions with unbalanced
feature values, the same TRF can be extracted if the true responses in the data
are indeed identical in the two conditions. Fourthly, and finally, the TRF can
capture effects in time (i.e., response delays or time-shifts), but only in a cat-
egorical fashion. TRF models with a categorical split can be reliably evaluated
for reconstruction accuracy by comparing the systematic categorical split to a
random categorical split. When creating such models, it is important to keep in
mind that the TRF cannot directly model temporal interactions of a continuous
nature as a consequence of being a time-invariant linear system. Instead, the
TRF model will capture this temporal effect as noise, and potentially a separate
response (e.g., surprisal).
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6.1 Introduction

This Chapter serves as a prologue and/or epilogue to some of the Chapters in

this dissertation – namely, those that use the forward linear model called the

Temporal Response Function (TRF) (Chapters 3 and 5). The Chapter summarizes

the results of simulations that explore some properties of the TRF which have

knock-on effects for the interpretation of these models with respect to theories

in psycholinguistics and the neurobiology of language. The goal of these simu-

lations is to assess whether any effects found in the data could be attributable

to properties of the data, or the linear model, that are unrelated to the linguistic

phenomenon under consideration - in other words, this Chapter is a character-

ization of the prism through which we may view neural activity during spoken

language comprehension. The prism of TRFs allows us to interpret neural activ-

ity as a function of various linguistic features, but with this power, also comes

potential distortion of the (non-linear) neural signal by the linear model. As

such, the results of these simulations are intended to help situate the interpre-

tation, and the strength and limitations therein, of the findings in the rest of

the dissertation. In addition, this Chapter provides general guidelines of what

is important to keep in mind when designing an experiment for analysis with

TRF-models.

The Chapter will provide an answer the following questions. (1) How does the

interstimulus interval (ISI) affect the reconstruction accuracy of the TRF model?

(2) If a feature enhances reconstruction accuracy in one frequency band, but not

the other, does that mean that the response is in this frequency band? (3) Are

different feature values able to extract the same TRF waveform? (4) Is the TRF

suitable to model interactions between features in time? The Chapter has the

following structure. In the first section, the model system is described in detail.

In the subsequent second, third and fourth section, the questions are addressed

with simulations. The fifth and sixth sections provide a summary of the findings

and a discussion of the possibilities and limits of the TRF for neurolinguistic

research.
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6.2 The TRF: model description, estimation &

scoring

6.2.1 Model description

The TRF is an analysis technique for examination of data with high temporal

precision, such as MEG and EEG data, which has recently been used a lot in the

study of language. Being a form of time-resolved multiple regression, which makes

it highly suitable for the investigation of (naturalistic) language comprehension:

the TRF allows for simultaneous modelling of different levels of linguistic rep-

resentation, such as phonemes, words, and phrases and provide insight into the

time-course of the response each of these highly stimulus specific features indi-

vidually (Brodbeck, Hong, & Simon, 2018; Brodbeck, Presacco, & Simon, 2018;

Brodbeck & Simon, 2020; Broderick et al., 2018; Crosse, Di Liberto, Bednar, &

Lalor, 2016; Di Liberto et al., 2015; Drennan & Lalor, 2019; Gillis et al., 2021;

Hale et al., 2022; Heilbron et al., 2022; Huizeling et al., 2022; Lalor & Foxe,

2010; Lalor, Power, Reilly, & Foxe, 2009; Sassenhagen, 2019; Slaats et al., 2023;

Tezcan et al., 2023; Weissbart et al., 2019; Zioga et al., 2023).

Table 6.1: The fitted encoding models in the interaction effects-analyses.

Term Unit* Description

β a.u. Coefficient estimated with the linear model. Convolves with the stimulus to form the output
y T Real neural signal used for coefficient estimation
ŷ T Output of the TRF model. Here: the predicted neural signal
ȳ T Mean of the neural signal
x (variable) Input to the TRF model. Here: the stimulus
η T Error
τ Time-lag
t S Time in seconds
N Number of samples of x and y
M Dimension of y: number of sensors in the measured output signal
P Dimension of x: number of features
K Number of discretized lags
dt s Time-step between lags, calculated with dt = 1/Fs
Fs Hz Sampling frequency in Hz
X Matrix of the time-lagged feature time series, vectorized. X ∈ RN×kp

λ Regularization parameter in ridge regression

* Where applicable.

The system we are working with when we create TRF-models is a linear time-

invariant system. In a linear system, the relationship between the input (x) and

the output (y) is a linear mapping: we get the output by multiplying the input

with a constant. This constant is the coefficient, or β-weight, that we estimate

when we fit a linear model. In a time-invariant system, it does not matter when
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a particular input is applied. This system will output y(t) when the input is x(t),

and given the input x(t+σ), the output will be y(t+σ).

In essence, the temporal response function is a multivariate linear regression

approach that estimates a set of coefficients β (the kernel) describing the linear

relationship between the neural signal and some predictive features – in our

case, linguistic annotations of the stimulus. The TRF method uses not just a

perfect temporal alignment between the stimulus features and the neural signal;

the regression is performed simultaneously over a pre-defined time window of

lags, essentially aligning the stimulus features to the neural signal at different

moments in time: time-resolved regression. Instead of a single coefficient β this

approach yields a set of coefficients: one for each feature, at each point in time

(and, in the case of neural data, at every sensor or source). Together, these

coefficients capture a neural response much like an ERP.

In neuroimaging, this linear model is often referred to as an encoding model

or a forward model if the output (y) represents the brain response, and the input

(x) the stimulus – in other words, if the model predicts the neural signal using

the stimulus information. In contrast, if y denotes the stimulus, and x the brain

signal, the linear model is referred to as a decoding model or a backward model.

In this dissertation, I have used exclusively encoding models: I used the stimuli

to model the neural data, and not the other way around.

The equation of the TRF model is presented in (1) below. y refers to the out-

put (the neural signal) at time t. β is the set of coefficients (kernel) estimated

by the linear model. τ is the time-lag. Brain signals will always carry measure-

ment noise that the model is not capable of representing: they are not (linearly)

related to the stimulus features. This variance not captured by the linear model

is denoted by η in the equation in 6.1 below.

y(t) =
∑

τ

β(τ)x(t −τ)dτ+η(t) (6.1)

This equation describes a TRF-model with one feature. However, we might

perform this procedure with multiple features simultaneously: a multivariate

regression. Each feature will receive its own kernel (set of β) over which will be

summed to produce the output. This yields the following equation in 6.2.

y(t) =
∑

i

∑

k

βi(τ)x i(t −τ)dτ+ η(t) (6.2)
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We can do a reduction of this equation by vectorizing the features and con-

catenating them along the dimension of the features (summation on kernels; the

dummy index i above). This reduces the equation to the following:

y = X lag gedβ +η (6.3)

We solve this equation for a given sensor in our M/EEG data. Instead, we can

also concatenate these sensor equations along a new dimension. This means that

y becomes a matrix, and so does β . Xlagged does not change. This is referred to

as multiple regression: the sensor-specific solutions are independent from each

other.

6.2.2 Model estimation & evaluation

Estimating the kernel coefficients from the data is an ill-posed problem, as often

in neuroimaging: there are more samples than lags and features: N > kp. This

means that the system of equation is over-determined: there are more equations

than variables, and there is not a unique solution. In other words, X is not

squared and not invertible. It is possible to circumvent this problem by turning

the estimation problem in to an optimization problem, in which we try to find the

parameter that leads to the lowest cost according to a predetermined function.

In our case, we use a least-squares solution. This solution finds β coefficients

that minimize the sum of the squares of the difference between the predicted

version of y (ŷ) and the real y, as is shown in equation 6.4 below. This is our cost

function.

J(β) =
∑

(by[n]− y[n])2 (6.4)

In practice, this means that we solve the equation in 6.5 for β (shown in 6.6.

This is the closed-form solution of the minimization problem.

X T Xβ = X T y (6.5)

β = (X T X )−1X
T

y (6.6)

Often, a feature in X is to some degree correlated with one or more other

features (multi-collinearity), or with lagged versions of itself (auto-correlation).

Auto-correlation occurs for example in the speech envelope; the value of the

next sample is always more similar to the current sample than any randomly
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picked sample. This means that if we shift the speech envelope in time just

slightly, these two shifted variants of the speech envelope will be correlated to

each other. This can pose a problem for our model estimation.

Notice it is necessary to invert matrix XTX to obtain β (the inverted matrix of

matrix A is A-1). When two features in X are correlated, the matrix XTX will have

eigenvalues close to zero. This is not a problem in and of itself – the matrix can

still be inverted – but inverting the matrix will lead to the small values in the

original matrix being very large. Any numerical inaccuracies in the eigenvalues

that are close to zero in XTX will blow up in the inversion, leading to a model

that is far from the truth. To avoid this and obtain more reliable estimates of the

coefficients, we sum a constant positive value λ to the diagonal of XTX. This is

called ridge regression.

We evaluate the model by computing a predicted neural signal (ŷ) and corre-

lating this with the real neural signal (y). This is done on a held-out portion of

the dataset – that is, a set of stimuli and neural responses that were not used to

estimate the coefficients. Using the estimated β and a held-out stimulus matrix

X, we compute a predicted neural signal ŷ. Then y and ŷ are compared for sim-

ilarity using the coefficient of determination r2, which essentially is the division

between the explained variance and the total variance (see 6.7) or Pearson’s cor-

relation coefficient (in this case the square root of 6.7). Both of these metrics

quantify how much variance is explained by the model.

r2 =

∑

( ŷi − ȳ)2
∑

(yi − ȳ)2
(6.7)

6.2.3 General experimental setup

All simulations described below were run in Python 3.8 using the packages

SciPy, Scikit.Learn (sklearn), PyEEG, NumPy, Pandas, Matplotlib, Seaborn, MNE-

Python and Statsmodels (Gramfort et al., 2013; Harris et al., 2020; Hunter,

2007; Seabold & Perktold, 2010; Virtanen et al., 2020; Waskom, 2021). The code

is available on https://github.com/sslaats/trf-simulations/. As in

many TRF models in the literature, and definitely those in this dissertation, each

‘stimulus’ feature is a spike-train of zeros with a value (here: sampled from a

random distribution) inserted at the desired sample index. Further details are

provided in each individual section.

https://github.com/sslaats/trf-simulations/
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6.3 Simulation set 1: Interstimulus interval &

band-pass filtering

In this first set if simulations, we set out to answer questions that arose in the

analysis of Chapter 2: namely, whether the interstimulus interval (ISI) alone

could affect the reconstruction accuracy of the neural signal; and how band-

pass filtering can potentially affect our results. To do this, we simulated MEG

data with responses at different interstimulus intervals. In addition, we varied

the signal-to-noise ratio (SNR). The duration of the signal was kept constant.

6.3.1 Experimental setup

The impulse responses were a multiplication of a hamming window and a sine

function. Each of the impulse responses had the same shape, but could differ

in duration, i.e., number of samples the response spanned. The responses were

generated such that their spectral power was located in the delta band (here:

1-3 Hz) or the theta band (here: 4-8 Hz). The two impulse responses and their

spectral power is plotted in Figure 6.1.

Figure 6.1: The impulse responses. A (left). The impulse responses used to gen-
erate the data in this section (ground truth for TRF estimation). B
(right). Power spectral density of the impulse responses used in this
section. Blue shaded area indicates the delta frequency range used
in this section (3-6 Hz); orange shaded area indicates the theta fre-
quency range used in this section (4-8 Hz).

These kernels were convolved with two spike-trains of random values (the

‘stimuli’; x), which yielded the signal (y). A white noise component which was

scaled according to the standard deviation of the response was summed to the

clean signal to yield a signal with the desired signal-to-noise ratio. We generated

two instances of both ‘x’ and ‘y’; one served as the training set, and the other



208 6 The limits of the Temporal Response Function

as the test set. We used the TRF estimation and model evaluation approaches

described in sections 6.2.1 and 6.2.2 using the generated training- and test sets.

6.3.2 Results: Interstimulus interval & signal length

These simulations were performed with the delta-band kernel exclusively. To

evaluate the effect of the ISI, we created instances of x and y with a varying

time-window between the spikes, ranging from 100 to 900 milliseconds. Since

the signal length was kept constant, the shorter the ISI was, the longer part of

the signal that contained exclusively noise at the end. To effectively evaluate

whether any effects due to the ISI are caused by the ISI itself, we must disen-

tangle it from the relative amount of noise in the signal. To do this, the models

trained on the different ISIs and different SNRs were evaluated twice:

1. With a constant signal length (the full signal)

2. With a ‘truncated’ signal, where the noise-part at the end of the signal is

removed.

The results of this simulation are displayed in Figure 6.2. Figure 6.2A shows

that the reconstruction accuracy decreases with the SNR: for an SNR of -3, the

reconstruction accuracy value is around 0.45, while the predictive power of the

model reaches a ceiling when there is no noise added (the red line). What’s

striking is that the ISI itself (plotted on the x-axis) does not affect the reconstruc-

tion accuracy. Instead, the effect of ISI on the reconstruction accuracy appears

to be caused by the length of the signal on which we estimate the reconstruc-

tion accuracy: the longer the signal, the lower the reconstruction accuracy. In

essence, this effect is similar to the effect of SNR. After all, all signals contain

the same number of responses, meaning that the longer signals (as caused by

the longer ISI) contain a larger portion of signal that contains only noise than

shorter signals. Indeed, as can be seen in figure 6.2B, the reconstruction accu-

racy is constant for a noiseless signal, despite the signal length being a function

of the ISI.

In Chapter 2, the results revealed a higher reconstruction accuracy for word

lists – the signal with a longer ISI – than for the sentences – the signal with a

short ISI. These simulations were conducted to evaluate whether this difference

could be caused by the difference in ISI. Based on these simulations, we can

safely conclude that any differences in reconstruction accuracy due to ISI should

drive the effects in the opposite direction: the overall reconstruction accuracy

should be lower for word lists than for sentences.
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Figure 6.2: Reconstruction accuracy & SNR. A (left). Reconstruction accuracy val-
ues for different signal-to-noise ratios at interstimulus intervals from
0.1 to 0.9 seconds. The signal length is kept constant. B (right).
Reconstruction accuracy values for different signal-to-noise ratios at
interstimulus intervals from 0.1 to 0.9 seconds. The signal is trun-
cated at the end of the last impulse response, meaning that the signal
length increases for larger interstimulus intervals.

6.3.3 Results: Filtering

In this simulation, we wished to evaluate whether an increase in reconstruction

accuracy in a specific frequency band can be interpreted as reflecting that the

response captured by the feature has spectral power in this frequency bands.

This is related to another finding from Chapter 2, namely that the response to

word frequency increases reconstruction accuracy more in the delta band than

in the theta band. Does this mean that the spectral energy of the response is

indeed located in the delta band?

To evaluate this question, we simulated an electrophysiological signal (M/EEG-

like) with two stimulus-dependent responses that had most spectral power in

two neighboring frequency bands: delta and theta (see Figure 6.1). These re-

sponses were driven by separate stimuli: one stimulus predicted the delta-band

response – we will call this the ’delta-stimulus’ –, and the other one the theta-

band response – the ‘theta-stimulus’. We filtered the signal into the delta- and

the theta band (1-3Hz and 4-8Hz for simulation purposes) using a FIR-filter. Of

each band-pass filtered signal, we estimated several TRF models: a model that

contained only the mismatching feature (i.e., the theta-stimulus in the case of a

delta-band filtered signal, and the other way around); a model that contained

the correct feature (i.e., the delta-stimulus in case of a delta-band filtered sig-

nal); and a model that contained both of these features.

We then estimated the relative increase in reconstruction accuracy that was

driven by the addition of the other feature. This means that in the case of
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Figure 6.3: Reconstruction accuracy and band-pass filtering. Increases in re-
construction accuracy when adding a feature that predicts a re-
sponse that has spectral power in the frequency spectrum of the data
(‘match’) versus when adding a feature that predicts a response that
does not have power in the frequency spectrum of the data (‘mis-
match’). Left: filtered in the delta-band (1-3 Hz). Right: filtered in
the theta band (4-8 Hz).

the delta-band filtered signal, we computed the difference between the delta-

stimulus only model and the both-stimuli model to get an estimate of the benefit

from adding the theta-stimulus feature (the mismatch). Similarly, we computed

the difference between the theta-stimulus only model and the both-stimuli model

to get the benefit from adding the delta-stimulus feature (the match). These val-

ues are displayed in Figure 6.3 below.

We observed that the increase in reconstruction accuracy is indeed related to

the frequency band in which the added response has most spectral power. That

is, if a response has most spectral power in the delta band, adding the feature

for this response to a model of the delta-band filtered signal, the reconstruction

accuracy will improve; this is not the case if we add the feature for a model that

has more spectral power in a neighboring frequency band. Any small improve-

ment observed may be caused by the small overlap between the responses (see

Figure 6.1).

6.3.4 Conclusions

In the first set of simulations, we evaluated (1) the effect of the interstimulus in-

terval; and (2) the potentially artefactual effects of our band-pass choices. The

simulations showed the following: ISI does not have an effect on reconstruction

accuracy; rather, the signal-to-noise ratio does, both in terms of the amplitude
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of the signal relative to the noise, and in terms of the number of samples that

do not contain a signal but do contain noise. Because of this, if the signal length

is different between conditions, a larger interstimulus interval will lead to lower

reconstruction accuracy. This relationship between signal length and reconstruc-

tion accuracy can, thus, end up distorting the estimation of the contribution of a

given cognitive process to neural activity, inasmuch as there may be differences

in signal length by condition due to time, timing, or temporal resolution and

dynamics. This constraint on estimation does not mean that the interstimulus

interval does not affect how the brain handles the input; this may still be rele-

vant, and is discussed in more detail in Chapter 3 itself. But differences in ISI do

not alone, or by default, result in differences in reconstruction accuracy.

Secondly, our simulations showed that band-pass filtering itself does not cause

the differences in reconstruction accuracy; properties of the responses do. Specif-

ically, the frequency band which has the most power in the response – drives the

reconstruction accuracy of the neural signal. This means that if we find improve-

ments for the addition of a given feature in the delta band, the response captured

by the feature has power in this frequency band. Of course, in contrast to in this

simulation, in actual data we do not know beforehand in which frequency band

the effects will show up. Finding effects on the reconstruction accuracy in the

delta band means that a response is captured reliably in this frequency band.

6.4 Simulation set 2: Feature values

In this second set of simulations, we address some concerns related to the anal-

ysis performed in Chapter 5. In this Chapter, we split features into two separate

features on the basis of a second variable. Specifically, in order to examine the

effect of distributional measures on the neural response to syntactic information

(node count), we split the syntactic features into two on the basis of the median

of the distributional measures. Doing so yields a syntactic feature for words that

are low in entropy (or surprisal), and one for words that are high in entropy (or

surprisal). While this works in theory, the feature values in both groups do not

have the same mean. If we then find differences between the two responses,

does this mean that the responses themselves are different, or is this a result

of the different feature values? Given the properties of the linear model, the

responses should be extracted and reconstructed the same. In this small set of

simulations, we show that this is indeed the case. We do this by simulating a re-

sponse and a feature and splitting the feature in two such that the two resulting
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Figure 6.4: The impulse response used to create the data in this section (ground
truth for TRF estimation).

features either do or do not have the same mean or standard deviation. In this

way, we can observe the effects on TRF estimation (i.e., the shape and timing of

the estimated response) and the reconstruction accuracy.

6.4.1 Experimental setup

We created an impulse response and two sets of 100 stimulus values (the fea-

tures). To generate the data, we convolved the impulse response with one of the

sets of stimulus values. The impulse response was a kernel generated by mul-

tiplying a Hanning window of 500 milliseconds with a sine wave. The impulse

response is the ‘ground truth’: this is the response in the data that we want to

extract using the TRF. The two sets of stimulus values were generated according

to the effect we wanted to simulate and is described in more detail below. The

ISI was 600 milliseconds. At this point, we did not add noise to the data, mean-

ing that time points that do not contain a response are equal to zero. The data

had a total length of 7320 samples, i.e. approx. one minute of data at 120 Hz

sampling frequency. The impulse response is visible in Figure 6.4.

6.4.2 Results

Splitting a feature such that the two resulting sets of feature values are identical

should not lead to different TRFs or reconstruction accuracies. We checked this

as a baseline. To assure this, we created one set of 100 normally distributed

random values (set A), and two identical sets of 50 normally distributed random
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values (set B1 and B2). Set B1 was aligned to all the values above the median

from set A, and set B2 to all the values below the median from set A.

Firstly, we used the full feature of sets B1 and B2 combined and computed the

TRF on 80% of the data. The feature values and the resulting TRF are plotted in

the top row of Figure 6.5. The TRF captured the response perfectly. Secondly, we

created a model with two separate features (B1 and B2) and, again, computed

the TRF. In the bottom row of Figure 6.5 the two sets of feature values are dis-

played, as are the TRFs. Observe that the TRFs overlap perfectly. In other words,

the response is extracted efficiently in both cases. (This should not come as a

surprise.) In both cases, we used the held-out 20% of the data to compute the

reconstruction accuracy. This is done by convolving the resulting TRF with the

held-out feature values and correlating the resulting signal to the actual data.

In both cases, the reconstruction accuracy was 1.0, the highest value – meaning

that the signal was perfectly reconstructed. (N.B., this is only possible because

the signal was clean; consider the red lines in Figure 6.5.)

To assess whether the feature values affect TRF estimation, we made a minor

change: B1 and B2 are no longer identical. Both are normally distributed, but

in set B2 the standard deviation and mean are increased by 3.5 and 4.02, re-

spectively. The values from set B2 were aligned to the values below the median

from feature A (i.e., ‘low surprisal node count’), and the values from set B1 were

aligned to the values above the median from feature A (i.e., ‘high surprisal node

count’). Again, we first computed the TRF using the full B feature. As is shown

in the top row in Figure 6.5 and the blue bar in Figure 6.6, here, too, the im-

pulse response was captured perfectly. When we computed the TRF for B1 and

B2 separately, we observed that there was no difference here, either. As before,

the reconstruction of the signal was perfect in both cases.

From these simulations we can safely conclude that a difference between the

distributions of a feature does not affect the TRF estimation, nor the reconstruc-

tion of the signal. This means that if we observe differences between ‘B1’ and

‘B2’ in our study, this is not due to the distributions of B1 and B2 being different;

rather, it will be due to an interaction between factors A and B.

To test whether an interaction between factors A and B will indeed be captured

by a split feature, we repeated the two simulations above. In this simulation,

the true response (ground truth) was driven by an interaction between factors A

and B. As before, we evaluate what happens when we model the response using

factor B intact, or when we split factor B into B1 and B2 dependent on the values
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Figure 6.5: Feature B does not interact with feature A. A (top left). Kernel density
plot of all feature values when combined into a single predictor. B
(top right). TRF extracted using a single feature. C (bottom left).
The same feature values as in (A) divided over two distributions ac-
cording to Feature A such that the resulting distributions are identical
(hence the gray color). D (bottom right). TRFs extracted using the
two features presented in (C). Each of these features contained half
of the values included in (A). Notice that the two TRFs overlap per-
fectly.
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Figure 6.6: Feature B does not interact with feature A. A (top left). Kernel density
plot of all feature values when combined into a single predictor. B
(top right). TRF extracted using a single feature. C (bottom left) The
same feature values as in (A) divided over two distributions accord-
ing to feature A such that the resulting distributions are different
from each other in their mean and standard deviation. D (bottom
right) TRFs extracted using the two features presented in (C). Each
of these features contained half of the values included in (A). Notice
that the two TRFs overlap perfectly.
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Figure 6.7: Feature B interacts with feature A. A (top left). Kernel density plot
of all feature values when combined into a single predictor. B (top
right). TRF extracted using a single feature. C (bottom left). The
same feature values as in (A) divided over two distributions accord-
ing to feature A such that the resulting distributions are identical
(hence the gray color). D (bottom right). TRFs extracted using the
two features presented in (C). Each of these features contained half
of the values included in (A). Notice that the two TRFs differ from
each other, even though the feature values do not.

from factor A. We do this for both identical and different distributions for B1 and

B2.

We observe that the signal is reconstructed (much) better when we use a split

predictor to capture (part of) the interaction (reconstruction accuracy intact: -

0.40; split: 0.70). On the TRF waveform we also observe that the interaction is

indeed captured by the split predictor (see Figure 6.7D below). As for the first

two simulations, the observations are identical when the distributions underly-

ing B1 and B2 are different (see Figure 6.8).

6.4.3 Conclusions

To sum up, from these simulations we can conclude that any differences between

the TRFs for our high- and low node counts in Chapter 5 are caused by actual
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Figure 6.8: Feature B interacts with feature A. A (top left). Kernel density plot
of all feature values when combined into a single predictor. B (top
right). TRF extracted using a single feature. C (bottom left). The
same feature values as in (A) divided over two distributions accord-
ing to feature A such that the resulting distributions differ from each
other in their mean and standard deviation. D (bottom right) TRFs
extracted using the two features presented in (C). Each of the fea-
tures contained half of the values included in (A). Notice that the
two TRFs differ from each other.
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differences in the data, and are not the result of different feature values when

dividing the node counts over two separate features.

6.5 Simulation set 3: Timing effects

The third set of simulations concerns other questions that arose during the anal-

ysis presented in Chapter 5 The analyses revealed effects on the TRF-waveform,

suggesting an interaction between factor A (surprisal/entropy) and factor B

(node count) as per the simulations in set 2. A large difference between the

simulations in set 2 and the findings in the data is that the interaction effect

modelled in set 2 is an interaction of amplitude: the amplitude (and the sign) of

the response to feature B is dependent on the values from feature A. In the data,

however, there appears to be rather an effect of latency. Being a time-invariant

system, the TRF model cannot capture an interaction between features that oc-

curs in time. In this set of simulations, we aim to investigate what effects of

splitting a predictor has on the reconstruction of the signal when the latency of

the response to feature B is affected by feature A; and how such a latency effect

can show up in different models made of the data.

6.5.1 Experimental setup

To this end, we model a signal using a kernel that is driven in amplitude by

feature B (a normal distribution with a mean of 5 and a sd of 2; mimicking node

count) and feature A, which drives the onset latency (a log-normal distribution

with a mean of 2.3 and a sigma of 0.41; mimicking surprisal). The kernel had

a width of 500ms or 800ms. An example of such a set of responses is shown

in Figure 6.9 below. The interaction works as follows: the response is moved

forward (i.e., to the right) the number of samples that equals the surprisal value.

I.e., if surprisal is 17, 17 zeros are added to the onset of the response. To examine

the effect of the strength of the latency shift, we multiplied surprisal with 20

multiplication factors linearly spaced between 0 (no influence of surprisal) and 2

(latency = 2 x surprisal in samples). For each of these multiplication factors, we

modeled 1000 responses at a sampling rate of 120 Hz. For statistical comparison

between conditions, we randomly generated these distributions 1000 times.

To be able to gain insight into how categorically splitting a feature of which

the timing of the response is parametrically dependent on the other variable

affects the reconstruction accuracy of a model, we estimated four TRF models:
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Figure 6.9: Example data for simulation set 3. A (left): Example of the responses
in the data (y) for a kernel width of 500ms and a multiplication factor
of 1.05. The amplitude of the response is a function of feature B
‘node count’; the latency of the response (visible as temporal jitter)
is a function of feature A ‘surprisal’ multiplied by 1.05. B (right): the
same responses as in A, ordered by surprisal value.

(1) feature B, ‘node count’ – the feature that drives the response; (2) feature B

‘node count’ and feature A ‘surprisal’ – the feature that drives response latency;

(3) feature B1 (‘node count – high surprisal’) and feature B2 (‘node count – low

surprisal’); and (4) a random split of feature B ‘node count’. The difference

between models (1), (2) and (3) on the one hand, and (1), (2) and (4) on

the other hand show how including two features with half the number of values

affects reconstruction accuracy. At the same time, the difference between models

(3) and (4) will tell us whether the systematic split of the feature will lead to a

better description of the signal when compared to a model with the same number

of features and number of values per feature, but distributed randomly. In other

words, this will tell us whether the split contains information (as it should),

without the confound of having features with a different number of values.

In addition to these four models, we wished to test whether the ‘surprisal’ fea-

ture will add to a description of the signal, despite not being the direct cause

for a response itself. To this end, we estimated models (5) with features B1, B2,

and feature A ‘surprisal’ and (6) with a random split of feature B ‘node count’

and feature A ‘surprisal’ in addition to (2), for comparison with models (1), (3)

and (4). Furthermore, we were interested in the general ability of TRF mod-

els to capture interactions in time with an interaction term, so we created also

model (7) which contained an interaction term between features A and B; and

model (8) which contained feature B, A, and the interaction term. All models are
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summarized in table 6.2. All of these models were fitted to the data as described

above, and to a version of the data in which the latency shift was not determined

by surprisal, but by another, unmodeled feature that was drawn from the same

log-normal distribution as the surprisal feature.

Table 6.2: TRF models and the included features in Simulation set 3.

Model name Features

1 Node Node count (feature B)
2 Node + surprisal Node count (feature B) + surprisal (feature A)
3 Node split Node counthigh + node countlow (node count split by median of surprisal)
4 Node random split Node countrandom + node countrandom (node count split randomly)
5 Node split + surprisal Node counthigh + node countlow + surprisal
6 Node random split + surprisal Node countrandom + node countrandom + surprisal
7 Interaction Node count * surprisal
8 Node + surprisal + interaction Node count + surprisal + node count * surprisal

6.5.2 Results

The observations were as follows. We first wanted to know whether splitting

feature B – node count - on the basis of the median of feature A – surprisal – can

capture the effect of latency on the TRF waveforms. Indeed, this appears to be

the case. We observed that splitting feature B according to the median of feature

A – which drives the latency of the response – revealed the temporal shift on the

TRF waveform. In addition, the size of the latency difference is reflected in the

temporal shift expressed by the TRFs, as can be seen in Figure 6.10 below.

Secondly, we looked at the effect of splitting feature B according to the median

of feature A on the reconstruction accuracy. As is displayed in Figure 6.11A,

doing so increased the reconstruction accuracy relative to most models, but not

all (at all multiplication values). We also fit all models on data in which the

interaction between surprisal and node count did not exist; rather, node count

interacted with a third, unmodelled variable. The results of this are presented in

Figure 6.11B. As can be observed from the plot alone, the ‘split’ models perform

better than most models. The only model that outperforms the split models

when the influence of surprisal is relatively small, is the model that contains node

count, surprisal, and a multiplicative interaction (i.e., node count × surprisal).

This is clearly represented in Figure 6.12 below: the t-values of the contrast

between the Node split model and the Node + surprisal + interaction model are

negative at first, and later turn positive. This means that the Node + surprisal

+ interaction model outperforms the Node split model at first, and that this

relationship later reverses.
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Figure 6.10: Average TRFs extracted using model 3 (feature B1 and B2) for various
multiplication factors. High surprisal node count TRF in blue, low
surprisal node count TRF in orange. Standard deviation across the
1000 repetitions is shown in shaded areas; however, this was so
small that it is barely visible.
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Figure 6.11: Reconstruction accuracy values for temporal interaction. A (left). Re-
construction accuracy for data that contains a temporal interaction
between ‘node count’ and ‘surprisal’. B (right). Reconstruction ac-
curacy for data that does not contain a temporal interaction be-
tween ‘node count’ and ‘surprisal’; rather, the temporal interaction
is between ‘node count’ and a third, unmodelled, feature.

Figure 6.12: Model comparison for temporal interactions. T-values for the com-
parison of the Node split model against the Node model, the Node
random split model, and the Node + surprisal + interaction model
when fit to (1) the data in which surprisal determined the latency
shift (in blue; left panel from Figure 6.11) and (2) the data in which
a third, unmodelled variable determined the latency shift (in or-
ange; right panel from Figure 6.11). The dotted red line marks the
alpha-values of 1.96 and -1.96 – i.e., the significance threshold in a
simple t-test.

Of course, each of these models is an approximation of the data. With this

in mind, it becomes logical that several aspects of the data affect which model

performs best when it comes to reconstructing the data. We repeated the simula-

tions with a longer kernel – of 800 milliseconds – and noticed that the influence

of surprisal needs to be larger for the Node split model to outperform the large
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Node + surprisal + interaction model. This suggests that the effect size of sur-

prisal (as represented by the multiplication) relative to the response duration is

what drives part of the reconstruction accuracy patterns. The results from the

analysis with the 800ms-kernel are displayed in Figures 6.13 and 6.14.

Figure 6.13: Kernel: 800ms. A (left): reconstruction accuracy for data that con-
tains a temporal interaction between ‘node count’ and ‘surprisal’.
B (right): reconstruction accuracy for data that does not contain
a temporal interaction between ‘node count’ and ‘surprisal’; rather,
the temporal interaction is between ‘node count’ and a third, un-
modelled, feature. Reconstruction accuracy values for model 7 “In-
teraction” not shown; see Figure 6.16 below.

Figure 6.14: Kernel: 800ms. T-values for the comparison of the Node split model
against the Node model, the Node random split model, and the
Node + surprisal + interaction model when fit to (1) the data in
which surprisal determined the latency shift (in blue; left panel
from Figure 6.11) and (2) the data in which a third, unmodelled
variable determined the latency shift (in orange; right panel from
Figure 6.11). The dotted red line marks the alpha-values of 1.96
and -1.96 – i.e., the significance threshold in a simple t-test.
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There are likely many other variables that contribute to whether a model with

a split predictor will outperform models with intact features. This indicates the

interaction in time may not show up as an increase of the reconstruction accu-

racy depending on the model that is chosen. A model with an interaction may

better capture the patterns in the data, but that does not mean that there is no

interaction in time. On the other hand, the difference between a random split

and a systematic split (i.e., using the second variable to determine when a value

is part of feature B1 or B2) always leads to an increase in reconstruction accu-

racy – if the interaction is in the data. The comparison between a random split

feature and a systematic split is therefore a reliable statistical baseline to check

whether a temporal interaction exists.

Thirdly, we consider the effect of adding the temporal modulator ‘surprisal’ to

our models. We observe that generally, if a temporal modulation exists, surprisal

does increase reconstruction accuracy (Figure 6.15, left and middle panels). In

fact, when we consider the TRFs from the strongest model (surprisal influence

= 2.0), displayed in Figure 6.15 below, we can appreciate that the ‘surprisal’ re-

sponse is a (smaller) phase-shifted response from the node-count. This can have

important consequences for how we interpret our models, as will be discussed

further below.

Figure 6.15: A (left). Reconstruction accuracy values for the models Node and
Node + surprisal. B (middle). R-values for the contrast Node +
surprisal model / Node model when fit to (1) the data in which
surprisal determined the latency shift and (2) the data in which a
third, unmodelled variable determined the latency shift (in orange).
C (right). TRFs extracted using the Node + surprisal model for
multiplication = 2.0 (maximal influence of surprisal).

Fourthly, the interaction term alone performs worse than a node feature or

the combination of node and surprisal (see 6.16A). This is also the case when

the interaction is computed with a variable that does not interact with it (see

6.16B). When the interaction term is added to a model that contains both sur-
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prisal and node count, the reconstruction of the signal appears to be best when

the influence of surprisal is small.

Fifth and finally, a general observation that is nonetheless important: the re-

construction accuracy values decrease in all models as the influence of surprisal

increases, both when the feature driving the temporal jitter (surprisal) is mod-

elled in some way (6.11A) and when it is not (6.11B). Given that there is no

noise in the signal, this means that none of the models are able to fully capture

the temporal interaction, and the temporal jitter is modeled as noise (η). The

time-invariance of TRF models means that the only way to model temporal in-

teractions is by splitting a feature. This is why split-feature models may perform

worse than some other ones when the effect of time is small – having two fea-

tures with fewer samples is worse for response estimation than one feature with

twice as many samples -, but eventually outperform the other models. These

models ‘suffer less’ from the increased temporal variance. This is observable

on the less steep slopes of the reconstruction accuracy values as the temporal

variance increases. Though not examined here, from this reasoning follows that

using more than two splits will lead to more division of the temporal jitter over

the features, and therefore to a less steep slope.

Figure 6.16: A (left). Reconstruction accuracy values for the models Node, In-
teraction, and Node + surprisal + interaction. B (middle). T-values
for the contrast Interaction model / Node model when fit to (1) the
data in which surprisal determined the latency shift (in blue) and
(2) the data in which a third, unmodelled variable determined the
latency shift (in orange). C (right). TRFs extracted using the Node
+ surprisal + interaction model for multiplication = 2.0 (maximal
influence of surprisal).
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6.5.3 Conclusions

In this set of simulations, we considered TRF models in the case of temporal

interactions. The simulations showed that systematically splitting a feature that

predicts a response of which the onset is parametrically related to a second fea-

ture using that second feature will lead to an increase relative to (1) a model

with that feature intact and (2) a model with a random split of that feature. For

comparison with other types of models, most notably models with all main fea-

tures and their interaction, a higher reconstruction accuracy for the split model

will may only appear when the influence from the second feature is large enough

relative to the duration of the response.

Furthermore, the simulations revealed that a feature which functions as a tem-

poral modulator and does not predict its own response can increase reconstruc-

tion accuracy when added to a TRF-model, and also have a visible TRF-response

(the beta-weights are not zero). This is an effect that one should keep in mind

when extracting responses to – especially – linguistic stimuli. Temporal effects as

a result of linguistic manipulations are paramount in brain and behavior (Brys-

baert, Mandera, & Keuleers, 2018; Donhauser & Baillet, 2020; Kaufeld, Raven-

schlag, et al., 2020; Linzen & Jaeger, 2016; Martin & Doumas, 2017, 2019a,

2019b; Tanner et al., 2014; Ten Oever & Martin, 2021). It is possible that some

of the responses that one models in their TRF model does not exist in the brain

as a separate response – rather, it is an effect of temporal modulation on other

responses.1

Finally, we have seen that none of the models evaluated in this set of simula-

tions is able to capture the temporal interaction to its full extent – not even the

interaction models. This means that in a TRF model, temporal jitter to a large

extent is noise. These two final points clearly highlight the inability of the tem-

poral response function to capture effects of latency, and potentially mask them

– a crucial missing feature for language research.

1Interestingly, an effect that is often found to be of temporal nature is (lexical) surprisal (e.g.,
Futrell et al., 2020; Levy & Gibson, 2013; Monsalve et al., 2012). When using surprisal to
model our signal using TRFs, it is entirely possible that the response that we extract is not one
of its own, but rather an effect of temporal modulation stemming from a wide array of other
linguistic aspects of the stimulus and processes in the human brain – such as structure building,
semantic composition, and lexicosemantic association. See also Chapter 1 of this dissertation.
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6.6 General discussion

In this Chapter, I presented simulations that explore some properties of the TRF

that served to determine whether some of the effects found in other Chapters

of this dissertation could be attributable to properties linear model and as such

are unrelated to the linguistic phenomenon under consideration. The Chapter

answered the three following questions: (1) How does the interstimulus inter-

val (ISI) affect the reconstruction accuracy of the TRF model? (2) If a feature

enhances reconstruction accuracy in one frequency band, but not the other, does

that mean that the response is in this frequency band? (3) Are different feature

values able to extract the same TRF waveform? (4) Is the TRF suitable to model

interactions between features in time?

In the first set of simulations, we evaluated the effect of the interstimulus in-

terval and the potentially artefactual effects of our band-pass choices in order to

answer questions (1) and (2). The simulations showed that ISI does not have

an effect on reconstruction accuracy; rather, the signal-to-noise ratio does. This

finding can be nicely explained by some properties of the model itself and the

model evaluation we have described in the introduction. Recall the equation in

6.7: we evaluate the model by comparing the explained variance with the total

variance. Our stimuli are arrays of zeros with nonzero values inserted at the on-

set of the response. Importantly, when there is no information contained in the

stimulus matrix (they are zero), the variance of the predicted signal ŷ is also zero

– essentially, the values in these positions will be equivalent to the mean – while

the variance of the real signal y is dominated by noise. Zero divided by a high

number will be zero. For our purposes, that means that if we were to compute

the reconstruction accuracy on separate parts of the signal, the reconstruction

accuracy is zero in all places where there is not a nonzero value, which is every-

where outside of the minimum and maximum lag window. In these places, the

reconstruction accuracy will be driven by the noise in the actual data. In other

words, the interstimulus interval itself does not matter as long as the lengths of

the two compared signals are matched.

Secondly, the simulations showed that band-pass filtering itself does not cause

the differences in reconstruction accuracy; properties of the responses do. Specif-

ically, in which frequency band the response has most power drives the recon-

struction accuracy of the neural signal. When we consider further properties of

the temporal response function from a signal processing perspective, this finding

makes perfect sense. Convolution in the time domain corresponds to pointwise

multiplication in the frequency (Fourier) domain, and vice versa (the convolu-



228 6 The limits of the Temporal Response Function

tion theorem). This means that we can rewrite the time-domain equation for our

models to a version in spectral space, displayed in 6.8 below.

Ŷ ( f ) = X ( f ) · B( f ) (6.8)

In this equation, Ŷ(f), X(f) and B(f) denote the Fourier spectra of ŷ, x, and

β , respectively. Each frequency contributes independently to the outcome of

the equation (pointwise multiplication: frequency A in X is multiplied with fre-

quency A in B). This means that linear systems as the one we use here cannot

generate a response with a frequency component that is not in the input, and

will extract responses with frequency components that are in the input. In our

simulations, therefore, the extracted β coefficients will have the frequency com-

ponents that are in the data y, and, by proxy, so will ŷ.

When we then consider a model that is estimated on a narrow-band signal,

such as the delta- or theta bands as is the case in this dissertation, we show

the relevance of the extracted band-specific response to the band-specific signal.

Since the linear time-invariant system acts independently on each frequency we

should find a higher reconstruction accuracy in a given frequency band if and

only if y and x share power in the frequency band being analyzed. In the case of

multiple kernels and multiple features, as is almost always the case in language

research, if we find an effect for one feature in one specific frequency band (but

not another), that means that the extracted response indeed has most spectral

energy in that particular frequency band.

In the second set of simulations, we answered question (3). We concluded

that different feature values will extract the same response if they were indeed

taken from a single linear feature-response relationship. This is not surprising

at all. Let us consider a highly simplified example. Imagine we are trying to

solve the equations in 6.9 and 6.10 for A (the beta weight). We already know

the error (8), we have our y (-7 in 6.9 and 1523 in 6.10). The feature values

(our x) are wildly different: -1 and 101, but because the relation between y and

x is identical, we find the same value for A in both cases: 15. Both of these are

points on the line y = 15x + 8.

−7= −1A+ 8 (6.9)

1523= 101A+ 8 (6.10)
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If we create models with the same feature on two separate conditions, and the

feature values are different between conditions, that does not impede us from

extracting the same response. On the flip side, if there are differences between

the responses, that is not a result of our differing feature values. To make this

concrete for language research, imagine that in Chapter 2 we wanted to study

the effect of surprisal between word lists and sentences. Obviously, surprisal is a

multiword estimate, so the resulting surprisal values will be different in our two

conditions. If the extracted surprisal response differs between conditions, that is

crucially not due to different surprisal values. Rather, it is an effect that is in the

data; the brain might respond to multiword probability differently depending on

whether the words are combined into sentences or not. (N.B., this is hypothetical

– we did not test this.)

In the final set of simulations, we considered TRF models in the case of tem-

poral interactions. This set answers question (4): is the TRF suitable to model

interactions in time? The simulations showed that modelling a response A –

node count – of which the onset is parametrically related to a second feature B –

surprisal – by systematically splitting the feature of A on the basis of the values

of B will capture the time-shift in the TRF waveform, providing insight into the

existence potential temporal interaction (which may not be known beforehand).

To all of the models evaluated in these simulations, the temporal jitter was noise

(η). In the models with the systematically split features, the unexplained vari-

ance becomes smaller relative to unsplit models when the error is large enough,

because the variance will then be centered around two features. The distance be-

tween the actual responses and two separate extracted responses is then smaller

than distance between the actual responses and a single extracted response –

that is, as long as the temporal jitter is large enough.

Finally, the simulations revealed that a feature which functions as a temporal

modulator and is not directly associated with a separable response can increase

reconstruction accuracy when added to a TRF-model, and also have a detectable

TRF-response (the beta-weights are not zero). This is an effect that one should

keep in mind when extracting responses to – especially – linguistic stimuli. Tem-

poral effects as a result of (linguistic) manipulations abound (Brysbaert et al.,

2018; Donhauser & Baillet, 2020; Kaufeld, Ravenschlag, et al., 2020; Linzen

& Jaeger, 2016; Martin & Doumas, 2017, 2019a, 2019b; Tanner et al., 2014;

Ten Oever & Martin, 2021). Many event-related responses are likely subject to

temporal changes as a function of other latent variables (Martin, 2020). If these

latent variables are included as features in a linear time-invariant system, they
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can create the illusion of a response where there is none (at least, not a main

effect).

6.7 Conclusions

This Chapter has provided insight into the possibilities and the limits of the tem-

poral response function in the following ways. Firstly, comparing reconstruction

accuracy values between conditions is most reliable when the signals from the

two conditions have the same duration and share the same number of responses.

The simulations showed that if this is not the case as a result of different inter-

stimulus intervals, the interstimulus interval by itself does not drive differences

in the reconstruction accuracy. Rather, the stretch of data that contains noise

is of importance. For language research, that means that conditions should be

balanced for data duration when the time interval between impulses is not bal-

anced. That is, if we present participants with two conditions that differ in

the summed duration of the pauses between the stimuli, we must make sure

to record some resting state before or after the shortest sequence of stimuli to

ensure the same temporal proportion of the recording contains the response we

are modelling in our TRF-models. Secondly, any differences between frequency

bands resulting from band-specific TRF-models can be interpreted reliably. For

example, if we find that a given feature has an effect on the reconstruction ac-

curacy in the delta band, but not in the theta band (or any other combination

of frequency bands) this means that the response associated with that feature

has power in the delta band. Thirdly, in the case of two different (linguistic)

conditions with unbalanced feature values, the same TRF can be extracted if the

true responses in the data are indeed identical in the two conditions. If the ex-

tracted TRFs do differ, this means the response to that particular feature differs

between the conditions: this difference is not attributable to the different feature

values. Fourthly, and finally, the TRF can capture effects in time (i.e., response

delays or time-shifts), but only in a categorical fashion. This means that tem-

poral effects can only be captured by having separate conditions (one in which

the response is delayed relative to the other one). Such separate conditions can

provide general insight into whether a given factor influences the delay or time-

shift of a response. The simulations revealed that models with a categorical split

are reliably evaluated for reconstruction accuracy by comparing the systematic

categorical split to a random categorical split. When creating such models, it is

important to keep in mind that the TRF cannot directly model temporal inter-
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actions of a continuous nature. That is, the TRF cannot be used to estimate the

coefficient of the delay of one response as a function of the other. This is a direct

consequence of the time-invariant linear system. Instead, the TRF model will

capture this temporal effect as noise, and potentially a separate response (e.g.,

surprisal).
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Language is one of the core capacities that make us human. The incredible

generative power of human language lets us produce and understand unique

sentences: we build structure from sequences of words in order to understand

what we hear, read, or see. Yet, how we do it remains an intriguing open

question in the fields of linguistics, psychology, cognitive science, and cogni-

tive neuroscience. One strand of research has focused on our ability to build

syntactic structure as the result of learning and using sequential statistics, such

as transitional probabilities between different units (Frank & Bod, 2011; Frank

& Christiansen, 2018; Frost et al., 2019; McCauley & Christiansen, 2019). An-

other strand has modeled the role of syntactic structure as a separate level of

representation that is hierarchically structured and abstracts away from the lex-

ical items itself (Brennan & Hale, 2019; Lo et al., 2022; Martin, 2016, 2020;

Matchin & Hickok, 2020). In this dissertation, I approached our combinatorial

capacity from the perspective that human brains are both probabilistic engines,

and abstract structure-driven computers. Specifically, I investigated how lexical

distributional information, such as surprisal and word frequency, and syntactic

information jointly shape the process of language comprehension.

The studies presented in this dissertation answer various questions surround-

ing this topic, and raise even more new ones. In what follows, I will first provide

a summary of the main findings from each Chapter. After that, I will address

some of the questions that arise when interpreting the findings of Chapters 3,

4 and 5 in light of the theoretical position of Chapter 2 (surprisal values reflect

and capture variation from a wide array of latent linguistic factors) and some of

the findings from the simulations in Chapter 6. Then, I will interpret the find-

ings in two computational models that leverage time in computation to model

language processing, and provide a verbal description of a model that combines

insights from both of these. This model contains a natural way in which lexical

probabilistic information can inform structure building. I close this dissertation

with a summary.
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7.1 Summary of main findings

In Chapter 2, I asked two main questions. Firstly, I asked why lexical surprisal

works well as a predictor for human behavioral and neural data. I argued that

surprisal is a great predictor for data because it is “representationally agnostic”:

it captures variance from all potential sources, including syntactic structure. I

showed this through simulation with a toy grammar and recurrent neural net-

works (RNN), varying both word frequency values and the grammar of the input

language. Secondly, given the answer to the first question, I asked what the re-

sults from studies that used lexical surprisal as a predictor can tell us about lan-

guage processing. I concluded that effects of surprisal themselves do not directly

inform theories of language comprehension because they lack discriminative in-

sight into the latent variables (such as word frequency and syntactic structure)

driving the surprisal values. This is not a problem if the study exclusively aims to

predict data; it becomes a problem in the development of a theory of language

comprehension.

In Chapter 3, I presented results from an analysis project of magnetoen-

cephalography (MEG) data. I investigated whether the presence of syntactic

structure affects how delta- and theta band (<4Hz and 4-10Hz, respectively)

neural activity represents lexical information. I did this by extracting a purely

lexical response from two different conditions: sentences and word lists (scram-

bled versions of the sentences). The TRF approach allowed me to disentangle

signatures of lexical processing from other processes, such as the response to the

acoustics of the stimulus. I modeled the responses to lexical information with

word frequency and compared these responses between the sentence and word

list conditions in sensor space and in source space. The results revealed that re-

sponses to words are affected overwhelmingly in the temporal domain, though

also spatially, by the presence of syntactic structure. The responses to words

were delayed by approximately 350 milliseconds in the word list condition rel-

ative to the sentence condition. Furthermore, the response to word frequency

was more strongly represented in the signal when the word was embedded in a

sentential context. Finally, only in the sentence condition did the lexical infor-

mation reach the left inferior frontal gyrus. Taken together, this suggests that

lexical information is propagated to the left inferior frontal gyrus when the in-

formation is to be integrated with the prior context, and as a consequence lexical

information is represented more robustly in the delta-band (but not theta-band)

neural signal in sentences than in word lists.
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In Chapter 4, I approached the interplay between lexical distributional infor-

mation and syntactic information from another perspective: instead of investi-

gating whether lexical information is processed differently given the availability,

or lack, of syntactic information, here, I investigated whether the probability

of a word in context affects the use of syntactic information. This question is

interesting from two perspectives. The first perspective is language comprehen-

sion as an instantiation of cue-based inference, in which statistical knowledge

and syntactic knowledge both function as cues. According to this perspective,

the statistical probability of a word and grammatical knowledge of the receiver

should both affect the process of comprehension. The second perspective is the

recent view that surprisal from various statistical language models can capture

all sorts of psycholinguistic effects. With this in mind, in this study I investigated

whether lexical surprisal affects the computation of subject-verb agreement in an

online self-paced reading paradigm. The results provided no clear evidence for

an interaction between surprisal and the grammaticality of the target on reading

times. However, the results did indicate that the best model of the data requires

an explicit specification of grammaticality; only lexical surprisal is not enough.

This suggests that while lexical surprisal contains some information about gram-

maticality through the input the model has received (as explained in Chapter 2),

it is not enough as a model of language comprehension in humans. The results

of this study suggested that language comprehension is strongly guided by gram-

maticality.

In Chapter 5, I asked again whether lexical probabilistic information affects

syntactic processing, but this time using the same approach as in Chapter 3. In

this study, I analyzed MEG data from a naturalistic listening paradigm: partic-

ipants were listening to an audiobook in the scanner. We created several an-

notations of the audiobooks, among which a minimalist syntactic parse. Using

TRF-models, I extracted responses to those syntactic annotations for words that

were associated with high- or low surprisal values. As in Chapter 3, I compared

the resulting responses to each other. The results showed that the probability of

a word given the context affects the time-course of structure building: the re-

sponse associated with structure building is delayed by as much as 150 millisec-

onds for words that are unexpected given the context (high surprisal) compared

to words that are relatively more expected given the context (low surprisal).

Chapter 6 presents an overview of several sets of simulations that comple-

mented and informed the analyses presented in Chapters 3 and 5. The goal

of the simulations was to assess whether any effects found in the analyses from
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Chapters 3 and 5 could be attributable to properties of either the data or the

linear model that were unrelated to the theoretical phenomenon under consider-

ation. These simulations help situate the interpretation of the findings presented

in the thesis. In this Chapter, I specifically address the following four questions.

(1) How does the interstimulus interval (ISI) affect the reconstruction accuracy

of the TRF model? The simulations showed that the interstimulus interval itself

does not affect the reconstruction accuracy of the TRF model; rather, interac-

tions between the data length and the proportion of noise do. (2) If a feature

enhances reconstruction accuracy in one frequency band, but not the other, does

that mean that the response is in this frequency band? The presented simula-

tions show that results restricted to specific frequency bands are reliable; this is

a direct consequence of pointwise multiplication. (3) Are different feature val-

ues able to extract the same TRF waveform? Indeed, the simulations suggest

that this possible. (4) Is the TRF suitable to model interactions between fea-

tures in time? Perhaps the most interesting question given its direct relation to

the theoretical implications of Chapter 5, the simulations indicate that the TRF

cannot model continuous interactions between features in time. The only way

to capture time-shifts is by modelling separate conditions.

Considering these findings together, two key aspects of language system in

the process of comprehension emerge. The first aspect suggests that grammati-

cal knowledge strongly influences both behavior and neural dynamics. We can

see this in the large differences between lexical processing in word lists and in

sentences in Chapter 3, the large influence of grammaticality on reading times

in Chapter 4, and the significant contribution of node-count features to TRF

models of the data in Chapter 5. At the same time, the simulations from Chap-

ter 2 suggest that the effects of surprisal capture variability that is driven not by

statistical processing, but by the use of grammatical knowledge. Moreover, as

shown in Chapter 6, besides containing information of other latent variables, a

response to a surprisal predictor in a TRF model may reflect temporal variation

in higher-level computations – such as structure building – that is a result of the

predictability of a word, rather than a separable response to the predictability

of the word itself. These findings raise several questions concerning the nature

of lexical probability and the status of syntactic knowledge. These will be ad-

dressed in section 7.2.

The second aspect indicates that knowledge from the internal language model

- of structure and probabilistic information alike - modulates the temporal dy-

namics of neural correlates of linguistic processes, specifically of lexical process-
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ing and syntactic structure building. The lack of structural context induces a de-

lay of ~350 milliseconds in lexical processing, and high surprisal can introduce

a delay of ~150 milliseconds in the process of structure building. The simula-

tions presented in Chapter 6 showed that the frequently used TRF-models are

not able to capture effects of temporal shifts. This means that the effects of time

shown in Chapters 3 and 5 of this dissertation could only be shown by modeling

the neural signal twice depending on the presentation conditions. Time may be

a crucial factor in the process of language comprehension. How time can be of

use in an account of language comprehension that leverages both distributional

and structural information will be discussed in section 7.3 below.

7.2 Syntax and surprisal – a tension, trade-off, or

collaboration?

Chapters 2, 3, 4 and 5 reveal in different ways that abstract linguistic know-

ledge is important for models of the neural data and behavior, and that lexical

distributional information such as surprisal (and, perhaps, entropy) is not suffi-

cient to model human data; we need predictors that derive from our knowledge

of syntax to adequately model the observed values (Bai et al., 2022; Brennan &

Hale, 2019; Brennan & Martin, 2020; Coopmans, 2023; Coopmans et al., 2022;

Lo et al., 2022; Ten Oever, Carta, et al., 2022; Weissbart & Martin, 2023). This is

directly in line with formal analyses of language (e.g., Chomsky, 1965; Everaert

et al., 2015; Jackendoff, 1972; Rizzi, 1997), which highlight aspects of linguistic

structure that cannot be explained by statistics alone. What, then, is the role of

lexical distributional information in the process of comprehension?

Some of the Chapters in this dissertation may suggest that the effects of lex-

ical distributional information observed in the literature (e.g., Heilbron et al.,

2022; Lowder et al., 2018; Monsalve et al., 2012; Weissbart et al., 2019) are

of correlational nature rather than causal. Chapter 2, for example, showed that

(lexical) surprisal values arise and change as a consequence of various sources of

variation, among which word frequency and the syntactic structure underlying

the string of words. Furthermore, Chapter 6 showed that the effect of surpri-

sal in TRF-models can be the result of time-shifts in a different response, rather

than a separate neural response as frequently found in the literature (Weissbart

et al., 2019). These observations may suggest that effects of sequential statis-

tics are not associated with a separate, potentially domain-general (Conway &

Christiansen, 2005; Daltrozzo & Conway, 2014; Frost, Armstrong, Siegelman, &
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Christiansen, 2015) cognitive process of probabilistic processing. This is not the

case. The literature from statistical learning cited in some parts of this disser-

tation unambiguously demonstrates that humans (and, indeed, other animals)

are sensitive to the statistics of the sequential input in the absence of any latent

variable that could causally underlie the sequential output (Armstrong, Frost, &

Christiansen, 2017; Aslin et al., 1998; Bai et al., 2022; Batterink & Paller, 2017,

2019; Frost et al., 2019; Saffran, Aslin, & Newport, 1996; Saffran, Newport, &

Aslin, 1996; Santolin & Saffran, 2018). What the suggestions from Chapters 2

and 6 do mean, is that we cannot be certain that the effects we observe for sta-

tistical predictors in the models of our data are the result of statistical processing

alone. They may stem from other latent variables that are causal to the observed

statistical patterns – such as our knowledge of the structure of language (Martin,

2016, 2020). This does not apply only to the literature that (fully) relies on these

distributional metrics (e.g., Armeni et al., 2019; Frank & Bod, 2011; Heilbron

et al., 2022, 2019; Monsalve et al., 2012), but also the literature that aims at

disentangling these factors, such as Chapters 3 and 5 of this thesis. Especially

Chapter 5 is subject to these concerns. When one uses surprisal of any language

model as a feature in a model, this feature will capture effects that are driven by

other latent variables. In that sense, it is possible, if not likely, that the delay in

the neural correlate of structure building for low surprisal relative to high sur-

prisal words is not driven exclusively by processes that are statistical in nature.

For example, factors like semantic coherence (the extent to which the meaning

of a word is related to the context) are related to distributional information but

not identical. While words that are semantically coherent with the context likely

have low surprisal values, there are situations in which a word may be proba-

bilistically unexpected, but semantically coherent with the context. Such factors

may play a role in this process, too.1

If distributional estimates such as surprisal reflect variation from many under-

lying variables, what does this interpretation mean for any effects of surprisal,

entropy, transitional probabilities, and other metrics in models of neural data,

such as TRF models? This dissertation does not provide a definite answer to

the question, but on the basis of this work it is likely that these effects are a

sum of several underlying processes. The effects may be partially caused by

temporal modulation of higher-level computations as shown in the simulations

in Chapter 6 and the data of Chapter 5, as a result of distributional informa-

1In fact, semantic coherence has been found to help learners to learn distributional information
(Ouyang, Boroditsky, & Frank, 2017).
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tion informing the process of comprehension as a cue. The effects may also be

caused by predictability as a result of latent linguistic variables, such as know-

ledge of grammar or semantic acceptability, which are captured by surprisal but

not purely statistical in nature in the sense that transitional probabilities in the

statistical learning literature are. And, finally, part of the response may be actual

“pure” probabilistic processing – the process that is tapped into with statistical

learning experiments. Future research should aim to disentangle the individual

contributions of these sources of variance.

In order to distinguish between the representations of probabilistic informa-

tion and the role of other factors, a few open questions remain. For example, how

does the brain represent probabilistic information? Before we can answer this

question, it is necessary to have clear theoretical models of what the brain com-

putes probabilistic information over. After all, for the brain to be sensitive to the

probability of an item, that item must be somehow represented. For language,

it appears likely that most levels of representation receive some probabilistic

treatment (phonemes: Gwilliams, Linzen, et al., 2018; Gwilliams, Poeppel, et

al., 2018; Ten Oever et al., 2024; Tezcan et al., 2023; words: Armeni et al.,

2019; Heilbron et al., 2019; Slaats et al., 2023; Weissbart et al., 2019; phrases

and sentences: Arnon & Snider, 2010; Linzen & Jaeger, 2016). But how does

one separate the representation from its probability? A potential thesis is that

this cannot be done, and that the neural representations themselves are, to some

degree, probabilistic (Martin, 2016, 2020; Norris & McQueen, 2008). However,

the mental representation of language must be discrete at some point during

processing, otherwise there cannot be a stable interpretation of the input (see

also Chapter 2 of this dissertation, and Fodor & Pylyshyn, 1988). With this in

mind, a way to separate a representation from its probability while maintaining

the large role for probabilistic information is to model the relationship between

the cue and the target representation as a probabilistic one, as is done in the

models by Martin (Martin, 2016, 2020).

Given this interpretation of effects of probability, it is difficult to determine

what effects lexical distributional information can have on the process of lan-

guage comprehension broadly, and structure building in particular. There are

several options that may exist simultaneously, of which I will mention two. The

first one, seen in Chapters 3, 4, and 5 of this dissertation, is that probabilis-

tic information can affect the timing of linguistic computations. This will be

discussed in more detail in section 7.3. A second option is that the probability

of a representation – be this a phoneme, a word, or a syntactic category – can
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qualitatively affect the process of inference by disambiguating the input (Hale,

2001, 2006; Jurafsky, 1996) by sensitizing the system for a particular grammat-

ical construction on the basis of probability (e.g., Linzen & Jaeger, 2016). Both

of these effects can result from the use of probability as a cue for the inference

of the structure and meaning of an utterance (Martin, 2016, 2020).

7.3 The role of time in language processing

The results from Chapters 3 and 5 suggest that the timing of neural responses

is strongly dependent on the linguistic information available to the listener. This

finding is the mirror image of studies that show that timing of the input (relative

to the phase of the neural signal) influences what the listener perceives (Kaufeld,

Ravenschlag, et al., 2020; Kösem et al., 2018; Ten Oever & Sack, 2015). Below, I

will discuss the findings from these Chapters from the perspective of two theoret-

ical frameworks that leverage time in language processing and the computation

of structure: STiMCON (Ten Oever & Martin, 2021, 2024), which aims to explain

how isochronous oscillations can track pseudo-rhythmic speech and can explain

some of the effects of time found in this dissertation; and time-based binding

(Martin & Doumas, 2017, 2019a, 2019b), which aims to provide a mechanistic

account of compositionality in a neural system. When combined with STiMCON,

the latter model can explain how both probabilistic and syntactic processing can

shape the process of language comprehension and its read-outs.

7.3.1 STiMCON

The brain displays intrinsic oscillatory activity. This activity arises as a result of

and/or exists as a modulator of the excitability of neural populations (Buzsáki,

2004). At the same time, the dynamics of ongoing oscillations are moderated by

cognitive processes and stimulus processing (Lakatos, Karmos, Mehta, Ulbert,

& Schroeder, 2008). Neural oscillations have been hypothesized to track the

temporal dynamics of speech for optimal processing (Keitel et al., 2018; Keitel,

Ince, Gross, & Kayser, 2017; Lakatos, Gross, & Thut, 2019; Zion Golumbic et al.,

2013). This has been suggested to lie at the root of the phenomenon that the

timing of the stimulus can affect what the listener perceives mentioned above

(Kaufeld, Ravenschlag, et al., 2020; Kösem et al., 2018; Ten Oever & Sack, 2015).

However, while oscillators produce an isochronous rhythm, speech is not purely
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rhythmic, and it is not clear how isochronous oscillations can track input that is

at best pseudo-rhythmic.

Ten Oever and Martin (2021; 2024) show that the temporal dynamics in

speech are dependent on the predictability of words in a sentence and suggest

that these systematic temporal dynamics – which lead to the pseudo-rhythmicity

of speech – in fact carry information to the processor and need not be a prob-

lem for tracking of speech in an isochronous oscillator. They show how this

could work in their computational model STiMCON (Speech Tracking in a Model

Constrained Oscillatory Network; Ten Oever & Martin, 2021). In brief, the

model consists of lexical nodes that have a certain threshold of activation, an

isochronous oscillator at a 4Hz cycle that sensitizes and desensitizes the lexical

nodes, lateral inhibition, and an internal language model (the individually ac-

quired statistical and structural knowledge of language stored in the brain; in the

model represented by simple transitional probabilities) that provides feedback.

The ongoing oscillator determines a sensitive window for the lexical nodes. This

means that the internal language model will sensitize a node that is predictable

from the context, and will lead to an earlier supra-threshold activation of this

particular node – on a less-excitable phase of the oscillation.

The simulations with STiMCON showed the following. Firstly, the presenta-

tion of words that had different predictability values indeed affected the activa-

tion time of the node corresponding to that particular word. In other words, the

precise timing at which nodes reach their threshold of activation is dependent

on the feedback that is coming from the internal language model: the nodes for

words that are more predictable receive more feedback, and are therefore active

earlier, than the nodes for less predictable words Secondly, varying the presen-

tation time for words with different predictability values revealed that words

that have higher levels of feedback (i.e., are more predictable) can be processed

at earlier times relative to the isochronous theta cycle than words that are less

predictable. This is a result of feedback and lateral inhibition. The simulations

revealed that the difference in presentation timing do not directly map to ac-

tivation timing differences: 130 milliseconds of presentation variation leads to

only 19 milliseconds variation in the activation times of the word nodes. This

means that the model provides a mechanism that can map isochronous neural

oscillations onto the pseudo-rhythmic speech signal in a way that leverages the

temporal variation in the input. The simulations indicate that non-isochrony in

the input can lead to isochrony in the brain (i.e., activation of the word nodes
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is more isochronous than the input) when the temporal variation in the input

matches the predictions from the internal language model.

The results presented in this dissertation are in accordance with STiMCON

from various perspectives. For example, in Chapter 3 I showed that the presence

of syntactic information in the input signal leads to an earlier response to words.

Rephrasing this to fit the terminology of STiMCON, we could state that the par-

ticipants’ internal language model (which contains knowledge of the structure

of language as well as probabilistic knowledge) provides feedback through syn-

tactic and compositional semantic knowledge, sensitizing nodes that represent

lexical input earlier than when this feedback is not available. This could be in-

terpreted as an instantiation of the feedback mechanism proposed by Ten Oever

and Martin (2021) at a higher level of abstraction. In a similar vein, Chapter

5 showed that the bottom-up node count response appeared earlier when the

word was predictable from the context (i.e., low surprisal). This can be inter-

preted as nodes that represent grammatical encoding of the input being sensi-

tized and thus active earlier when a word is predictable relative to when it is not

predictable from the context.

These findings are first and foremost in accordance with the authors’ gen-

eral proposal that ‘what’ (i.e., the linguistic content) and ‘when’ (of the input or

the neural response) are not independent, at least not in the delta band. The

presence or absence of syntactic structure modulates the timing of the delta-

band response to words; and, conversely, the predictability of a word modu-

lates the timing of the delta-band neural correlates of structure building. More

specifically, the findings fit with the overall dynamics of activation exhibited by

the STiMCON computational model. Full integration of the present results in

the computational model would require an expansion of the internal language

model, which is kept limited to transitional probability information for purposes

of the simulation, namely with structural knowledge of language. The results

presented in this dissertation suggest that the interaction between time and lin-

guistic knowledge holds at the interface between lexical processing and structure

building in addition to the purely lexical processes modelled in STiMCON.

A few aspects of the results from this dissertation complicate the comparison

between those results and the proposal by Ten Oever and Martin (2021, 2024).

Firstly, although the patterns observed on the TRFs match the timing of node

activation in STiMCON qualitatively, the TRF-analysis used in this dissertation

does not provide direct insight into oscillatory activity. As a consequence, it is

unclear whether the findings from Chapters 3 and 5 reflect phase-resets of on-
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going oscillations or whether we are looking at impulse/evoked responses (or

both). Secondly, the results presented here show temporal variation that is rela-

tively large, with 150 milliseconds variation in the neural correlate of structure

building, and as much as 300 milliseconds variation in the neural response to

word frequency. That is quite a large effect if we suppose that an isochronous os-

cillator acts as a temporal filter; especially taking into consideration the findings

from Ten Oever and Martin (2021), which suggest that the variation in word

onset differences and word durations is in the order of magnitude of less than

100 milliseconds, that gets diminished to only 19 milliseconds variation in the

activation of word nodes (the model for neural activation). If the mechanism

proposed in STiMCON plays a role in the generation of these results, an open

question remains how these temporal variations in the neural data can become

so large.

Despite these aspects that complicate the comparison, the results from Chap-

ters 3 and 5 are in line with the general perspective put forward by Ten Oever

and Martin: namely, that the brain state at the time of stimulus onset influences

processing of the current stimulus – i.e., that the current stimulus is integrated

with the ongoing process – and that this phenomenon is reflected in the timing

of the neural response.

7.3.2 Time-based binding

Departing from the need for a mechanistic account of language processing, (Mar-

tin & Doumas, 2017, 2019a, 2019b) propose a computational model of bind-

ing (i.e., combining elements for further processing) that displays oscillatory

activity as a natural consequence of its organization. A mechanistic account

of language processing must satisfy several computational requirements. One

of them is central to this dissertation: the mechanism must compute discrete,

structured representations from unstructured continuous input (speech) in time.

At the same time, the mechanism must maintain representations of the parts

of the newly formed structure, such as the words, alongside computing and

maintaining the structure itself. Several models abide to one of these crite-

ria, but not both. Recurrent neural networks, for example, create conjunc-

tive representations through what is sometimes called synaptic binding; the net-

work learns by updating the weights between the nodes, with these connec-

tions representing synapses. This type of model is able to learn from unstruc-

tured continuous input based on statistical association, but the representations

of the parts are not maintained. Instead, the model forms conjunctive represen-
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tations from which the individual parts are indistinguishable: the representa-

tion of the word {cake} will not have any relation to the representation of the

sentence {cool professors eat cake} because {cake} is not represented indepen-

dently (Martin & Doumas, 2017), while it is in a compositional representation

({{{{cooladj}}AdjP{professorsn}}NP{{eatv}{{caken}NP}VP}}IP).

Martin and Doumas (Martin & Doumas, 2017, 2019a, 2019b) propose a solu-

tion to this problem: instead of synaptic binding, representations are bound by

time. The authors call this time-based binding. The basic idea is that the system

uses the timing of the firing of nodes to carry information about the relationship

between representations for further processing rather than combining the rep-

resentations to form a conjoined representation. Many proposals that use time

to bind representations rely on synchrony of activation (e.g., Senoussi, Verbeke,

& Verguts, 2022): when two nodes are active at the same time, they are linked

together for further processing. Two nodes that are out of synchrony can stay in-

dependent. Martin and Doumas’ DORA (Discovery of Relations by Analogy), de-

signed to represent predicate relations (Doumas et al., 2008; Martin & Doumas,

2017, 2019a, 2019b), employs a slight asynchrony between representations. In

this way, the model can leverage closeness in time to bind representations, yet

simultaneously maintain independence between levels of representation. DORA

consists of a neural network with several layers of units with lateral inhibition.

These layers are necessary to create hierarchical representations. The units are

grouped in four separate banks; these are groups of units that serve a specific

function, such as the current focus of attention and long-term memory. The

system learns through Hebbian learning and is – crucially – sensitive to time.

Processing of an input sequence works as follows. The model encodes the

elements that are bound in lower levels of a hierarchy directly from the se-

quential input and then uses slower dynamics to accumulate evidence for re-

lations at higher levels of the hierarchy. Units on a higher layer of the net-

work fire when two or more subunits, such as word nodes, fire within a cer-

tain time of each other. This results in a hierarchical representation that rep-

resents input values independently. Specifically, when the model is presented

with {{{cooladj}}AdjP{professorsn}}NP, this will be represented across two layers.

In the bottom layer, the nodes representing the words {cool} and {professor}
will fire at a slight asynchrony, and activate the phrase node in the second layer

– also at an asychrony to the layer below. This asynchrony allows for a separate

representation of the words and the phrase.
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In this model, Martin and Doumas (2017) simulated processing of stimuli from

Ding and colleagues (Ding et al., 2016). This seminal work had shown that the

brain tracks not only words, but also phrases and sentences as indicated by a 2Hz

peak (the frequency of the phrases) and a 1Hz peak (the frequency of the sen-

tences) that were absent from the data when participants were listening to word

lists (Ding et al., 2016). These findings suggested that some cortical populations

(groups of neurons, red.) specifically code for higher-level representations. The

simulations with DORA performed by Martin and Doumas (2017) revealed the

same pattern as found in the data by Ding and colleagues (2016): the activity

from DORA showed the same 1Hz and 2Hz peaks when the data contained sen-

tence structure, but not when the model was presented with word lists. This

oscillatory pattern was created by time-based binding. This pattern was not ob-

tained from an RNN, which does not use time-based binding (but see also: Frank

& Yang, 2018).

In sum, time-based binding to encode relations between units satisfies the crite-

ria for a theory of language processing (discrete, structured representations from

unstructured input; compositionality), and the mechanism is capable of giving

rise to oscillatory dynamics found in response to structured linguistic input. How

does this account relate to the findings from this dissertation? As was mentioned

in section 7.3.1, the results from the MEG analyses presented in Chapters 3 and

5 do not directly speak to oscillatory activity, nor do they provide insight into

the phase of the response to individual words, phrases, or other units. As such,

the findings do not directly fit into the framework presented above. One parallel

appears to be that findings suggest that some asynchrony plays a role in process-

ing, both at the lexical level and at the phrasal level. I will go into this in more

detail in section 7.3.3 below.

7.3.3 BiMCON: How statistics can inform structure building

The presence of asynchrony is where we can make an interesting connection

between time-based binding, STiMCON, and the results from this dissertation:

what drives the asynchrony within a level of representation in time-based bind-

ing, i.e. the asynchrony that determines whether the nodes at the next level of

representation fire? After all, when two lower-level nodes fire with too much

time between them, the next level will not be activated. In other words, if two

lexical representations are active with a large gap in between, the phrase node

will not fire. Could the temporal gap between the firing of two words, and there-

fore the activation of the phrase node, be determined by a word’s probability?
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To build on these thoughts, one could conceive a model that combines time-

based binding with STiMCON, which I will call BiMCON (Binding in a Model

Constrained Oscillatory Network). This model combines the core features of the

two models: the model-constrained oscillatory network from STiMCON, and

time-based binding from DORA. Such a model is interesting because a combina-

tion of STiMCON and time-based binding could provide a mechanistic account

of how statistical information can guide structure building. Namely, if word

nodes are bound for further processing by time through time-based binding,

and a statistical language model determines the time of activation of a word

node, the probability of a word logically plays a role in determining whether

this word and the preceding word are bound. In addition, BiMCON would obey

the computational requirements for a mechanistic account of language process-

ing through time-based binding as described above, and it would explain how

pseudo-rhythmic input can be tracked by ongoing oscillations. There are many

ways in which these two mechanisms could be combined. In what follows, I

will outline one high-level theoretical possibility; further research is required to

determine whether this is the correct way to merge the two proposals and how

this could work in practice.

In BiMCON, the mechanism from STiMCON enables predictability to modu-

late activation time of the word nodes by combining an ongoing oscillator with

feedback from a statistical language model. What kind of information this model

should contain needs to be determined; it could be modelled as a strongly in-

terconnected lexicon (TRACE (McClelland & Elman, 1986), Shortlist A (Norris,

1994), Shortlist B (Norris & McQueen, 2008)), though models that take sequen-

tial probability into account would be preferred, such as a simple n-gram model

or an RNN (as in STiMCON originally). In this model, the probability of a word

given the context plays a role in the temporal spacing of two adjacent words:

the higher the probability of a word, the stronger the feedback, and the earlier

it will be activated relative to the ongoing oscillator. The words are bound for

further processing by the mechanism time-based binding. The interaction be-

tween these two mechanisms (STiMCON and time-based binding, respectively)

will lead to how statistical information can inform structure building: two lexi-

cal nodes that fire close in time (because the second word is predictable) trigger

firing of the phrase node. By contrast, lexical nodes that fire at a larger tempo-

ral distance (when the second word is unpredictable given the first word) will

not trigger firing of the phrase node, as such effectively introducing a boundary

between the two words.
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The results of this dissertation consistently show that the presence of syn-

tactic structure and/or grammatical information is an important determinant

of the neural signal (Chapters 3 and 5) and reading times (Chapter 4). The

combination of STiMCON and time-based binding in BiMCON provides a direct

mechanism to model this strong influence. The simulation of time-based binding

by asynchrony in DORA revealed that the system oscillates similarly to human

brains during the processing of grammatically correct sentences. The oscilla-

tions produced by the network as a result of binding may be routed back into

the system, such that the oscillator used in STiMCON is no longer an external

oscillator, but the rhythm produced by the system itself.

An important issue that requires further research is how the rhythms produced

by time-based binding should influence the activation of lexical features. If the

oscillator were replaced by a read-out of the activity of the system in real-time

(which may seem unrealistic, but is in line with findings showing that neural

entrainment determines what we perceive Kösem et al., 2018), then the high

excitability phase of word nodes might coincide with the moments after binding.

This seems unwanted, because it could mean that words are recognized faster

on phrase boundaries. The exact effects of such an implementation are difficult

to predict without computationally implementing the model, however, because

the result will depend on the relative influence of the feedback from the statis-

tical language model and the oscillator on the excitability of the word nodes.

Another possibility is to sensitize the isochronous oscillator to a high-level read-

out of the activity of the model, for example by introducing a phase-reset of the

isochronous oscillator as a function of the activity of the model (Lakatos, Chen,

O’Connell, Mills, & Schroeder, 2007; Lakatos et al., 2019; Luo & Poeppel, 2007;

Sauseng et al., 2007). The chosen mechanism will inevitably affect the timing

of activation of word nodes, and as such binding later in the cycle. Simulation

of these options is necessary to identify which system will be able to identify the

correct relations between stimuli, as well as display activity that is reminiscent

of the patterns observed in the literature and in this dissertation.

It is conceivable that a computational implementation of BiMCON can simu-

late the findings presented in Chapters 3 and 5 by looking at the activation of

the word- and phrase nodes. The later activation of word nodes when structure

is fully absent relative to when it is present shown in Chapter 3 will be a direct

consequence of the “grammatical” oscillator that sensitizes the word nodes (a

read-out of the binding system); in the absence of structure, this oscillator will

not contain the peaks related to phrase-building, and as a consequence, sen-
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sitize the word nodes to a lesser extent. The later activation of phrase nodes

when words have high surprisal relative to when they have low surprisal shown

in Chapter 5 is a direct consequence of the lexical probability influencing the

process of binding.2

In sum, BiMCON combines the core features of STiMCON (Ten Oever & Mar-

tin, 2021, 2024) and time-based binding (Martin & Doumas, 2017, 2019a, 2019b)

to create a model of structure building that naturally allows statistical informa-

tion to inform the process of structure building by leveraging time at multiple

levels: the time of the input relative to the ongoing oscillator; the feedback from

the statistical language model influences the activation time of a word node;

and the time of activation of word nodes relative to the previous word affects

the process of binding.

7.4 Conclusion

In this dissertation, I investigated how lexical distributional information, such as

surprisal and word frequency, and syntactic information jointly shape the pro-

cess of language comprehension. The studies have highlighted two key aspects

of the language system during comprehension. Firstly, grammatical knowledge

strongly determines both behavior and neural dynamics. Secondly, the influence

of lexical distributional information and syntactic information alike is visible on

the neural read-out as an effect of time. When the current linguistic represen-

tation does not fit well with the current state of the processor, which is defined

by distributional and syntactic information of the internal language model, the

neural response is delayed. These findings suggest that time is crucial in the

combination of these two types of information. I proposed the model BiMCON

(Binding in a Model Constrained Oscillatory Network), a combination of pre-

vious models STiMCON and time-based binding. This model leverages time to

describe how lexical distributional information can affect the process of struc-

tural inference, and how both lexical distributional information and syntactic

structure building can shape the neural readout.

2A problem is that this likely predicts that lexical processing is affected by the probability of the
word, which was not found in Chapter 5.



References

Acuña-Fariña, J. C., Meseguer, E., & Carreiras, M. (2014). Gender and number

agreement in comprehension in spanish. Lingua, 143, 108–128. doi: 10

.1016/j.lingua.2014.01.013

Amenta, S., Hasenäcker, J., Crepaldi, D., & Marelli, M. (2023). Prediction at

the intersection of sentence context and word form: Evidence from eye-

movements and self-paced reading. Psychonomic Bulletin & Review, 30(3),

1081–1092. doi: 10.3758/s13423-022-02223-9

Armeni, K., Willems, R. M., van den Bosch, A., & Schoffelen, J. M. (2019).

Frequency-specific brain dynamics related to prediction during language

comprehension. NeuroImage, 198(May), 283–295. doi: 10.1016/j
.neuroimage.2019.04.083

Armstrong, B. C., Frost, R., & Christiansen, M. H. (2017). The long road

of statistical learning research: past, present and future. Philosophical

transactions of the Royal Society of London. Series B, Biological sciences,

372(1711). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/
27872366 doi: 10.1098/rstb.2016.0047

Arnon, I., & Snider, N. (2010). More than words: Frequency effects for multi-

word phrases. Journal of Memory and Language, 62(1), 67–82. doi: 10

.1016/j.jml.2009.09.005

Aslin, R. N., & Newport, E. L. (2012). Statistical learning: From acquiring

specific items to forming general rules. Current Directions in Psychological

Science, 21(3), 170–176. doi: 10.1177/0963721412436806

Aslin, R. N., & Newport, E. L. (2014). Distributional language learning: Mecha-

nisms and models of category formation. Language Learning, 64(SUPPL.2),

86–105. doi: 10.1111/lang.12074

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional

probability statistics by 8-month-old infants. Psychological Science, 9(4),

321–324. doi: 10.1111/1467-9280.00063

Aurnhammer, C., & Frank, S. L. (2019). Evaluating information-theoretic mea-

sures of word prediction in naturalistic sentence reading. Neuropsycholo-

gia, 134, 107198. doi: 10.1016/j.neuropsychologia.2019.107198

249

http://www.ncbi.nlm.nih.gov/pubmed/27872366
http://www.ncbi.nlm.nih.gov/pubmed/27872366


Baayen, R. H., & Milin, P. (2010). Analyzing reaction times. International Journal

of Psychological Research, 3(2), 12–28.

Baese-Berk, M. M., Dilley, L. C., Henry, M. J., Vinke, L., & Banzina, E. (2019).

Not just a function of function words: Distal speech rate influences percep-

tion of prosodically weak syllables. Attention, Perception, & Psychophysics,

81(2), 571–589. doi: 10.3758/s13414-018-1626-4

Bai, F. (2022). Neural representation of speech segmentation and syntac-

tic structure discrimination (Doctoral dissertation). Retrieved from

https://pure.mpg.de/pubman/faces/ViewItemOverviewPage
.jsp?itemId=item_3429429_3

Bai, F., Meyer, A. S., & Martin, A. E. (2022). Neural dynamics differentially en-

code phrases and sentences during spoken language comprehension. PLOS

Biology, 20(7), e3001713. doi: 10.1371/journal.pbio.3001713

Balling, L. W., & Baayen, R. H. (2012). Probability and surprisal in auditory

comprehension of morphologically complex words. Cognition, 125(1), 80–

106. doi: 10.1016/j.cognition.2012.06.003

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure

for confirmatory hypothesis testing: Keep it maximal. Journal of Memory

and Language, 68(3), 255–278. doi: 10.1016/j.jml.2012.11.001

Barton, J. J. S., Hanif, H. M., Eklinder Björnström, L., & Hills, C. (2014). The

word-length effect in reading: A review. Cognitive Neuropsychology, 31(5-

6), 378–412. doi: 10.1080/02643294.2014.895314

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-

effects models using lme4. Journal of Statistical Software, 67(1), 1–48.

doi: 10.18637/jss.v067.i01

Batterink, L. J., & Paller, K. A. (2017). Online neural monitoring of statistical

learning. Cortex, 90, 31–45. doi: 10.1016/j.cortex.2017.02.004

Batterink, L. J., & Paller, K. A. (2019). Statistical learning of speech regularities

can occur outside the focus of attention. Cortex, 115, 56–71. doi: 10.1016/
j.cortex.2019.01.013

Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory.

Trends in Cognitive Sciences, 15(11), 527–536. doi: 10.1016/J.TICS.2011

.10.001

Blanco-Elorrieta, E., Ding, N., Pylkkänen, L., & Poeppel, D. (2020). Under-

standing requires tracking: Noise and knowledge interact in bilingual com-

prehension. Journal of Cognitive Neuroscience, 32(10), 1975–1983. doi:

10.1162/jocn_a_01610

250

https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3429429_3
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3429429_3


Blank, I., Balewski, Z., Mahowald, K., & Fedorenko, E. (2016). Syntactic process-

ing is distributed across the language system. NeuroImage, 127, 307–323.

doi: 10.1016/j.neuroimage.2015.11.069

Bock, K., & Eberhard, K. M. (1993). Meaning, sound and syntax in english

number agreement. Language and Cognitive Processes, 8(1), 57–99. doi:

10.1080/01690969308406949

Bock, K., Eberhard, K. M., Cutting, J. C., Meyer, A. S., & Schriefers, H. (2001).

Some attractions of verb agreement. Cognitive Psychology, 43(2), 83–128.

doi: 10.1006/cogp.2001.0753

Bock, K., & Miller, C. A. (1991). Broken agreement. Cognitive Psychology, 23(1),

45–93. doi: 10.1016/0010-0285(91)90003-7

Boersma, P., & Weenink, D. (2018). Praat: doing phonetics by computer. Retrieved

from http://www.praat.org/
Boothroyd, A., & Nittrouer, S. (1988). Mathematical treatment of context ef-

fects in phoneme and word recognition. Journal of the Acoustical Society

of America, 84(1), 101–114. doi: 10.1121/1.396976

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–

436.

Brehm, L., Hussey, E., & Christianson, K. (2020). The role of word frequency

and morpho-orthography in agreement processing. Language, Cognition

and Neuroscience, 35(1), 58–77. doi: 10.1080/23273798.2019.1631456

Brennan, J. R., & Hale, J. T. (2019). Hierarchical structure guides rapid linguistic

predictions during naturalistic listening. PLoS ONE, 14(1). doi: 10.1371/
journal.pone.0207741

Brennan, J. R., & Martin, A. E. (2020). Phase synchronization varies systemat-

ically with linguistic structure composition. Philosophical Transactions of

the Royal Society B, 375(1791), 77–83. doi: 10.1098/RSTB.2019.0305

Brennan, J. R., Stabler, E. P., Van Wagenen, S. E., Luh, W. M., & Hale, J. T.

(2016). Abstract linguistic structure correlates with temporal activity dur-

ing naturalistic comprehension. Brain and Language, 157-158, 81–94. doi:

10.1016/j.bandl.2016.04.008

Brodbeck, C., Das, P., Gillis, M., Kulasingham, J. P., Bhattasali, S., Gaston, P.,

. . . Simon, J. Z. (2023). Eelbrain, a python toolkit for time-continuous

analysis with temporal response functions. Elife, 12, e85012.

Brodbeck, C., Hong, L. E., & Simon, J. Z. (2018). Rapid transformation from au-

ditory to linguistic representations of continuous speech. Current Biology,

28(24), 3976–3983.e5. doi: 10.1016/j.cub.2018.10.042

251

http://www.praat.org/


Brodbeck, C., Presacco, A., & Simon, J. Z. (2018). Neural source dynamics of

brain responses to continuous stimuli: Speech processing from acoustics to

comprehension. NeuroImage, 172, 162–174. doi: 10.1016/j.neuroimage

.2018.01.042

Brodbeck, C., & Simon, J. Z. (2020). Continuous speech processing. Current

Opinion in Physiology, 18, 25–31. doi: 10.1016/j.cophys.2020.07.014

Broderick, M. P., Anderson, A. J., Di Liberto, G. M., Crosse, M. J., & Lalor, E. C.

(2018). Electrophysiological correlates of semantic dissimilarity reflect the

comprehension of natural, narrative speech. Current Biology, 28(5), 803–

809.e3. doi: 10.1016/j.cub.2018.01.080

Brothers, T., & Kuperberg, G. R. (2021). Word predictability effects are lin-

ear, not logarithmic: Implications for probabilistic models of sentence

comprehension. Journal of Memory and Language, 116, 104174. doi:

10.1016/j.jml.2020.104174

Brouwer, H., Delogu, F., Venhuizen, N. J., & Crocker, M. W. (2021). Neu-

robehavioral correlates of surprisal in language comprehension: A neu-

rocomputational model. Frontiers in Psychology, 12, 110. doi: 10.3389/
FPSYG.2021.615538/BIBTEX

Brysbaert, M., Mandera, P., & Keuleers, E. (2018). The word frequency effect in

word processing: An updated review. Current Directions in Psychological

Science, 27(1), 45–50. doi: 10.1177/0963721417727521

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., . . .

others (2013). Api design for machine learning software: experiences

from the scikit-learn project. arXiv preprint arXiv:1309.0238.

Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neu-

roscience, 7(5), 446–451. doi: 10.1038/nn1233

Campanelli, L., Dyke, J. V., & Marton, K. (2018). The modulatory effect of expec-

tations on memory retrieval during sentence comprehension. Publications

and Research. Retrieved from https://academicworks.cuny.edu/
gc_pubs/440

Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., . . .

Raffel, C. (2021). Extracting training data from large language models.

Proceedings of the 30th USENIX Security Symposium, 2633–2650.

Carnie, A. (2013). Syntax: a generative introduction (3, Ed.). Oxford: Wiley-

Blackwell.

Chen, J., & ten Cate, C. (2015). Zebra finches can use positional and transitional

cues to distinguish vocal element strings. Behavioural Processes, 117, 29–

252

https://academicworks.cuny.edu/gc_pubs/440
https://academicworks.cuny.edu/gc_pubs/440


34. doi: 10.1016/j.beproc.2014.09.004

Chomsky, N. (1956). Three models for the description of language. IRE Trans-

actions on Information Theory, 2(3), 113–124. doi: 10.1109/TIT.1956

.1056813

Chomsky, N. (1965). Aspects of the theory of syntax (Vol. 11). MIT Press.

Christiansen, M. H., & Chater, N. (2015). The now-or-never bottleneck: A funda-

mental constraint on language. Behavioral and Brain Sciences, 39(2016).

doi: 10.1017/S0140525X1500031X

Cinque, G. (2004). Issues in adverbial syntax. Lingua, 114(6), 683–710.

Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical

learning of tactile, visual, and auditory sequences. Journal of Experimental

Psychology: Learning Memory and Cognition, 31(1), 24–39. doi: 10.1037/
0278-7393.31.1.24

Conwell, E., & Demuth, K. (2007). Early syntactic productivity: Evidence from

dative shift. Cognition, 103(2), 163–179. doi: 10.1016/j.cognition.2006

.03.003

Coopmans, C. W. (2023). Triangles in the brain: The role of hierarchi-

cal structure in language use (Doctoral dissertation). Retrieved from

https://pure.mpg.de/pubman/faces/ViewItemOverviewPage
.jsp?itemId=item_3498010_6

Coopmans, C. W., de Hoop, H., Hagoort, P., & Martin, A. E. (2022). Effects of

structure and meaning on cortical tracking of linguistic units in naturalistic

speech. Neurobiology of Language, 3(3), 386–412. doi: 10.1162/nol_a

_00070

Coopmans, C. W., de Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E. (2021).

Structure-(in)dependent interpretation of phrases in humans and lstms.

Proceedings of the Society for Computation in Linguistics (SCiL), 459–463.

Coopmans, C. W., Kaushik, K., & Martin, A. E. (2023). Hierarchical structure in

language and action: A formal comparison. Psychological Review, 130(4),

935–952. doi: 10.1037/rev0000429

Creemers, A., & Meyer, A. S. (2022). The processing of ambiguous pronom-

inal reference is sensitive to depth of processing. Glossa Psycholinguis-

tics, 1(1). Retrieved from https://escholarship.org/uc/item/
39k99073 doi: 10.5070/G601166

Crosse, M. J., Di Liberto, G. M., Bednar, A., & Lalor, E. C. (2016). The

multivariate temporal response function (mtrf) toolbox: A matlab tool-

box for relating neural signals to continuous stimuli. Frontiers in Human

253

https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3498010_6
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3498010_6
https://escholarship.org/uc/item/39k99073
https://escholarship.org/uc/item/39k99073


Neuroscience, 10. Retrieved from https://www.frontiersin.org/
articles/10.3389/fnhum.2016.00604

Culbertson, J., & Adger, D. (2014). Language learners privilege structured

meaning over surface frequency. Proceedings of the National Academy

of Sciences of the United States of America, 111(16), 5842–5847. doi:

10.1073/pnas.1320525111

Daltrozzo, J., & Conway, C. M. (2014). Neurocognitive mechanisms of statistical-

sequential learning: what do event-related potentials tell us? Frontiers in

Human Neuroscience, 8, 437. doi: 10.3389/fnhum.2014.00437

Deacon, T. W. (1997). What makes the human brain different? Annual Review of

Anthropology, 26(1), 337–357. doi: 10.1146/annurev.anthro.26.1.337

de Vries, W., & Nissim, M. (2021). As good as new. how to successfully recy-

cle english gpt-2 to make models for other languages. In (pp. 836–846).

Retrieved from http://arxiv.org/abs/2012.05628 doi: 10.18653/
v1/2021.findings-acl.74

Di Liberto, G. M., O’Sullivan, J. A., & Lalor, E. C. (2015). Low-frequency cortical

entrainment to speech reflects phoneme-level processing. Current Biology,

25(19), 2457–2465. doi: 10.1016/j.cub.2015.08.030

Dillon, B., Mishler, A., Sloggett, S., & Phillips, C. (2013). Contrasting in-

trusion profiles for agreement and anaphora: Experimental and model-

ing evidence. Journal of Memory and Language, 69(2), 85–103. doi:

10.1016/j.jml.2013.04.003

Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical track-

ing of hierarchical linguistic structures in connected speech. Nature Neu-

roscience, 19(1), 158–164. doi: 10.1038/nn.4186

Ding, N., Pan, X., Luo, C., Su, N., Zhang, W., & Zhang, J. (2018). Attention

is required for knowledge-based sequential grouping: Insights from the

integration of syllables into words. Journal of Neuroscience, 38(5), 1178–

1188. doi: 10.1523/JNEUROSCI.2606-17.2017

Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic land-

marks drive delta-theta oscillations to enable speech comprehension by

facilitating perceptual parsing. NeuroImage, 85, 761–768. doi: 10.1016/
j.neuroimage.2013.06.035

Donhauser, P. W., & Baillet, S. (2020). Two distinct neural timescales for pre-

dictive speech processing. Neuron, 105(2), 385–393.e9. doi: 10.1016/
J.NEURON.2019.10.019

Doumas, L. A. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of

254

https://www.frontiersin.org/articles/10.3389/fnhum.2016.00604
https://www.frontiersin.org/articles/10.3389/fnhum.2016.00604
http://arxiv.org/abs/2012.05628


the discovery and predication of relational concepts. Psychological Review,

115(1), 1–43. doi: 10.1037/0033-295X.115.1.1

Drennan, D. P., & Lalor, E. C. (2019). Cortical tracking of complex

sound envelopes: Modeling the changes in response with intensity.

eNeuro, 6(3). Retrieved from https://www.eneuro.org/content/6/
3/ENEURO.0082-19.2019 doi: 10.1523/ENEURO.0082-19.2019

Eberhard, K. M. (1997). The marked effect of number on subject–verb agree-

ment. Journal of Memory and Language, 36(2), 147–164. doi: 10.1006/
jmla.1996.2484

Eberhard, K. M., Cutting, J. C., & Bock, K. (2005). Making syntax of sense:

Number agreement in sentence production. Psychological Review, 112(3),

531–559. doi: 10.1037/0033-295X.112.3.531

Elman, J. L. (1991). Distributed representations, simple recurrent networks, and

grammatical structure. Machine Learning, 7(2), 195–225. doi: 10.1007/
BF00114844

Elman, J. L. (1993). Learning and development in neural networks: The impor-

tance of starting small. Cognition, 48(1), 71–99.

Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept.

Trends in Cognitive Sciences, 8(4), 162–169. doi: 10.1016/j.tics.2004.02

.002

Etard, O., & Reichenbach, T. (2019). Neural speech tracking in the theta and in

the delta frequency band differentially encode clarity and comprehension

of speech in noise. The Journal of neuroscience : the official journal of the

Society for Neuroscience, 39(29), 5750–5759. doi: 10.1523/JNEUROSCI

.1828-18.2019

Everaert, M. B. H., Huybregts, M. A. C., Chomsky, N., Berwick, R. C., & Bolhuis,

J. J. (2015). Structures, not strings: Linguistics as part of the cognitive

sciences. Trends in Cognitive Sciences, 19(12), 729–743. doi: 10.1016/
j.tics.2015.09.008

Fine, A. B., Jaeger, T. F., Farmer, T. A., & Qian, T. (2013). Rapid expectation

adaptation during syntactic comprehension. PLOS ONE, 8(10), e77661.

doi: 10.1371/journal.pone.0077661

Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture:

A critical analysis. Cognition, 28(1-2), 3–71. doi: 10.1016/0010-0277(88)

90031-5

Franck, J., Lassi, G., Frauenfelder, U. H., & Rizzi, L. (2006). Agreement and

movement: A syntactic analysis of attraction. Cognition, 101(1), 173–216.

255

https://www.eneuro.org/content/6/3/ENEURO.0082-19.2019
https://www.eneuro.org/content/6/3/ENEURO.0082-19.2019


doi: 10.1016/j.cognition.2005.10.003

Frank, S. L. (2013). Uncertainty reduction as a measure of cognitive load in

sentence comprehension. Topics in Cognitive Science, 5, 475–494. doi:

10.1111/tops.12025

Frank, S. L., & Bod, R. (2011). Insensitivity of the human sentence-processing

system to hierarchical structure. Psychological Science, 22(6), 829–834.

doi: 10.1177/0956797611409589

Frank, S. L., Bod, R., & Christiansen, M. H. (2012). How hierarchical is language

use? Proceedings of the Royal Society B: Biological Sciences, 279(1747),

4522–4531. doi: 10.1098/rspb.2012.1741

Frank, S. L., & Christiansen, M. H. (2018). Hierarchical and se-

quential processing of language. Language, Cognition and Neu-

roscience. Retrieved from http://www.tandfonline.com/
action/journalInformation?journalCode=plcp21 doi:

10.1080/23273798.2018.1424347

Frank, S. L., & Yang, J. (2018). Lexical representation explains cortical entrain-

ment during speech comprehension. PLOS ONE, 13(5), e0197304. doi:

10.1371/journal.pone.0197304

Friederici, A. D. (2011). The brain basis of language processing: From struc-

ture to function. Physiological Reviews, 91(4), 1357–1392. doi: 10.1152/
physrev.00006.2011

Friederici, A. D. (2012). The cortical language circuit: From auditory perception

to sentence comprehension. Trends in Cognitive Sciences, 16(5), 262–268.

doi: 10.1016/j.tics.2012.04.001

Friederici, A. D. (2015). Chapter 10 - white-matter pathways for speech and

language processing. In M. J. Aminoff, F. Boller, & D. F. Swaab (Eds.),

Handbook of clinical neurology (Vol. 129, pp. 177–186). Elsevier. Re-

trieved from https://www.sciencedirect.com/science/article/
pii/B978044462630100010X

Friston, K. (2012). The history of the future of the bayesian brain. NeuroImage,

62(2), 1230–1233. doi: 10.1016/j.neuroimage.2011.10.004

Frost, R., Armstrong, B. C., & Christiansen, M. H. (2019). Statistical learn-

ing research: A critical review and possible new directions. Psychological

Bulletin, 1–87. doi: 10.1037/bul0000210

Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Do-

main generality vs. modality specificity: The paradox of statistical learning.

Trends Cogn Sci, 19(3). doi: 10.1016/j.tics.2014.12.010

256

http://www.tandfonline.com/action/journalInformation?journalCode=plcp21
http://www.tandfonline.com/action/journalInformation?journalCode=plcp21
https://www.sciencedirect.com/science/article/pii/B978044462630100010X
https://www.sciencedirect.com/science/article/pii/B978044462630100010X


Futrell, R., Gibson, E., & Levy, R. P. (2020). Lossy-context surprisal: An

information-theoretic model of memory effects in sentence processing.

Cognitive Science, 44(3), e12814. doi: 10.1111/cogs.12814

Gertner, Y., Fisher, C., & Eisengart, J. (2006). Learning words and rules: Abstract

knowledge of word order in early sentence comprehension. Psychological

Science, 17(8), 684–691. doi: 10.1111/j.1467-9280.2006.01767.x

Gervain, J. (2014). Early rule-learning ability and language acquisition. In

F. Lowenthal & L. Lefebvre (Eds.), Language and recursion (pp. 89–99).

New York, NY: Springer. Retrieved from https://doi.org/10.1007/
978-1-4614-9414-0_7

Ghitza, O. (2013). The theta-syllable: A unit of speech information defined by

cortical function. Frontiers in Psychology, 4(MAR), 1–5. doi: 10.3389/
fpsyg.2013.00138

Ghitza, O., Giraud, A. L., & Poeppel, D. (2012). Neuronal oscillations and speech

perception: Critical-band temporal envelopes are the essence. Frontiers in

Human Neuroscience, 6(DEC), 4–7. doi: 10.3389/fnhum.2012.00340

Giglio, L., Ostarek, M., Sharoh, D., & Hagoort, P. (2024). Diverging neu-

ral dynamics for syntactic structure building in naturalistic speaking and

listening. Proceedings of the National Academy of Sciences, 121(11),

e2310766121.

Gillis, M., Vanthornhout, J., Simon, J. Z., Francart, T., & Brodbeck, C. (2021).

Neural markers of speech comprehension: Measuring eeg tracking of lin-

guistic speech representations, controlling the speech acoustics. The Jour-

nal of neuroscience : the official journal of the Society for Neuroscience,

41(50), 10316–10329. doi: 10.1523/JNEUROSCI.0812-21.2021

Goodkind, A., & Bicknell, K. (2021). Local word statistics affect reading times

independently of surprisal. arXiv preprint arXiv:2103.04469. Retrieved

from http://arxiv.org/abs/2103.04469 doi: 10.48550/arXiv.2103

.04469

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,

C., . . . Hämäläinen, M. S. (2013). Meg and eeg data analysis with mne-

python. Frontiers in Neuroscience, 7(267), 1–13. doi: 10.3389/fnins.2013

.00267

Greco, M., Cometa, A., Artoni, F., Frank, R., & Moro, A. (2023). False perspec-

tives on human language: Why statistics needs linguistics. Frontiers in

Language Sciences, 2. Retrieved from https://www.frontiersin.org/
articles/10.3389/flang.2023.1178932

257

https://doi.org/10.1007/978-1-4614-9414-0_7
https://doi.org/10.1007/978-1-4614-9414-0_7
http://arxiv.org/abs/2103.04469
https://www.frontiersin.org/articles/10.3389/flang.2023.1178932
https://www.frontiersin.org/articles/10.3389/flang.2023.1178932


Grodzinsky, Y., Pieperhoff, P., & Thompson, C. (2021). Stable brain loci for

the processing of complex syntax: A review of the current neuroimaging

evidence. Cortex, 142, 252–271. doi: 10.1016/j.cortex.2021.06.003

Grosjean, F. (1980). Spoken word recognition processes and the gating

paradigm. Perception & Psychophysics, 28(4), 267–283. doi: 10.3758/
BF03204386

Grosjean, F., & Itzler, J. (1984). Can semantic constraint reduce the role of word

frequency during spoken-word recognition? Bulletin of the Psychonomic

Society, 22(3), 180–182.

Guest, O., & Martin, A. E. (2021). How computational modeling can force the-

ory building in psychological science. Perspectives on Psychological Science,

16(4), 789–802. doi: doi.org/10.1177/1745691620970585

Guest, O., & Martin, A. E. (2023). On logical inference over brains, behaviour,

and artificial neural networks. Computational brain & Behavior. doi: 10

.31234/osf.io/tbmcg

Gwilliams, L., Linzen, T., Poeppel, D., & Marantz, A. (2018). In spoken word

recognition, the future predicts the past. Journal of Neuroscience, 38(35),

7585–7599. doi: 10.1523/JNEUROSCI.0065-18.2018

Gwilliams, L., Poeppel, D., Marantz, A., & Linzen, T. (2018). Phonological

(un)certainty weights lexical activation. In Proceedings of the 8th workshop

on cognitive modeling and computational linguistics (cmcl 2018) (pp. 29–

34). doi: 10.18653/v1/w18-0104

Gómez, R. L. (2002). Variability and detection of invariant structure. Psycholog-

ical Science, 13(5), 431–436. doi: 10.1111/1467-9280.00476

Hagoort, P. (2013). Muc (memory, unification, control) and beyond. Frontiers

in Psychology, 4(JUL). doi: 10.3389/FPSYG.2013.00416

Hagoort, P. (2015). Muc (memory, unification, control): A model on the neu-

robiology of language beyond single word processing. In Neurobiology of

language (pp. 339–347). Elsevier Inc.

Hagoort, P., Brown, C., & Groothusen, J. (1993). The syntactic positive shift

(sps) as an erp measure of syntactic processing. Language and Cognitive

Processes, 8(4), 439–483. doi: 10.1080/01690969308407585

Hale, J. T. (2001). A probabilistic earley parser as a psycholinguistic model..

Retrieved from https://aclanthology.org/N01-1021
Hale, J. T. (2006). Uncertainty about the rest of the sentence. Cognitive Science,

30, 643–672. doi: 10.1207/s15516709cog0000_64

Hale, J. T. (2016). Information-theoretical complexity metrics. Language and

258

https://aclanthology.org/N01-1021


Linguistics Compass, 10(9), 397–412. doi: 10.1111/lnc3.12196

Hale, J. T., Campanelli, L., Li, J., Bhattasali, S., Pallier, C., & Brennan, J. R.

(2022). Neurocomputational models of language processing. Annual

Review of Linguistics, 8(1), 427–446. doi: 10.1146/annurev-linguistics

-051421-020803

Harnad, S. (2003). Categorical perception. Nature Publishing Group: Macmil-

lan. Retrieved from https://eprints.soton.ac.uk/257719/
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,

Cournapeau, D., . . . Oliphant, T. E. (2020). Array programming with

numpy. Nature, 585(7825), 357–362. doi: 10.1038/s41586-020-2649-2

Hasson, U. (2017). The neurobiology of uncertainty: Implications for statistical

learning. Phil. Trans. R. Soc. B, 372(1711).

Hasson, U., & Tremblay, P. (2015). Neurobiology of statistical information pro-

cessing in the auditory domain. Elsevier Inc. Retrieved from http://
dx.doi.org/10.1016/B978-0-12-407794-2.00043-2

Heilbron, M., Armeni, K., Schoffelen, J.-M., Hagoort, P., & de Lange, F. P.

(2022). A hierarchy of linguistic predictions during natural language com-

prehension. Proceedings of the National Academy of Sciences, 119(32),

e2201968119. doi: 10.1073/pnas.2201968119

Heilbron, M., Ehinger, B., Hagoort, P., & de Lange, F. P. (2019). Tracking nat-

uralistic linguistic predictions with deep neural language models.. Re-

trieved from http://arxiv.org/abs/1909.04400 doi: 10.32470/
CCN.2019.1096-0

Hofmeister, P. (2011). Representational complexity and memory retrieval in

language comprehension. Language and Cognitive Processes, 26(3), 376–

405. doi: 10.1080/01690965.2010.492642

Huettig, F., & Mani, N. (2016). Is prediction necessary to understand language?

probably not. Language, Cognition and Neuroscience, 31(1), 19–31. doi:

10.1080/23273798.2015.1072223

Huizeling, E., Arana, S., Hagoort, P., & Schoffelen, J. M. (2022). Lexical fre-

quency and sentence context influence the brain’s response to single words.

Neurobiology of Language, 3(1), 149–179. doi: 10.1162/NOL_A_00054

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in

Science & Engineering, 9(3), 90–95. doi: 10.1109/MCSE.2007.55

Isbilen, E. S., Frost, R. L. A., Monaghan, P., & Christiansen, M. H. (2022). Statisti-

cally based chunking of nonadjacent dependencies. Journal of Experimen-

tal Psychology: General. Retrieved from https://psycnet.apa.org/

259

https://eprints.soton.ac.uk/257719/
http://dx.doi.org/10.1016/B978-0-12-407794-2.00043-2
http://dx.doi.org/10.1016/B978-0-12-407794-2.00043-2
http://arxiv.org/abs/1909.04400
https://psycnet.apa.org/psycarticles/2022-55323-001
https://psycnet.apa.org/psycarticles/2022-55323-001


psycarticles/2022-55323-001 doi: 10.1037/XGE0001207

Jackendoff, R. S. (1972). Semantic interpretation in generative grammar. The

MIT Press. Retrieved from https://eric.ed.gov/?id=ED082548
Jafarian, M., & De Persis, C. (2015). Formation control using binary information.

Automatica, 53, 125–135. doi: 10.1016/j.automatica.2014.12.016

Johnson, R. L., & Rayner, K. (2007). Top-down and bottom-up effects in pure

alexia: Evidence from eye movements. Neuropsychologia, 45(10), 2246–

2257. doi: 10.1016/j.neuropsychologia.2007.02.026

Jurafsky, D. (1996). A probabilistic model of lexical and syntactic access

and disambiguation. Cognitive Science, 20(2), 137–194. doi: 10.1207/
s15516709cog2002_1

Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations

to comprehension. Psychological Review, 87(4), 329–354. doi: 10.1037/
0033-295X.87.4.329

Kapteijns, B., & Hintz, F. (2021). Comparing predictors of sentence self-paced

reading times: Syntactic complexity versus transitional probability metrics.

PLOS ONE, 16(7), e0254546. doi: 10.1371/journal.pone.0254546

Katz, L., Boyce, S., Goldstein, L., & Lukatela, G. (1987). Grammatical informa-

tion effects in auditory word recognition. Cognition, 25(3), 235–263. doi:

10.1016/S0010-0277(87)80005-7

Kaufeld, G., Bosker, H. R., Ten Oever, S., Alday, P. M., Meyer, A. S., & Martin, A. E.

(2020). Linguistic structure and meaning organize neural oscillations into

a content-specific hierarchy. Journal of Neuroscience, 40(49), 9467–9475.

doi: 10.1523/JNEUROSCI.0302-20.2020

Kaufeld, G., Ravenschlag, A., Meyer, A. S., Martin, A. E., & Bosker, H. R. (2020).

Knowledge-based and signal-based cues are weighted flexibly during spo-

ken language comprehension. Journal of Experimental Psychology: Learn-

ing, Memory, and Cognition, 46(3), 549–562. doi: 10.1037/xlm0000744

Keitel, A., Gross, J., & Kayser, C. (2018). Perceptually relevant speech track-

ing in auditory and motor cortex reflects distinct linguistic features. PLOS

Biology, 16(3), e2004473. doi: 10.1371/JOURNAL.PBIO.2004473

Keitel, A., Ince, R. A., Gross, J., & Kayser, C. (2017). Auditory cortical delta-

entrainment interacts with oscillatory power in multiple fronto-parietal

networks. NeuroImage, 147, 32–42. doi: 10.1016/j.neuroimage.2016.11

.062

Keuleers, E., Brysbaert, M., & New, B. (2010). Subtlex-nl: A new measure for

dutch word frequency based on film subtitles. Behavior Research Methods

260

https://psycnet.apa.org/psycarticles/2022-55323-001
https://psycnet.apa.org/psycarticles/2022-55323-001
https://psycnet.apa.org/psycarticles/2022-55323-001
https://psycnet.apa.org/psycarticles/2022-55323-001
https://psycnet.apa.org/psycarticles/2022-55323-001
https://eric.ed.gov/?id=ED082548


2010 42:3, 42(3), 643–650. doi: 10.3758/BRM.42.3.643

Kisler, T., Reichel, U., & Schiel, F. (2017). Multilingual processing of speech via

web services. Computer Speech & Language, 45, 326–347. doi: 10.1016/
j.csl.2017.01.005

Knowlton, B. J., & Squire, L. R. (1996). Artificial grammar learning depends

on implicit acquisition of both abstract and exemplar-specific informa-

tion. Journal of Experimental Psychology: Learning, Memory, and Cognition,

22(1), 169–181. doi: 10.1037/0278-7393.22.1.169

Krauska, A., & Lau, E. (2023). Moving away from lexicalism in

psycho- and neuro-linguistics. Frontiers in Language Sciences, 2. Re-

trieved from https://www.frontiersin.org/articles/10.3389/
flang.2023.1125127

Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in

language comprehension? Language, Cognition and Neuroscience, 3798.

doi: 10.1080/23273798.2015.1102299

Kuperman, V., & Bresnan, J. (2012). The effects of construction probability

on word durations during spontaneous incremental sentence production.

Journal of Memory and Language, 66(4), 588–611. doi: 10.1016/j.jml

.2012.04.003

Kuribayashi, T., Oseki, Y., Brassard, A., & Inui, K. (2022). Context

limitations make neural language models more human-like. arXiv

preprint arXiv:2205.11463. Retrieved from http://arxiv.org/abs/
2205.11463 doi: 10.48550/arXiv.2205.11463

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmertest pack-

age: Tests in linear mixed effects models. Journal of Statistical Software,

82(13), 1–26. doi: 10.18637/jss.v082.i13

Kösem, A., Bosker, H. R., Takashima, A., Meyer, A., Jensen, O., & Hagoort, P.

(2018). Neural entrainment determines the words we hear. Current biol-

ogy: CB, 28(18), 2867–2875.e3. doi: 10.1016/j.cub.2018.07.023

Lago, S., Acuña Fariña, C., & Meseguer, E. (2021). The reading signatures

of agreement attraction. Open Mind, 5, 132–153. doi: 10.1162/opmi_a

_00047

Lakatos, P., Chen, C.-M., O’Connell, M. N., Mills, A., & Schroeder, C. E. (2007).

Neuronal oscillations and multisensory interaction in primary auditory cor-

tex. Neuron, 53(2), 279–292. doi: 10.1016/j.neuron.2006.12.011

Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles

of neuronal entrainment. Current Biology, 29(18), R890–R905. doi: 10

261

https://www.frontiersin.org/articles/10.3389/flang.2023.1125127
https://www.frontiersin.org/articles/10.3389/flang.2023.1125127
http://arxiv.org/abs/2205.11463
http://arxiv.org/abs/2205.11463


.1016/j.cub.2019.07.075

Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). En-

trainment of neuronal oscillations as a mechanism of attentional selection.

Science, 320(5872), 110–113. doi: 10.1126/science.1154735

Lalor, E. C., & Foxe, J. J. (2010). Neural responses to uninterrupted natu-

ral speech can be extracted with precise temporal resolution. European

Journal of Neuroscience, 31(1), 189–193. doi: 10.1111/j.1460-9568.2009

.07055.x

Lalor, E. C., Power, A. J., Reilly, R. B., & Foxe, J. J. (2009). Resolving precise

temporal processing properties of the auditory system using continuous

stimuli. Journal of Neurophysiology, 102(1), 349–359. doi: 10.1152/jn
.90896.2008

Lam, N. H., Schoffelen, J. M., Uddén, J., Hultén, A., & Hagoort, P. (2016). Neural

activity during sentence processing as reflected in theta, alpha, beta, and

gamma oscillations. NeuroImage, 142, 43–54. doi: 10.1016/j.neuroimage

.2016.03.007

Leonard, M. K., & Chang, E. F. (2014). Dynamic speech representations in the

human temporal lobe. Trends in cognitive sciences, 18(9), 472–479. doi:

10.1016/j.tics.2014.05.001

Levy, R. (2008a). Expectation-based syntactic comprehension. Cognition,

106(3), 1126–1177. doi: 10.1016/j.cognition.2007.05.006

Levy, R. (2008b). A noisy-channel model of rational human sentence compre-

hension under uncertain input. In (p. 234). Honolulu, Hawaii: Asso-

ciation for Computational Linguistics. Retrieved from http://portal
.acm.org/citation.cfm?doid=1613715.1613749 doi: 10.3115/
1613715.1613749

Levy, R., & Gibson, E. (2013). Surprisal, the pdc, and the primary locus of

processing difficulty in relative clauses. Frontiers in Psychology, 4(MAY),

229. doi: 10.3389/FPSYG.2013.00229/BIBTEX

Lewis, R. L., Vasishth, S., & Dyke, J. A. V. (2006). Computational principles of

working memory in sentence comprehension. Trends in Cognitive Sciences,

10(10), 447–454. doi: 10.1016/j.tics.2006.08.007

León-Cabrera, P., Rodríguez-Fornells, A., & Morís, J. (2017). Electrophysio-

logical correlates of semantic anticipation during speech comprehension.

Neuropsychologia, 99, 326–334. doi: 10.1016/j.neuropsychologia.2017

.02.026

Li, J., & Hale, J. T. (2019). Grammatical predictors for fmri time-courses.

262

http://portal.acm.org/citation.cfm?doid=1613715.1613749
http://portal.acm.org/citation.cfm?doid=1613715.1613749


In R. C. Berwick & E. P. Stabler (Eds.), Minimalist parsing (p. 0). Ox-

ford University Press. Retrieved from https://doi.org/10.1093/oso/
9780198795087.003.0007

Linzen, T., & Jaeger, T. F. (2016). Uncertainty and expectation in sentence pro-

cessing: Evidence from subcategorization distributions. Cognitive Science,

40(6), 1382–1411. doi: 10.1111/COGS.12274

Linzen, T., Siegelman, N., & Bogaerts, L. (2017). Prediction and uncertainty

in an artificial language. In Cogsci 2017 - proceedings of the 39th annual

meeting of the cognitive science society (pp. 2592–2597).

Lison, P., & Tiedemann, J. (2016). Opensubtitles2016: Extracting large parallel

corpora from movie and tv subtitles. In Proceedings of the 10th international

conference on language resources and evaluation.

Liu, Y., Shu, H., & Wei, J. (2006). Spoken word recognition in context: Evidence

from chinese erp analyses. Brain and Language, 96(1), 37–48. doi: 10

.1016/J.BANDL.2005.08.007

Lo, C.-W., Tung, T.-Y., Ke, A. H., & Brennan, J. R. (2022). Hierarchy, not

lexical regularity, modulates low-frequency neural synchrony during lan-

guage comprehension. Neurobiology of Language, 3(4), 538–555. doi:

10.1162/nol_a_00077

Loerts, H., Stowe, L. A., & Schmid, M. S. (2013). Predictability speeds up the

re-analysis process: An erp investigation of gender agreement and cloze

probability. Journal of Neurolinguistics, 26(5), 561–580. doi: 10.1016/
j.jneuroling.2013.03.003

Lowder, M. W., Choi, W., Ferreira, F., & Henderson, J. M. (2018). Lexical pre-

dictability during natural reading: Effects of surprisal and entropy reduc-

tion. Cognitive Science, 42, 1166–1183. doi: 10.1111/cogs.12597

Lu, Y., Jin, P., Pan, X., & Ding, N. (2022). Delta-band neural activity primarily

tracks sentences instead of semantic properties of words. NeuroImage, 251,

118979. doi: 10.1016/j.neuroimage.2022.118979

Luce, R. D. (2003). Whatever happened to information theory in psychology?

Review of General Psychology, 7(2), 183–188. doi: 10.1037/1089-2680.7

.2.183

Luke, S. G., & Christianson, K. (2016). Limits on lexical prediction during read-

ing. Cognitive Psychology, 88, 22–60. doi: 10.1016/j.cogpsych.2016.06

.002

Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably

discriminate speech in human auditory cortex. Neuron, 54(6), 1001–1010.

263

https://doi.org/10.1093/oso/9780198795087.003.0007
https://doi.org/10.1093/oso/9780198795087.003.0007


doi: 10.1016/j.neuron.2007.06.004

Maheu, M., Meyniel, F., & Dehaene, S. (2022). Rational arbitration between

statistics and rules in human sequence processing. Nature Human Be-

haviour 2022, 1–17. doi: 10.1038/s41562-021-01259-6

Mahowald, K., Fedorenko, E., Piantadosi, S. T., & Gibson, E. (2013).

Info/information theory: Speakers choose shorter words in predictive con-

texts. Cognition, 126(2), 313–318. doi: 10.1016/j.cognition.2012.09.010

Mai, G., & Wang, W. S.-Y. (2023). Distinct roles of delta- and theta-band neural

tracking for sharpening and predictive coding of multi-level speech fea-

tures during spoken language processing. Human Brain Mapping, 44(17),

6149–6172. doi: 10.1002/hbm.26503

Mancini, S., Postiglione, F., Laudanna, A., & Rizzi, L. (2014). On the person-

number distinction: Subject-verb agreement processing in italian. Lingua,

146, 28–38. doi: 10.1016/j.lingua.2014.04.014

Marcus, G., Vijayan, S., Bandi Rao, S., & Vishton, P. (1999). Rule learning by

seven-month old infants. Science, 283, 77–80. doi: 10.1126/science.283

.5398.77

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of eeg-

and meg-data. Journal of Neuroscience Methods, 164(1), 177–190. doi:

10.1016/J.JNEUMETH.2007.03.024

Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word-

recognition. Cognition, 25(1-2), 71–102. doi: 10.1016/0010-0277(87)

90005-9

Marslen-Wilson, W. D., & Tyler, L. K. (1980). The temporal structure of

spoken language understanding. Cognition, 8(1), 1–71. doi: 10.1016/
0010-0277(80)90015-3

Marslen-Wilson, W. D., & Tyler, L. K. (2007). Morphology, language and the

brain: the decompositional substrate for language comprehension. Philo-

sophical Transactions of the Royal Society B: Biological Sciences, 362(1481),

823–836. doi: 10.1098/rstb.2007.2091

Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexical

access during word recognition in continuous speech. Cognitive Psychology,

10(1), 29–63. doi: 10.1016/0010-0285(78)90018-X

Martin, A. E. (2016). Language processing as cue integration: Grounding the

psychology of language in perception and neurophysiology. Frontiers in

Psychology, 7(February), 1–17. doi: 10.3389/fpsyg.2016.00120

Martin, A. E. (2018). Cue integration during sentence comprehension: Electro-

264



physiological evidence from ellipsis. PLOS ONE, 13(11), e0206616. doi:

10.1371/journal.pone.0206616

Martin, A. E. (2020). A compositional neural architecture for language. Journal

of Cognitive Neuroscience, 32(8), 1407–1427. doi: 10.1162/jocn_a_01552

Martin, A. E., & Doumas, L. A. (2017). A mechanism for the cortical computation

of hierarchical linguistic structure. PLoS Biology, 15(3), 1–23. doi: 10

.1371/journal.pbio.2000663

Martin, A. E., & Doumas, L. A. (2019a). Predicate learning in neural systems: us-

ing oscillations to discover latent structure. Current Opinion in Behavioral

Sciences, 29, 77–83. doi: 10.1016/j.cobeha.2019.04.008

Martin, A. E., & Doumas, L. A. A. (2019b). Tensors and compositionality in

neural systems. Philosophical Transactions of the Royal Society B: Biological

Sciences, 375(1791), 20190306. doi: 10.1098/rstb.2019.0306

Martin, A. E., & McElree, B. (2008). A content-addressable pointer mechanism

underlies comprehension of verb-phrase ellipsis. Journal of Memory and

Language, 58(3), 879–906. doi: 10.1016/j.jml.2007.06.010

Martin, A. E., & McElree, B. (2009). Memory operations that support language

comprehension: Evidence from verb-phrase ellipsis. Journal of experimen-

tal psychology. Learning, memory, and cognition, 35(5), 1231–1239. doi:

10.1037/a0016271

Martin, A. E., & McElree, B. (2011). Direct-access retrieval during sentence

comprehension: Evidence from sluicing. Journal of memory and language,

64(4), 327–343. doi: 10.1016/j.jml.2010.12.006

Martin, A. E., Monahan, P. J., & Samuel, A. G. (2017). Prediction of agreement

and phonetic overlap shape sublexical identification. Language and Speech,

60(3), 356–376. doi: 10.1177/0023830916650714

Matchin, W., Brodbeck, C., Hammerly, C., & Lau, E. (2019). The temporal

dynamics of structure and content in sentence comprehension: Evidence

from fmri-constrained meg. Human Brain Mapping, 40(2), 663–678. doi:

10.1002/hbm.24403

Matchin, W., & Hickok, G. (2020). The cortical organization of syntax. Cerebral

Cortex, 30(3), 1481–1498. doi: 10.1093/CERCOR/BHZ180

Matchin, W., Liao, C.-H., Gaston, P., & Lau, E. (2019). Same words, different

structures: An fmri investigation of argument relations and the angular

gyrus. Neuropsychologia, 125, 116–128. doi: 10.1016/j.neuropsychologia

.2019.01.019

Mattys, S. L., Davis, M. H., Bradlow, A. R., & Scott, S. K. (2012). Speech recog-

265



nition in adverse conditions: A review. Language and Cognitive Processes,

27(7-8), 953–978. doi: 10.1080/01690965.2012.705006

Mazerolle, M. J. (2020). Aiccmodavg: Model selection and multimodel inference

based on (q)aic(c). Retrieved from https://cran.r-project.org/
package=AICcmodavg

McCauley, S. M., & Christiansen, M. H. (2019). Language learning as language

use: A cross-linguistic model of child language development. Psychological

Review, 126(1), 1–51. doi: 10.1037/REV0000126

McClelland, J. L., & Elman, J. L. (1986). The trace model of speech perception.

Cognitive Psychology, 18(1), 1–86. doi: 10.1016/0010-0285(86)90015-0

McGinnies, E., Comer, P. B., & Lacey, O. L. (1952). Visual-recognition thresholds

as a function of word length and word frequency. Journal of Experimental

Psychology, 44(2), 65–69. doi: 10.1037/h0063142

Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature

encoding in human superior temporal gyrus. Science, 343(6174), 1006–

1010. doi: 10.1126/science.1245994

Meyer, L. (2018). The neural oscillations of speech processing and language

comprehension: state of the art and emerging mechanisms. European Jour-

nal of Neuroscience, 48(7), 2609–2621. doi: 10.1111/ejn.13748

Meyer, L., Henry, M. J., Gaston, P., Schmuck, N., & Friederici, A. D. (2017).

Linguistic bias modulates interpretation of speech via neural delta-band

oscillations. Cerebral Cortex, 27(9), 4293–4302. doi: 10.1093/cercor/
bhw228

Meyer, L., Sun, Y., & Martin, A. E. (2020a). Synchronous, but not entrained:

exogenous and endogenous cortical rhythms of speech and language pro-

cessing. Language, Cognition and Neuroscience, 35(9), 1089–1099. doi:

10.1080/23273798.2019.1693050

Meyer, L., Sun, Y., & Martin, A. E. (2020b). “entraining” to speech, generating

language? Language, Cognition and Neuroscience, 35(9), 1138–1148. doi:

10.1080/23273798.2020.1827155

Molinaro, N., Barraza, P., & Carreiras, M. (2013). Long-range neural syn-

chronization supports fast and efficient reading: Eeg correlates of pro-

cessing expected words in sentences. NeuroImage, 72, 120–132. doi:

10.1016/j.neuroimage.2013.01.031

Molinaro, N., & Lizarazu, M. (2018). Delta(but not theta)-band cortical en-

trainment involves speech-specific processing. European Journal of Neuro-

science, 48(7), 2642–2650. doi: 10.1111/ejn.13811

266

https://cran.r-project.org/package=AICcmodavg
https://cran.r-project.org/package=AICcmodavg


Monsalve, I. F., Frank, S. L., & Vigliocco, G. (2012). Lexical surprisal as a general

predictor of reading time. In (p. 398–408). USA: Association for Compu-

tational Linguistics.

Monte-Ordoño, J., & Toro, J. M. (2017). Early positivity signals changes in

an abstract linguistic pattern. PLoS ONE, 12(7), 1–14. doi: 10.1371/
journal.pone.0180727

Moore-Cantwell, C. (2013). Syntactic predictability influences duration.

Proceedings of Meetings on Acoustics, 19(1), 060206. doi: 10.1121/
1.4801075

Morton, J. (1969). Interaction of information in word recognition. Psychological

Review, 76(2), 165–178. doi: 10.1037/H0027366

Nelson, M. J., Dehaene, S., Pallier, C., & Hale, J. T. (2017). Entropy reduc-

tion correlates with temporal lobe activity. In T. Gibson, T. Linzen, A. Say-

eed, M. van Schijndel, & W. Schuler (Eds.), (p. 1–10). Valencia, Spain:

Association for Computational Linguistics. Retrieved from https://
aclanthology.org/W17-0701 doi: 10.18653/v1/W17-0701

Nelson, M. J., El Karoui, I., Giber, K., Yang, X., Cohen, L., Koopman, H., . . .

Dehaene, S. (2017). Neurophysiological dynamics of phrase-structure

building during sentence processing. Proceedings of the National Academy

of Sciences of the United States of America, 114(18), E3669–E3678. doi:

10.1073/pnas.1701590114

New, B., ferrand, L., pallier, C., & brysbaert, M. (2006). Reexamining the word

length effect in visual word recognition: New evidence from the english

lexicon project. Psychonomic Bulletin & Review, 13(1), 45–52. doi: 10

.3758/BF03193811

Newport, E. L., Hauser, M. D., Spaepen, G., & Aslin, R. N. (2004). Learn-

ing at a distance ii. statistical learning of non-adjacent dependencies in a

non-human primate. Cognitive Psychology, 49(2), 85–117. doi: 10.1016/
j.cogpsych.2003.12.002

Nicol, J. L., Forster, K. I., & Veres, C. (1997). Subject–verb agreement processes

in comprehension. Journal of Memory and Language, 36(4), 569–587. doi:

10.1006/jmla.1996.2497

Nieuwland, M. S., & Van Berkum, J. J. A. (2006). When peanuts fall in love:

N400 evidence for the power of discourse. Journal of Cognitive Neuro-

science, 18(7), 1098–1111. doi: 10.1162/jocn.2006.18.7.1098

Norris, D. (1994). Shortlist: A connectionist model of continuous speech recog-

nition. Cognition, 52(3), 189–234. doi: 10.1016/0010-0277(94)90043-4

267

https://aclanthology.org/W17-0701
https://aclanthology.org/W17-0701


Norris, D., & McQueen, J. M. (2008). Shortlist b: A bayesian model of con-

tinuous speech recognition. Psychological Review, 115(2), 357–395. doi:

10.1037/0033-295X.115.2.357

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. (2011). Fieldtrip: Open

source software for advanced analysis of meg, eeg and invasive electro-

physiological data. Computational Intelligence and Neuroscience, 2011. doi:

doi:10.1155/2011/156869

Osterhout, L., & Mobley, L. A. (1995). Event-related brain potentials elicited by

failure to agree. Journal of Memory and Language, 34(6), 739–773. doi:

10.1006/jmla.1995.1033

Ouyang, L., Boroditsky, L., & Frank, M. C. (2017). Semantic coherence facilitates

distributional learning. Cognitive Science, 41(S4), 855–884. doi: 10.1111/
cogs.12360

Pascanu, R., & Jaeger, H. (2011). A neurodynamical model for working memory.

Neural Networks, 24(2), 199–207. doi: 10.1016/j.neunet.2010.10.003

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . others

(2019). Pytorch: An imperative style, high-performance deep learning

library. Advances in neural information processing systems, 32.

Pearlmutter, N. J., Garnsey, S. M., & Bock, K. (1999). Agreement processes in

sentence comprehension. Journal of Memory and Language, 41(3), 427–

456. doi: 10.1006/jmla.1999.2653

Peña, M., & Melloni, L. (2012). Brain oscillations during spoken sentence

processing. Journal of Cognitive Neuroscience, 24(5), 1149–1164. doi:

10.1162/jocn_a_00144

Piantadosi, S. T., Tily, H., & Gibson, E. (2011). Word lengths are optimized for

efficient communication. Proceedings of the National Academy of Sciences,

108(9), 3526–3529. doi: 10.1073/pnas.1012551108

Pimentel, T., Meister, C., Wilcox, E. G., Levy, R., & Cotterell, R. (2022). On the

effect of anticipation on reading times. arXiv. Retrieved from http://
arxiv.org/abs/2211.14301 doi: 10.48550/arXiv.2211.14301

Pollock, J.-Y. (1989). Verb movement, universal grammar, and the structure of

ip. Linguistic Inquiry, 20(3), 365–424.

Postman, L., & Adis-Castro, G. (1957). Psychophysical methods in the study of

word recognition. Science, 125, 193–194. doi: 10.1126/science.125.3240

.193

Pulvermüller, F., & Assadollahi, R. (2007). Grammar or serial order?: Discrete

combinatorial brain mechanisms reflected by the syntactic mismatch neg-

268

http://arxiv.org/abs/2211.14301
http://arxiv.org/abs/2211.14301


ativity. Journal of Cognitive Neuroscience, 19(6), 971–980.

Pylkkänen, L. (2019). The neural basis of combinatory syntax and semantics.

Science, 366(6461), 62–66. doi: 10.1126/science.aax0050

Rimmele, J. M., Morillon, B., Poeppel, D., & Arnal, L. H. (2018). Proactive

sensing of periodic and aperiodic auditory patterns. Trends in Cognitive

Sciences, 22(10), 870–882. doi: 10.1016/j.tics.2018.08.003

Rizzi, L. (1997). The fine structure of the left periphery. In Elements of grammar

(pp. 281–337).

Roark, B., Bachrach, A., Cardenas, C., & Pallier, C. (2009). Deriving lexical and

syntactic expectation-based measures for psycholinguistic modeling via in-

cremental top-down parsing. In P. Koehn & R. Mihalcea (Eds.), Proceedings

of the 2009 conference on empirical methods in natural language process-

ing (pp. 324–333). Singapore: Association for Computational Linguistics.

Retrieved from https://aclanthology.org/D09-1034
Rowland, C. F., Chang, F., Ambridge, B., Pine, J. M., & Lieven, E. V. M. (2012).

The development of abstract syntax: Evidence from structural priming and

the lexical boost. Cognition, 125(1), 49–63. doi: 10.1016/j.cognition.2012

.06.008

Ryu, S. H., & Lewis, R. (2021). Accounting for agreement phenomena in

sentence comprehension with transformer language models: Effects of

similarity-based interference on surprisal and attention. In (p. 61–71). On-

line: Association for Computational Linguistics. Retrieved from https://
aclanthology.org/2021.cmcl-1.6 doi: 10.18653/v1/2021.cmcl-1

.6

Saffran, J. R. (2001). The use of predictive dependencies in language learning.

Journal of Memory and Language, 44, 493–515. doi: 10.1006/jmla.2000

.2759

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by

8-month-old infants. Science (New York, N.Y.), 274(5294), 1926–8. doi:

10.1126/science.274.5294.1926

Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996). Word segmentation: The

role of distributional cues. Journal of Memory and Language, 35(4), 606–

621. doi: 10.1006/jmla.1996.0032

Santolin, C., & Saffran, J. R. (2018). Constraints on statistical learning across

species. Trends in Cognitive Sciences, 22(1), 52–63. doi: 10.1016/j.tics

.2017.10.003

Sassenhagen, J. (2019). How to analyse electrophysiological responses to nat-

269

https://aclanthology.org/D09-1034
https://aclanthology.org/2021.cmcl-1.6
https://aclanthology.org/2021.cmcl-1.6


uralistic language with time-resolved multiple regression. Language, Cog-

nition and Neuroscience, 34(4), 474–490. doi: 10.1080/23273798.2018

.1502458

Sassenhagen, J., & Draschkow, D. (2019). Cluster-based permutation tests of

meg/eeg data do not establish significance of effect latency or location.

Psychophysiology, 56(6). doi: 10.1111/psyp.13335

Sauseng, P., Klimesch, W., Gruber, W. R., Hanslmayr, S., Freunberger, R., & Dop-

pelmayr, M. (2007). Are event-related potential components generated

by phase resetting of brain oscillations? a critical discussion. Neuroscience,

146(4), 1435–1444. doi: 10.1016/j.neuroscience.2007.03.014

Schell, M., Zaccarella, E., & Friederici, A. D. (2017). Differential cortical contri-

bution of syntax and semantics: An fmri study on two-word phrasal pro-

cessing. Cortex, 96, 105–120. doi: 10.1016/j.cortex.2017.09.002

Schilling, H. E. H., Rayner, K., & Chumbley, J. I. (1998). Comparing nam-

ing, lexical decision, and eye fixation times: Word frequency effects and

individual differences. Memory & Cognition, 26(6), 1270–1281. doi:

10.3758/BF03201199

Schoffelen, J. M., Oostenveld, R., Lam, N. H., Uddén, J., Hultén, A., & Hagoort, P.

(2019). A 204-subject multimodal neuroimaging dataset to study language

processing. Scientific Data, 6(1). doi: 10.1038/s41597-019-0020-y

Schuberth, R. E., & Eimas, P. D. (1977). Effects of context on the classifica-

tion of words and nonwords. Journal of Experimental Psychology: Human

Perception and Performance, 3(1), 27. doi: 10.1037/0096-1523.3.1.27

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statisti-

cal modeling with python. In (pp. 92–96). Austin, Texas. Retrieved

from https://conference.scipy.org/proceedings/scipy2010/
seabold.html doi: 10.25080/Majora-92bf1922-011

Senoussi, M., Verbeke, P., & Verguts, T. (2022). Time-based binding as a

solution to and a limitation for flexible cognition. Frontiers in Psychol-

ogy, 12. Retrieved from https://www.frontiersin.org/articles/
10.3389/fpsyg.2021.798061

Shannon, C. E. (1948). A mathematical theory of communication. The Bell Sys-

tem Technical Journal, 27(3), 379–423. doi: 10.1002/j.1538-7305.1948

.tb01338.x

Sharpe, V., Reddigari, S., Pylkkänen, L., & Marantz, A. (2018). Automatic access

to verb continuations on the lexical and categorical levels: evidence from

meg. Language, Cognition and Neuroscience, 34(2), 137–150. doi: 10

270

https://conference.scipy.org/proceedings/scipy2010/seabold.html
https://conference.scipy.org/proceedings/scipy2010/seabold.html
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.798061
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.798061


.1080/23273798.2018.1531139

Sheather, S. J. (2009). Diagnostics and transformations for multiple linear re-

gression. In S. Sheather (Ed.), A modern approach to regression with r (pp.

151–225). New York, NY: Springer. Retrieved from https://doi.org/
10.1007/978-0-387-09608-7_6

Simpson, G. B., Peterson, R. R., Casteel, M. A., & Burgess, C. (1989). Lexical

and sentence context effects in word recognition. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 15(1), 88. doi: 10.1037/
0278-7393.15.1.88

Slaats, S., & Martin, A. E. (2023). What’s surprising about surprisal. Re-

trieved from https://osf.io/preprints/psyarxiv/7pvau/ doi:

10.31234/osf.io/7pvau

Slaats, S., Weissbart, H., Schoffelen, J.-M., Meyer, A. S., & Martin, A. E. (2023).

Delta-band neural responses to individual words are modulated by sen-

tence processing. Journal of Neuroscience, 43(26), 4867–4883. doi:

10.1523/JNEUROSCI.0964-22.2023

Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading

time is logarithmic. Cognition, 128(3), 302–319. doi: 10.1016/j.cognition

.2013.02.013

Sohoglu, E., Peelle, J. E., Carlyon, R. P., & Davis, M. H. (2012). Predictive top-

down integration of prior knowledge during speech perception. Journal of

Neuroscience, 32(25), 8443–8453. doi: 10.1523/jneurosci.5069-11.2012

Stolcke, A. (2002). Srilm - an extensible language modeling toolkit. In (pp.

901–904). ISCA. Retrieved from https://www.isca-speech.org/
archive/icslp_2002/stolcke02_icslp.html doi: 10.21437/
ICSLP.2002-303

Tanner, D., & Bulkes, N. Z. (2015). Cues, quantification, and agreement in

language comprehension. Psychonomic Bulletin & Review, 22(6), 1753–

1763. doi: 10.3758/s13423-015-0850-3

Tanner, D., Grey, S., & van Hell, J. G. (2017). Dissociating retrieval interference

and reanalysis in the p600 during sentence comprehension. Psychophysi-

ology, 54(2), 248–259. doi: 10.1111/psyp.12788

Tanner, D., Nicol, J., & Brehm, L. (2014). The time-course of feature inter-

ference in agreement comprehension: Multiple mechanisms and asym-

metrical attraction. Journal of Memory and Language, 76, 195–215. doi:

10.1016/j.jml.2014.07.003

Tavano, A., Blohm, S., Knoop, C. A., Muralikrishnan, R., Fink, L., Scharinger, M.,

271

https://doi.org/10.1007/978-0-387-09608-7_6
https://doi.org/10.1007/978-0-387-09608-7_6
https://osf.io/preprints/psyarxiv/7pvau/
https://www.isca-speech.org/archive/icslp_2002/stolcke02_icslp.html
https://www.isca-speech.org/archive/icslp_2002/stolcke02_icslp.html


. . . Poeppel, D. (2022). Neural harmonics of syntactic structure. bioRxiv,

2020.04.08.031575. doi: 10.1101/2020.04.08.031575

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How

to grow a mind: Statistics, structure, and abstraction. Science, 331(6022),

1279–1285. doi: 10.1126/science.1192788

Ten Oever, S., Carta, S., Kaufeld, G., & Martin, A. E. (2022). Neural track-

ing of phrases in spoken language comprehension is automatic and task-

dependent. eLife, 11, e77468. doi: 10.7554/eLife.77468

Ten Oever, S., Kaushik, K., & Martin, A. E. (2022). Inferring the nature of

linguistic computations in the brain. PLOS Computational Biology, 18(7),

e1010269. doi: 10.1371/journal.pcbi.1010269

Ten Oever, S., & Martin, A. E. (2021). An oscillating computational model can

track pseudo-rhythmic speech by using linguistic predictions. eLife, 10,

e68066. doi: 10.7554/eLife.68066

Ten Oever, S., & Martin, A. E. (2024). Interdependence of “what” and “when”

in the brain. Journal of cognitive neuroscience, 36(1), 167–186.

Ten Oever, S., & Sack, A. T. (2015). Oscillatory phase shapes syllable perception.

Proceedings of the National Academy of Sciences, 112(52), 15833–15837.

doi: 10.1073/pnas.1517519112

Ten Oever, S., Titone, L., Te Rietmolen, N., & Martin, A. E. (2024). Phase-

dependent word perception emerges from region-specific sensitivity to the

statistics of language. Proceedings of the National Academy of Sciences,

121(23), e2320489121.

Tezcan, F., Weissbart, H., & Martin, A. E. (2023). A tradeoff between acoustic

and linguistic feature encoding in spoken language comprehension. eLife,

12, e82386. doi: 10.7554/eLife.82386

Thompson, S. P., & Newport, E. L. (2007). Statistical learning of syntax: The

role of transitional probability. Language Learning and Development, 3(1),

1–42. doi: 10.1080/15475440709336999

Tomaschek, F., Hendrix, P., & Baayen, R. H. (2018). Strategies for addressing

collinearity in multivariate linguistic data. Journal of Phonetics, 71, 249–

267. doi: 10.1016/J.WOCN.2018.09.004

Toro, J. M., Sinnett, S., & Soto-Faraco, S. (2011). Generalizing linguistic

structures under high attention demands. Journal of Experimental Psy-

chology: Learning Memory and Cognition, 37(2), 493–501. doi: 10.1037/
a0022056

Traxler, M. J. (2005). Plausibility and verb subcategorization in temporarily

272



ambiguous sentences: Evidence from self-paced reading. Journal of Psy-

cholinguistic Research, 34(1), 1–30. doi: 10.1007/s10936-005-3629-2

Trecca, F., McCauley, S. M., Andersen, S. R., Bleses, D., Basbøll, H., Højen, A.,

. . . Christiansen, M. H. (2019). Segmentation of highly vocalic speech via

statistical learning: Initial results from danish, norwegian, and english.

Language Learning, 69(1), 143–176. doi: 10.1111/lang.12325

Tung, T.-Y., & Brennan, J. R. (2023). Expectations modulate retrieval in-

terference during ellipsis resolution. Neuropsychologia, 108680. doi:

10.1016/j.neuropsychologia.2023.108680

Tyler, L. K., Voice, J. K., & Moss, H. E. (2000). The interaction of meaning and

sound in spoken word recognition. Psychonomic Bulletin & Review, 7(2),

320–326. doi: 10.3758/BF03212988

Tyler, L. K., & Wessels, J. (1983). Quantifying contextual contributions to word-

recognition processes. Perception & Psychophysics 1983 34:5, 34(5), 409–

420. doi: 10.3758/BF03203056

Valian, V. (1986). Syntactic categories in the speech of young children. Develop-

mental Psychology, 22(4), 562–579. doi: 10.1037/0012-1649.22.4.562

Vallat, R. (2018). Pingouin: statistics in python. The Journal of Open Source

Software, 3, 1026. doi: 10.21105/joss.01026

van Alphen, P., & McQueen, J. M. (2001). The time-limited influence of sen-

tential context of function word identification. Journal of Experimental

Psychology: Human Perception and Performance, 27(5), 1057–1071. doi:

10.1037/0096-1523.27.5.1057

van den Bosch, A., & Berck, P. (2009). Memory-based machine translation and

language modeling. Prague Bulletin of Mathematical Linguistics, 91, 17–26.

Van Dyke, J. A., & Lewis, R. L. (2003). Distinguishing effects of structure and

decay on attachment and repair: A cue-based parsing account of recovery

from misanalyzed ambiguities. Journal of Memory and Language, 49(3),

285–316. doi: 10.1016/S0749-596X(03)00081-0

Van Dyke, J. A., & McElree, B. (2006). Retrieval interference in sentence

comprehension. Journal of Memory and Language, 55(2), 157–166. doi:

10.1016/j.jml.2006.03.007

van Schijndel, M., & Linzen, T. (2021). Single-stage prediction models do not

explain the magnitude of syntactic disambiguation difficulty. Cognitive Sci-

ence, 45(6), e12988. doi: 10.1111/cogs.12988

van Schijndel, M., & Schuler, W. (2015). Hierarchic syntax improves reading time

prediction. In (pp. 1597–1605). Denver, Colorado: Association for Compu-

273



tational Linguistics. Retrieved from http://aclweb.org/anthology/
N15-1183 doi: 10.3115/v1/N15-1183

Vasishth, R. L. L., Shravan. (2001). An activation-based model of sentence

processing as skilled memory retrieval. In Dictionary of world philosophy.

Routledge.

Verga, L., Sroka, M. G. U., Varola, M., Villanueva, S., & Ravignani, A. (2022).

Spontaneous rhythm discrimination in a mammalian vocal learner. Biology

Letters, 18(10), 20220316. doi: 10.1098/rsbl.2022.0316

Villata, S., Tabor, W., & Franck, J. (2018). Encoding and retrieval interference in

sentence comprehension: Evidence from agreement. Frontiers in Psychol-

ogy, 9. Retrieved from https://www.frontiersin.org/articles/
10.3389/fpsyg.2018.00002

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Courna-

peau, D., . . . van Mulbregt, P. (2020). Scipy 1.0: fundamental algorithms

for scientific computing in python. Nature Methods, 17(3), 261–272. doi:

10.1038/s41592-019-0686-2

Vouloumanos, A., & Werker, J. F. (2009). Infants’ learning of novel words in

a stochastic environment. Developmental Psychology, 45(6), 1611–1617.

doi: 10.1037/a0016134

Wagers, M. W., Lau, E. F., & Phillips, C. (2009). Agreement attraction in compre-

hension: Representations and processes. Journal of Memory and Language,

61(2), 206–237. doi: 10.1016/j.jml.2009.04.002

Wang, L., Zhu, Z., & Bastiaansen, M. (2012). Integration or predictability? a fur-

ther specification of the functional role of gamma oscillations in language

comprehension. Frontiers in Psychology, 3. Retrieved from https://
www.frontiersin.org/articles/10.3389/fpsyg.2012.00187

Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science,

167(3917), 392–393. doi: 10.1126/science.167.3917.392

Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open

Source Software, 6(60), 3021. doi: 10.21105/joss.03021

Weissbart, H., Kandylaki, K. D., & Reichenbach, T. (2019). Cortical tracking of

surprisal during continuous speech comprehension. Journal of Cognitive

Neuroscience, 32(1), 155–166. doi: 10.1162/jocn_a_01467

Weissbart, H., & Martin, A. E. (2023). The structure and statistics of lan-

guage jointly shape cross-frequency dynamics during spoken language

comprehension. bioRxiv. Retrieved from https://www.biorxiv.org/
content/10.1101/2023.10.06.561087v1 doi: 10.1101/2023.10.06

274

http://aclweb.org/anthology/N15-1183
http://aclweb.org/anthology/N15-1183
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.00002
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.00002
https://www.frontiersin.org/articles/10.3389/fpsyg.2012.00187
https://www.frontiersin.org/articles/10.3389/fpsyg.2012.00187
https://www.biorxiv.org/content/10.1101/2023.10.06.561087v1
https://www.biorxiv.org/content/10.1101/2023.10.06.561087v1


.561087

Yadav, H., Smith, G., Reich, S., & Vasishth, S. (2023). Number feature dis-

tortion modulates cue-based retrieval in reading. Journal of Memory and

Language, 129, 104400. doi: 10.1016/j.jml.2022.104400

Zioga, I., Weissbart, H., Lewis, A. G., Haegens, S., & Martin, A. E. (2023). Nat-

uralistic spoken language comprehension is supported by alpha and beta

oscillations. Journal of Neuroscience, 43(20), 3718–3732. doi: 10.1523/
JNEUROSCI.1500-22.2023

Zion Golumbic, E. M., Ding, N., Bickel, S., Lakatos, P., Schevon, C. A., McKhann,

G. M., . . . Schroeder, C. E. (2013). Mechanisms underlying selective neu-

ronal tracking of attended speech at a "cocktail party". Neuron, 77(5),

980–991. doi: 10.1016/j.neuron.2012.12.037

275





Nederlandse samenvatting

Een belangrijk aspect van het menselijk taalvermogen is de syntaxis: ons ver-

mogen om woorden zo te combineren dat de resulterende combinatie een spe-

cifieke betekenis heeft. Hierdoor betekent “Roos zoekt Willem-Jan” iets anders

dan “Willem-Jan zoekt Roos”. Onze woorden kunnen op oneindig veel manieren

worden gecombineerd: we kunnen hele korte zinnen begrijpen, en hele lange,

en zinnen die we nog nooit eerder hebben gehoord. Het menselijk vermogen

om zinsstructuren te creëren en te analyseren is – voor zover we weten – onge-

ëvenaard. Maar hoe doen we het?

Er zijn meerdere theorieën over welke (neurale) mechanismen aan dit vermo-

gen ten grondslag liggen. In mijn proefschrift focus ik op twee van deze theo-

rieën. De eerste beschouwt ons vermogen om syntactische structuren te creëren

als het resultaat van het leren en gebruiken van statistische informatie, zoals hoe

waarschijnlijk een woord is in zijn context. Volgens deze theorie is het gebruik

van een abstracte structuur niet (altijd) nodig om te begrijpen wat er wordt ge-

zegd; we kunnen dit met kennis over de waarschijnlijkheid van woorden alleen.

De andere theorie modelleert ons syntactische vermogen als de creatie van een

afzonderlijk representatieniveau dat een hiërarchische structuur heeft en abstra-

heert van de woorden zelf. Volgens deze theorie is kennis van de syntaxis niet

gebonden aan de specifieke woorden of morfemen. In plaats daarvan zijn de

regels van toepassing op syntactische categorieën, zoals het zelfstandig naam-

woord of het werkwoord. De interpretatie van een zin hangt af van dit abstracte

systeem.

Deze twee opvattingen lijken tegenover elkaar te staan in de literatuur. Te-

gelijkertijd hebben talloze experimenten bewijs geleverd voor de relevantie van

beide soorten kennis in het proces van taalbegrip. Een goede theorie over hoe

we taal begrijpen moet daarom aspecten bevatten van beide theorieën: mense-

lijke hersenen zijn ontzettend goed in statistiek én ze zijn in staat om abstracte

representaties te produceren. In dit proefschrift benader ik taalbegrip vanuit dit

perspectief. Ik heb onderzocht hoe statistische informatie over woorden en syn-

tactische informatie gezamenlijk het proces van taalbegrip vormgeven. Het on-

derzoeken van deze vraag kan ons helpen uit te vinden welke mechanismen een
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rol spelen in het menselijk vermogen om zinsstructuren af te leiden uit spraak

en tekst.

Ik heb dit vraagstuk van verschillende kanten benaderd. In hoofdstuk 2 be-

keek ik statistische informatie vanuit een theoretisch perspectief. Ik keek naar

‘lexical surprisal’. Dit is een getal dat kwantificeert hoe verrassend (of onwaar-

schijnlijk) een woord statistisch gezien is in een bepaalde context. In dit hoofd-

stuk onderzocht ik ten eerste waarom lexical surprisal goed werkt als voorspeller

van allerlei soorten data, bijvoorbeeld hoe snel mensen woorden lezen. Ik bear-

gumenteerde dat dit komt doordat statistische informatie over woorden variatie

kan reflecteren uit allerlei verschillende bronnen (‘latente variabelen’), waaron-

der de syntactische structuur. Ik heb dit laten zien door middel van een simulatie

met een simpele grammatica. Ten tweede vroeg ik me af wat de resultaten van

onderzoeken die lexical surprisal als voorspeller gebruikten ons kunnen vertel-

len over het proces van taalbegrip. Ik concludeerde dat deze resultaten geen

directe theoretische inzichten geven, juist omdat lexical surprisal geen onder-

scheid maakt in de latente variabelen (zoals woordfrequentie en syntactische

structuur) die de surprisal-waarden bepalen. Dit is geen probleem als het on-

derzoek uitsluitend gericht is op het voorspellen van de data. Het wordt wel een

probleem als we de resultaten willen gebruiken om een theorie over taalbegrip

te maken.

In hoofdstuk 3 onderzocht ik of de aanwezigheid van syntactische structuur

invloed heeft op de manier waarop het brein reageert op woorden. Ik deed

dit door hersenscans gemaakt met magneto-encefalografie (MEG) te analyseren

van mensen die luisterden naar zinnen (met syntactische structuur) en woor-

denlijsten (zonder syntactische structuur). Door een specifieke implementatie

van lineaire regressie kon ik uit deze scans de hersenresponsen op individuele

woorden onderscheiden van de rest van de hersenactiviteit. Ik vond dat de res-

pons op woorden in woordenlijsten met ongeveer 350 milliseconden vertraagd

was ten opzichte van de respons op woorden in zinnen. Bovendien was de in-

formatie over deze woorden beter vertegenwoordigd in het signaal wanneer het

woord in zin stond. Dit betekent dat we het makkelijker vinden om woorden te

herkennen in een gestructureerde zinscontext.

In hoofdstuk 4 benaderde ik de relatie tussen statistische informatie en struc-

tuur andersom: ik onderzocht of de waarschijnlijkheid van een woord in context

het gebruik van syntactische informatie beïnvloedt. Om specifieker te zijn, on-

derzocht ik of lexical surprisal invloed had op de berekening van de relatie tus-

sen het onderwerp en het werkwoord als mensen zinnen lezen. Dit deed ik door
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de surprisal en de grammaticaliteit van het onderwerp te variëren in vier con-

dities. De resultaten leverden geen duidelijk bewijs voor een interactie tussen

surprisal en grammaticaliteit: de moeilijkheid van het lezen van een ongram-

maticaal onderwerp was niet verminderd als het onderwerp zeer voorspelbaar

was. De resultaten gaven echter wel aan dat het beste model van de gegevens

een expliciete specificatie van grammaticaliteit vereist; alleen lexical surprisal is

niet genoeg. De resultaten van dit onderzoek suggereerden dat taalbegrip sterk

wordt bepaald door grammaticaliteit.

In hoofdstuk 5 vroeg ik opnieuw of lexicale statistische informatie de syn-

tactische verwerking beïnvloedt, maar deze keer met dezelfde aanpak als in

hoofdstuk 3. In deze studie analyseerde ik MEG-gegevens van mensen die in

de scanner naar verhalen luisterden. Zoals in hoofdstuk 3, heb ik met behulp

van regressiemodellen de respons van het brein op de syntactische structuur

van een zin geïsoleerd. Deze heb ik verdeeld over twee groepen: de respons op

woorden die erg voorspelbaar waren, en de respons op woorden die niet voor-

spelbaar waren. Deze hersenresponsen heb ik toen met elkaar vergeleken. De

resultaten toonden aan dat de waarschijnlijkheid van een woord (gegeven de

context) het tijdsverloop van het bouwen van een structuur beïnvloedt: de re-

actie die gepaard gaat met het bouwen van een structuur wordt met maar liefst

150 milliseconden vertraagd voor woorden die gezien de context onverwacht

zijn vergeleken met woorden die gezien de context waarschijnlijker zijn. Dit

betekent dat we de structuur van een zin makkelijker kunnen creëren als het

woord dat we horen statistisch voorspelbaar was.

Hoofdstuk 6 geeft een overzicht van verschillende reeksen simulaties die de

analyses uit de hoofdstukken 3 en 5 zowel leidden als aanvulden. Het doel

van de simulaties was om te beoordelen of eventuele effecten gevonden in de

analyses uit de hoofdstukken 3 en 5 toe te schrijven waren aan eigenschap-

pen van de gegevens of het lineaire model die geen verband hielden met het

theoretische fenomeen in kwestie. Deze simulaties helpen bij de interpretatie

van de resultaten van de andere hoofdstukken. De simulaties laten zien dat de

resultaten betrouwbaar zijn, maar ook dat de regressiemethode geen vertragin-

gen of versnellingen van een hersenrespons door interacties tussen variabelen

kan modelleren. De enige manier om tijdsverschuivingen vast te leggen is door

afzonderlijke condities te creëren, zoals ik gedaan heb in dit proefschrift.

In hoofdstuk 7 breng ik de resultaten uit dit proefschrift samen. De onder-

zoeken in dit proefschrift hebben twee belangrijke aspecten van het proces van

taalbegrip laten zien. Ten eerste bepaalt grammaticale kennis hoe we reageren
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op taal, zowel als het gaat om de hersenrespons als om hoe snel we woorden le-

zen. Ten tweede is de invloed van zowel statistische informatie als syntactische

informatie in het brein zichtbaar als een vertraging of versnelling van de reactie.

Wanneer nieuwe taalkundige informatie niet goed aansluit bij de huidige status

van het brein, die onder andere wordt bepaald door statistische en syntactische

informatie van het interne taalmodel, wordt de neurale respons vertraagd. Deze

bevindingen suggereren dat de dimensie van tijd cruciaal is voor de combinatie

van deze twee soorten informatie. Daarom heb ik in dit hoofdstuk het model

BiMCON (‘Binding in a Model Constrained Oscillatatory Network’) voorgesteld.

Dit model is een combinatie van de eerdere modellen STiMCON en time-based

binding. Het maakt gebruik van de tijdsdimensie om te beschrijven hoe lexicale

statistische informatie het proces van de opbouw van syntactische structuur kan

beïnvloeden, en hoe beide soorten kennis invloed hebben op de staat van het

brein.
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English Summary

An important aspect of human language ability is syntax: our ability to combine

words in such a way that the resulting combination has a specific meaning. This

means that “Roos is looking for Willem-Jan” means something different from

“Willem-Jan is looking for Roos”. Our words can be combined in infinitely many

ways: we can understand very short sentences, very long ones, and sentences

we have never heard before. The human ability to create and analyze sentence

structures is – as far as we know – unparalleled. But how do we do it?

There are several theories about which (neural) mechanisms underlie this abi-

lity. In my dissertation I focus on two of these theories. The first views our ability

to create syntactic structures as the result of learning and using of statistical in-

formation, such as how likely a word is in its context. According to this theory,

the use of an abstract structure is not (always) necessary to understand what is

being said; we can do this with statistical information alone. The other theory

models our syntactic ability as the creation of a separate level of representation

that has a hierarchical structure and abstracts away from the words themselves.

According to this theory, knowledge of syntax is not tied to the specific words or

morphemes. The interpretation of a sentence depends on this abstract system.

These two views are often opposed to each other in the literature. At the same

time, numerous experiments have provided evidence for the relevance of both

types of knowledge in the process of language comprehension. A good theory

about how we understand language must therefore contain aspects of both the-

ories: human brains are very good at statistics, and they are able to produce

abstract representations. In this dissertation, I approach language understan-

ding from this perspective. I have investigated how statistical information about

words and syntactic information jointly shape the process of language under-

standing. Investigating this question can help us find out what mechanisms are

involved in the human ability to infer sentence structures from speech and text.

I have approached this issue in different ways. In Chapter 2 I looked at sta-

tistical information from a theoretical perspective. I looked at ’lexical surprisal’.

This is a number that quantifies how surprising (or unlikely) a word statistically

is, in a given context. In this Chapter I first investigated why lexical surprisal
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works well as a predictor of all kinds of data, for example, how fast people read

words. I argued that this is because statistical information about words can

reflect variation from many different sources (’latent variables’), including syn-

tactic structure. I have shown this through a simulation with a simple grammar.

Second, I wondered what the results of studies that used lexical surprisal as a

predictor can tell us about the process of language comprehension. I concluded

that these results do not directly provide theoretical insights, precisely because

lexical surprisal does not distinguish between the latent variables (such as word

frequency and syntactic structure) that determine the surprisal values. This is

not a problem if the research is exclusively aimed at predicting the data. It does

become a problem if we want to use the results to build a theory about language

comprehension.

In Chapter 3 I investigated whether the presence of syntactic structure influen-

ces the way the brain responds to words. I did this by analyzing brain scans made

with magnetoencephalography (MEG) of people who listened to sentences (with

syntactic structure) and lists of words (without syntactic structure). Through a

specific analysis technique, an implementation of linear regression, I was able

to distinguish the brain responses to individual words from the rest of the brain

activity. I found that the response to words in word lists was delayed by about

300 milliseconds compared to the response to words in sentences. Furthermore,

the information about these words was better represented in the signal when the

word was in the sentence. This means that we find it easier to recognize words

in a structured sentence context.

In Chapter 4 I approached the relationship between statistical information

and structure the other way around: I investigated whether the probability of

a word in context influences the use of syntactic information. To be more spe-

cific, I investigated whether lexical surprisal influenced the computation of the

relationship between the subject and the verb when people read sentences. I

did this by varying the surprisal and grammaticality of the subject in four con-

ditions. The results did not provide clear evidence for an interaction between

surprisal and grammaticality: the difficulty of reading an ungrammatical subject

was not reduced when the subject was highly predictable. However, the results

did indicate that the best model of the data requires an explicit specification of

grammaticality; lexical surprisal alone is not enough. The results of this study

suggested that language comprehension is strongly determined by grammatica-

lity.
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In Chapter 5 I asked again whether lexical statistical information influences

syntactic processing, but this time using the same approach as in Chapter 3. In

this study I analyzed MEG data from people listening to stories in the scanner.

As in Chapter 3, I used regression models to isolate the brain response to the

syntactic structure of a sentence. I divided these responses into two groups: the

response to structure for words that were very predictable, and the response

to structure for words that were not predictable. I then compared these brain

responses with each other. The results showed that the probability of a word

(given the context) influences the time course of building a sentence structure:

the response associated with building a structure is delayed by as much as 150

milliseconds for words that are unexpected given the context are compared to

words that are more likely given the context. This means that we can create

the structure of a sentence more easily if the word we hear was statistically

predictable.

Chapter 6 provides an overview of several sets of simulations that both guided

and complemented the analyzes in Chapters 3 and 5. The purpose of the simula-

tions was to assess whether any effects found in the analyzes of Chapters 3 and

5 were due to properties of the data or the linear model that were unrelated to

the theoretical phenomenon in question. These simulations help interpret the

results of the other Chapters. The simulations show that the results are reliable,

but also that the regression method cannot model delays or accelerations of a

brain response due to interactions between variables. The only way to capture

time shifts is to create separate conditions, as I did in this dissertation.

In Chapter 7 I bring together the results from this dissertation. The studies in

this dissertation have revealed two important aspects of the language compre-

hension process. Firstly, grammatical knowledge determines how we respond to

language, both in terms of brain response and how quickly we read words. Se-

condly, the influence of both statistical information and syntactic information in

the brain is visible as a slowing down or speeding up of the response. When new

linguistic information does not match well with the current state of the brain,

which is determined, among other things, by statistical and syntactic information

from the internal language model, the neural response is delayed. These findings

suggest that the dimension of time is crucial for the combination of these two

types of information. That is why I have presented the BiMCON (’Binding in a

Model Constrained Oscillatatory Network’) model in this Chapter. This model is

a combination of the previous model STiMCON and time-based binding models.

It uses the temporal dimension to describe how lexical statistical information
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can influence the process of building syntactic structure, and how both types of

knowledge influence the state of the brain.

284



Research data management

Data availability

Three Chapters in this thesis contain experimental data, and two others contain

simulated data. The behavioral data of Chapter 4 were acquired at the Max

Planck Institute for Psycholinguistics. This dataset has been archived at the MPI

for Psycholinguistics Archive. I provide the persistent identifier to the correspon-

ding collection below. The MEG data of Chapters 3 and 5 were acquired at the

Donders Centre for Cognitive Neuroimaging. These datasets have been archi-

ved at the Donders Repository. I provide the identifiers under the corresponding

Chapters. The simulated data from Chapters 2 and 6 were archived on the Open

Science Framework, and the code to generate the data is shared on GitHub. I

provide links to these Repositories.

Chapter 2 Code: https://github.com/sslaats/surprisal. Data:

https://osf.io/xp3r7/.

Chapter 3 Code: https://osf.io/ky9bj/. Data: https://data.ru.nl/
collections/di/dccn/DSC_3011020.09_236.

Chapter 4 Code: https://github.com/sslaats/surprisal
-agreement. Data: https://hdl.handle.net/1839/fb1854a4-af77
-4a27-bdcc-f8ec80a8ac82.

Chapter 5 Data: https://data.ru.nl/collections/di/dccn/
DSC_3027007.01_206?0.

Chapter 6 Code: https://github.com/sslaats/trf-simulations.

Data: https://osf.io/kwexj/.
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