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Distributions of Demographic Variables and Vaccination Attitudes

Figure 1 shows the distribution of the demographic variables in the study and the univariate relationships with the

vaccination attitude.
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Supplementary Figure 1: The distribution of recorded demographic variables and relationships between the vari-
ables and vaccination attitudes. The black numbers are percentages of participants in a given category. The statistic
in the panel’s title is Cramér’s V.
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Statistical Analysis

Model Evaluation Analyses

We used posterior predictive checks (PPC) to evaluate the fit of a statistical model to the data—that is, to test

how well a model captures the patterns in the data [1]. The PPC procedure consists of simulating the outcome

variable using the predictors used to fit the model and the parameters of the fitted model. The distribution of the

simulated outcome variable is then compared with the distribution of the outcome variable in the data. In general,

the simulated and the empirical distributions aligned well, suggesting adequate model fit.

As the PPC procedure uses the same data twice (i.e., in model fitting and in generating the simulated outcome

distribution), it should not be used to assess the predictive model performance [1]. To evaluate a model’s out-of-

sample predictive performance, we used the leave-one-out cross-validation method, which allowed us to evaluate

how well the model is expected to predict future data while controlling for model complexity. Specifically, we used

the approximated leave-one-out expected log pointwise predictive density statistic (elpdloo) from the loo package

[2]. In the context of the outcome variables analyzed here (i.e., binary and ordinal outcomes), the elpdloo statistic

represented the sum, over all data points, of log-likelihoods (i.e., the predicted probability of the observed outcome

value) for the ith observation, estimated from a model fitted to the data set excluding the ith observation. The exact

value of the elpdloo statistic depends on the number of data points and should be interpreted in this context.

For our purpose, which was to ensure that the models used for inference could be assumed to represent the data

well, we focused on checking whether the models with predictors predicted future data better than the correspond-

ing null models, that is, models without predictors and consisting only of individual intercepts. To this end, we

calculated elpdloo for the null models and the models reported in the article. All models reported exhibited better

out-of-sample predictive performance than the null models (see Figure 2).
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Supplementary Figure 2: Comparison of out-of-sample predictive performance of full statistical models (m1—
presented in the main text) against null models (m0). Panel titles refer to the figures in the main text. See the
paragraphs above for details.

We also computed leave-one-out balanced accuracy (baloo) to obtain a more intuitive measure of the predictive

performance of the reported models. Balanced accuracy is the average of the correct model predictions across
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all outcome variable levels. The baloo values for the statistical models reported in the article were baloo = 0.8

for the Bayesian hierarchical logistic regression model with vaccine acceptance as the outcome variable and all

predictors as in Figure 5c (i.e., all demographic and individual factors, and information and attentional probability

neglect indices); baloo = .82 for the Bayesian hierarchical ordinal regression with deliberate ignorance as the

outcome variable and demographic and individual factors as predictors (Fig. 4a); baloo = 0.78 and baloo = 0.7 for

the Bayesian hierarchical logistic regressions with probability neglect for benefits and side effects, respectively,

as outcome variables and with vaccination attitude and vaccine brand as predictors (Fig. 5a; due to a relatively

low proportion of target events, we used prediction cutoffs that minimized the differences in accuracies between

predicting no-neglect and neglect occurrence events); baloo = .77, baloo = .84, baloo = .83, and baloo = .87 for the

Bayesian hierarchical ordinal regressions with affect ratings for extreme, severe, and mild side effects, and for

benefits, respectively, with vaccination attitudes and outcomes from the respective groups as predictors (Fig. 6).

age_c1
age_c2
age_c3

covid_no1
covid_vax_attitude1
covid_vax_attitude2

covid_vax_no1
covid_vax_no2

education1
education2
education3
get_covid1

income1
income2
income3
politics1
politics2
politics3

vax1
vax2
vax3
vax4
vax5
vax6
vax7

-1.0 -0.5 0.0 0.5

Estimate

C
oe

ffi
ci

en
t

Deliberate ignorance (Fig. 4a)

-0.5 0.0 0.5

Estimate

PN side effects (Fig. 5a)

-0.5 0.0 0.5

Estimate

PN benefits (Fig. 5a)

Individual and demographic vars Included Not included

Supplementary Figure 3: Regression weights with 95% HDI for two sets of statistical models. Dark blue shows
weights from a model including all demographic variables, vaccine brand, and vaccination attitudes. Yellow shows
weights for models with the same outcome variables but includes only vaccine brand and vaccination attitudes as
predictors. Panel titles correspond to figures in the main text

Model Specification Analyses

We conducted a series of model specification analyses to assess the robustness of the main effects reported in the

main text against the specification of the regression models with various sets of predictors.

First, we checked whether the observed differences between the attitude groups in the proportion of decisions

with various types of deliberate ignorance (Figures 4a and 5a in the main text) depend on including demographic

variables in the regression model. To this end, we estimated two regression models with differing sets of predictors:

(1) a model containing only the fixed effects of the attitude group and vaccine brand and (2) a model additionally

containing all demographic factors (see Figure 3 in the main text). For all three outcome variables, the estimated
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regression coefficients for the effects of vaccination attitudes were qualitatively the same when estimated with and

without the demographic factors (Fig. 3). However, for both types of probability neglect, the 95% HDI of the

regression weight covid vax attitude1 includes zero in the regression model with demographics. This indicates

that the differences in proportions of probability neglect between attitude groups are at least partially linked to

other individual and demographic factors.

Second, we tested if the relationships between vaccination decisions and deliberate ignorance (including prob-

ability neglect types; Fig. 4b and Fig. 5b) depend on the regression model specification. The effects of probability

neglect of vaccine benefits and side effects reported in the main text were estimated in separate models, including

the effects of vaccination attitude and vaccine brand, and their interaction. However, when estimated in a single

model, these effects cancel each other due to high intercorrelation. In the next step, we therefore focused on the

effects of the four types of probability neglect presented in Figure 5b (i.e., separate indices for extreme, severe, and

mild side effects, and for benefits). These effects remained qualitatively the same when estimated simultaneously

within a model including only vaccination attitude and vaccine brand, and a model with all other demographic and

individual predictors (Fig. 4).

age_c1
age_c2
age_c3
b_pn1

covid_no1
covid_vax_attitude1
covid_vax_attitude2

covid_vax_no1
covid_vax_no2

education1
education2
education3
get_covid1

income1
income2
income3

ineg1
ineg2

politics1
politics2
politics3

se_ext_pn1
se_mild_pn1
se_sev_pn1

vax1
vax1:covid_vax_attitude1
vax1:covid_vax_attitude2

vax2
vax2:covid_vax_attitude1
vax2:covid_vax_attitude2

vax3
vax3:covid_vax_attitude1
vax3:covid_vax_attitude2

vax4
vax4:covid_vax_attitude1
vax4:covid_vax_attitude2

vax5
vax5:covid_vax_attitude1
vax5:covid_vax_attitude2

vax6
vax6:covid_vax_attitude1
vax6:covid_vax_attitude2

vax7
vax7:covid_vax_attitude1
vax7:covid_vax_attitude2

-3 -2 -1 0 1

Estimate

C
oe

ffi
ci

en
t

Individual and demographic vars Included Not included

Vaccine acceptance ~ deliberate ignorance and probability neglect (Fig. 4b and 5b)

Supplementary Figure 4: Regression weights with 95% HDI for two sets of statistical models, both with vaccina-
tion decision as dependent variable. Dark blue shows weights from a model including all listed variables. Yellow
shows weights for a model including vaccination attitude, vaccine brand, their interaction, and all indices of delib-
erate ignorance and probability neglect considered in the main text.

Finally, we ran a specification curve analysis, which involved estimating all possible combinations of regression

models built from five predictors (31 models in total): an indicator of deliberate ignorance levels and indicators

of four types of attentional probability neglect. These analyses showed that the relationships between vaccination

decisions and (1) deliberate ignorance, (2) probability neglect for extreme side effects, and (3) probability neglect
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for mild side effects were stable across all possible model specifications (Fig. 5). Thus, the results presented in

Figure 4b, and Figures 5b–c in the main text can be considered highly robust.
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Supplementary Figure 5: Regression weights (in the form of odds ratios) with 95% HDI (points and vertical lines)
from Bayesian hierarchical regression model with vaccination decision as dependent variable. Each column of
crosses shows which predictor was included in a given regression model. Blue indicates that HDI excludes zero,
and red indicates that zero is included. All models included the effects of vaccination attitude, vaccination brand,
and the interaction of the two.

Computational Modeling—Alternative Models

Alternative Behavioral Models of Vaccine Decisions

The model presented in the main article was identified as the best-performing model out of a set of alternative

models we tested. Specifically, our goal was to build a model able to capture the qualitative patterns in the data and

with the best out-of-sample predictive performance in terms of elpdloo. In this section, we provide the full results

of the performance of the alternative models, as well as the model reported in the main article.

We started by fitting a model that would typically be used in the context of monetary lotteries—a model

consisting solely of the Viv component as given by prospect theory [3] (see Equations 3–5 in the main text),

with four individual-level parameters (i.e., with parameters αi and ϕi also estimated for each participant). In this

standard implementation, the probability of accepting a vaccine P(accept) is determined solely by the individual

valuation of the vaccine:

P(accept) =
1

1+ exp−ϕiVi,v
. (1)

However, this model could not capture the individual- and vaccine-level average proportions of decisions to

accept the vaccine, and for the majority of participants, the proportion of correct decision predictions was no higher

than the chance level (see Fig. 6). Next, we decided to extend the model to include (i) individual decision bias

βi and (ii) vaccine effects ∑ j Xvβ j, i.e. vaccine-specific information on country of origin and technology in an

attempt to explain the variance that prospect theory itself could not account for. We also decided to estimate α and

ϕ only on the population level to reduce the number of individual-level parameters since these parameters were

not of theoretical interest. The resulting model captured the qualitative patterns at the individual- and vaccine level

well and could predict individual decisions above chance level for nearly all participants (see Fig 7). Thus, this is

the model we presented and used for inference in the main paper. The model also outperformed other plausible

versions (Fig. 8), which we will discuss in more detail next.
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Supplementary Figure 6: Qualitative and predictive performance evaluation of a standard implementation of
prospect theory, separately for each vaccine attitude group (rows). The first column shows observed and pre-
dicted (i.e., derived from the model) proportions of decisions to accept each vaccine. The second column shows
the relationship between observed and predicted individual-level proportions of accepted decisions. The values
on the top of each panel show the proportion of participants with a given proportion of accepted decisions. Note
that the proportions on the x-axis correspond to accepting between zero to all eight vaccines presented to each
participant. The third column shows individual-level proportions of vaccination decisions correctly predicted by
the model (based on approximate out-of-sample predictions). The dashed line shows chance level prediction.

A series of model comparisons were made to test whether two simpler but plausible models could account for

the data we conducted. The first could be called a decision bias model, as it only included the first two components

from Equation 1 in the main text. It thus assumes that participants ignored all information on vaccine outcomes

and their probabilities. The second model, which we refer to as the outcome heuristic, assumes that participants

used outcome information to inform their vaccination decisions but ignored all probability information. Formally,

in the outcome heuristic the Vi,v component was:

Vi,v = ∑
se

v(ai
se)+∑

b
v(ai

b), (2)

where the value function was as in Equation 4 in the main text. Thus, the outcome heuristic was equivalent to

setting all decision weights in Equation 3 to w(p) = 1, which would be an alternative instance of probability

neglect—i.e., ignoring all probability information even after inspecting it.
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Supplementary Figure 7: Qualitative and predictive performance evaluation of an implementation of prospect
theory extended with vaccine-effects and individual bias (i.e., the model presented in the main text), separately for
each vaccine attitude group (rows). The first column shows observed and predicted (i.e., derived from the model)
proportions of decisions to accept each vaccine. The second column shows the relationship between observed
and predicted individual-level proportions of accepted decisions. The values on the top of each panel show the
proportion of participants with a given proportion of accepted decisions. Note that the proportions on the x-axis
correspond to accepting between zero to all eight vaccines presented to each participant. The third column shows
individual-level proportions of vaccination decisions correctly predicted by the model (based on approximate out-
of-sample predictions). The dashed line shows chance level prediction.

Comparing the out-of-sample predictive performance of these three models provides additional valuable in-

sights into the information processing of the three groups (Fig. 8). First, the decision bias model was the worst-

performing model in all three groups, indicating that all participants used outcome and probability information to

inform their vaccination decisions to at least some degree. Second, the performance increase from the decision bias

model through the outcome heuristic to extended prospect theory was most significant in the neutral group, indi-

cating that participants in this group were the most sensitive to the outcome and probability information. Third, the

performance increase from the outcome heuristic to prospect theory in the anti-vaccination group was significant

but marginal, suggesting that these participants exhibited alternative probability neglect (i.e., ignored probability

information even after inspecting it). Finally, in the anti-vaccination group, the Vi,v component of both the outcome

heuristic and prospect theory improved performance relative to the response bias model only for the small propor-

tion of the data associated with vaccine acceptance decisions. These results have two implications: (1) vaccine
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Supplementary Figure 8: Top row shows approximate of-of-sample model performance, separately for attitude
groups. The statistic on the y-axis is a nonlinear transformation of elpdloo statistic (see main text)—the value of 0.5
means the expected model performance is no better than chance. In contrast, a value of 1 means the model predicts
each decision perfectly. The bottom row shows the results of the model performance comparison. The points
are differences in elpdloo between pairs of models, with the vertical line showing 99% confidence intervals—the
performance of any two models can be considered significantly different when confidence intervals exclude zero.
Note: pt - standard implementation of prospect theory; db - decision bias model; oh - outcome heuristic model; pte
- prospect theory. The db model also included vaccine effects, and the oh and pte models included individual bias
and vaccine effects components. See text for details.

refusal decisions in the anti-vaccination group might be driven by factors other than those included in our model

since the majority of them are captured solely by decision bias, and (2) the value and weighting functions esti-

mated in this group represent the minimum level of loss aversion and probability sensitivity required to overcome

the strong vaccine refusal biases in this group.

It is important to note that due to high vaccine refusal rates in the anti-vaccination group, the estimation of the

individual- and group-level parameters capturing loss aversion and probability sensitivity is associated with much

greater levels of uncertainty in that group than in the neutral and pro-vaccination groups. Nevertheless, parameter

recovery analyses show that the population-level parameters λ, γ, and β, on which we based our inference (i.e.,

loss aversion, probability sensitivity, and decision bias), can be recovered satisfactorily (Fig. 9).

Alternative Implementations of Probability Weighting Function

The second case of Equation 5 in the main text refers to probability neglect—a situation in which an outcome was

inspected but not its corresponding probability. For such cases, we set w(p) = .5, which means that the decision-

maker acknowledges the probabilistic nature of the inspected outcome. Two alternative and strong assumptions

could be made. Instead, the first is w(p) = 0, which would mean that the decision-maker perceives the outcome

of the neglected probability as impossible; the second strong case would be w(p) = 1, meaning that the decision-

maker perceives the outcome as certain to occur. Assuming any value in the 0–1 range is also possible. For

this reason, we also tested model versions that treated the value of the neglected probabilities as free parameters.
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Supplementary Figure 9: Main results of the parameter recovery analyses result, conducted separately for each
attitude group (rows). The first step of the analysis was to simulate individual decisions using mean posterior values
of the model parameters, including individual-level parameters—these constitute the generating parameters. Next,
the model parameters are recovered—i.e., the model is fitted to the simulated set of decisions to obtain recovered
parameter estimates. Finally, the posterior distribution of the population-level generating and recovered parameters
are compared—the results can be considered satisfactory if the recovered posterior estimates are qualitatively
similar to the generating posteriors.

However, the main conclusions from these models were qualitatively the same as those reported in the main text,

and model performance, relative to the model assuming w(p) = 0.5, improved only slightly in the neutral group.

Another important assumption that we make is that people treated vaccine effectiveness as the probability

of being protected from COVID-19 infection, severe illness, or death, but technically the numbers provided are

not probabilities. The vaccine effectiveness reported in the study was defined and explained to participants as

(1−RR)× 100%, where RR is the relative risk of developing an infection in the vaccinated group relative to the

unvaccinated group. Vaccine effectiveness was always in the 0.5–1 range for the vaccines presented in our study,

so it constituted a valid input to the probability weighting function. Importantly, people often misperceive the

effectiveness of vaccination in terms of the probability of not getting infected after a vaccination [4], which, at

least to some extent, justifies our assumption.
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