Max-Planck-Institut für Mathematik Bonn

Representations and cohomologies of Kleinian 4-rings

by

Yuriy Drozd

Max-Planck-Institut für Mathematik Preprint Series 2022 (30)

Date of submission: April 26, 2022

Representations and cohomologies of Kleinian 4-rings

by

Yuriy Drozd

Max-Planck-Institut für Mathematik Vivatsgasse 7 53111 Bonn Germany Institute of Mathematics National Academy of Science of Ukraine Tereschenkivska str. 3 01024 Kyiv Ukraine

REPRESENTATIONS AND COHOMOLOGIES OF KLEINIAN 4-RINGS

YURIY DROZD

ABSTRACT. We introduce a new class of algebras over discrete valuation rings, called *Kleinian 4-rings*, which generalize the group algebra of the Kleinian 4-group. For these algebras we describe the lattices and their cohomologies. In the case of *regular lattices* we obtain an explicit form of cocycles defining the cohomology classes.

Introduction

Integral representations of the Kleinian 4-group G (or G-lattices) were described by Nazarova [9]. Another description was proposed by Plakosh [10]. In the papers [6] and [7] cohomologies of these lattices were calculated. In this paper we consider a class of rings that generalizes group rings of the Kleinian 4-group. We call them *Kleinian* 4-rings. We give a description of lattices over such rings and calculate cohomologies of these lattices. In a special case of regular lattices we obtain an explicit form of cocycles defining cohomology classes.

1. Lattices over Kleinian 4-rings

In what follows R denotes a complete discrete valuation ring with a prime element p, the field of fractions Q and the field of residues $\mathbb{k} = R/pR$. We write \otimes instead of \otimes_R . If A is an R-algebra, we call an A-module M an A-lattice if it is finitely generated and free as R-module. Then we identify M with its image $1 \otimes M$ in the vector space $Q \otimes M$ and an element $v \in M$ with $1 \otimes v \in Q \otimes M$. We denote by A-lat the category of A-lattices.

Definition 1.1. The *Kleinian 4-ring* over R is the R-algebra K = R[x,y]/(x(x-p),y(y-p)).

²⁰¹⁰ Mathematics Subject Classification. 16E40, 16H20, 16G70.

Key words and phrases. 4-rings, lattices, cohomology, Auslander-Reiten quiver, regular lattices.

This paper was prepared during the stay of the author at the Max-Plank-Institute for Mathematics (Bonn).

Note that if p=2 this is just the group algebra over R of the Kleinian 4-group $G=\langle a,b\mid a^2=b^2=1,\,ab=ba\rangle$. One has to set $x=a+1,\,y=b+1$.

One easily sees that $Q \otimes K$ is isomorphic to Q^4 : just map x to $\bar{x} = (p, p, 0, 0)$ and y to $\bar{y} = (p, 0, p, 0)$. We consider K as embedded into Q^4 identifying x with \bar{x} and y with \bar{y} . We also set $z = (p, 0, 0, 0) \in Q^4$ (note that $z \notin K$ and $z^2 = xy$). The maximal ideal \mathfrak{r} of K is (p, x, y) and $K/\mathfrak{r} \simeq \mathbb{k}$. Let $A = \{a \in Q^4 \mid a\mathfrak{r} \subset K\}$. One easily verifies that A = K + Rz and $A/K \simeq \mathbb{k}$. Hence K is a Gorenstein ring [3, Proposition 6], i.e. inj.dim $_K K = 1$. Therefore, A is its unique minimal over-ring and every K-lattice is isomorphic to a direct sum of a free K-module and an A-lattice (see [5, Lemma 2.9] or [4, Lemma 3.2]). Note that the ring A is also local with the maximal ideal $\mathfrak{m} = (p, x, y, z)$ and $A/\mathfrak{m} \simeq \mathbb{k}$. Moreover, as the submodule of Q^4 , $\mathfrak{m} = pA^\sharp = \operatorname{rad} A^\sharp$, where $A^\sharp = R^4$ is hereditary. Thus A is a Backström order in the sense of [11]. Therefore, A-lattices can be described by the representations of the quiver

over the field \mathbb{k} . Namely, denote by $R_{\alpha\beta}$, where $\alpha, \beta \in \{0, p\}$ the A-lattice such that $R_{\alpha\beta} = R$ as R-module, $xv = \alpha v$ and $yv = \beta v$ for all $v \in R_{\alpha\beta}$. For any A-lattice M and $\alpha, \beta \in \{0, p\}$ set $M_{\alpha\beta} = \{v \in M \mid xv = \alpha v, yv = \beta v\}$. If M is an A-lattice, $M^{\sharp} = A^{\sharp}M$ is an A^{\sharp} -module, hence $M^{\sharp} = \bigoplus_{\alpha,\beta} M_{\alpha\beta}^{\sharp}$. Let $V_{\bullet} = M/\mathfrak{m}M$ and $V_{\alpha\beta} = M_{\alpha\beta}^{\sharp}/pM_{\alpha\beta}^{\sharp}$. Note that $M^{\sharp} \supset M \supset \mathfrak{m}M = pM^{\sharp}$. So the natural maps $f_{\alpha\beta} : V_{\bullet} \to V_{\alpha\beta}$ are defined and we obtain a representation V of the quiver Γ :

We denote this representation by $\Phi(M)$. It gives a functor $\Phi: A$ -lat \to rep Γ . The next result follows from [11].

Theorem 1.2. Let $\operatorname{rep}_+\Gamma$ be the full subcategory of $\operatorname{rep}\Gamma$ consisting of such representations V that all maps $f_{\alpha\beta}$ are surjective and the map $f_+:V_{\bullet}\to V_+$ is injective. The image of the functor Φ is in $\operatorname{rep}_+\Gamma$ and, considered as the functor A-lat $\to \operatorname{rep}_+\Gamma$, the functor Φ is an epivalence.

Recall that the term epivalence means that Φ is full, maps non-isomorphic objects to non-isomorphic and every representation $V \in \operatorname{rep}_+\Gamma$ is isomorphic to some $\Phi(M)$ (then Φ maps indecomposable objects to indecomposable). Actually, this M can be reconstructed as follows. Set $d_{\alpha\beta} = \dim V_{\alpha\beta}$, $V_+ = \bigoplus_{\alpha\beta} V_{\alpha\beta}$ and \bar{V} be the image of the map $V_{\bullet} \to V_+$ with the components $f_{\alpha\beta}$. Then $V_+ \simeq M^{\sharp}/pM^{\sharp}$, where $M^{\sharp} = \bigoplus_{\alpha\beta} R_{\alpha\beta}^{d_{\alpha\beta}}$. Let $\Psi(V)$ be the preimage of V_+ in M^{\sharp} . It is an A-lattice and $\Phi(M) \simeq V$. Moreover, $M^{\sharp} = A^{\sharp}M$. Note also that the kernel of the map $\operatorname{Hom}_A(M,N) \to \operatorname{Hom}_{\Gamma}(\Phi(M),\Phi(N))$ coincides with $\operatorname{Hom}_A(M,\mathfrak{m}N)$.

The quintuple $(d_{\bullet} \mid d_{pp}, d_{p0}, d_{0p}, d_{00})$, where $d_{\bullet} = \dim V_{\bullet}$, is called the vector dimension of the representation V. We also call it the vector rank of the lattice $M = \Psi(V)$ and denote it by $\operatorname{Rk} M$. For instance, $\operatorname{Rk} R_{pp} = (1 \mid 1, 0, 0, 0)$ and $\operatorname{Rk} A = (1 \mid 1, 1, 1, 1)$. Note that the rank of M as of R-module equals $\sum_{\alpha\beta} d_{\alpha\beta}$, while $d_{\bullet} = \dim_{\mathbb{K}} M/\mathfrak{m}M$.

Remark 1.3. Note that the only indecomposable representations of Γ that do not belong to rep₊ Γ are "trivial representations" V^j , where $j \in \{\bullet, \alpha\beta \mid \alpha, \beta \in \{0, p\}\}$ such that $V^j_j = \mathbb{k}$ and $V^j_{j'} = 0$ if $i \neq j$. Therefore, the A-lattices are indeed classified by the representations of the quiver Γ .

Let τ_K (τ_A) denote the Auslander-Reitentranslate in the category K-lat (respectively, A-lat). Recall that $\tau_K M$ for a non-projective indecomposable K-lattice M is an indecomposable K-lattice N such that there is an almost split sequence $0 \to N \to E \to M \to 0$ [1]. The next result follows from [4].

Proposition 1.4. (1) $\tau_K M \simeq \tau_A M$ for any indecomposable A-lattice $M \not\simeq A$.

- (2) $\tau_K A \simeq \mathfrak{r}$ and it is a unique indecomposable A-lattice N such that inj.dim_N = 1.
- (3) $\tau_K M \simeq \Omega M$ for any A-lattice M, where ΩM denote the syzygy of M as of K-module.

Following [12], we can also restore the Auslander-Reiten quiver $\mathcal{Q}(A)$ of the category A-lat from the Auslander-Reiten quiver $\mathcal{Q}(\Gamma)$ r of the category rep Γ . Recall that the quiver $\mathcal{Q}(\Gamma)$ consists of the *preprojective*, *preinjective* and *regular* components. The quiver $\mathcal{Q}(A)$ is obtained from $\mathcal{Q}(\Gamma)$ by glueing the preprojective and preinjective components omitting trivial representations. The resulting *preprojective-preinjective* component is the following:

Here M^k denotes $\tau_K^k M$. Note that $A^1 \simeq \mathfrak{r} \simeq A^{\vee}$, where $M^{\vee} = \operatorname{Hom}_K(M,K)$. The representations belonging to this component are uniquely determined by their vector-ranks. One can verify that

$$\begin{aligned} \operatorname{Rk} A^k &= \begin{cases} (2k-1 \mid k,k,k,k) & \text{if } k > 0, \\ (1-2k \mid 1-k,1-k,1-k,1-k) & \text{if } k < 0; \end{cases} \\ \operatorname{Rk} R^k_{pp} &= \begin{cases} (k+1 \mid \left[\frac{k}{2}\right] - (-1)^k, \left[\frac{k}{2}\right], \left[\frac{k}{2}\right], \left[\frac{k}{2}\right]) & \text{if } k > 0, \\ (-k \mid \left[\frac{1-k}{2}\right] + (-1)^k, \left[\frac{1-k}{2}\right], \left[\frac{1-k}{2}\right], \left[\frac{1-k}{2}\right]) & \text{if } k < 0. \end{cases} \end{aligned}$$

 $\operatorname{\mathsf{Rk}} R_{\alpha\beta}^k$ is obtained from $\operatorname{\mathsf{Rk}} R_{pp}^k$ by permutation of d_{pp} with $d_{\alpha\beta}$.

The remaining (regular) components are *tubes*, where τ_K acts periodically. They are parametrized by the set

$$\mathbb{P} = \{ \text{irreducible unital polynomials } f(t) \in \mathbb{k}[t] \} \cup \{ \infty \}.$$

Actually, it is the set of closed points of the projective line over the field \mathbb{k} , that is of the projective scheme $\operatorname{Proj} \mathbb{k}[x,y]$. If $f(t) = t - \lambda$ $(\lambda \in \mathbb{k})$, we write \mathcal{T}^{λ} instead of \mathcal{T}^{f} .

If $f \in \mathbb{P} \setminus \{t, t-1, \infty\}$, the corresponding tube \mathcal{T}^f is homogeneous, which means that $\tau_K M \simeq M$ for all $M \in \mathcal{T}^f$. It has the form

$$T_1^f \longrightarrow T_2^f \longrightarrow T_3^f \longrightarrow \cdots$$

and $\operatorname{Rk} T_n^f = (2dn \mid dn, dn, dn, dn)$, where $d = \deg f(t)$. In this diagram all maps $T_n^f \to T_{n+1}^f$ are monomorphisms with the cokernels T_1^f , while all maps $T_{n+1}^f \to T_n^f$ are epimorphisms with the kernels T_1^f .

The exceptional tubes \mathcal{T}^{λ} ($\lambda \in \{0, 1, \infty\}$) are of he form

$$(2) \qquad T_1^{\lambda 1} \longrightarrow T_2^{\lambda 1} \longrightarrow T_3^{\lambda 1} \longrightarrow T_4^{\lambda 1} \longrightarrow \cdots$$

$$T_1^{\lambda 2} \longrightarrow T_2^{\lambda 2} \longrightarrow T_3^{\lambda 2} \longrightarrow T_4^{\lambda 2} \longrightarrow \cdots$$

Here $\tau_K T_n^{\lambda 1} = T_n^{\lambda 2}$ and $\tau_K T_n^{\lambda 2} = T_n^{\lambda 1}$. In this diagram all maps $T_n^{\lambda i} \to T_{n+1}^{\lambda i}$ are monomorphisms with the cokernels $T_1^{\lambda j}$, where j=i if n is even and $j \neq i$ if n is odd. All maps $T_{n+1}^{\lambda i} \to T^{\lambda j}$ $(j \neq i)$ are epimorphisms with the kernels $T_1^{\lambda i}$.

For $\lambda = 1$ we have

$$\operatorname{Rk} T_{2m}^{1j} = (2m \mid m, m, m, m)$$
 for both $j = 1$ and $j = 2$,

$$\begin{aligned} \text{(3)} \qquad & \operatorname{Rk} T^{11}_{2m-1} = (2m-1 \mid m,m,m-1,m-1), \\ \operatorname{Rk} T^{12}_{2m-1} = (2m-1 \mid m-1,m-1,mm). \end{aligned}$$

The vector-ranks for the tubes \mathcal{T}^0 and \mathcal{T}^{∞} are obtained from those for \mathcal{T}^1 by permutation of d_{p0} , respectively, with d_{00} and with d_{0p} .

2. Cohomologies

A Kleinian 4-ring is a supplemented R-algebra in the sense of [2, Ch. X] with respect to the surjection $\pi: K \to K/(x-p,y-p) \simeq R$. Therefore, for any K-module M the homologies $H_n(K,M) = \operatorname{Tor}_N^K(R,M)$ and cohomologies $H^n(K,M) = \operatorname{Ext}_K^n(R,M)$ are defined. Moreover, if we consider M as K-bimodule setting mx = my = pm for all $m \in M$, they coincide with the Hochschild homologies and cohomologies:

$$H_n(K,M) \simeq HH_n(K,M)$$
 and $H^n(K,M) \simeq HH^n(K,M)$.
(see [2, Theorem X.2.1]).

Remark 2.1. We have chosen the augmentation $K \to R$ such that if p = 2, hence $K \simeq RG$ for the Kleinian 4-group G, it coincides with the usual augmentation $RG \to R$ mapping all elements of the group to 1. Thus in this case $H_n(K, M) = H_n(G, M)$.

Proposition 2.2. For every K-module M and $n \neq 0$

$$xyH_n(K, M) = xyH^n(K, M) = p^2H^n(K, M) = p^2H_n(K, M) = 0$$

Proof. The map $\mu: r \mapsto rxy$ is a homomorphism of K-modules $R \to K$ such that $\pi\mu: R \to R$ is the multiplication by xy or, the same, by p^2 . Therefore, the multiplication by xy or by p^2 in $\operatorname{Ext}_K^n(R,M)$ or in $\operatorname{Tor}_n^K(R,M)$ factors, respectively, through $\operatorname{Ext}_K^n(K,M) = 0$ or through $\operatorname{Tor}_n^K(K,M) = 0$.

Note that $K \simeq \bar{K} \otimes_R \bar{K}$, where $\bar{K} = R[x]/(x(x-p))$ A projective resolution $\bar{\mathbf{P}}$ for R as of \bar{K} -module, where xr = pr for all $r \in R$, is obtained if we set $\bar{P}_n = \bar{K}u^n$ and

$$du^n = C_n(x)u^{n-1}$$
, where $C_i(x) = \begin{cases} x & \text{if } n \text{ is even,} \\ x - p & \text{if } n \text{ is odd.} \end{cases}$

Then $\mathbf{P} = \bar{\mathbf{P}} \otimes_R \bar{\mathbf{P}}$ is a projective resolution of R as of K-module. Here P_n is the module of homogeneous polynomials of degree n from K[u, v] and

$$d(x^{i}y^{j}) = C_{i}(x)u^{i-1}v^{j} + (-1)^{i}C_{j}(y)u^{i}v^{j-1}.$$

Denote
$$H_n(\bar{K}, M) = \operatorname{Tor}_n^K(R, M)$$
. Then

$$H_n(\bar{K}, M) = \begin{cases} M/(x-p)M & \text{if } n = 0, \\ \text{Ker}(x-p)_M/xM & \text{if } n \text{ is odd,} \\ \text{Ker } x_M/(x-p)M & \text{if } n \text{ is even,} \end{cases}$$

where a_M denotes the multiplication by a in the module M. Let $R_0 = \bar{K}/(x)$, $R_p = \bar{K}/(x-p)$. Then $R_{\alpha\beta} \simeq R_{\alpha} \otimes_R R_{\beta}$. As the ring R is hereditary, the Künneth formula [2, Theorem VI.3.2] implies that

$$H_n(K, R_{\alpha\beta}) \simeq \left(\bigoplus_{i+j=n} H_i(\bar{K}, R_{\alpha}) \otimes_R H_j(\bar{K}, R_{\beta})\right) \oplus \left(\bigoplus_{i+j=n-1} \operatorname{Tor}_1^R(H_i(\bar{K}, R_{\alpha}), H_j(\bar{K}, R_{\beta}))\right).$$

Since

$$H_n(\bar{K}, R_0) = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ \mathbb{k} & \text{if } n \text{ is even;} \end{cases}$$

$$H_n(\bar{K}, R_p) = \begin{cases} R & \text{if } n = 0, \\ \mathbb{k} & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even,} \end{cases}$$

we obtain

(4)
$$H_n(K, R_{pp}) = \begin{cases} R & \text{if } n = 0, \\ (R/p)^{[(n+3)/2]} & \text{if } n \text{ is odd,} \\ (R/p)^{n/2} & \text{if } n \text{ is even;} \end{cases}$$

and if $(\alpha, \beta) \neq (p, p)$

(5)
$$H_n(K, R_{\alpha\beta}) = (R/p)^{[(n+2)/2]}$$

On the other hand, the exact sequence $0 \to K \to A \to \mathbb{k} \to 0$ implies that for n>0

(6)
$$H_n(K,A) \simeq H_n(K,\mathbb{k}) \simeq P_n \otimes_K \mathbb{k} \simeq \mathbb{k}^{n+1}.$$

since $H_n(K, K) = 0$ and the differential in $\mathbf{P} \otimes_K \mathbb{k}$ is zero.

As K is Gorenstein, the functor $M \mapsto M^{\vee} = \operatorname{Hom}_K(M,K)$ is an exact duality in the category K-lat, i.e. the natural map $M \mapsto M^{\vee \vee}$ is an isomorphism. If P is projective, then $P \otimes_K M \simeq \operatorname{Hom}_K(P^{\vee}, M)$. Therefore, homologies of a module M can be obtained as $H_n(\operatorname{Hom}_K(\mathbf{P}^{\vee}, M))$. Note that the embedding $R \to P_0^{\vee} \simeq K$ maps 1 to xy. Hence, just as for finite groups, we can consider a full resolution $\hat{\mathbf{P}}$ setting

$$\hat{P}_n = \begin{cases} P_n & \text{if } n \ge 0, \\ P_{-n-1}^{\vee} & \text{if } n < 0 \end{cases}$$

and defining $d_0: K = \hat{P}_0 \to \hat{P}_{-1} \simeq K$ as multiplication by xy. Thus the Tate cohomologies $\hat{H}^n(K, M)$ are defined as $H^n(\operatorname{Hom}_K(\hat{\mathbf{P}}, M))$ with the usual properties

$$\hat{H}^{n}(K,M) = \begin{cases} H^{n}(K,M) & \text{if } n > 0, \\ H_{-1-n}(K,M) & \text{if } n < -1, \\ M_{pp}/xyM & \text{if } n = 0, \\ \{m \mid xym = 0\}/((x-p)M + (y-p)M) & \text{if } n = -1, \end{cases}$$
where $M = \{m \mid xm = ym = mn\}$. In particular, $xy\hat{H}^{n}(K,M) = \{m \mid xm = ym = mn\}$.

where $M_{pp} = \{m \mid xm = ym = pm\}$. In particular, $xy\hat{H}^n(K, M) = p^2\hat{H}^n(K, M) = 0$ for all M. Note also that, if M is an A-lattice, $M_{pp} = \{m \mid zm = pm\}$ and $xyM = z^2M$.

A basis of \hat{P}_{-n} (n > 0) can be chosen as $\{\hat{u}^i\hat{v}^j \mid i+j=n-1\}$, where $(\hat{u}^i\hat{v}^j)(u^kv^l) = \delta_{ik}\delta_{jl}$. Then

$$d(\hat{u}^i \hat{v}^j) = C_{i+1} \hat{u}^{i+1} \hat{v}^j + (-1)^i C_{j+1} \hat{u}^i \hat{v}^{j+1}.$$

Proposition 2.3. If M is an A-lattice that has no direct summands isomorphic to R_{pp} , then

$$\hat{H}^0(K, M) = M_{pp}/pM_{pp} \simeq \mathbb{k}^{d_{pp}},$$

 $where \ (d_{\bullet} \mid d_{pp}, d_{p0}, d_{0p}, d_{00}) = \operatorname{Rk} M.$

Proof. Set $M^{\sharp} = A^{\sharp}M = \bigoplus_{\alpha\beta} M_{\alpha\beta}^{\sharp}$. Note that $xyA = Rxy = xyA^{\sharp}$, hence $xyM = xyM^{\sharp} = p^2M_{pp}^{\sharp}$. On the other hand, $M_{pp}^{\sharp} \simeq R_{pp}^{d_{pp}}$ and $pM_{pp}^{\sharp} \subset M_{pp} \subset M_{pp}^{\sharp}$. If $M_{pp} \neq pM_{pp}^{\sharp}$, M_{pp} contains a direct summand

 $L \simeq R_{pp}$ of M_{pp}^{\sharp} . Then $M^{\sharp} = L \oplus L'$ and $M = L \oplus (L' \cap M)$, which is impossible. Therefore, $M_{pp} = pM_{pp}^{\sharp}$, $xyM = pM_{pp}$ and $\hat{H}^{0}(K, M) = M_{pp}/pM_{pp} \simeq \mathbb{k}^{d_{pp}}$.

Denote T = Q/R, $DM = \operatorname{Hom}_R(M,T)$. It is the Matlis duality between noetherian and artinian R-modules, as well as K-modules [8]. We have the following dualities for cohomologies.

Proposition 2.4. Let M be a K-module. Then

(7)
$$\hat{H}^n(K, DM) \simeq D\hat{H}^{-n-1}(K, M),$$

and if M is a lattice

(8)
$$\hat{H}^n(K, DM) \simeq \hat{H}^{n+1}(K, M^{\vee}),$$

(9)
$$\hat{H}^n(K, M^{\vee}) \simeq D\hat{H}^{-n}(K, M).$$

Proof. Note first that, since K is local and Gorenstein, $\operatorname{Hom}_R(K,R) \simeq K$, whence $M^{\vee} \simeq \operatorname{Hom}_R(M,R)$ and we identify these modules. As T is an injective R-module,

$$\operatorname{Ext}_K^n(R, \operatorname{Hom}_R(M, T)) \simeq \operatorname{Hom}_R(\operatorname{Tor}_n^K(R, M), T),$$

(see [2, Proposition VI.5.1]), which is just (7).

The exact sequence $0 \to R \to Q \to T \to 0$ gives, for any lattice M, the exact sequence

$$0 \to M^{\vee} \to \operatorname{Hom}_R(M, Q) \to DM \to 0.$$

As multiplication by p^2 is an automorphism of $\operatorname{Hom}_R(M,Q)$, Proposition 2.2 implies that $\hat{H}^n(\operatorname{Hom}_R(M,Q)) = 0$. Then the long exact sequence for cohomologies implies (8).

(9) is a combination of (7) and (8).
$$\Box$$

Note also that $\hat{H}^n(K, F) = 0$ for any projective (hence free) K-module F. Therefore, Proposition 1.4 implies that, for any indecomposable A-lattice M,

(10)
$$\hat{H}^n(K, M) \simeq \hat{H}^{n+1}(K, \tau_K M) \simeq \hat{H}^{n-1}(K, \tau_K^{-1} M).$$

Hence from the formulae (4)-(6) and the duality (9) we obtain a complete description of cohomologies of K-lattices belonging to the preprojective-preinjective component.

Theorem 2.5.

$$\hat{H}^n(K, A^k) \simeq \begin{cases} \mathbb{k}^{n-k+1} & \text{if } n \ge k, \\ \mathbb{k}^{k-n} & \text{if } n < k; \end{cases}$$

$$\hat{H}^n(K, R^k_{pp}) \simeq \begin{cases} \mathbb{k}^{(|n-k|/2+1)} & \text{if } n-k \ne 0 \text{ is even,} \\ \mathbb{k}^{|n-k|/2|} & \text{if } n-k \text{ is odd,} \\ R/xyR & \text{if } n=k; \end{cases}$$

$$\hat{H}^n(K, R^k_{\alpha\beta}) \simeq \mathbb{k}^{[(|n-k|+1)/2]} & \text{if } (\alpha, \beta) \ne (p, p).$$

The description of cohomologies of A-lattices belonging to tubes are obtained from Proposition 2.3, since $\hat{H}^n(K, M) \simeq \hat{H}^0(K, \tau_K^{-n}M)$ and we know the action of τ_K in tubes.

Theorem 2.6. (1) If $f \notin \{t, t-1\}$, then $\hat{H}^n(K, T_m^f) \simeq \mathbb{k}^{dm}$, where $d = \deg f$.

(2) If $\lambda \in \{0, 1, \infty\}$, then

$$\hat{H}^n(K, T_m^{\lambda i}) \simeq \begin{cases} \mathbb{k}^{m/2} & \text{if } m \text{ is even,} \\ \mathbb{k}^{(m-(-1)^{n+i})/2} & \text{if } m \text{ is odd.} \end{cases}$$

3. Regular lattices

An A-lattice M is called regular if all its indecomposable direct summands belong to tubes. As neither regular lattice is projective, $\tau_K M = \tau_A M = \Omega M$. Note that if M is regular, then

(11)
$$2d_{\bullet}(M) = \sum_{\alpha\beta} d_{\alpha\beta}(M).$$

Therefore,

(12)
$$d_{\bullet}(\Omega M) = d_{\bullet}(M) \text{ and } d_{\alpha\beta}(\Omega M) = d_{\bullet}(M) - d_{\alpha\beta}(M).$$

These formulae imply the following fact.

Lemma 3.1. Every exact sequence of regular A-lattices $0 \to M \to N \to L \to 0$ induces exact sequences

$$(13) 0 \to \Omega M \to \Omega N \to \Omega L \to 0,$$

$$(14) 0 \to \Omega^{-1}M \to \Omega^{-1}N \to \Omega^{-1}L \to 0.$$

Proof. Obviously, there is an exact sequence $0 \to \Omega M \to \Omega N \oplus P \to \Omega L \to 0$ for some projective module P. On the other hand, as $d_{\alpha\beta}(N) = d_{\alpha\beta}(M) + d_{\alpha\beta}(L)$, the formulae (11) and (12) imply that $\operatorname{Rk} \Omega N = \operatorname{Rk} \Omega M + \operatorname{Rk} L$. Hence P = 0 and we obtain (13). By duality, we also have (14).

Corollary 3.2. Every exact sequence of regular A-lattices $0 \to M \to N \to L \to 0$ induces exact sequences of cohomologies

$$0 \to \hat{H}^n(K, M) \to \hat{H}^n(K, N) \to \hat{H}^n(K, L) \to 0.$$

Proof. If n=0, it follows from Proposition 2.3. For other n it is obtained by an easy induction using Lemma 3.1.

For regular lattices we can give an explicit form of cocycles defining cohomology classes. Namely, for an indecomposable regular lattice M and an integer n we set

$$M(n) = \begin{cases} M_{pp} & \text{if } n \text{ is even,} \\ M_{0p} & \text{if } n \text{ is odd and } M \notin \mathcal{T}^{\infty}, \\ M_{p0} & \text{if } n \text{ is odd and } M \in \mathcal{T}^{\infty}. \end{cases}$$

For n > 0 we define a homomorphism $M(n) \to \hat{H}^n(K, M)$ mapping an element $a \in M(n)$ to the class of the cocycle $\xi_a : P_n \to M$ defined as follows:

• If $M \notin \mathcal{T}^{\infty}$, then

$$\xi_a(u^k v^{n-k}) = \begin{cases} a & \text{if } k = n, \\ 0 & \text{otherwise.} \end{cases}$$

• If $M \in \mathcal{T}^{\infty}$, then

$$\xi_a(u^k v^{n-k}) = \begin{cases} a & \text{if } k = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 3.3. The map $a \mapsto \xi_a$ induces an isomorphism

$$\xi: M(n)/pM(n) \simeq \hat{H}^n(K,M)$$

for every n > 0 and every regular indecomposable A-lattice M.

Proof. One easily sees that ξ_a is a cocycle. Theorem 2.6 and formulae (3) show that $\hat{H}^n(K, M) \simeq M(n)/pM(n)$. Hence we only have to prove that ξ_a is not a coboundary if $a \notin pM(n)$. First we check it for the lattices T_1^f and $T_1^{\lambda i}$.

We consider the case when n is even and $M = T_1^f$, where $\deg f = d$ and $f \notin \{t, t-1\}$. The other cases are quite similar or even easier.

The corresponding representation of the quiver Γ is

where I is $d \times d$ unit matrix and F is the Frobenius matrix with the characteristic polynomial f(t). Therefore, M is the submodule of $\bigoplus_{\alpha\beta} M_{\alpha\beta}^{\sharp}$, where $M_{\alpha\beta}^{\sharp} = R_{\alpha\beta}^{d}$ and M consists of the quadruples $a = (a_{pp}, a_{p0}, a_{0p}, a_{00}) \equiv (r, r', r + r', r + \tilde{F}r') \pmod{p}$, where $r, r' \in R^{d}$ and \tilde{F} is a $d \times d$ matrix over R such that $F = \tilde{F} \pmod{p}$. Hence, $M_{\alpha\beta} = pM_{\alpha\beta}^{\sharp}$. In particular, elements $a \in M(n)$ are of the form (pr, 0, 0, 0). Let $\xi_a = d\gamma$, where $\gamma(x^{k-1}y^{n-k}) = \gamma_k \equiv (r_k, r'_k, r_k + r'_k, r_k + \tilde{F}r'_k) \pmod{p}$ for 1 < k < n. Then

$$d\gamma(v^n) = 0 = y\gamma_1 \equiv (pr_1, 0, p(r_1 + r'_1), 0) \pmod{p^2},$$

hence $\gamma_1 \equiv 0 \pmod{p}$. Suppose that $\gamma_{k-1} \equiv 0 \pmod{p}$ for $1 < k \le n$. If k is odd, then

$$d\gamma(u^{k-1}v^{n-k+1}) = 0 = x\gamma_{k-1} + y\gamma_k \equiv \equiv (pr_k, 0, p(r_k + r'_k), 0) \pmod{p^2},$$

If k is even, then

$$d\gamma(u^{k-1}v^{n-k+1}) = 0 = (x-p)\gamma_{k-1} - (y-p)\gamma_k \equiv \equiv (0, pr'_k, 0, p(r_k + \tilde{F}r'_k)) \pmod{p^2}.$$

In both cases $\gamma_k \equiv 0 \pmod{p}$. Therefore, $\gamma_k \equiv 0 \pmod{p}$ for all $1 \leq k \leq n$. Then

$$d\gamma(u^n) = (a, 0, 0, 0) = x\gamma_n \equiv 0 \pmod{p^2},$$

so $a \in pM(n)$.

Suppose now that the theorem is valid for all T_{k-1}^f and for all $T_{k-1}^{\lambda i}$. If $M = T_k^f$ or $M = T_k^{\lambda i}$, there is an exact sequence $0 \to M' \to M \to M'' \to 0$, where, respectively, $M' = T_1^f$, $M'' = T_{k-1}^f$ or $M' = T^{\lambda i}$, $M'' = T^{\lambda i}$

 $T_{k-1}^{\lambda j}$ $(j \neq i)$. It gives a commutative diagram with exact rows

Using induction, we may suppose that the first and the third homomorphisms ξ satisfy the theorem. Therefore, so does the second, which accomplishes the proof.

Dualizing this construction, we obtain an explicit description of Tate cohomologies with negative indices. Namely, for n < 0 we define a homomorphism $M(n) \to \hat{H}^n(K, M)$ mapping an element $a \in M(n)$ to the class of the cocycle $\hat{\xi}_a : P_n \to M$ defined as follows:

• If $M \notin \mathcal{T}^{\infty}$, then

$$\hat{\xi}_a(\hat{u}^k \hat{v}^{|n|-1-k}) = \begin{cases} a & \text{if } k = |n|-1, \\ 0 & \text{otherwise.} \end{cases}$$

• If $M \in \mathcal{T}^{\infty}$, then

$$\hat{\xi}_a(\hat{u}^k\hat{v}^{|n|-1-k}) = \begin{cases} a & \text{if } k = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 3.4. The map $a \mapsto \hat{\xi}_a$ induces an isomorphism

$$\hat{\xi}: M(n)/pM(n) \simeq \hat{H}^n(K,M)$$

for every n < 0 and every regular indecomposable A-lattice M.

The proof just repeats that of Theorem 3.3, so we omit it.

References

- [1] Auslander, M.: Isolated singularities and existence of almost split sequences. Notes by Louise Unger. Representation theory II, Groups and orders, Proc. 4th Int. Conf., Ottawa. 1984, Lect. Notes Math. 1178, 194-242 (1986)
- [2] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press (1956)
- [3] Drozd, Y.A.: Ideals of commutative rings. Mat. Sb., Nov. Ser. 101, 334–348 (1976)
- [4] Drozd, Y.A.: Rejection lemma and almost split sequences. Ukr. Math. J. 73(6), 908–929 (2021). DOI 10.1007/s11253-021-01967-2
- [5] Drozd, Y.A., Kirichenko, V.V.: On quasi-Bass orders. Izv. Akad. Nauk SSSR, Ser. Mat. 36, 328–370 (1972)
- [6] Drozd, Y.A., Plakosh, A.I.: Cohomologies of the Kleinian 4-group. Arch. Math. 115(2), 139–145 (2020). DOI 10.1007/s00013-020-01451-6

- [7] Drozd, Y.A., Plakosh, A.I.: Cohomologies of regular lattices over the Kleinian 4-group. arXiv:2201.11833 [mathRT] (2022). DOI 10.48550/arXiv.2201.11833
- [8] Matlis, E.: Injective modules over Noetherian rings. Pac. J. Math. 8, 511–528 (1958). DOI 10.2140/pjm.1958.8.511
- [9] Nazarova, L.A.: Integral representations of Klein's four-group. Dokl. Akad. Nauk SSSR **140**, 1011–1014 (1961)
- [10] Plakosh, A.I.: On weak equivalence of representations of Kleinian 4-group. Algebra Discrete Math. **25**(1), 130–136 (2018)
- [11] Ringel, C.M., Roggenkamp, K.W.: Diagrammatic methods in the representation theory of orders. J. Algebra $\bf 60$, 11–42 (1979). DOI 10.1016/0021-8693(79)90106-6
- [12] Roggenkamp, K.W.: Auslander-Reiten species of Bäckström orders. J. Algebra 85, 449-476 (1983). DOI 10.1016/0021-8693(83)90107-2

Institute of Mathematics, National Academy of Sciences of Ukraine, Tereschenkivska str. 3, 01024 Kyiv, Ukraine

 $E ext{-}mail\ address: y.a.drozd@gmail.com}\ URL: www.imath.kiev.ua/~drozd$