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For an atomic orbital base category in the sense of [BDG+16a], we introduce
the category of parametrised perfect–stable categories and use it to construct the
parametrised version of noncommutative motives in which algebraic K-theory is
corepresented. Furthermore, we initiate a rudimentary theory of parametrised
cubes which could be of independent interest, generalising some of the elements in
[Dot17] beyond the equivariant case. Using this cubical theory, we show that in the
equivariant case for finite 2–groups G, the parametrised noncommutative motives
canonically refine to G–symmetric monoidal categories. Consequently, this endows
the equivariant algebraic K-theory spectra for these groups with the structure of
E∞–ring spectra equipped with multiplicative norms in the sense of [HHR16]. Along
the way, we will also provide a machine to manufactureG–symmetric monoidal cate-
gories from symmetric monoidal categories equipped with G–actions and elucidate
how the aforementioned parametrised perfect–stable categories relate to Mackey
functors valued in perfect–stable categories.
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1 Introduction

Algebraic K-theory, as a functor K : Catperf → Sp, is an additive spectral invariant on the
∞-category Catperf of small perfect stable∞-categories by the work of [BGT13] and moreover
admits a lax symmetric monoidal refinement by [BGT14]. The methods of these papers were
to construct the initial stable category receiving an additive functor (in the sense of sending
exact sequences of categories to exact sequences in the target category) called the category
of noncommutative motives NMot through which the functor K above factors. Using this lax
symmetric monoidal structure, [BGS20] has been able to show that equivariant algebraic K–
theory for finite groups G – whose precise definition we shall give in due course – naturally
admits the so–called Green functor structure, in the sense of Mackey functor theory (i.e. E∞–
algebras in the Day convolution structure on SpG := MackG(Sp)).
On the other hand, there are more refined multiplicative structures in equivariant homotopy

theory for finite groups G in the form of “equivariant power operations” known as the multi-
plicative norms. This extra structure, which has a long history (see [Eve63] who introduced
it in the setting of group cohomologies; see also [GM97] for its first appearance in stable ho-
motopy theory), can be extremely valuable but is well–known to be tricky to construct. One
such application is the celebrated resolution of the Kervaire invariant one problem in [HHR16].
As such, it would be desirable if equivariant algebraic K–theory could be shown to admit such
structures.
The goal of this paper is to investigate the equivariant analogues of all the elements involved

in the functor K: Catperf → NMot→ Sp and to lay the groundwork in studying the equivariant
multiplicative refinements of all these. It turns out that the question of these refinements is
intimately related to that of cubical descent in algebraic K–theory. Therefore, in order to handle
these cubical matters in the equivariant setting, we will initiate the study of a theory on what
we term as parametrised cubes, which could be of independent interest. In particular, the
theory put forth here will be the rudiments of a theory of parametrised functor calculus which
will be the subject of a future article. Employing this rudimentary theory, our main result
will then be that equivariant algebraic K–theory can indeed be refined to admit multiplicative
norms in the special case when G is a group of order 2n for any n. We do not think that this
result is optimal, and we will at least indicate later as we state the theorem the combinatorial
difficulties involved in proving this for an arbitrary finite group G.
In the rest of the introduction, as we highlight some key results from the article, we will also

give further details on the motivations from equivariant stable homotopy theory for having
these multiplicative norms as well as summarise the relationship between these structures and
the phenomenon of cubical descent for algebraic K–theory. This connection will be crucial in
our solution for the case when |G| = 2n.

Convention: This paper is written in the language of∞–categories as developed in [Lur09;
Lur17]. As such, in order not to encumber the exposition, by a “category” we will always
mean an “∞–category”. Hence, for example, we will write Cat for the ∞–category of small
∞–categories, usually written as Cat∞. Furthermore, our work will heavily draw from the
theory of parametrised higher categories of [BDG+16a; BDG+16b; Sha23; Sha22; NS22]. As
there can be different conventions at times, we point out to the expert reader now that for a
fixed base category T , by a T –category we will mean an object in CatT := Fun(T op,Cat).

2



Motivations for equivariant multiplicative norms

Let us first recall the notion of multiplicative norms and why it can be a useful piece of extra
structure. Let R ∈ CAlg(Sp⊗

G) be an E∞–ring in genuine G–spectra. In particular, this means
that R is equipped with the structure of a multiplication ⊗ : R⊗R→ R which participates in
many coherence diagrams. Now for a subgroup H ≤ G, there is a functor NGH : SpH → SpG
called the norm, which intuitively is the multiplicative version of the usual additive induction
functor IndGH : SpH → SpG which satisfies a multiplicative version of the usual double–coset
formula for IndGH . Taking our cue from the multiplicative map ⊗ above, we may then ask if
we could endow R with the structure of an “equivariant multiplication”, i.e. a ring map

⊗GH : NGH ResGH R −→ R

participating in appropriate coherence diagrams. These maps are the multiplicative norms
alluded to above, and if we can supply these structures for all subgroups H ≤ G together with
all the requisite coherences, then we will say that R has been enhanced to the structure of a
G–E∞–ring spectrum.
Now, admitting the structure of an E∞–algebra object places severe constraints on a spec-

trum which might be fruitfully leveraged. For example, to show that an E∞–ring A is zero,
one just has to show that its π0 vanishes; to show that A is nonzero, one may try to build
nontrivial E∞–ring maps out of A. This latter observation, while elementary, has been used
very successfully in the proof of a key case of the E∞–redshift conjecture in [Yua21] as well as
the reduction to this key case in [BSY22]. In a similar vein, the multiplicative norms provide
a lot extra structure and constraints that can be productively exploited. As cited above, these
norm structures were used by Hill, Hopkins, and Ravenel in the celebrated [HHR16] in an es-
sential way to construct a bordism–type spectrum which is sufficiently computable by virtue of
having these multiplicative norms and which also sees enough of the Adams spectral sequence
to obstruct the existence of Kervaire invariant one elements for all but six of the infinitely
many cases. For an example of the rigid demands the multiplicative norms put on a ring G–
spectrum, see for instance [PSW22, Ex. 3.28] where it is argued that the so–called “inflated”
HZ C2–spectral Mackey functor cannot admit such structures. Yet another instance where
these norms can be illuminating is pointed out in [NS18, Rmk. III.1.5] where they showed how
the norms can be used to recover their famed Tate diagonal, a structure now accepted as one
of the central pillars of higher algebra at large.
Closer to our interests, however, is the potential use of the norms in proving “completion

theorems” in equivariant stable homotopy theory, flagship examples of which are the Atiyah–
Segal completion theorem [Ati61; AS69; AHJ+88] and the Segal conjecture [Lin80; AGM85;
Car84]. This is a type of descent problem which is deeply tied to the birth of genuine equivariant
homotopy theory and remains one of the central types of questions in this field. Roughly
speaking, it can be stated as follows: for an object R ∈ CAlg(Sp⊗

G), we define the augmentation
ideal IG to be the kernel of the restriction map πG0 R→ πe0R where e ≤ G is the trivial subgroup.
In reasonable situations, there is then a canonically constructed comparison map

(RG)∧IG −→ RhG

and the completion problem asks to what extent this is an equivalence. For a nice exposition
of this type of problem, we refer the reader to [GM95, §6− §8]. A standard approach to these
types of questions is to prove it by induction on the group G, and for this, a technical but
often important step is to show that the two ideals IH and ResGH IG in πH0 R define the same
completion. This, in turn, may be reduced to showing that they have the same radical. Often,
this can turn out to be very difficult and rests on quite precise knowledge of the ring theory of
πH0 R for all subgroups H ≤ G (for example, the various proofs of the Atiyah–Segal completion
theorem rest on Atiyah’s comprehensive description of the prime ideals in the complex repre-
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sentation ring in [Ati61, §6]). Nevertheless, in the presence of the multiplicative norms, this
problem may be painlessly resolved in certain cases by the following type of manoeuvre:

Lemma. Let G an abelian group and H ≤ G, and let R be a G–E∞–ring spectrum. In this

case, we have
√
ResGH IG =

√
IH .

Proof. We always have
√
ResGH IG ⊆

√
IH . To see the reverse inclusion, let a ∈ πH0 R such that

an ∈ IH . By the double–coset formula for the norm, we get

ResGH N
G
H(an) =

∏

H\G/H

NH
Hg∩H ResH

g

Hg∩H g∗(a
n)

Since all our groups were abelian, there are no interesting conjugations and so the right hand
side looks like am :=

∏
H\G/H a

n, and hence am ∈ ResGH IG as required.

Indeed, a more sophisticated version of this was the main step in the proof of the completion
theorem for equivariant MU in [GM97] where the multiplicative norms were first co–opted
in stable homotopy theory. The lesson here, as also in [HHR16], is that the norms can be an
invaluable tool in the way of constructing classes in equivariant homotopy groups with desirable
computational and structural properties.
Having said that, with fantastic structures come serious difficulties. Unsurprisingly, these

structures turn out to be rather tricky to formulate precisely and are yet trickier to construct. It
was in large part to this end that the theory of parametrised higher categories were introduced
and studied by Barwick, Dotto, Glasman, Nardin, and Shah in [BDG+16a; BDG+16b; Sha23;
Sha22; NS22]. In the next part of the introduction, we shall recall the basic philosophy of this
setup and explain what we mean by equivariant algebraic K–theory in this language.

Parametrised higher categories and equivariant algebraic K–theory

The primary ingredient of the parametrised formalism aforementioned is a fixed small base
category T , and the basic category of interest is CatT := Fun(T op,Cat) whose objects are
termed as T –categories. In fact, for most of this article we will restrict to the case when T is
atomic orbital (c.f. Definition 2.1.15). Roughly speaking, this is a class of categories isolated
by the group [BDG+16b] that are particularly suited to higher algebraic considerations such as
parametrised semiadditivity and multiplicative structures. The most important example of an
atomic orbital base category for us will be the case of T being the orbit category OG for a finite
group G, in which case we will write CatG := Fun(Oop

G ,Cat) where the objects are called G–
categories. The point of this notion is that by having such highly structured objects, a theory
of parametrised (co)limits can be developed which affords precise meanings to many analogies
between equivariant higher algebra and ordinary higher algebra, thus rendering transparent
the nonequivariant statements and proofs which readily generalise in the equivariant direction.
In other words, the parametrised theory possesses both executive and suggestive powers to find
and prove the “correct” generalisations of interesting nonequivariant notions.
As hinted at above, one salient feature of this theory is that it affords the theory of G–

symmetric monoidal categories by which we may make sense of G–E∞–algebras CAlgG, i.e.
E∞–algebras equipped with multiplicative norms. In more detail, [Nar17] and its later expan-
sion [NS22] set up the theory of T –operads for any atomic orbital T analogous to Lurie’s notion
of ∞–operads in [Lur17, §2.1]. As in [Lur17], this provides a scaffolding over which the theory
of T –symmetric monoidal categories and T –E∞–algebras were developed. Satisfyingly, [NS22,
Thm. 2.3.9] gives an equivalent description of the category G–symmetric monoidal categories
as MackG(Cat), i.e. G–Mackey functors (in the sense of [Bar17]) valued in Cat.
Notwithstanding the pleasant generality in which all of these concepts can be developed, the

task of constructing examples of G–E∞–algebras remains by and large a tricky one. Despite
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this, the general consensus and expectation is that, at least, symmetric monoidal categories
equipped withG–actions should certainly induce a validG–symmetric monoidal category whose
G–E∞–algebras should be easy to describe. It is therefore in this context that we offer our first
main result confirming these expectations:

Theorem A (Precise and full statement in Theorem 2.4.10). Let D⊗ ∈ Fun(BG,CMon(Cat))
be a symmetric monoidal category with a G–action. From this datum, we may construct a G–
symmetric monoidal category Bor(D⊗) whose underlying G–category is Bor(D) := {G/H 7→
DhH}. The multiplicative norm map NGH : DhH → DhG can be concretely described as
follows: for X ∈ DhH a H–object in Bor(D), the G–object NGHX ∈ DhG is given by⊗

g∈G/H gX. Moreover, the category of G–E∞–algebras in Bor(D⊗) admits a simple descrip-

tion as CAlgG
(
Bor(D⊗)

)
≃ CAlg(D⊗)hG, i.e. E∞–algebras in D⊗ equipped with a G–action.

We call the construction Bor(−) the Borelification functor, and in the full version, we also
show that any G–symmetric monoidal category admits a natural G–symmetric monoidal
functor to its Borelification. The proof of this will proceed by first placing everything at
the appropriate categorical level, where most of the problem may essentially be reduced
to understanding the fully faithful functor b : BG →֒ Oop

G , and later extracting the desired
statements by a process of decategorification. In hindsight, this was very much inspired by
the philosophy of [GGN15] (which, in turn, was inspired by [Lur17, §4.8.2]) in dealing with
monoidal structures via the properties of categorical products.

Next, we work towards explaining what we shall mean by equivariant (or more generally,
T –parametrised) algebraic K–theory in this article. For a fixed finite group G and a category
with finite products C, as mentioned before, [Bar17] supplies us the ∞–categorical version of
G–Mackey functors valued in C denoted MackG(C). This is a powerful construction which
recovers, for example, genuine G–spectra SpG as MackG(Sp) (this was first proved in [GM11],
but see also [Nar16, App. A] and [CMN+20, App. A]). Since MackG(−) is functorial on
product–preserving functors, we may apply it to the functor K : Catperf → Sp to obtain

MackG(K): MackG(Cat
perf) −→ MackG(Sp) = SpG

The lax symmetric monoidal refinement of K then induces a lax symmetric monoidal refinement
of MackG(K), and hence this functor takes E∞–algebras in the domain to an E∞–algebra object
in SpG: this is the content of the Green functor refinement of equivariant algebraic K–theory
due to [BGS20]. This construction has been used to great effect, for example, in [CMN+20],
where they provided one of the key ingredients for the proof of the chromatic redshift conjecture
for E∞–rings (c.f. [LMM+22; Yua21; BSY22] for the complementary ingredients).
Unfortunately, this E∞–structure lacks the desired multiplicative norms. Worse still, we do

not even know if MackG(Cat
perf) may be endowed with a reasonable G–symmetric monoidal

structure with which to even begin to speak of G–E∞–algebras. Therefore, as a first step,
our goal is to provide a replacement for MackG(Cat

perf) which admits a natural G–symmetric
monoidal structure. This leads us to introduce the study of perfect–stable categories internal

to the parametrised framework. In §2.5 we introduce the T –category Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T of T –perfect–

stable categories for an arbitrary atomic orbital T . By our work in [Hil22b], this T –category
is equivalent to the T –category PrT ,L,st,ω of T –presentable–stable categories and T –colimit–
preserving functors which preserve T –compact objects. The benefit of this equivalence is
that there is already a natural T –symmetric monoidal structure on PrT ,L,st,ω constructed by

Nardin in [Nar17], whence a T –symmetric monoidal structure on Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Moreover, in the

same subsection we also prove various basic categorical properties about Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , including

the fact that it is T –semiadditive and T –presentable in Corollary 2.5.8. As a crucial bridge
between this notion and the version of equivariant K–theory in [BGS20; CMN+20], we provide
there our next main result in the form of:
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Theorem B (See Theorem 2.5.11). We have a conservative T –faithful inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂

MackT (Cat
perf). Moreover, this inclusion preserves and reflects parametrised (co)limits.

Intuitively, in the case of T = OG, the image of the faithful inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G ⊂MackG(Cat

perf)

consists of those Catperf–valued G–Mackey functors where the abstract transfer maps are
both left and right adjoint to the restrictions. The theorem not only allows us to define
T –parametrised algebraic K–theory as the composite

KT : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T →֒ MackT (Cat

perf)
MackT (K)−−−−−−→ MackT (Sp),

it also allows us to port many known concepts and results about Catperf to the setting of

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , the most important of which is the theory of split Verdier sequences. Recall that a

split Verdier sequence in Catperf is a sequence of objects C →֒ D ։ E in Catperf which is both
a cofibre and a fibre sequence, and where both functors admit both left and right adjoints.

Thanks to Theorem B, we can and will define a sequence in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T to be a split Verdier

sequence if it is so when viewed as a sequence in MackT (Cat
perf) under the faithful inclusion,

and we deduce various properties of this definition in §4.1 from the unparametrised theory.
We also hope that this faithful inclusion provides some degree of reassurance and justification

that Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T is a legitimate notion to consider.

Multiplicativity and cubical descent

We now introduce the twin problem of endowing algebraic K–theory with equivariant multi-
plicative structures and that of equivariant cubical descent. First, recall that there is a very
general method, in the form of [Lur17, Def. 2.2.1.6, Prop. 2.2.1.9], by which we may attempt to
enhance a Bousfield localisation L : C → D to a symmetric monoidal functor, given a symmetric
monoidal structure C⊗ on C. Essentially, we may do this if we can verify that for any finite
collection {fi : xi → yi}i∈I of morphisms in C all of which are L–equivalences, the morphism
⊗ifi : ⊗i xi → ⊗iyi is also an L–equivalence, in which case we shall say that L is compatible
with the symmetric monoidal structure C⊗. In fact, by [Lur17, Ex. 2.2.1.7], this condition can
be drastically simplified just to checking that the collection of L–equivalences is a tensor ideal,
i.e. if f : x → y is an L–equivalence, then so is idz ⊗ f : z ⊗ x → z ⊗ y. This is because the
map f1 ⊗ f2 : x1 ⊗ x2 → y1 ⊗ y2 can be factored into the composition of maps

x1 ⊗ x2
idx1⊗f2−−−−−→ x1 ⊗ y2

f1⊗idy2−−−−−→ y1 ⊗ y2 (1)

both of which are of the form specified in the simplified condition.
Next, we recall how the functor K: Catperf → Sp was enhanced to a lax symmetric monoidal

one in [BGT14]. The point of view taken by the authors was a motivic one, which, to the best
of our knowledge, is also the only perspective in the literature that affords this lax symmetric
monoidal enhancement. In more detail, up to set–theoretic considerations which will not
trouble us in this vague introduction, it was shown in [BGT13] that algebraic K–theory may
be factored as the composition

K: Catperf
y−−→ PSh(Catperf)

L−−→ NMot
map(Z(Spω),−)−−−−−−−−−−→ Sp (2)

where y is the Yoneda embedding, Z := Ly, and NMot is the so–called stable category of
noncommutative motives obtained by stabilising the localisation of PSh(Catperf) against the
split Verdier sequences, i.e. inverting the maps y(D)/y(C) → y(E) for split Verdier sequences
as above. We call maps in PSh(Catperf) that get inverted by L the motivic equivalences. This
factorisation (2) allows us to upgrade the functor K to a lax symmetric monoidal one, where
the main issue boils down to showing that L enhances to a symmetric monoidal functor using
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the Day convolution structure on PSh(Catperf). By the general theory recalled above, in order
to do this, one observes that y(A)⊗ [y(D)/y(C)→ y(E)] ≃ [y(A⊗ D)/y(A⊗ C)→ y(A⊗ E)].
Since applying A ⊗ − preserves split Verdier sequences, the right–hand–side (and hence also
the left–hand–side) is a motivic equivalence, as required.

Coming back to the parametrised setup, it turns out that one may also make sense of the

notion of a T –category of T –noncommutative motives using the notion of Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T introduced

above. In fact, in §4.2, we construct two variants NMotpwT and NMotnmT of T –noncommutative
motives called the pointwise and normed variants, respectively. As suggested by the name, we

prove in Proposition 4.2.17 that the functor Znm : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → NMotnmT refines to a T –symmetric

monoidal functor. On the other hand, NMotpwT is the one which provides the universal property
of T –parametrised algebraic K–theory analogous to the one of [BGT13; CDH+] (the universal
property we give follows the latter citation which removed the need for additive functors to
preserve filtered colimits), as encapsulated by the following theorem:

Theorem C (See Theorems 4.2.11 and 4.2.15). For any T -presentable-stable category E,
the precomposition Z∗

pw : FunLT (NMotpwT , E) → Funadd
T (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) is an equivalence, where

Funadd
T (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) ⊆ FunT (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) denotes the full subcategory of additive functors, i.e.

those that send split Verdier sequences to fibre sequences. Moreover, we have the factorisation

KT : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

Zpw−−→ NMotpwT
mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(ZpwSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp,−)−−−−−−−−−→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT

of T –parametrised algebraic K–theory.

By the universal property from Theorem C, we obtain a canonical comparison map
Ψ: NMotpwT → NMotnmT . This map is an equivalence if and only if the functor Zpw is compat-
ible with the T –symmetric monoidal structures in a sense analogous to the unparametrised
situation sketched above but which we will not make precise here (this criterion is given
for example in [QS22, Lem. 5.27]; see also Propositions 2.3.4 and 2.3.7 where we provide a
different proof). If this happens, then KT refines to a T –lax symmetric monoidal functor.
There is no essential mathematical content in the reformulation in terms of the map Ψ, and
we constructed NMotnmT only to show that it is always formally possible to define a version of
T –parametrised algebraic K–theory which has the multiplicative norms by defining it to be
the functor corepresented by the multiplicative unit in NMotnmT . Incidentally, we should also
mention that, apart from its pleasant universal property, such categories of noncommutative
motives can also serve as a convenient setting to prove things about additive functors in a
uniform way, as for example appears in [CMN+20].

Unfortunately, this is where the breezy transferability from the nonequivariant setting to
the equivariant one ends. The core issue in this setting is the lack of a currying manoeuvre
for G–tensor products. In slightly more detail, recall from (1) that we were able to simplify
dramatically the sufficient condition for symmetric monoidality of localisations because we were
able to curry and separate the problem into each tensor component. This led to a rather easy
check to multiplicatively enhance the motivic localisation Z from (2). When considering G–
tensor products, we have no such luxury since tensoring an object G–times and remembering
the permutation G–equivariant structure inextricably links the tensor components, precluding
any ability to separate and deal with each tensor component in an inductive fashion. This
forces us to deal with tensor powers of localisation equivalences head–on, leading naturally to
the phenomenon of K–theoretic cubical descent, as we shall presently explain.
Suppose we are given two split Verdier sequences {Ci →֒ Di ։ Ei}i=0,1 in Catperf . We would

like to show that the tensored map y(D1)/y(C1) ⊗ y(D2)/y(C2) −→ y(E1) ⊗ y(E2) is still a
motivic equivalence. Since y(−) was symmetric monoidal and −⊗ − commutes with colimits
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in each variable, this map is equivalent to the horizontal map in

y(D1⊗D2)
y(D1⊗C2)∪y(C1⊗C2)y(C1⊗D2)

y(E1 ⊗ E2)

y(D1⊗D2)
y(D1⊗C2∪C1⊗C2C1⊗D2)

(3)

For general reasons, the horizontal map factors as displayed above. This breaks up the problem
at hand into two parts:

(a) If we could show that the induced map D1⊗C2∪C1⊗C2 C1⊗D2 → D1⊗D2 is fully faithful,
then by general facts about split Verdier sequences, we would get that D1 ⊗ C2 ∪C1⊗C2

C1⊗D2 →֒ D1⊗D2 ։ E1⊗E2 is again a split Verdier sequence. Thus, if this is the case,
then the diagonal map in (3) is a motivic equivalence.

(b) If we could show that the functor Z : Catperf → NMot preserves pushouts of the form

C1 ⊗ C2 C1 ⊗D2

D1 ⊗ C2 D1 ⊗ C2 ∪C1⊗C2 C1 ⊗D2

p

then the vertical map in (3) will be seen to be a motivic equivalence.

Analogous questions involving cubes of higher dimensions can of course be formulated when
we have more than two split Verdier sequences. For reasons which we hope are clear, we will
loosely term problems of type (b) above as the problem of motivic cubical descent. As such,
upon forgoing currying manoeuvres and up to the technical point (a), endowing coherent
multiplicative structures on K–theory from this motivic perspective is equivalent to a certain
descent rigidity with regards to special types of cubes. Since all of these serve only to rephrase
the problem of enhancing Z to a symmetric monoidal functor, it is unsurprising that problems
(a) and (b) can be solved in the nonequivariant setting by inducting on the number of tensor
components via currying. In particular, this implies that K–theory (and in fact, any additive
functor) automatically satisfies extra descent with respect to a class of diagrams larger than
just the split Verdier sequences, a phenomenon well–observed in the literature.

Motivated by these questions, we initiate in §3 the study of parametrised cubes. The main
idea here is that, for the very same reason that cubes show up in Goodwillie’s seminal theory
of functor calculus, generalised versions of cubes which we call parametrised cubes also show
up naturally when one considers parametrised category theory. More concretely, said cubes are
parametrised categories obtained by taking finite indexed products of ∆1 and they show up
in our work because we are interested in taking indexed tensors, i.e. multiplicative norms, of
split Verdier sequences (which are in particular cofibre sequences, and may hence be specified
by a ∆1–diagram in perfect–stable categories). As we shall see in §3, the hypothesis that
T is atomic orbital will be used in an essential way in order to define the “singletons” in a
parametrised cube. A variant of such a theory, in the equivariant setting, has for example
been investigated in [Dot17] using model categories. Our approach, however, is purely ∞–
categorical and model–independent, running on the philosophy that much of cubical theory
may be phrased beneficially in terms of the yoga of Kan extensions (see also [Sto22] for another
manifestation of this philosophy in the theory of posets in unparametrised higher categories).
To the best of our knowledge, a cubical theory in this level of generality is new could be of
independent interest. Indeed, we should say that the theory recorded here will serve as the
rudiments of a more comprehensive theory of parametrised functor calculus which we will be
the subject of a separate article.
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The guiding example for us (which will in any case be the key example powering our main
theorem) will be that of C2–pushouts, assuming for now that G = C2 for simplicity. Namely,
suppose in the setting of problem (b) above, instead of tensoring two different split Verdier
sequences, we took its C2–norm instead. As explained above, this needs to be reckoned with if

we are to enhance Zpw : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G → NMotpwG to a G–symmetric monoidal functor. In a fashion

similar to (b), this will induce a C2–colimit diagram in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
C2

NC2
e C C ⊗ D

D ⊗ C D ⊗ C∪
N
C2
e C
C ⊗ D

p

(4)

which we term as a C2–pushout diagram. While outwardly this looks rather similar to the
pushout in (b) above, there are also key differences. In (4), the top left and bottom right terms

are C2–objects in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
C2

, but the other two terms are merely objects in Catperf . The point is
that the group C2 acts on the entire diagram, where it acts by swapping C ⊗D with D⊗C. In
other words, the indexing C2–diagram, as an object in CatC2 = Fun(Oop

C2
,Cat) looks like the

square ∆1×∆1 for the underlying category (i.e. the value at C2/e) whose C2–fixed points (i.e.
the value at C2/C2) are only the full subcategory spanned by the initial and terminal objects in
∆1×∆1. These types of equivariant diagrams give rise to a wealth of interesting constructions.
For example, in C2–spaces, taking the colimit of the ordinary diagram (∗ ← X → ∗) yields
the usual suspension ΣX , whereas the colimit of the C2–diagram (∗ ← X → ∗) where the two
copies of ∗ are swapped by C2 yields the the sign suspension ΣσX of X ∈ SC2 .
In the nonequivariant case, we have indicated how one can use currying to show K–theoretic

descent for cubes of the sort in problem (b). The idea for the C2–equivariant case now is to
show that the square descent in K–theory induces descent with respect to C2–colimits of the
form (4). To this end, we prove a general re–expression result in Notation 4.3.1 which allows
us to rewrite the C2–pushout diagram (4) into the ordinary pushout diagram

IndC2
e C ⊗ C ≃ IndC2

e ResC2
e NC2

e C NC2
e C

IndC2
e C ⊗ D D ⊗ C∪

N
C2
e C
C ⊗ D

ε

p

of C2–objects in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
C2

, where the map ε is the counit for the adjunction Ind ⊣ Res. We then
show that additive functors satisfy descent with respect to such squares by standard methods,
and so solve the C2–analogue (4) of problem (b) above. Together with this, a dévissage–type
argument via the solvability of p–groups (in the case p = 2) then yields the following main
theorem of this article, providing in the special case of G being a 2–group the desired refinement
of the Green functor structure from [BGS20] to G–E∞–algebras.

Theorem D (See Theorem 4.3.11 and Corollary 4.3.12). Let G be a group with |G| = 2n

for some n. The comparison map Ψ : NMotpwG → NMotnmG in this case is an equivalence.

Consequently, KG : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG canonically refines to a G–lax symmetric monoidal functor

for such G and so induces the functor KG : CAlgG(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G )→ CAlgG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG).

This in particular means that for such groups, the equivariant K–theory spectrum {K(SH)}H≤G

of the equivariant sphere spectrum canonically assembles to a normed E∞–ring spectrum in
SpG. Our expectation is that, armed with a good categorical and combinatorial control of
general parametrised cubes which we presently lack, the theorem should hold for arbitrary
atomic orbital base categories T . As far as we know, the descent of K–theory with respect to
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parametrised cubes such as (4) has never been investigated before and we think that the ques-
tion of parametrised cubical descent for additive functors could be an independently interesting
line of pursuit for a fuller understanding of their rigidity properties.
Lastly, a straightforward combination of Theorem A and Theorem D gives us the following:

Corollary E (See Corollary 4.4.2). Let G be a group with |G| = 2n for some n and C⊗ ∈
Fun(BG,CAlg((Catperf)⊗)) be a small symmetric monoidal perfect–stable category equipped
with a symmetric monoidal G–action. Then the spectra {K(ChH)}H≤G naturally assemble to
a spectral G–Mackey functor equipped with multiplicative norms.

The type of equivariant K–theory spectra considered in Corollary E represents an extremely
interesting class of examples and are sometimes called Swan K–theory in the literature. In
the classical setting, its importance in K–theory’s equivariant structure theory has been
recognised as early as Swan’s groundbreaking work [Swa60] together with its axiomatisation
and hermitian elaboration [Dre75] (the latter which is the original source for the Mackey
formulation of induction theorems, often called Dress induction theorems today). More
recently, they have also been considered, for instance, in [BGS20, §8] and [MM19].

Relation to other work. Most results in this paper are corrections and expansions of
Chapters 2–4 of the author’s PhD thesis [Hil22a]. Equivariant algebraic K-theory is not a new
subject and much work has been done in this area, see for example [BMM+21; Len21; Mer17;
Sch19]. A slightly over-simplified but helpful view is that there are two versions of higher
algebraic K-theory: on the one hand, there is the group-completion K-theory whose input is a
small symmetric monoidal category C and one group completes the E∞-space C≃ to obtain a
connective spectrum - classically, this is related to Quillen’s +-construction and the reader is
referred to [GGN15] for an ∞-categorical treatment which gives a highly structure refinement
of this construction; on the other hand, there is the Quillen/Segal/Waldhausen K-theory whose
input is a small stable ∞-category - this corresponds to Quillen’s Q-construction and Segal
and Waldhausen’s S•-construction. All the literature cited above dealt with the equivariant
enhancement of the group-completion K-theory. In this paper, we treat the latter version
of K-theory, and is a further refinement of the multiplicative structures treated in [BGS20;
CMN+20] to include the multiplicative norms.
Finally, but perhaps most importantly, we mention that our work is not the first to treat

the structure of multiplicative norms on equivariant algebraic K–theory. In [EH23], Elmanto
and Haugseng have, independently of us, shown that for all finite groups G, the equivariant
algebraic K–theory space enhances to one with norms when the input is endowed with such
structure, using as a key input the recent advancement on K–theoretic power operations in
[BGM+22]. As a matter of commentary on the differences between our work and theirs, we
should say that our methods are totally distinct from theirs and consequently, so too are the
results in their finer, but important, points. While their work provides the norms for all finite
groups, because of its dependence on the much more general polynomiality of [BGM+22],
the norms they obtain are maps of spaces ; whereas, because we work with K–theory spectra
throughout, the norm structures we obtain are happening at the level of spectra, which
is strictly more structure. This distinction can prove to be crucial when one wants to
consider modules in G–spectra over these equivariant K–theory ring spectra, for example.
Furthermore, we think that the motivic universal property of parametrised K–theory as well as
the link to the problem of parametrised cubical descent we provide in this article could be in-
teresting points in their own rights for a fuller understanding of equivariant algebraic K–theory.

Assumptions and outline of paper. This paper builds on the theory of parametrised
homotopy theory as introduced and studied in [BDG+16a; BDG+16b; Sha23; Sha22; Nar17]
and as further developed in [Hil22b]. Moreover, unless otherwise stated, we will always assume
the base category T to be atomic orbital (cf. Definition 2.1.15).
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Since our K–theoretic goals will require a fair bit of parametrised machinery, we will
take the opportunity in §2 to contribute to what may be classified as general parametrised
theory where we will in particular prove Theorems A and B. Next, we introduce and develop
the basics of the theory of parametrised cubes in §3. In the final §4, we will apply all the
theory above to construct the parametrised version of noncommutative motives and prove
Theorems C and D and Corollary E. Each section will be prefaced with a more detailed
outline of its contents.

Acknowledgements. I am grateful to Jesper Grodal, Markus Land, Emanuele Dotto,
Maxime Ramzi, Asaf Horev, and Sil Linskens for useful comments, sanity checks, and many
hours of enlightening conversations. Special thanks are due to Marc Hoyois for catching a
serious mistake in the first version, around which much of the work in this revised version is
based, and to Greg Arone who first suggested that one might be able to re–express equivariant
pushouts in terms of ordinary pushouts, which proved to be the decisive technique driving
our main result. We thank also Sil Linskens for reading a draft of the current version of the
article as well as for the expositional improvements and minor corrections suggested. This
article is based to a large extent on work done in the author’s PhD thesis [Hil22a] which was
supported by the Danish National Research Foundation through the Copenhagen Centre for
Geometry and Topology (DNRF151) as well as by the Swedish Research Council (grant no.
2016-06596) through the research program “Higher algebraic structures in algebra, topology
and geometry” held at Institut Mittag–Leffler, Sweden in the spring of 2022. Furthermore,
substantial improvements and revision work have also been supported by the Max Planck
Institute for Mathematics in Bonn, Germany.

2 Aspects of parametrised category theory

This section pertains to supplying miscellaneous results in parametrised higher category theory
that may be viewed to be of general utility. We recollect the foundations of the parametrised
theory that we shall need in §2.1 as well as take the opportunity to prove some basic categorical
generalities in §2.2; in §2.3 (from which point on we will always assume that the base category
is atomic orbital), we will prove various elements in the interaction between localisations and
multiplicative structures that will be crucial for our construction of multiplicative structures
in noncommutative motives in §4.2; next, we will elucidate in §2.4 the G–symmetric monoidal
theory associated to so–called “Borel”G–categories, proving Theorem A via a categorification–
decategorification procedure; to end the section, we shall introduce in §2.5 the “internal” notion
of perfect–stable categories in the parametrised setting, prove their basic categorical properties
such as T –semiadditivity and T –presentability, and finish with a proof of Theorem B which
relates this internal notion of perfect–stability with the “external” one. This internal notion
of perfect–stable categories will be important to us since they will serve as the input of our
parametrised algebraic K–theory functor later.

2.1 Basic setup

We provide here an overview of the basic theory that has already appeared in the literature. For
the categorical foundations of parametrised homotopy theory, we refer the reader to [BDG+16a;
BDG+16b; Sha23; Sha22] (in particular, for a discussion of parametrised adjunctions, which
will be the bread and butter of this article, see [Sha23, §8]); for the algebraic theories of
semiadditivity and symmetric monoidal structures, we refer the reader to [Nar16; Nar17; NS22];
for the theory of presentability, see [Hil22b]; and finally, for a one–stop survey for many of the
basic theory, see for instance [Hil22a]. Expert readers should feel free to skip this subsection.
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Definition 2.1.1 (T –categories). Let T be a small category. The category of T –categories
CatT is defined to be Fun(T op,Cat). An object in CatT will be indicated with the under-
line notation C. Under Lurie’s straightening–unstraightening equivalence Fun(T op,Cat) ≃
coCart(T op), we will denote by

∫
C → T op the cocartesian unstraightening of C ∈

Fun(T op,Cat). Morphisms in CatT are called T –functors.

Terminology 2.1.2 (Objects). By an object in a parametrised category C, we will mean a
T –functor ∗ → C where ∗ ∈ CatT is the terminal T –category which is constant with value
∗. For a fixed V ∈ T , writing v : T/V → T for the canonical functor, we may then define
a V –object in C to be a T –functor v!∗ → C. By adjunction, this is the same datum as a
T/V –functor ∗ → v∗C. Hence, the datum of a V –object in C is the same datum as an object
(in the sense of the first sentence above) in v∗C.

Notation 2.1.3. For a morphism f : W → V in T and C ∈ CatT = Fun(T op,Cat), we will
write f∗ : CW → CV for the structure map encoded by C.

Notation 2.1.4. We will write (−)opopopopopopopopopopopopopopopopop : CatT ≃−→ CatT for the self–equivalence induced by

applying Fun(T op,−) to the self–equivalence (−)op : Cat ≃−→ Cat.

Construction 2.1.5 (Cofree parametrisation, [Nar16, Thm. 2.8]). Let D be a category. Then
there is a T -category CofreeT (D) classified by

T op → Cat :: V 7→ Fun((T/V )op,D)

called the cofree T –category on D. This has the following universal property: if C ∈ CatT ,
then there is a natural equivalence FunT (C,CofreeT (D)) ≃ Fun(

∫
C,D) of unparametrised

categories, where FunT denotes the category of T –functors.

As illustrated by the following examples, for underlined objects, we will often omit the
subscripts T for readability.

Example 2.1.6 (Spaces and categories). An important example is the T –category of T –spaces
S, defined as Cofree(S). There is then a parametrised mapping space MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap(−,−) functor
landing in S associated to any T –category which induces a parametrised Yoneda embedding
satisying the usual universal property of presheaves. We refer the reader to [Sha23, §10] for
more details. Similarly, we define the T –category of T –categories Cat as Cofree(Cat).

Terminology 2.1.7. A T –functor C → D is said to be T –fully faithful if it is so fibrewise. Via
the notion of parametrised mapping spaces from the example above, this can also be formulated
as saying the T –functor induces equivalences on the parametrised mapping spaces.

Recollections 2.1.8 (Adjunctions). Of foundational importance in the parametrised theory is
the concept of T –adjunctions and this was defined by Shah in [Sha23, §8] building crucially on
Lurie’s notion of relative adjunctions from [Lur17, §7.3.2]. From the point of view of cocartesian
fibrations, a T –adjunction between C and D is the data of T –functors (i.e. maps of cocartesian
fibrations over T op) L : C → D and R : D → C together with the data of an ordinary adjunction∫
L :

∫
C ⇋

∫
D :

∫
R where the adjunction (co)units map to the identity in the base category

T op. By [Hil22b, Lem. 2.2.9] for example, this may also be phrased more internally as the
datum of a natural equivalence of mapping space functors

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(L−,−) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, R−) : Copopopopopopopopopopopopopopopopop ×D −→ S

as in the usual definition of adjunctions.

Notation 2.1.9 (Cotensors). There is an internal hom functor Fun (also written as FunT when
we want to be explicit with the base category we are working over) equipped with natural
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equivalence FunT (− × C,−) ≃ FunT (−,Fun(C,−)) for any C ∈ CatT . Write p : T op → ∗
for the unique functor and let I be a small unparametrised category. Then the adjunction
−× I : Cat ⇄ Cat : Fun(I,−) induces the adjunction

(−× I)∗ : Fun(T op,Cat) ⇄ Fun(T op,Cat) : Fun(I,−)∗

Under the identification Fun(T op,Cat) = CatT , it is clear that (− × I)∗ corresponds to the
T -functor − × p∗I, whose right adjoint is Fun(p∗I,−). Therefore Fun(p∗I,−) ≃ Fun(I,−)∗
implements the fibrewise functor construction. We will often write Fun(I,−) for Fun(p∗I,−).
This satisfies the following properties whose proofs are immediate.

1. CatT is cotensored over Cat in the sense that for any T -categories C,D we have

Fun(C,Fun(I,D)) ≃ Fun(I,Fun(C,D))

2. Fun(I,−) preserves T -adjunctions. This is straightforward to deduce from [Sha23, §8].

Observation 2.1.10. Suppose T has a final object and let s : ∗ →֒ T be the inclusion of the
final object, so that upon passing to the opposites, we have the adjunction s : ∗⇋ T op : p. We
claim now that there is a natural equivalence of functors

s∗Fun(s!I,−) ≃ Fun(I, s∗−) : CatT → Cat

To wit, fixing some A ∈ Cat and C ∈ CatT , consider the sequence of natural equivalences

MapCat

(
A, s∗Fun(s!I, C)

)
≃MapCatT (s!A× s!I, C)
≃MapCat(A× I, s∗C)
≃MapCat

(
A,Fun(I, s∗C)

)

where we have also used that s! : Cat→ CatT preserves products since s! ≃ p∗ is a right adjoint
by virtue of the adjunction s ⊣ p.

Recollections 2.1.11 ((Co)limits and indexed (co)products). The notion of parametrised
adjunctions and Fun afford us the key concept of parametrised (co)limits. That is, for any
I, C ∈ CatT and writing π : I → ∗ for the unique T –functor, the I–shaped (co)limit in C
functor, if it exists, may be defined as the parametrised right (resp. left) adjoint π∗ (resp.
π!) to the restriction functor π∗ : C → Fun(I, C). The reader should be warned that these
parametrised colimits are not given by fibrewise taking (co)limit, although this is so when
the indexing shape is a constant T –category (i.e. those of the form p∗I as in Notation 2.1.9).
Furthermore, one can also develop the notion of parametrised Kan extensions etc., and we refer
the reader to [Sha23, §§9, 10] for more technical details.
A very important part of the general theory that we will use often in our arguments later is

that every parametrised colimit may be decomposed into an unparametrised part and a truly
parametrised part. To add precision to this, it would be helpful first to recall some standard
terminologies: it is common in the literature to term as fibrewise (co)limits those parametrised
(co)limits which are indexed by a constant diagram (in the sense explained above). On the
other hand, for any fixed V ∈ T , by basechanging from T to T/V (i.e. by considering the functor
CatT → CatT/V induced by the canonical functor T/V → T ), we may without loss of generality
assume that V was a final object in T . In this case, for any U ∈ T , writing f : U → V in T
for the unique map, we also write f : f!f

∗∗ → ∗ for the unique map of T –categories (note the
intentional abuse of the notation f). Now for any C ∈ CatT , we shall term the left (resp. right)
adjoint f! (resp. f∗) : Fun(f!f

∗∗, C) ≃ f∗f∗C → C to the functor f∗, if it exists, as the f–indexed
coproduct (resp. product). These (co)limits play a distinguished role in the parametrised theory
in the following manner: much like in the unparametrised setting where every colimit can be
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rewritten as a geometric realisation all of whose terms are coproducts (this is usually called a
“Bousfield–Kan decomposition”), we know by [Sha23, §12] that any parametrised colimit may
be rewritten as a fibrewise geometric realisation all of whose terms are indexed coproducts.
The upshot of this is that we can often divide a proof into dealing with fibrewise (co)limits
and indexed (co)products separately.

Recollections 2.1.12 (Adjointed squares). We recall the notion of Beck–Chevalley transfor-
mations and adjointability from [Lur09, §7.3.1]. Suppose we are given a commuting square

C C̃

D D̃

ϕ

L L̃

ψ

such that L, L̃ admit T –right adjoints R, R̃ respectively. We may then obtain a natural trans-
formation ϕR⇒ R̃ψ via

ϕR
η̃ϕR−−→ R̃L̃ϕR ≃ R̃ψLR R̃ψε−−−→ R̃ψ

This canonically constructed transformation is called the Beck–Chevalley transformation. If
this map is an equivalence (hence we get an equivalence ϕR ≃ R̃ψ), then we say that the original
square is right adjointable. Similarly, we may also define the notion of left adjointability.

Proposition 2.1.13 (Fibrewise criteria for T -adjunctions, [Hil22b, Cor. 2.2.7]). Let F : C →
D be a T -functor. Then it admits a T -right adjoint if and only if it admits fibrewise right
adjoints GV for all V ∈ T and for all morphism f :W → V in T , the Beck–Chevalley square

CW DW

CV DV

GW

f∗

GV

f∗

commutes. Similarly for T -left adjoints.
Proposition 2.1.14 ((Co)limit preservation, [Hil22b, Prop. 2.4.2]). Let C,D be T -cocomplete
categories and F : C → D a T -functor. Then F preserves T -colimits if and only if it preserves
colimits in each fibre and for all f :W → V in T , the Beck–Chevalley square

CW DW

CV DV

f!

FW

f!

FV

commutes. Similarly for T -limits.

Definition 2.1.15 ([Nar16, Def. 4.1]). Let T be a small category. We say that it is:

• atomic if whenever we have f : W → V and g : V → W in T such that g ◦ f is an
equivalence, then f and g were already inverse equivalences.

• orbital if the finite coproduct cocompletion FinT admits finite pullbacks. Here, by fi-
nite coproduct cocompletion, we mean the full subcategory of the presheaf category
Fun(T op,S) spanned by finite coproduct of representables. See Recollection 2.1.20 for
more details on FinT .

Example 2.1.16. The orbit category OG for a finite group G is an example of an atomic orbital
category.
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Observation 2.1.17. It is straightforward to argue by unwinding the definitions that atomic
orbitality ensures that for any map f : U → V in T , the orbital decomposition of the pullback
U ×V U contains a copy of U . That is, we have the pullback diagram

U
∐
Z U

U V

id⊔c

id⊔c
y

f

f

(5)

This is the key property enjoyed by atomic orbital categories that is crucial for algebraic
considerations such as Nardin’s definition of T –semiadditivity (which we will recall shortly) as
well as the theory of parametrised cubes which we introduce in §3.

Observation 2.1.18. Suppose T is atomic and has a final object and let s : ∗ →֒ T be the
inclusion of the final object T ∈ T , and w : W → T be a map in T which is not an equivalence.
For an arbitrary C ∈ CatT/W , we claim that there is a natural equivalence s∗w!C ≃ ∅ ∈ Cat.
To see this, note by the usual pointwise right Kan extension formula that, for D ∈ Cat,
s∗D ∈ CatT has value D at T ∈ T and ∗ everywhere else. Hence, since w was not an
equivalence, by atomicity we know that there is no morphism T → W and so pulling back
along w : T/W → T yields w∗s∗D ≃ ∗ ∈ CatT/W for any D ∈ Cat. Therefore, we obtain
MapCat(s

∗w!C,D) ≃ MapCatT/W
(C, w∗s∗D) ≃ MapCatT/W

(C, ∗) ≃ ∗, and so s∗w!C satisfies the

universal property of the initial object in Cat.

Terminology 2.1.19 (Left/right Beck–Chevalley conditions). Let T be an orbital category
and let C be a T -category that admits finite fibrewise coproducts (resp. products) such that for
each f :W → V in T , the pullback f∗ : CV → CW admits a left adjoint f! (resp. right adjoint
f∗). We say that C satisfies the left Beck-Chevalley condition (resp. right Beck-Chevalley
condition) if for every pair of edges f : W → V and g : Y → V in T , if we write the pullback
(whose orbital decomposition exists by orbitality of T ) as

∐
aRa = Y ×V W Y

W V

y

∐
a fa

∐
a ga

g

f

then the canonical transformation
∐
a ga!f

∗
a =⇒ f∗g! (resp. f

∗g∗ =⇒ ∏
a ga∗f

∗
a ) is an equiva-

lence.

We now recall the algebraic aspects of parametrised higher category theory in the presence
of the atomic orbitality assumption on T . These were first introduced and studied in [Nar16;
Nar17], and later revisited with further developments in [NS22].

Recollections 2.1.20 (Finite T –sets). For every V ∈ T , we may define the category Fin/V ⊆
PSh(T/V ) given by the finite coproduct cocompletion of T/V . When no V ∈ T is specified,
we write FinT for the finite coproduct cocompletion of T . By general category theory, we
know that given a map f : U → V , the left Kan extension f! : PSh(T/U )→ PSh(T/V ) restricts
to a functor f! : Fin/U → Fin/V . And in our setting, by the orbitality assumption, the right
adjoint f∗ : PSh(T/V )→ PSh(T/U ) also restricts to a right adjoint f∗ : Fin/V → Fin/U . These
assemble to a T –category FinT . Similarly, we may construct the pointed version Fin∗T whose
fibre over V ∈ T is given by (Fin/V )[V=V ]/. For details, see for example [NS22, Def. 2.1.1]

Write Cat∗ ⊂ Cat for the non–full subcategory of pointed categories and morphisms the
functors which preserve these.
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Definition 2.1.21 (Pointedness). A T –category C ∈ CatT is said to be T –pointed if it lies in
the non–full subcategory Fun(T op,Cat∗) ⊂ Fun(T op,Cat) = CatT . That is, it is a T –category
all of whose fibres are pointed and such that the structure maps preserve the zero objects.

Recollections 2.1.22 (Semiadditivity norm maps, [Nar16, Cons. 5.2]). Let C be T –pointed
and have finite T -coproducts, and D have finite T -products. Let F : C → D be a T –functor
and f : U → V be a map in FinT . We would like now to construct a canonical map

Ff! −→ f∗f
∗F (6)

called the semiadditivity norm map. By atomic orbitality, the pullback square (5) gives us a
natural equivalence f∗f! ≃ id ⊔ c!c∗ and so since C was T –pointed, we may postcompose this
with the map π := id ⊔ 0: id ⊔ c!c∗ → id ⊔ 0 ≃ id. Applying f∗ to this and precomposing this
with the adjunction unit for f∗ ⊣ f∗ yields the map

f!
ηf!−−→ f∗f

∗f!
f∗π−−→ f∗

Finally, applying F to this transformation and postcomposing with the canonical map Ff∗ →
f∗f

∗F coming from the counit f∗Ff∗ ≃ Ff∗f∗ → F yields the map

Ff!
Fηf!−−−→ Ff∗f

∗f!
Ff∗π−−−→ Ff∗

can−−→ f∗f
∗F

as desired in (6). A little unwinding of definitions shows that, when U ≃ V ⊔V and f : U → V
is the fold map, the construction above specialises to the usual unparametrised canonical com-
parison map

∐→∏
required to be an equivalence in the definition of semiadditive categories.

Definition 2.1.23 (Semiadditivity and stability, [Nar16, Def. 5.3, Def. 7.1]). Let C be T –
pointed and have finite T -coproducts, and D have finite T -products. Let F : C → D be a
T –functor. We say that it is T -semiadditive if for all f : U → V in FinT , the semiadditivity
norm map constructed above is an equivalence. We say that a pointed T -category C with finite
T –(co)products is T -semiadditive if the identity functor is T -semiadditive. A T –semiadditive
category is said to be T –stable if it is furthermore fibrewise stable.
If moreover C has fibrewise pushouts and D has fibrewise pullbacks, then we say that F is
T –linear if it is T -semiadditive and sends fibrewise pushouts to fibrewise pullbacks. We write
Funsadd

T (C,D) (resp. FunlinT (C,D)) for the T -full subcategories of FunT (C,D) consisting of the
T –semiadditive functors (resp. T –linear functors).

Definition 2.1.24 (Commutative monoids, [Nar16, Def. 5.9, Thm. 6.5]). For C with finite

T -limits we will denote T –Mackey functors by MackT (C) := Fun
×
T (SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(Fin), C) and T –

commutative monoids by CMonT (C) := FunsaddT (Fin∗T , C).

Remark 2.1.25. By the proof of [NS22, Thm. 2.3.9], we see that evaluating at any V ∈ T , we
get an equivalence

MackT (Cofree(C))V ≃ Fun×(Span(Fin/V ), C) =: MackT/V (C)

Example 2.1.26. A key instance of this construction is the T –category of T –spectra, defined as
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT := CMonT (CofreeT (Sp)). By the preceding remark, we see that SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT is fibrewise given by
spectral Mackey functors MackT/V (Sp).

Construction 2.1.27 (Forgetful functor). Suppose T has a final object T (this is merely a
technical convenience which is mostly innocuous since for a fixed V ∈ T , we always have a
final object upon basechanging to T/V ; see [Nar16, Def. 5.9] for the general case). Being a
T –commutative monoid object in a T –category with finite indexed products is a structure,
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and one may functorially construct the forgetful functor as follows: the inclusion ∗ → Fin∗ of
the T –object T yields by precomposition a transformation of functors

(
CMonT (−)⇒ id ≃ Fun(∗,−)

)
: CatT ,

∏ −→ CatT ,
∏

which we call the forgetful functor fgt. Here, CatT ,
∏ is the non–full subcategory of CatT whose

objects are T –categories with finite indexed products and morphisms which preserve these.

Proposition 2.1.28 (T –semiadditivisation, [Nar16, Prop. 5.11]). Let C be a T -category with
finite T -products. Then the forgetful functor CMonT (C) → C is an equivalence if and only if
C was T -semiadditive.

Notation 2.1.29. For C ∈ CatT , we write PSh(C) and PShst(C) for the presheaf categories
Fun(Copopopopopopopopopopopopopopopopop,S) and Fun(Copopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp), respectively.
Moreover, Nardin in his thesis [Nar17] has also introduced the notion of T –symmetric

monoidal structures, upon which one may extract T –commutative algebra objects. In the case
when T = OG, such commutative algebra objects encode precisely the multiplicative norms of
[GM97; HHR16]. Much like the unparametrised notion from [Lur17], the notion of T –operads
was defined in [Nar17] as certain fibrations over Fin∗T and T –symmetric monoidal categories
are then the T –operads such that this fibration is T –cocartesian. The T –commutative algebras
CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C⊗) of a T –symmetric monoidal category C⊗ is then defined to be the T –category of
Fin∗T –sections of C⊗ which are maps of T –operads. We refer the reader to [NS22, §2] for a
more recent and fully–fledged development of this theory.

Notation 2.1.30. As in usual symmetric monoidal structures which in particular supply us
with a “multiplication” −⊗ − : C × C → C, we also have an indexed version of such maps. In
more detail, for each map f : U → V in Fin/V , we also have an indexed multiplication map

f⊗ : f∗f
∗C −→ C

associated to a T –symmetric monoidal structure C⊗ on C. Here we have implicitly basechanged
the T –category C to a T/V –category, which we also write C. This will be a convenience employed
throughout the document to lighten our notational burdens.

Recollections 2.1.31 (Distributivity). Another notion that will be important in our work is
that of distributivity which generalises the idea of tensor products which are bicocontinuous
into the parametrised setting. This was first defined by Nardin in his thesis [Nar17], but see also
[NS22, Def. 3.2.3] where the theory is further developed. A T –symmetric monoidal structure
C⊗ on a T –category with all T –colimits is said to be T –distributive if the following holds: for
any map f : U → V in Fin/V and a T/U–colimit diagram ∂ : K⊲ → f∗C, the diagram

f⊗∂ : (f∗K)⊲
can−−→ f∗(K

⊲)
f∗∂−−→ f∗f

∗C f⊗−−→ C

is a T/V –colimit diagram in C.
Crucial to our work will be two results by Nardin–Shah which we collect here as:

Theorem 2.1.32 ([NS22, Thm. 2.3.9, Prop. 2.8.7]). Let Cat⊗T be the T –category of T –
symmetric monoidal categories and T –symmetric monoidal functors. Let C⊗ ∈ Cat⊗T .

1. There are equivalences Cat⊗T ≃ CMonT (Cat) and Cat⊗T ≃MackT (Cat).

2. There is a T –functor Env from T –operads to T –symmetric monoidal categories which

participates in a natural equivalence Fun
⊗
T (Env(Fin∗), C⊗) ≃ CAlgT (C⊗), where Fun

⊗
T is

the category of T –symmetric monoidal functors.
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In particular, when T = OG, we see that the category G–symmetric monoidal categories
is given by MackG(Cat) ≃ CMonG(CatG) (this equivalence is an immediate consequence of
[Nar16, Thm. 6.5] and Construction 2.1.5), analogous to the fact that the category of symmetric
monoidal categories may equivalently be described as CMon(Cat).

Recollections 2.1.33 (Pointwise symmetric monoidal structures). Let J ∈ CatT and D⊗ ∈
CMonT (Cat). In the same way that one can equip the pointwise symmetric monoidal structure
on the functor category Fun(I, C) for an arbitrary I ∈ Cat and C⊗ ∈ CMon(Cat), we can also
construct a T –symmetric monoidal structure Fun(J,D⊗) on the T –functor category Fun(J,D)
thanks to [NS22, §3.3]. As in the unparametrised case, this construction enjoys the following
cotensor universal property: for any C⊗, there is a natural equivalence

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCMon(Cat)(C⊗,Fun(J,D⊗)) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCat(J,Fun
⊗(C⊗,D⊗))

where Fun⊗(C⊗,D⊗) is the T –category of T –symmetric monoidal functors. We refer the reader
to [NS22, §2, §3.3], especially [NS22, Thm. 3.3.3], for more details on this.

The concept of parametrised presentability will be an indispensable component in our treat-
ment of parametrised algebraic K–theory later, and so we recall some results from [Hil22b, §6].
This notion was first defined in [Nar17, §1.4] and further developed in [Hil22b]. A pleasant
feature of the theory there is that parametrised Ind–completions and parametrised accessi-
bility are fibrewise notions (c.f. [Hil22b, §3.5, §5.2]). For example, the κ–Ind–completion

functor Indκ : CatT → ĈatT is given just by applying Fun(T op,−) to the usual func-

tor Indκ : Cat → Ĉat. Consequently, so are the notions of parametrised compactness and
parametrised idempotent–completeness (c.f. [Hil22b, §5.1, §5.3]). For instance, an object X in
C is said to be parametrised κ–compact if it is so fibrewise, and we showed in [Hil22b, Prop.
5.1.4] that this definition can equivalently be characterised by saying that the parametrised
mapping space functor MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(X,−) preserves fibrewise (here fibrewise is in the sense of Rec-
ollection 2.1.11) κ–filtered colimits. Moreover, the main theorem [Hil22b, Thm. 6.1.2] given
there was a “Lurie–Simpson” style characterisation of parametrised presentability, one charac-
terisation of which we summarise as:

Theorem 2.1.34 (Omnibus presentability, [Hil22b, Thm. 6.1.2, Prop. 6.3.3]). Let T be an
orbital category and C a T -category. Then C is T -presentable if and only if C satisfies the left
Beck-Chevalley condition (cf. Terminology 2.1.19) and there is a regular cardinal κ such that

the straightening C : T op −→ Ĉat factors through C : T op −→ PrL,κ. Moreover, T –presentable
categories are also T –complete.

Theorem 2.1.35 (Parametrised adjoint functor theorem, [Hil22b, Thm. 4.2.1]). Let F : C →
D be a T -functor between T -presentable categories.

1. If F preserves T -colimits, then F admits a T -right adjoint.

2. If F preserves T -limits and is T -accessible, then F admits a T -left adjoint.

Notation 2.1.36. For a fixed regular cardinal κ, we write PrT ,L,κ ⊂ Ĉat for the non–
full T –subcategory of κ–accessible parametrised presentable categories and morphisms the
left adjoint T –functors which preserve κ–compact objects; we write PrT ,R,κ-filt ⊂ Ĉat for
the non–full subcategory of κ–accessible parametrised presentable categories and morphisms
the right adjoint T –functors which preserve κ–filtered colimits. Furhtermore, we also write

Cat
idem(κ)
T ⊂ CatT for the non–full T –subcategory of small parametrised-idempotent-complete

T –categories which are parametrised-κ-cocomplete and morphisms the functors which preserve
κ-small parametrised colimits.
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Proposition 2.1.37 ([Hil22b, Thm. 4.5.3]). Let κ be a regular cardinal. Then we have an

equivalence of T –categories (−)κ : PrT ,L,κ ⇄ Cat
idem(κ)
T : Indκ where (−)κ and Indκ denote

taking fibrewise κ–compact objects and fibrewise κ–Ind–completion, respectively.

The following object – whose categorical properties we shall work out in §2.5 – will be one of
the main players in this paper as it will be the domain of our parametrised algebraic K–theory
functor.

Notation 2.1.38 (T –perfect–stable categories). We will use the notation Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(κ)
T :=

Cat
st,idem(κ)
T ⊆ Cat

idem(κ)
T for the T –perfect-stable categories which are parametrised κ–

cocomplete, where the word perfect is standard terminology for being idempotent-complete.

When κ = ω, we will often use the abbreviation Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T := Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(ω)
T . By Proposition 2.1.37, we

have PrT ,st,L,ω ≃ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T implemented by taking fibrewise compact objects and fibrewise Ind–

completion. Moreover, by Proposition 2.1.14, we see that the faithful inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂ CatT

factors through Cofree(Catperf) ⊂ Cofree(Cat) = CatT .

2.2 Miscellaneous preliminaries

We consign to this subsection various elementary miscellany about parametrised categories
that we shall need for main body of this article. As such, this subsection may be safely skipped
on first reading, to be returned to as needed.
Our first task is to record an “internal” version of the parametrised straightening–

unstraightening equivalence, building upon the “external” version given in [BDG+16b, Prop.
8.3]. A similar, and much more general statement in the setting of categories parametrised
over ∞–topoi, has already appeared as [Mar22, Thm. 6.3.1]. We only include the proof of
Theorem 2.2.2 in our setup for the reader’s convenience.
To this end, first recall the notion of T –(co)cartesian fibrations from [Sha23, Def. 7.1]. For

S ∈ CatT , we will write coCartT (S) for the category of T –cocartesian fibrations over S and
morphisms the maps of T –cocartesian fibrations.

Observation 2.2.1. In [Sha23, Rem. 7.4] it is stated that a T –functor F : C → D is a T –
cocartesian fibration if and only if

∫
F :

∫
C →

∫
D is a cocartesian fibration in the usual sense.

For our purposes in the next theorem, we would need a slightly more refined information in the
form of a description of what the cocartesian lifts look like under these equivalent conditions,
which we provide here. Write p :

∫
C → T op and q :

∫
D → T op for the structure cocartesian

fibrations and let f : x → y be a map in
∫
D lying over c := q(f) : V → W in T op. We may

then obtain a unique factorisation

x c∗x

y
f

u

f

where c∗x ∈ DW , u : x→ c∗x is the q–cocartesian morphism over c, and q(f) ≃ idW . The claim
now is that: (i) the FW –cocartesian lift of f is already a

∫
F–cocartesian lift; (ii) any

∫
F–

cocartesian lift of f : x→ y is given by the composite of the
∫
F–cocartesian lift of u and the

FW –cocartesian lift of f . Part (i) is gotten by the proof of [Sha23, Lem. 7.5] – but now using
also that the fibrewise cocartesian lifts are preserved under the pushforward functors associated
to morphisms in T op by the definition of T –cocartesian fibrations. Combining (i) with the dual
of [Lan21, Lem. 3.1.7] then yields part (ii) of the claim. Under this concrete elaboration of
[Sha23, Rmk. 7.4] and since compositions of cocartesian fibrations are cocartesian fibrations
by [Lan21, Lem. 3.1.4], we see that the datum of a map of cocartesian fibrations over

∫
S gives

precisely the datum of a T –map of T –cocartesian fibrations over S upon postcomposing with
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∫
S → T op. Here we have also used that F : C → D is a map of T –categories (i.e.

∫
F is a map

of T –cocartesian fibrations) if and only if the
∫
F–cocartesian lift of all such u coming from a

map in T op as above is a T –cocartesian lift, again by an application of [Lan21, Lem. 3.1.4].

Theorem 2.2.2 (Parametrised straightening/unstraightening). Let S ∈ CatT . There is a
natural equivalence FunT (S,CatT ) ≃ coCart(

∫
S) ≃ coCartT (S).

Proof. We already know the first equivalence by [BDG+16b, Prop. 8.3]. To see the second
equivalence, we write p :

∫
S → T op for the structure map. This map induces a functor

Cat/
∫
S → Cat/T op which in turn factors through an adjunction

p : Cat/
∫
S ⇋ (Cat/T op)/p : fgt

which is an equivalence, where fgt forgets the map to T op. That this is an equivalence is
standard, and can for example be seen by computing explicitly that p induces equivalences on
the mapping spaces, and that it is clearly seen to be essentially surjective. Next, recall that
we had non–full subcategories coCart(

∫
S) ⊂ Cat/

∫
S and CatT ≃ coCart(T op) ⊂ Cat/T op .

In particular, by the usual straightening–unstraightening equivalence, we have the non–full
subcategories coCartT (S) ⊂ (CatT )/S ⊂ (Cat/T op)/p. Now consider the solid diagram

Cat/
∫
S (Cat/T op)/p

coCart(
∫
S) coCartT (S)

p

⊥≃

fgt

Our goal is to show that we have the dashed factorisations giving inverse equivalences. Since
both non–full subcategories contain all equivalences, it would suffice to show that p and fgt
admit such factorisations since then the natural equivalences p◦fgt ≃ id and fgt ◦p ≃ id are also
contained in the non–full subcategories. Since factoring through subcategories is a property of
a functor that can be checked on objects and morphisms, the desired factorisations are now
easy consequences of the concrete description of the cocartesian edges from Observation 2.2.1.
This completes the proof of the theorem.

Construction 2.2.3. We have so far only dealt with cocartesian unstraightening. As in the
unparametrised situation, we also have the cartesian version of Theorem 2.2.2. To describe
this, first note by an easy inspection of [Sha23, Def. 7.1] that a T –map F : C → D is a T –
cocartesian fibration if and only if F opopopopopopopopopopopopopopopopop : Copopopopopopopopopopopopopopopopop → Dopopopopopopopopopopopopopopopopop is a T –cartesian fibration, i.e. for a fixed
S ∈ CatT , the T –functor (−)opopopopopopopopopopopopopopopopop : coCartT (S) → CartT (S

opopopopopopopopopopopopopopopopop) is an equivalence. Hence, by the
parametrised cartesian straightening–unstraightening equivalence, we will mean the composite

FunT (S,CatT )
(−)opopopopopopopopopopopopopopopopop−−−→
≃

FunT (S,CatT ) ≃ coCartT (S)
(−)opopopopopopopopopopopopopopopopop−−−→
≃

CartT (S
opopopopopopopopopopopopopopopopop)

where the middle equivalence is by Theorem 2.2.2.

Notation 2.2.4. We write RFunT (resp. LFunT ) for the T -full subcategories of FunT con-
sisting of T -right adjoint functors (resp. T -left adjoint functors); we write FunRT (resp. FunLT )
for the T -full subcategories of FunT consisting of strongly T -limit-preserving functors (resp.
strongly T -colimit-preserving functors).

Proposition 2.2.5 ([Hil22b, Prop. 2.5.10]). Let C,D ∈ CatT . Then LFunT (D, C) ≃
RFunT (C,D)opopopopopopopopopopopopopopopopop.

Next, we now record several facts about Beck–Chevalley (i.e. adjointed) squares.
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Lemma 2.2.6. Suppose we have T –adjunctions L : C ⇋ D : R and L̃ : C̃ ⇋ D̃ : R̃ with
adjunction (co)units η, ε and η̃, ε̃ respectively, together with a right adjointable square

C C̃

D D̃

ϕ

L L̃

ψ

R R̃

For every X ∈ C, we then have a natural identification of ϕηX : ϕX → ϕRLX with η̃ϕX : ϕX →
R̃L̃ϕX via the identification ϕRLX ≃ R̃L̃ϕX coming from adjointability. Similarly, for A ∈
D, we have a natural identification of ψεA : ψLRA→ ψA with ε̃ψA : L̃R̃ψA→ ψA.

Proof. Recall that adjointability means the canonical Beck–Chevalley transformation

ϕRY
η̃ϕRY−−−→ R̃L̃ϕRY ≃R̃σR R̃ψLRY

R̃ψεY−−−−→ R̃ψY

is an equivalence, where σ is the datum of the commutation ψL ≃ L̃ϕ. Hence, to prove the
proposition, it would suffice to show that the diagram

ϕX R̃L̃ϕX

ϕRLX R̃L̃ϕRLX R̃ψLRLX R̃ψLX

η̃ϕX

ϕηX R̃σ≃

η̃ϕRLX

≃

R̃σRLX R̃ψεLX

(7)

commutes. To this end, just observe that the bottom left composite participates in the following
commuting diagram (where the bottom composite is an equivalence by adjointability)

ϕX R̃L̃ϕX R̃ψLX

ϕRLX R̃L̃ϕRLX R̃ψLRLX R̃ψLX

ϕηX

η̃ϕX

R̃L̃ϕηX

R̃σX
≃

R̃ψLηX

η̃ϕRLX

≃

R̃σRLX R̃ψεLX

yielding the desired commutation (7). The case of counits is similar, using instead the com-
muting diagram

L̃ϕRA ψLRA ψA

L̃ϕRA L̃R̃L̃ϕRA L̃R̃ψLRA L̃R̃ψA

≃

σRA ψεA

L̃η̃ϕRA

ε̃L̃ϕRA

≃

L̃R̃σRA

ε̃ψLRA

L̃R̃ψεA

ε̃ψA

where the bottom composite is the Beck–Chevalley equivalence.

Proposition 2.2.7. Fix a category J and suppose we have two objects C,D ∈ Fun(Jop,Cat)
together with a morphism R : D → C. Suppose moreover that the map R is fibrewise a right
adjoint and that for each morphism f : i→ j in J , the Beck–Chevalley transformation

Ci Cj

Di Dj

f∗

f∗

Li ⇐ Lj
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is an equivalence, where Li ⊣ Ri, Lj ⊣ Rj. Then the left adjoints assemble to a morphism
L : C → D in Fun(Jop,Cat) which furthermore induces an adjunction in Cat

lim
Jop

L : lim
Jop
C ⇋ lim

Jop
D : lim

Jop
R

Proof. For the first part, we will use Lurie’s theory of relative adjunctions. Write
∫
C,

∫
D →

Jop for the respective cocartesian unstraightening, so that we have a map of Jop–cocartesian
fibrations R :

∫
D →

∫
C. There are two conditions in [Lur17, Prop. 7.3.2.11] to check in

order to obtain a left adjoint L :
∫
C →

∫
D to R relative to Jop. Condition (1) there is

immediate from our fibrewise adjunction hypothesis. A straightforward unwinding of condition
(2) there states that we need to check the following: for every morphism f : i → j, the map

f∗ f∗η−−→ f∗RiLi ≃ Rjf
∗Li adjoints to an equivalence Ljf

∗ ≃−→ f∗Li. But this adjointed map
is precisely the Beck–Chevalley transformation, and so by hypothesis, is an equivalence. It
is then an easy check to see that the relative left adjoint L is automatically a map of Jop–
cocartesian fibrations (see for example [Hil22b, Prop. 2.2.5 (2)]), whence a map L : C → D in
Fun(Jop,Cat) ≃ coCart(Jop) as wanted. Finally, by the formula for limits in Cat in terms of
cocartesian sections of the cocartesian unstraightening (cf. the dual of [Lur09, Cor. 3.3.3.2]
recorded for example in [HW21, Prop. I.36]), we obtain the adjunction

lim
Jop

L : lim
Jop
C ≃ Γcocart(

∫
C) ⇋ Γcocart(

∫
D) ≃ lim

Jop
D : lim

Jop
R

as claimed.

Fact 2.2.8 (Adjoints of equivariant functors). It is a standard categorical fact that the G–
equivariant structure of a functor admitting an adjoint induces a G–equivariant structure on
the adjoint and on the adjunction. Since we have not been able to find it anywhere in the
literature, we will record a proof of this here which we learnt from Maxime Ramzi. Let
L : C → D be a G–equivariant functor whose underlying functor admits a right adjoint. In
particular, L can be encoded as a morphism in Fun(BG,Cat) and so upon unstraightening,
we have a map L :

∫
C →

∫
D of cocartesian fibrations over BG. Now since BG was an ∞–

groupoid, we get by [Lan21, Lem. 3.1.6] that all cocartesian morphisms in
∫
C and

∫
D are

equivalences. In particular, any map between them over BG is a map of cocartesian fibrations.
Hence, by the dual of [Lur17, Prop. 7.3.2.11], the fibrewise right adjoint coming from the
underlying adjunction induces a relative right adjoint R :

∫
D →

∫
C which is automatically a

map of cocartesian fibrations over BG by the previous sentence. All in all, we have obtained a
G–equivariant structure on the right adjoint as well as on the unit and counit maps, as wanted.

The next pair of results provide abstract colimit decomposition results that will be crucial
to our cubical theory in §3.

Lemma 2.2.9. Suppose we are given a map

C E D

A A A

γ∗ β∗

p∗ r∗ q∗

of diagrams in Fun(Λ2
0,CatT ), where γ

∗, β∗, p∗, q∗, r∗ admit right adjoints γ∗, β∗, p∗, q∗, r∗ re-
spectively. If A has pullbacks, then the functor p∗×r∗ q∗ : A → C×ED has a right adjoint given
by the functor ϕ sending (c, d) ∈ C ×E D to the pullback in A

ϕ(c, d) q∗d

p∗c r∗γ
∗c ≃ r∗β∗d

y
q∗η

β
d

p∗η
γ
c
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Similarly, if γ∗, β∗, p∗, q∗, r∗ admit instead left adjoints γ!, β!, p!, q!, r! respectively and A admits
pushouts, then the functor p∗ ×r∗ q∗ admits a left adjoint given by the functor ψ sending
(c, d) ∈ C ×E D to the pushout in A

r!γ
∗c ≃ r!β∗d q!d

p!c ψ(c, d)

q!ε
β
d

p!ε
γ
c

p

Proof. The putative right adjoint ϕ is clearly a T –functor, and is fibrewise a right adjoint by
[HY17, Thm. 5.5]. Hence, by Proposition 2.1.13, we get that ϕ is indeed the T –right adjoint of
p∗ ×r∗ q∗. The statement for the left adjoint follows by passing to the opposite categories.

Corollary 2.2.10. Suppose we have a pushout diagram in CatT

B D

C P
p

and let A ∈ CatT have all T –colimits. Then for any ∂ ∈ Fun(P ,A), we have the following
pushout diagram in A

colimB∂ colimD∂

colimC∂ colimP∂
p

where we have suppressed the restriction functors. A similar statement holds for limits, with
all colimits in sight replaced with limits.

Proof. This is an immediate consequence of Lemma 2.2.9, using that Fun(P,A) ≃
Fun(C,A)×Fun(B,A) Fun(D,A) by definition of P as a pushout.

Next, recall the notion of T –faithful functors from [Hil22b, Def. 3.4.4], i.e. a T –functor
which induces fibrewise inclusions of components on mapping spaces.

Lemma 2.2.11. Let C ⊂ D be a T –faithful inclusion where D is closed under limits of shape
J . Then C inherits J–shaped limits from D if the following conditions hold:

1. for any object ∂ ∈ Fun(J, C) ⊂ Fun(J,D), the limit of ∂ has the property of lying in C
and the adjunction counit constJ limJ∂ → ∂ lies in Fun(J, C),

2. for any C ∈ C equipped with a morphism constJC → ∂ in Fun(J, C), the induced mor-
phism C → limJ∂ lies in C ⊂ D.

A similar statement holds also for colimits by passing to the opposite categories.

Proof. Suppose we are given such an object ∂ ∈ Fun(J, C) satisfying (1) and (2). We need
to argue that the natural map MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, limJ∂) → MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFun(J,C)(constJ−, ∂) induced by the
morphism constJ limJ∂ → ∂, which is in Fun(J, C) by condition (1), is an equivalence. To this
end, consider the commuting diagram

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, limJ∂) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFun(J,C)(constJ−, ∂)

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(−, limJ∂) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFun(J,D)(constJ−, ∂)≃

23



where the bottom horizontal is an equivalence by definition of limJ∂. Since the vertical maps
are inclusion of subcomponents, so is the top horizontal map. Hence, we are left to showing
that the top horizontal map is π0–surjective, which is precisely supplied by condition (2).

We include the proof of the following standard observation for the reader’s convenience as
well as to establish what we mean by “reflecting (co)limits”.

Lemma 2.2.12. Let C,D, I,∈ CatT such that C,D admits I–shaped (co)limits. Let F : C → D
be a conservative functor preserving I–shaped (co)limits. Then F reflects I–shaped (co)limits.

Proof. Without loss of generality we deal with the case of limits. Suppose we have a coned
I–shaped diagram ∂ : I⊳ → C such that F∂ : I⊳ → D is a limit diagram. This means that if
we write ∞ for the cone point, then we have a map ∂(∞) → limI∂ in C such that F∂(∞) →
F limI∂ ≃ limIF∂ is an equivalence in D. Since F was conservative, we get that ∂(∞)→ limI∂
was already an equivalence, as was to be shown.

We will deduce the parametrised analogue of [MP87, Lem 1.7.ii] from the unparametrised
version proven in [CDH+]. We will need some terminology for this.

Terminology 2.2.13. Let C be a T -cocomplete category and S be a set of objects in C. We
say that it is jointly conservative if S induces a jointly conservative set of objects in each fibre
of C, i.e. for every V ∈ T and writing SV for the set of objects of CV in the set S, the functor∏
x∈SV

MapCV (x,−) : CV →
∏
x∈SV

S is conservative. We say that it is a set of parametrised
generators of C if the smallest T -cocomplete subcategory of C containing S is C itself. That is,
every parametrised object in C can be written as a parametrised colimit of objects in S.

Now recall the notion of parametrised compactness from the paragraph before Theo-
rem 2.1.34.

Proposition 2.2.14 (Parametrised Makkai-Pitts). Let κ be a regular cardinal and C a T -
cocomplete category. Let S ⊆ C be a jointly conservative set of parametrised-κ-compact objects.
Then S is a set of parametrised-κ-compact generators. In particular, C is parametrised-κ-
compactly generated.

Proof. We want to show that for every V ∈ T , any T/V –object in CV is a T/V –colimit of objects
in S. By hypothesis,

∏
x∈SV

MapCV (x,−) : CV →
∏
x∈SV

S is jointly conservative. Hence, by
[CDH+, Prop 1.1.2], every object in CV is a κ-small colimit of objects in SV .

Next, we supply the expected anti–equivalence of presentable categories.

Proposition 2.2.15. There is a canonical equivalence of T –categories PrL ≃ Pr
opopopopopopopopopopopopopopopopop
R .

Proof. This is just the proof of [Lur09, Prop. 5.5.3.3] written in our setting, except that
we do not need to invoke the adjoint functor Theorem 2.1.35 since PrL and PrR were de-

fined with morphisms being left and right adjoints respectively. Write ĈatT and CATT for
the T –categories of large and huge T –categories, respectively. In particular, we have that
PrL,PrR ⊂ ĈatT ∈ CATT . Now, fix a S ∈ CATT . Under the cocartesian unstraighten-

ing equivalence of Theorem 2.2.2, it is easy to see that elements in π0 MapCATT
(S, ĈatT )

that lie in π0 MapCATT
(S,PrL) ⊂ π0 MapCATT

(S, ĈatT ) are precisely those T –cocartesian
fibrations P → S which are also T –cartesian and whose parametrised fibres are T –
presentable. Similarly, under the cartesian unstraightening from Construction 2.2.3, the
subset π0 MapCATT

(Sopopopopopopopopopopopopopopopopop,PrR) ⊂ π0 MapCATT
(Sopopopopopopopopopopopopopopopopop, ĈatT ) is precisely described as those T –

cartesian fibrations E → S which are also T –cocartesian and whose parametrised fibres are
T –presentable. Therefore, we obtain bijections

π0 MapCATT
(S,PrL)

∼= π0 MapCATT
(Sopopopopopopopopopopopopopopopopop,PrR)

∼= π0 MapCATT
(S,Pr

opopopopopopopopopopopopopopopopop
R )
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natural in S ∈ CATT . Since CATT admits pushouts, we may replace S with ΣnS in the natural
bijection of sets to upgrade it to an equivalence of mapping spaces, whence the equivalence
PrL ≃ Pr

opopopopopopopopopopopopopopopopop
R as wanted.

Recall Notation 2.2.4. In [Nar17, §3.4], Nardin constructed a T –symmetric monoidal struc-
ture on PrL generalising Lurie’s tensor product for presentable categories with the tensor unit
given by the T –category ST of spaces. The following was then stated as [Nar17, Ex. 3.26]
without proof, and we have supplied a proof in [Hil22b, Prop. 6.7.5].

Proposition 2.2.16 (Formula for presentable T –tensors). Let T be an atomic orbital category,
and let C,D be T –presentable categories. Then C ⊗ D ≃ FunRT (Copopopopopopopopopopopopopopopopop,D).
Notation 2.2.17. Write Sfin∗T ⊆ S∗T for the smallest full T –subcategory containing the zero
object and finite parametrised colimits (i.e. closed under finite fibrewise colimits and finite
indexed coproducts). Nardin proved in [Nar16, Thm. 7.4] that, much as in the unparametrised
setting, the functor of T –stabilisation on a T –category C admitting finite indexed products
may be computed as SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp(C) ≃ Funfin(Sfin, C)
Proposition 2.2.18. For C a T –presentable category, we have that SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (C) ≃ C ⊗ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT .

Proof. Consider the sequence of equivalences

C ⊗ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT ≃ FunRT (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT )
≃ FunRT (Copopopopopopopopopopopopopopopopop,FunlinT (Sfin∗T ,ST ))
≃ Funlin

T (Sfin∗T ,FunRT (Copopopopopopopopopopopopopopopopop,ST ))
≃ Funlin

T (Sfin∗T , C ⊗ ST )
≃ Funlin

T (Sfin∗T , C) ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (C)

where the first equivalence is by Proposition 2.2.16. We have also used Nardin’s formula for
T –stabilisation from [Nar16, Thm. 7.4] in the second and fifth equivalences.

Proposition 2.2.19 (Parametrised stabilisation is smashing, “[GGN15, Thm. 4.6]”). The
association C 7→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (C) refines to a T –symmetric monoidal localisation SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT ⊗− : PrT ,L −→
PrT ,L with essential image the T –full subcategory of T –presentable-stable categories PrT ,st,L.

Proof. That SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (−) ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT ⊗(−) is the proposition above, which also gives the required essen-
tial image. That the functor is a T –symmetric monoidal localisation is by the T –idempotence
of SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT from [Nar17, Cor. 3.28].

Corollary 2.2.20. For f : U → W a map in FinT and C ∈ CatT/U , there is a natural

equivalence f⊗PShU (C) ≃ PShW (f∗C) and f⊗PShstU (C) ≃ PSh
st
W (f∗C).

Proof. Since SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp⊗− is a smashing localisation from Proposition 2.2.19, it suffices just to prove
the case of presheaves in spaces. Let D ∈ PrT/W . By [Nar17, Prop. 3.19], the restriction map

FunLW
(
f⊗PShU (C),D

)
−→ FunW

(
f∗C,D

)
is an equivalence. But then the target is naturally

equivalent to FunLW
(
PShW (f∗C),D

)
by [Sha23, Thm. 11.5] and so we are done.

Observation 2.2.21 (T –exactness on T –stables). Write Funlex,Funrex,Funex ⊆ Fun for the
full subcategories of functors which preserve finite T –limits, finite T –colimits, and finite T –
(co)limits, respectively. If C,D are T –stable, then note that the two T –full subcategories
Funlex

T (C,D) ⊆ FunT (C,D) ⊇ Funrex
T (C,D) agree. To wit, both imply that they are fibrewise

right and left exact (since these are fibrewise stable after all); moreover, preserving finite T –
coproducts and preserving finite T –products are equivalent since C,D were T –semiadditive.
Hence in this case we have Funlex

T (C,D) = Funex
T (C,D) = Funrex

T (C,D).
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Lemma 2.2.22. Let C,D have finite T –limits and A admit finite T –colimits. Then we have
a canonical equivalence FunlexT (C,FunlinT (A,D)) ≃ FunlinT (A,Funlex

T (C,D)).

Proof. Note that we have the identification FunT (C,FunlinT (A,D)) ≃ Funlin
T (A,FunT (C,D))

since T –limits of functor categories are computed in the target by [Hil22b, Prop. 3.1.12]. To
see that we have the desired equivalence, consider the diagram

Funlex
T (C,FunlinT (A,D)) FunlinT (A,Funlex

T (C,D))

FunT (C,FunlinT (A,D)) FunlinT (A,FunT (C,D))≃

That the bottom arrows restrict to the dashed arrows is because again by [Hil22b, Prop. 3.1.12],
T –limits in both Funlin

T (A,D) and Funlex
T (C,D) are computed in D.

Corollary 2.2.23 (Internal hom object of T –perfects). Let C,D ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Then the T –full

subcategory FunexT (C,D) ⊆ FunT (C,D) on the T –exact functors is also small T –idempotent-

complete-stable, that is, FunexT (C,D) is again an object of Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T .

Proof. That it is small is clear. To see that it is T –stable, just note

Funex
T (C,D) ≃ Funlex

T (C,D)
≃ Funlex

T (C,Funlin
T (Sfin∗T ,D))

≃ Funlin
T (Sfin∗T ,Funlex

T (C,D))
≃ Funlin

T (Sfin∗T ,Funex
T (C,D))

where the first and last equivalences are by Observation 2.2.21, the second is by [Nar16,
Thm. 7.4], and the third by Lemma 2.2.22. Hence, by [Nar16, Thm. 7.4] again, we
see that FunexT (C,D) is T –stable. For T –idempotent-completeness, note that T –colimits of
Funex

T (C,D) ≃ Funrex
T (C,D) are computed in D, and since being T –idempotent-complete is

just the condition of admitting certain fibrewise T –colimits, this point is clear too.

Proposition 2.2.24. Let C ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(κ)
T . Then Fun

ex(κ)
T (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpκT , C) ≃ C, where Fun

ex(κ)
T denotes

the functors which preserves κ–finite (co)limits.

Proof. Recall we had equivalence Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(κ)
T ≃ PrT ,st,L,κ from Proposition 2.1.37 so that

(IndκC)κ ≃ C. Writing Funκ ⊆ Fun for the T –full subcategory of parametrised functors
preserving parametrised κ–compact objects, consider

Fun
ex(κ)
T (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpκT , C) ≃ Fun

rex(κ)
T (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpκT , (IndκC)κ)

≃ FunL,κT (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT , IndκC)
≃ FunL,κT (ST , IndκC)
≃ (IndκC)κ ≃ C

where the second equivalence is by [Hil22b, Prop. 3.5.4]; the third equivalence is by Propo-
sition 2.2.19; the fourth equivalence is by the universal property of T –presheaves of [Sha23,
Thm. 11.5].
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2.3 Symmetric monoidality and localisations

Convention: From now on for the rest of the article, our base category T will always be
assumed to be atomic orbital.

The main aim of this subsection is to give a multiplicative enhancement of the presentable
Dwyer–Kan localisations from [Hil22b, §6.3].

Terminology 2.3.1. Let S be a collection of morphisms in a T –category C. For any U =
U1 ⊔ · · · ⊔ Un ∈ FinT where Ui ∈ T , we will write SU for the collection of morphisms inside S
in CU ≃ CU1 × · · · × CUn . We will say that S is a T –collection if for any morphism f : U → V
in FinT and any morphism ϕ : A → B in SV (in general, this is a tuple of morphisms as is
clear from our definition of SV in the preceding sentence), the morphism f∗ϕ : f∗A→ f∗B is
a morphism in SU .

Terminology 2.3.2. We say that a T –collection of morphisms S in a T –symmetric monoidal
category C⊗ is ⊗–multiplicatively closed if for any V ∈ T , any morphism p : U → V in FinT ,
and any morphism ϕ : A→ B in SU , the morphism p⊗ϕ : p⊗A→ p⊗B in CV lies in SV .

Notation 2.3.3. We recall the clarifying distinction between Dwyer-Kan localisations and
Bousfield localisations due to [Hin16], which we have also adopted in [Hil22b]. By T –Dwyer–
Kan localisations, we will mean the following: let C be a T -category and S a T –collection of
morphisms in C. Suppose now that a T -category S−1C exists and is equipped with a map
DK : C → S−1C inducing the equivalence

DK∗ : FunT (S
−1C,D) ≃−→ FunS

−1

T (C,D)

for all T -categories D, where FunS
−1

T (C,D) ⊆ FunT (C,D) is the T -full subcategory of
parametrised functors sending morphisms in S to equivalences. If such a T -category exists,
then it must necessarily be unique, and this is then defined to be the T –Dwyer–Kan localisation
of C with respect to S.
By T –Bousfield localisations, we mean a T -adjunction L : C ⇄ D : i where the T -right

adjoint i is T -fully faithful. Writing Z for the morphisms in C that get sent to equivalences
under L, we may then view D as precisely the T –full subcategory of Z–local objects, i.e. those
X ∈ C such that for any morphism ϕ : A → B in Z, the induced map ϕ∗ : MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap(B,X) →
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap(A,X) is an equivalence. In [Hil22b, Prop. 6.3.2] we showed that, much like in the
unparametrised setting, a T -Bousfield localisation L : C → D is in particular a T -Dwyer-Kan
localisation with respect to this collection Z.

We now record the following proposition, which has appeared also as [QS22, Lem. 5.27].
While in all likelihood our proof is perhaps only cosmetically distinct from theirs, we think that
it is slightly simpler to verify without having to “open the blackbox” of parametrised operads,
so to speak.

Proposition 2.3.4 (Dwyer-Kan symmetric monoidality). Let C⊗ be a T –symmetric monoidal
category and S a T –collection of morphisms in C which is ⊗–multiplicatively closed. Then:

1. the Dwyer–Kan localisation S−1C attains a unique T –symmetric monoidal structure such
that the canonical map DK: C → S−1C enhances to a T –symmetric monoidal functor,

2. For any T –symmetric monoidal category D⊗, the induced functor DK∗ :

FunFunFunFunFunFunFunFunFunFunFunFunFunFunFunFunFun
⊗
T (S

−1C⊗,D⊗)→ FunFunFunFunFunFunFunFunFunFunFunFunFunFunFunFunFun
⊗,S−1

T (C⊗,D⊗) is an equivalence.

Proof. The proof will proceed by bootstrapping from the construction and proof of [Lur17,
Prop. 4.1.7.4]. Recall from [Lur17, Cons. 4.1.7.1] that we have a category WCat whose
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objects are pairs (C,W ) where C is a category and W is a collection of morphisms in C stable
under composition and contains all equivalences in C, and morphisms f : (C,W ) → (C′,W ′)
are functors f : C → C′ such that f(W ) ⊆ W ′. By [Lur17, Prop. 4.1.7.2] we have a Bousfield
localisation

WCat Cat
I

(8)

where both functors preserve finite products and the functor I sends (C,W ) to the Dwyer-Kan
localisation W−1C. Applying Construction 2.1.5 to this adjunction we get the T –Bousfield
localisation IT : CofreeT (WCat) ⇄ CofreeT (Cat) : inclT . Moreover, since both functors in
(8) preserve finite products, the functor IT preserves indexed products. Hence, applying the
forgetful functor from Construction 2.1.27, we even have a commuting square of T –Bousfield
localisations

CMonT (WCat) CMonT (Cat)

CofreeT (WCat) CofreeT (Cat)

IT

fgt
incl

fgt
IT

incl

(9)

It is straightforward to see that our hypotheses on the pair (C, S) ∈ CofreeT (WCat) ensures
that it lifts to an object in CMonT (WCat). Furthermore, recall that T –symmetric monoidal
categories are equivalently T –commutative monoids in CatT by Theorem 2.1.32 (1).
Given these, part (1) may now be obtained exactly by the argument in [GGN15, Lem. 3.6]

(which also saw an immediate parametrised adaptation in [Hil22b, Lem. 4.2.3]). For part (2),
we would like to argue that for any T –category E , the map

DK∗ : MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatT

(
E ,FunFunFunFunFunFunFunFunFunFunFunFunFunFunFunFunFun

⊗
T (S

−1C⊗,D⊗)
)
−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatT

(
E ,FunFunFunFunFunFunFunFunFunFunFunFunFunFunFunFunFun

⊗,S−1

T (C⊗,D⊗)
)

is an equivalence. But by the universal property of the pointwise T –symmetric monoidal
structure from Recollection 2.1.33, we may rewrite the domain and codomain respectively as

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
⊗
T (S

−1C⊗,Fun(E ,D⊗)) and MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
⊗,S−1

T (C⊗,Fun(E ,D⊗)). Under these identifications, the
map displayed above is then an equivalence by the top T –adjunction in (9).

Remark 2.3.5. For our multiplicative considerations shortly, the following notations and obser-
vations will be important. For a T –collection of morphisms S in a T –presentable category C,
we write S∐ ⊇ S for the closure of S under finite indexed coproducts of morphisms in S. Simi-
larly, we denote by Scolim ⊇ S∐ ⊇ S the closure of S under all parametrised colimits valued in
S. These are easily seen to be, again, T –collections of morphisms. We write S−1

colimC, S−1
∐ C ⊆ C

for the T –full subcategories of Scolim– and S∐–local objects in C respectively (this is consis-
tent with Notation 2.3.3 by virtue of [Hil22b, Thm. 6.3.7]). Since Scolim ⊇ S∐, we have the
inclusion S−1

colimC ⊆ S−1
∐ C. To see that this inclusion is an equivalence, let X ∈ S−1

∐ C and let

∂ : J → C∆1

be a diagram taking values in S. We need to show that X is local against the mor-
phism colimJ : colimJ∂0 → colimJ∂1 in Scolim. But this is clearly implied by the commutation
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap(colimJ∂1, X) ≃ limJopopopopopopopopopopopopopopopopopMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap(∂1, X) and the analogous ones for colimJ∂0 and colimJ∂.

Lemma 2.3.6. Let C be a T –presentable category equipped with a T –distributive–symmetric–
monoidal structure C⊗. Let S be a T –collection of morphisms in C and Scolim ⊇ S its closure
from Remark 2.3.5. If S is ⊗–multiplicatively closed, then so is Scolim.

Proof. Let p : W → U be a morphism in FinT and suppose we have a diagram of morphisms

∂ : J → p∗C∆1

in S. Our goal is to show that the morphism p⊗colimJ∂ is still contained in
Scolim. By T –distributivity, we have the equivalence

p⊗colimJ∂ ≃ colim
(
p∗J

p∗∂−−→ p∗p
∗C∆1 p⊗−−→ C∆1)
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where we have endowed C∆1

with the pointwise T –symmetric monoidal structure from [NS22,
§3.3], which is again T –distributive. Since S is ⊗–multiplicatively closed, the right hand side
is in Scolim, and so p⊗colimJ∂ is too, as required.

Proposition 2.3.7. Let C be a T –presentable category equipped with a T –distributive–
symmetric–monoidal structure C⊗. Let S be a T –collection of morphisms in C.

1. There is a T –presentable category LSC participating in a T –Bousfield localisation

L : C LSC : i
satisfying the following universal property: for any other T –presentable category D, the
map L induces the equivalence L∗ : FunL(LSC,D) ≃−−→ FunL,S

−1

(C,D).
2. If S was furthermore ⊗–multiplicatively closed, then there is a canonical enhancement

LSC⊗ of LSC to the structure of a T –symmetric monoidal category. This is uniquely
characterised by the following universal property: for any T –cocomplete T –symmetric

monoidal category D⊗, this functor induces the equivalence L∗ : Fun⊗,L(LSC,D) ≃−−→
Fun⊗,L,S

−1

(C,D).
Proof. Part (1) is an immediate consequence of [Hil22b, Thm. 6.3.7], using LSC := S−1

∐ C. For
part (2), we recall that S−1

colimC ≃ S−1
∐ C from Remark 2.3.5. Now, Lemma 2.3.6 ensures that

Scolim is ⊗–multiplicatively closed, and so by Proposition 2.3.4 (1) we obtain the first sentence
of (2). The final sentence is now an immediate combination of the universal property of part
(1) and Proposition 2.3.4 (2).

2.4 Borel equivariant theory

In this subsection, we specialise for the moment to the case of T = OG. We write b : BG →֒ OG
for the fully faithful inclusion of the free transitiveG–setG/e. This subsection pertains to work-
ing out some far–reaching consequences of constructions associated to this one map just from
adjunction considerations. The philosophy here is to seriously reckon with the fact that the
process of forgetting “genuine”G–structures to “Borel”G–structures is one that penetrates and
appears on multiple categorical levels. In this sense, the “categorification–decategorification”
approach we present here is very much in line with the so–called “metacosm–macrocosm–
microcosm” trichotomy of [AMR22]. Our end point will be the full version of Theorem A in
the form of Theorem 2.4.10 and our starting point is the Bousfield localisation

b∗ : ĈatG = Fun(Oop
G , Ĉat) Fun(BG, Ĉat) : b∗ (10)

The G–category of small G–categories CatG is then an object of ĈatG. Due to its special

role throughout, we denote b∗b
∗CatG ∈ ĈatG by Bor(Cat) for Borel G–categories. By the right

Kan extension formula, we see that under the embedding b∗ from (10), Bor(Cat) is the G–
category whose value at G/H is given by CathH ≃ Fun(BH,Cat). Importantly, the adjunction
unit CatG → Bor(Cat) can be checked easily to be given precisely again by the map b∗. By
right Kan extension, the G–functor b∗ : CatG → Bor(Cat) admits fibrewise fully faithful right
adjoints b∗. Over every fibre, objects in Bor(Cat) may then be viewed via b∗ precisely as those
objects in Cat which are Borel local, i.e. those C ∈ Cat with the property that if ϕ : I → J is a
map in Cat such that b∗ϕ is an equivalence (such maps are also called Borel equivalences), then
ϕ∗ : MapCat(J, C) → MapCat(I, C) is an equivalence. Similarly, b∗ also admits fibrewise fully
faithful left adjoints b! by left Kan extension. Under this inclusion, Bor(Cat) may be viewed
as the Borel colocal objects, i.e. those C ∈ Cat such that ϕ∗ : MapCat(C, I)→ MapCat(C, J) is
an equivalence for any Borel equivalence ϕ : I → J . The first observation to be made is that
these can be assembled to a G–Bousfield (co)localisation by the following:
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Proposition 2.4.1. The G–functor b∗ participates in the G–Bousfield (co)localisation

CatG Bor(Cat)b∗

b∗

b!

Proof. We would like to use Proposition 2.1.13 and its dual to say that the fibrewise fully
faithful right/left adjoints assemble to aG–functor. For the case of b∗, without loss of generality,
we show that for every H ≤ G, the adjointed square

CatG Fun(BG,Cat)

CatH Fun(BH,Cat)

ResGH ⇒ ResGH

b∗

b∗

commutes. To this end, we will use the Borel local description given above and we show the
following: if C ∈ CatG is Borel local, then ResGH C ∈ CatH is also Borel local. So let ϕ : I → J
be a Borel equivalence in CatH . Since the functor fgt : Fun(BH,Cat) → Cat is conservative,
this is the same as requiring that ResHe ϕ is an equivalence. The key point now is that because
of this, and because ResGe

∐
G/H ≃

∐
g∈G/H ResHe , we see that

∐
G/H ϕ :

∐
G/H I →

∐
G/H J

is still a Borel equivalence. Hence, by the computation

MapCatH (J,Res
G
H C) ≃MapCatG(

∐

G/H

J, C) ϕ∗

−−→
≃

MapCatG(
∐

G/H

I, C) ≃MapCatH (I,Res
G
H C)

we see that ResGH C is still Borel local, as claimed. The case of b! is similar, using now instead
that ResGe

∏
G/H ≃

∏
g∈G/H ResHe , so that

∏
G/H ϕ is still a Borel equivalence.

In the rest of the article, by the word Borelification we will mean either the functor b∗ or
b∗b

∗ in all its various incarnations at various categorical levels.

Observation 2.4.2. A point that we will be using several times to prove properties relating to
b∗ is that it is the unique dashed lift

Fun(BG,Cat)

CatG Cat

fgt

ResGe

b∗

associated to the G–equivariant functor ResGe (with trivial G–equivariance everywhere).

Proposition 2.4.3 (Omnibus basics of Borelification). Let J ∈ CatG, C ∈ CatG and D ∈
Bor(Cat).

1. There is a natural equivalence b∗Fun(J, C) ≃ Fun(b∗J, b∗C) of objects in Bor(Cat),

2. the adjunction unit Fun(J, b∗D)→ b∗b
∗Fun(J, b∗D) is an equivalence,

3. if D has finite (co)products, then b∗D ∈ CatG is a G–category with finite indexed
(co)products. In the case of admitting products, we furthermore have a natural equiv-
alence CMonG(b∗D) ≃ b∗ CMon(D),

4. if D is moreover semiadditive as an object in Cat, then b∗D ∈ CatG is a G–semiadditive
G–category.

30



Proof. For part (1), note that we have both commuting squares

CatG Cat Fun(BG,Cat) Fun(BG,Cat)

CatG Cat Cat Cat

ResGe

Fun(J,−) Fun(ResGe J,−)

Fun(b∗J,−)

fgt fgt

ResGe Fun(ResGe J,−)

Here, all categories and functors in the left square are endowed with the trivial G–equivariant
structure. Hence, by Observation 2.4.2, the bottom left composite of the left square lifts to
the functor b∗Fun(J,−) : CatG → Fun(BG,Cat). On the other hand, the same observation
together with the right commuting square yields that the unique lift to Fun(BG,Cat) of the
top right composite of the left square is given by Fun(b∗J, b∗−) : CatG → Fun(BG,Cat). This
gives part (1).
For part (2), we just need to show that Fun(J, b∗D) is Borel local, and this is an immediate

consequence of the definition and unwinding adjunctions, using also the fact that b∗ preserves
products (for example because it has a left adjoint b!).
For point (3), we deal with the case of products since that of coproducts will be dual. Let

H ≤ G and w : G/H → G/G be the unique equivariant map. This then induces aG–equivariant
map w∗ : D ≃ Fun(G/G,D) → Fun(G/H,D) ≃ ∏

G/H ResGH D. Since D has finite products
and since w∗ was G–equivariant, this map admits a right adjoint w∗ which furthermore can be
endowed with a canonical G–equivariant structure with G–equivariant (co)units by Fact 2.2.8.
In particular, this induces, upon applying (−)hG, the adjunction

(b∗D)G = DhG (
∏
G/H ResGH D)hG ≃ DhH = (w∗w

∗b∗D)G
w∗

w∗

To see that this can be assembled to a G–adjunction w∗ : b∗D ⇋ w∗w
∗b∗D : w∗, we need to

show by Proposition 2.1.13 that w∗ commutes with restrictions under the appropriate Beck–
Chevalley transformation. The key to this is the double coset decomposition of finite G–sets.
More precisely, let K ≤ G and f : G/K → G/G. Then by the double coset decomposition we
have the left pullback diagram of finite G–sets

∐

g∈K\G/H G/Kg
∩H G/H

∏

g∈K\G/H

∏

G/Kg∩H ResGG/Kg∩H D
∏

G/H ResGH D

G/K G/G
∏

G/K ResGK D D

y
w w∗ ⇐ w∗

f∗

f f∗

Applying Fun(−,D), we obtain the adjointed square on the right of G–equivariant maps and
transformation, again by Fact 2.2.8. This commutes by [Lur17, Lem. 6.1.6.3]. Finally, applying
(−)hG to the right square gives us the commutation of the Beck–Chevalley square in the
aforementioned criterion, as required.
For the second part of (3), since ResGe CMonG(b∗D) ≃ CMon(D) ∈ Cat, we see by the same

argument as for part (1) that b∗CMonG(b∗D) ≃ CMon(D) ∈ Fun(BG,Cat). Hence, we need
only to argue that CMonG(b∗D) is Borel local. So let ϕ : I → J be a Borel equivalence. Recall
from Definition 2.1.24 that CMonG(b∗D) := Funsadd(Fin∗, b∗D). Now, simply consider the
natural equivalences

Fun(J,Funsadd(Fin∗, b∗D)) ≃ Funsadd(Fin∗,Fun(J, b∗D)) ≃ Funsadd(Fin∗, b∗ Fun(b
∗J,D))

to conclude, where the second equivalence is by points (1) and (2).
Lastly, point (4) is simply because, as explained in the proof of part (3), the indexed

(co)product for b∗D are induced by the left and right adjoint of the G–equivariant restric-
tion functor D → ∏

G/H ResGH D. Hence, forgetting the G–equivariant structure on the G–

semiadditivity norm map (6) gives the usual semiadditivity norm map associated to the set of
size |G/H |, which is an equivalence by hypothesis.
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Proposition 2.4.4. Applying the transformation fgt : CMonG(−) → id(−) from Construc-
tion 2.1.27 to the b∗ ⊣ b∗ G–Bousfield localisation of Proposition 2.4.1 yields the commuting
square of G–Bousfield localisations (i.e. both the (b∗, fgt) and (b∗, fgt) squares commute)

CMonG(Cat) Bor(CMon(Cat))

CatG Bor(Cat)

b∗

fgt

b∗

fgt

b∗

b∗

(11)

Proof. By b! ⊣ b∗ ⊣ b∗ from Proposition 2.4.1, both b∗ and b∗ preserve finite indexed products.
Since CMonG(−) is functorial on finite indexed product–preserving functors and since the fgt
transformation is implemented by precomposition from Construction 2.1.27, we immediately
obtain a commuting square of G–Bousfield localisations. All that is left to argue is that
CMonG(Bor(Cat)) ≃ Bor(CMon(Cat)): this is precisely supplied by Proposition 2.4.3 (3).

Remark 2.4.5. Recall that by definition, MackG(Cat) := Fun×(Span(G),Cat). It is then stan-
dard that we have MackG(Cat) ≃ MackG(CMon(Cat)): to wit, since Span(G) is semiadditive
by [Bar17, Prop. 4.3, Ex. B], we may immediately deduce the fact for example from [HW21,
Thm. II.19]. Evaluating the top horizontal G–adjunction from (11) at G/G and using that
CMonG(Cat) ≃ MackG(Cat) from [Nar16, Thm. 6.5] yields the Bousfield localisation

b∗ : MackG(Cat) ≃ MackG(CMon(Cat)) Fun(BG,CMon(Cat)) : b∗

This then recovers [BGS20, Cons. 8.1], and one may indeed view Proposition 2.4.4 as a
parametrised enhancement of the cited result.

Observation 2.4.6. Suppose we are given an object D⊗ ∈ Fun(BG,CMon(Cat)). Then by
Theorem 2.1.32 (1), we know that b∗D⊗ ∈ CMonG(Cat) ≃ MackG(Cat) may now be viewed
as a G–symmetric monoidal category. We explain now a concrete description of the multi-
plicative norm functors on b∗D⊗. First of all, because CMon(Cat) is semiadditive, we get that
Bor(CMon(Cat)) is G–semiadditive by Proposition 2.4.3 (4). In particular, this means that
for any G–object D⊗ ∈ Bor(CMon(Cat)) and for any H ≤ G, we have the counit

∏

G/H

ResGH D⊗ εD−−→ D⊗

from the adjunction
∏
G/H ≃

∐
G/H : Fun(BH,CMon(Cat)) ⇋ Fun(BG,CMon(Cat)) : ResGH .

As indicated in the proof of Proposition 2.4.3 (4), upon forgetting the G–actions, the adjunction
counit is given by the multiplication map ⊗ :

∏
|G/H|D → D. Now note that an object in∏

G/H ResGH D admits an explicit description given by a tuple (Xg)g∈G/H and so an object in

(
∏
G/H ResGH D)hG ≃ DhH can be described also as the tuple (gX)g∈G/H where X ∈ DhH .

Since εD is G–equivariant, we then get the map

(
∏

G/H

ResGH D)hG ≃ DhH
εhGD−−→ DhG :: X 7→

⊗

g∈G/H

gX

Now, by virtue of the commuting square of G–Bousfield localisations from Proposition 2.4.4,
we get from Lemma 2.2.6 an identification of b∗εD with the counit in CMonG(Cat)

∏

G/H

ResGH b∗D⊗ εb∗D−−−→ b∗D⊗

Since this adjunction counit is the map encoding the multiplicative norm of an object in
CMonG(Cat) ≃ Cat⊗G, all in all, we see that the G–symmetric monoidal category b∗D⊗ has
G/H–norms given by the formula X 7→⊗

g∈G/H gX .
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Because pointwise symmetric monoidal structures are merely cotensors instead of being
internal hom objects, the next two lemmas will require a proof separate from, but very much
in the spirit of, that of Proposition 2.4.3.

Lemma 2.4.7. Let J ∈ CatG and D⊗ ∈ CMonG(Cat). Then we have an equivalence
b∗Fun(J,D⊗) ≃ Fun(b∗J, b∗D⊗) in Fun(BG,CMon(Cat)).

Proof. By [Sha23, Prop. 9.7], we see that the pairing construction of the pointwise G–
symmetric monoidal structure from [NS22, §3.3] is compatible with restrictions (for an example
argument, see the proof of [NS22, Prop. 3.2.2]). Hence, we have the left commuting square

CMonG(Cat) CMon(Cat) CMon(Cat)BG CMon(Cat)BG

CMonG(Cat) CMon(Cat) CMon(Cat) CMon(Cat)

ResGe

Fun(J,−) Fun(ResGe J,−)

Fun(b∗J,−)

fgt fgt

ResGe Fun(ResGe J,−)

Furthermore, the category Fun(BG,CMon(Cat)) is also cotensored over Fun(BG,Cat) under
the pointwise symmetric monoidal structure and so we also have the right commuting square
in the diagram above. Now all maps in sight in the left commuting square are moreover
G–equivariant with the trivial G–equivariant structures on all the categories. Hence, the
bottom composite of the left square lifts uniquely to the map b∗Fun(J,−) : CMonG(Cat) →
Fun(BG,CMon(Cat)) whereas the top composite of the left square lifts uniquely to a map
Fun(b∗J, b∗−) : CMonG(Cat) → Fun(BG,CMon(Cat)) (here we have also used the existence
of the right commuting square). Hence, all in all, we have obtained an equivalence of functors
b∗Fun(J,−) ≃ Fun(b∗J, b∗−) as required.

Recall our notation of s : ∗ →֒ OG being the inclusion of the final object G/G from Obser-
vation 2.1.10.

Lemma 2.4.8. Let D⊗ ∈ Fun(BG,CMon(Cat)) and I ∈ Cat. Then there is a natural map
Fun(s!I, b∗D⊗)→ b∗ Fun(I,D⊗) in CMonG(Cat) which is an equivalence.

Proof. Since b∗s! ≃ trivG : Cat → Fun(BG,Cat) and b∗b∗ ≃ id, by Lemma 2.4.7 we have
an equivalence b∗Fun(s!I, b∗D⊗) ≃ Fun(I,D⊗). Adjointing this over we obtain the claimed
map Fun(s!I, b∗D⊗) → b∗ Fun(I,D⊗) in CMonG(Cat). Since the composite CMonG(Cat) →
CatG

∏
H≤G(−)H

−−−−−−−−→ ∏
H≤G Cat is conservative, it is enough to show that the said map is an

equivalence upon passing to fixed points for all subgroups of G. Without loss of generality, in
order to keep notations to a minimum, we may just show it for G–fixed points since the other
fixed points can be dealt with similarly after restriction. In this case, we need to show that
the map in Cat

s∗Fun(s!I, b∗D) −→ s∗b∗ Fun(I,D)
is an equivalence. The target is given by s∗b∗ Fun(I,D) ≃ Fun(I,D)hG, whereas the source
is, via Observation 2.1.10, given by s∗Fun(s!I, b∗D) ≃ Fun(I, s∗b∗D) ≃ Fun(I,DhG), and it
can be checked easily that the map is also the canonical one implementing the limit exchange

equivalence Fun(I,DhG) ≃−→ Fun(I,D)hG. This concludes the proof of the lemma.

Proposition 2.4.9. Let C⊗ ∈ CMonG(Cat) and D⊗ ∈ Fun(BG,CMon(Cat)). There is a

natural equivalence of categories Fun
⊗
G(C⊗, b∗D⊗) ≃ Fun⊗(b∗C⊗,D⊗)hG.
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Proof. Fix I ∈ Cat. Consider the following sequence of natural equivalences

MapCat

(
I, s∗Fun⊗(C⊗, b∗D⊗)

)
≃MapCatG

(
s!I,Fun

⊗(C⊗, b∗D⊗)
)

≃MapCMonG(Cat)

(
C⊗,Fun(s!I, b∗D⊗)

)

≃MapCMonG(Cat)

(
C⊗, b∗ Fun(I,D⊗)

)

≃MapCMon(Cat)BG
(
b∗C⊗,Fun(I,D⊗)

)

≃MapCMon(Cat)

(
b∗C⊗,Fun(I,D⊗)

)hG

≃MapCat

(
I,Fun⊗(b∗C⊗,D⊗)hG

)

where the second and sixth equivalence are by virtue of the universal property from Recollec-
tion 2.1.33, the third by Lemma 2.4.8, and the fifth by how the mapping space in CMon(Cat)BG

is computed. Since by definition, s∗Fun⊗(C⊗, b∗D⊗) = Fun
⊗
G(C⊗, b∗D⊗), we obtain the desired

equivalence.

We now distil all that we have done in this subsection into the following principle which
establishes an abstract but very important link between G–categories and their underlying
category with G–action. We will use the notation Bor for the functor b∗ : Bor(Cat) →֒ CatG
for intuitive appeal. We thank Asaf Horev for discussions leading to it, especially in teaching
us the trick of using symmetric monoidal envelopes.

Theorem 2.4.10 (Monoidal Borelification principle). Let C⊗ ∈ CMonG(Cat) ≃ MackG(Cat)
be a G–symmetric monoidal category and D⊗ ∈ Fun(BG,CMon(Cat)) be a symmetric
monoidal category with a G–action. Then:

1. The G–category Bor(D) ∈ CatG canonically refines to a G–symmetric monoidal cate-
gory Bor(D⊗) ∈ CMonG(Cat). The multiplicative norm map NGH : DhH → DhG can
be concretely described as follows: for X ∈ DhH a H–object in Bor(D), the G–object
NGHX ∈ DhG is given by

⊗
g∈G/H gX,

2. Writing Ce ∈ Fun(BG,Cat) for the value of C ∈ CatG at G/e, the adjunction unit
C → Bor(Ce) of Proposition 2.4.1 canonically refines to a G–symmetric monoidal functor
C⊗ → Bor(C⊗e ).

3. There is a natural equivalence CAlgG
(
Bor(D⊗)

)
≃ CAlg(D⊗)hG.

Proof. Part (1) is by the fact that the (b∗, fgt)–square in Proposition 2.4.4 commutes, and
the description of the norm is by Observation 2.4.6. Part (2) is by the fact that we have a
commuting square of G–Bousfield localisations from Proposition 2.4.4. And finally, for part
(3), we just compute:

CAlgG(Bor(D⊗)) ≃ Fun
⊗
G(Env(Fin∗),Bor(D⊗))

≃ Fun⊗(Env(Fin∗),D⊗)hG

≃ CAlg(D⊗)hG

as required, where the first and last equivalences are by Theorem 2.1.32 (2) and the second
equivalence is by Proposition 2.4.9.

Remark 2.4.11. The structure of G–commutative algebra objects and morphisms thereof are
often tricky to construct. Part (3) of the theorem guarantees us, however, that at least when
the G–category involved is Borel, such algebras and their morphisms are nothing but algebras
and morphisms in the underlying category equipped with a G–action. By further applying
suitable G–lax symmetric monoidal functors on these Borel G–commutative algebras, we may
construct out of them many interesting non–Borel examples of G–commutative algebras. We
refer the reader to §4.4 for an illustration of this strategy.
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Remark 2.4.12. While we have not pursued it here so as not to obfuscate the general exposition
and since we will not be needing it for our purposes, we believe that the notion of Borel objects
and its attendant monoidality theory above can be developed more generally for any atomic
orbital base category T equipped with a full subcategory b : B →֒ T which is a sieve, i.e. if we
are given a morphism C → X in T where X ∈ B, then C ∈ B too. The main point is that this
will allow the proof of Proposition 2.4.1 to go through, from which much else should follow via
careful analyses of all the notions involved.

Remark 2.4.13. The theorem above is a slight expansion and strengthening of [Hil22a, Thm.
3.3.4, Prop. 3.3.6] from the author’s thesis. Since then, an article [Yan23] of Lucy Yang’s has
appeared that gave a concrete description of Cp–E∞–algebras which in particular also yields
Theorem 2.4.10 (3) in the special of G = Cp.

2.5 Perfect–stable categories and Mackey functors

In this subsection, we will work out some basic categorical properties of the T –category Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

of T –perfect–stable categories. This will be the domain of the T –parametrised K–theory

functor we consider in the sequel. The highlight here is that, as expected, Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T will be shown

to be a T –semiadditive–presentable T –category (c.f. Corollary 2.5.8). Moreover, we will show
in Theorem 2.5.11 how this internally defined T –category relates to T –Mackey functors valued
in Catperf . Apart from providing a psychological reassurance that T –perfect–stable categories
are a reasonable notion, the aforementioned relationship will also allow us to transport results
about split Verdier sequences on Catperf to our setting as well as relate our notion of T –
parametrised algebraic K–theory with, for instance, the one considered in [BGS20; CMN+20].
To begin, let us first record some formalities on T –semiadditivity.

Lemma 2.5.1. Suppose C is T –pointed with finite indexed (co)products. Let f : U → V be in
Fin/V and Y ∈ C. We then have an identification

f∗f
∗ηY ≃ ηf∗f∗Y : f∗f

∗Y −→ f∗f
∗f∗f

∗Y

Proof. This is an immediate consequence of Lemma 2.2.6, using the adjointable square

C C

f∗f
∗C f∗f

∗C

f∗f
∗

f∗ f∗

f∗f
∗

f∗ f∗

coming from the fact that both the restriction functor f∗ : C → f∗f
∗C and indexed product

functor f∗ : f∗f
∗C → C preserve indexed products.

Observation 2.5.2. Suppose C is T –pointed with finite indexed products. Let f : U → V be
in Fin/V and let X ∈ f∗C. Observe that X is a retract of f∗f∗X since, by the pullback
decomposition from (5), we have f∗f∗X ≃ X × c∗c∗X . Hence, using the map ∗ → c∗c

∗X → ∗,
we can get a retraction

X ≃ X × ∗ −→ f∗f∗X ≃ X × c∗c∗X π−−→ X ≃ X × ∗

Corollary 2.5.3. Let C be a T –pointed category admitting finite indexed products. Let f : U →
V be in Fin/V and let X ∈ f∗C. Then the composite

f∗X
ηf∗X−−−→ f∗f

∗f∗X
f∗π−−→ f∗X

is an equivalence.
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Proof. Since retractions of equivalences are equivalences, by Observation 2.5.2 which gives that
X is a retract of f∗f∗X , it suffices to show the equivalence when X = f∗Y for some Y ∈ C.
But then, in this case, this composite is identified with

f∗f
∗Y

f∗f
∗ηY−−−−−→ f∗f

∗f∗f
∗Y

f∗π−−→ f∗f
∗Y (12)

by Lemma 2.5.1. Now by a simple unwinding of adjunctions, we see via the decomposition
from (5) that f∗ηY : f∗Y → f∗f∗f

∗Y ≃ f∗Y × c∗c∗f∗Y has the effect of the identity map on
the f∗Y component in f∗f∗f

∗Y . Therefore, we see indeed that the composite (12) is indeed
an equivalence.

With these generalities explained, we now begin our categorical study of Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf in earnest.

Proposition 2.5.4. The T –categories PrT ,st,L,κ and PrT ,L,κ are T –semiadditive, where the

T –products are created in ĈatT . In particular, we have that Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf is T –semiadditive and the
faithful inclusion Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf ⊂ Cat is closed under finite T –products.
Proof. We only show that PrT ,L,κ is T –semiadditive. This would then imply that the T –full
subcategory PrT ,st,L,κ is too, since T –presentable-stables are closed under T –products.
First, we show that PrT ,L,κ is ordinary semiadditive. Recall from Theorem 2.1.34 that we

may view PrT ,L,κ as a non–full subcategory of Fun(T op,PrL,κ) consisting of those objects
for which all the restriction functors have left adjoints and satisfy the left Beck–Chevalley
condition, and the morphisms are those which satsify the left Beck–Chevalley condition. Since
we already know that PrL,κ is semiadditive (cf. for instance [HL13, Ex. 4.3.11]), it suffices now
to argue that PrT ,L,κ ⊂ Fun(T op,PrL,κ) creates finite (co)products by applying Lemma 2.2.11.
Let C1, C2 ∈ PrT ,L,κ. The product and coproduct C1×C2 clearly still satisfies Beck–Chevalley,
and the projection maps C1×C2 → Ci and inclusion maps Ci → C1×C2 (defined using that Ci
had initial objects) also clearly satisfies Beck–Chevalley. These give condition (1), and to see
condition (2), suppose we are given hi : D → Ci and fi : Ci → E all satisfying Beck–Chevalley.
Then it is similarly easy to see that the maps h1 × h2 : D → C1 ×C2 and f1 ⊔ f2 : C1 × C2 → E
also satisfy Beck–Chevalley, whence condition (2) as wanted.
Next, we show that there is a canonical adjunction datum witnessing that f∗ ⊣ f∗ for every

f : W → V in FinT . For this, simply observe the natural equivalences

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPrL,κ
(f∗D, C) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPrR,κ-filt

(C, f∗D) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapf∗f∗PrR,κ-filt
(f∗

C,D) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapf∗f∗PrL,κ
(D, f∗

C)

where the first and last equivalences is by Proposition 2.2.15, and the middle equivalence is by
[Hil22b, Prop. 6.6.2]. Now write η, ε as the adjunction (co)unit for f∗ ⊣ f∗ in PrR,κ-filt and η̃, ε̃
for the f∗ ⊣ f∗ (co)unit in PrL,κ. Tracing through the identifications above, we obtain that
η̃ ⊣ ε and ε̃ ⊣ η. Under these notations, the Beck–Chevalley equivalences f∗f∗ ≃ id⊔ c∗c∗ and
f∗f∗ ≃ id× c∗c∗ are then implemented by

B̃C: id ⊔ c∗c∗
(id⊔c∗c

∗)η̃f−−−−−−−→ (id ⊔ c∗c∗)f∗f∗ ≃ (id ⊔ c∗c∗)f∗f∗
ε̃cf∗f∗−−−→ f∗f∗

BC: f∗f∗
ηcf∗f∗−−−→ (id× c∗c∗)f∗f∗ ≃ (id× c∗c∗)f∗f∗

(id×c∗c
∗)εf−−−−−−−→ id× c∗c∗

Now since B̃C was an equivalence, an inverse is given by the right adjoint, which may in turn
be seen easily to be given by BC. Therefore, the composite BC ◦ B̃C: id ⊔ c∗c∗ → id× c∗c∗ is
the semiadditive equivalence ⊔ ≃ ×. In particular, we have the equivalence of maps

(id ⊔ ∅) ≃ (id× ∅) ◦ BC ◦ B̃C: id ⊔ c∗c∗ −→ id (13)

Finally, to see that PrT ,L,κ is T –semiadditive via f∗ ⊣ f∗, we need to show that the composite

f∗
ηf∗−−→ f∗f

∗f∗
f∗B̃C←−−−
≃

f∗(id ⊔ c∗c∗)
f∗(id⊔∅)−−−−−→ f∗
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is an equivalence by definition of T –semiadditivity. By (13), this composite is equivalent to
the one of the form in Corollary 2.5.3, which is an equivalence. This completes the proof
that PrL,κ is T –semiadditive. The last statement about Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf follows immediately from
Notation 2.1.38.

Lemma 2.5.5. The inclusion PrT ,R,st,κ-filt ⊂ Ĉat is closed under arbitrary parametrised limits.
In particular, PrT ,L,st,κ is T –cocomplete.

Proof. By the equivalence PrL,st,κ ≃ Pr
opopopopopopopopopopopopopopopopop
R,st,κ-filt from Proposition 2.2.15 and the T –

semiadditivity from Proposition 2.5.4, we know that PrR,st,κ-filt ⊂ Ĉat is closed under finite
indexed products. Hence, since arbitrary parametrised limits can be decomposed into arbi-
trary fibrewise limit and finite indexed products, we are left to argue in the case of arbitrary
fibrewise limits. This can in turn be split up into showing the case of arbitrary products and
pullbacks. We will only treat the case of pullbacks since that of arbitrary products is simpler.
We would like to apply Lemma 2.2.11. Since fibrewise limits in ĈatT = Fun(T op, Ĉat)

are computed pointwise and since we already know from the unparametrised case that
PrL,st,κ,PrR,st,κ-filt ⊂ Ĉat are closed under limits, we know that ĈatT –pullbacks C1 ×C3

C2
of objects in PrR,st,κ-filt are still in Fun(T op,PrL,st,κ). Using Proposition 2.2.7, we can eas-
ily check that C1 ×C3

C2 still satisfies the left Beck–Chevalley conditions, and so by Theo-
rem 2.1.34, we get that C1 ×C3

C2 is an object in PrT ,R,st,κ-filt. Moreover, the projection maps
C1×C3

C2 → Ci for i ∈ {1, 2, 3} are also easily seen to preserve fibrewise (co)limits and indexed
products, whence condition (1) of Lemma 2.2.11. Since these projection maps preserves said
(co)limits, this means that such (co)limits are computed pointwise in C1 ×C3

C2 and hence
condition (2) of the lemma is easily seen to be satisfied also, as required. The last statement
is then an immediate consequence of the first statement and the equivalence PrL,κ ≃ Pr

opopopopopopopopopopopopopopopopop
R,κ-filt

from Proposition 2.2.15.

Proposition 2.5.6. The faithful inclusion Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf ⊂ Cat is closed under arbitrary
parametrised limits.

Proof. Since parametrised limits can be decomposed into fibrewise limits and arbitrary indexed
products by [Sha23, §12], by Proposition 2.5.4 we are left to show that the inclusion is closed
under fibrewise limits. Concretely, since fibrewise limits are computed fibrewise by the dual of

[Sha23, Cor. 5.9], we need to show that the faithful inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂ CatT is closed under

arbitrary limits.
To do so, we first show that limits of T –perfect stable categories along T –exact functors

are again T –perfect stable. Let C : I → Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T be a diagram. Because limits in CatT =

Fun(T op,Cat) are computed pointwise and since we know this statement in the unparametrised
situation, we know already that lima∈I Ca is fibrewise perfect stable. Hence, we are reduced
to showing that lima∈I Ca is T –semiadditive. Without loss of generality, assume T has a final
object T and let f : V → T be a map in T . Since each Ca is T –semiadditive, we know that for
all a ∈ I, the semiadditivity norm map in

Ca f∗f
∗Ca

f!

≃ ⇓

f∗

is an equivalence. But since fibrewise limits along T –exact functors preserve the indexed
(co)product adjunctions (T –exact functors satisfy the Beck–Chevalley condition in Proposi-
tion 2.2.7), zero objects, and ordinary finite biproducts (ie. the zero object and ordinary finite
biproducts in lima∈I Ca are given by the ones in each Ca), we see that applying lima∈I to the
diagram above yields the semiadditivity norm map equivalence
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lima∈I Ca f∗f
∗ lima∈I Ca

f!

≃ ⇓

f∗

whence the T –semiadditivity of lima∈I Ca as claimed.

To see that this has the correct universal property in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , we need to check the two con-

ditions in Lemma 2.2.11. For condition (2), we need to argue that if we have a transformation

of I–shaped diagrams ϕ : constI D → C in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , then the map ϕ : D → lima∈I Ca induced

by the universal property in CatT is already T –exact. As before, since this statement holds in
the unparametrised setting, we are left with showing that the induced functor preserves finite
T –biproducts. To see this, letting f : V → T as in the preceding paragraph, we need to show
that the left square in

f∗f
∗D D f∗f

∗D D

f∗f
∗ lima∈I Ca lima∈I Ca f∗f

∗Ca Ca

f∗

f∗f
∗ϕ ϕ

f∗

f∗f
∗ϕ ϕ

f∗ f∗

commutes. This is simply because for each a ∈ I, the right square commutes by assumption
that everything in sight is T –exact, from which we can conclude that the left square also
commutes by applying lima∈I to the bottom horizontal map in the right square. Finally, for
condition (1), by virtue of the previous paragraph, we are left to argue that the adjunction
counit is T –exact. Since arbitrary limits can be decomposed in terms of arbitrary products
and pullbacks and the case of products is simple to see, we will only argue in the case of
pullbacks. In this case, we need to argue that the projection maps C1 ×C3

C2 → Ci preserve
finite indexed products for i ∈ {1, 2, 3}. But this is clear since T –biproducts in C1 ×C3

C2 are
created pointwise.

Next, we mimic the techniques of [CDH+, §1.1] to prove:

Proposition 2.5.7. The set
{
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω, Fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω)

}
consists of ω–compact objects and is jointly

conservative on Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Thus, Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T is κ-compactly generated for all regular cardinals κ.

Proof. Since compactness and joint conservativity are checked fibrewise, we show that{
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω,Fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω)

}
are ω–compact and jointly conservative on Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T/V

for an arbitrary V ∈ T .
We claim that SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω and Fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω) corepresent the functors Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T/V
→ ST/V

C 7→ C≃ and C 7→ Fun(∆1, C)≃ (14)

respectively. We only show this for the second one since the first is easier:

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf

T/V

(
Fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω), C

)
≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPrL,st,ω

(
Fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp), IndωC

)

≃ FunL,ω(Fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp), IndωC
)≃

≃ FunR,ω -filt
(
IndωC,Fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)

)≃

≃ Fun
(
∆1,FunR,ω -filt

(
IndωC, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

))≃

≃ Fun
(
∆1,FunL,ω

(
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp, IndωC

))≃

≃ Fun(∆1, C)≃
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where the first equivalence is by Proposition 2.1.37; the third and fifth are by Proposition 2.2.5
and Theorem 2.1.35; the fourth by Notation 2.1.9; and the last is by Proposition 2.2.24.
Since the two corepresented functors preserve ω–filtered colimits, we thus see that SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω and
Fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω) are ω–compact objects. To see that the two functors of (14) are jointly conser-
vative, suppose ϕ : C → D is a functor such that

ϕ : C≃ ≃−→ D≃ and ϕ : Fun(∆1, C)≃ ≃−→ Fun(∆1,D)≃

are equivalences of T/V –spaces. In particular, the first equivalence implies that ϕ is T/V –
essentially surjective. On the other hand, the fibre over [W → V ] of Fun(∆1, C) is Fun(∆1, CW )
and so the second equivalence together with the the formula for unparametrised mapping spaces
as pullbacks Fun(∆1, CW )×C×2

W
{∗} gives us that ϕ : C → D is T/V –fully faithful. Therefore, ϕ

is an equivalence, as wanted, and so by Proposition 2.2.14, we may conclude the proof.

We may now summarise the preceding results in the following package.

Corollary 2.5.8. The T –category Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf is T –semiadditive–presentable. The parametrised
limits in it are computed in Cat and the parametrised colimits may be computed by the formula

colimJ∂ ≃ (limJopopopopopopopopopopopopopopopopop Ĩnd∂)ω, where Ĩnd∂ : Jopopopopopopopopopopopopopopopopop → PrR,κ-filt ⊂ ĈatT is the diagram obtained by
passing to right adjoints.

Proof. T –semiadditivity is by Proposition 2.5.4. To see T –presentability, by Lemma 2.5.5,
we know that Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf ≃ PrL,st,ω is T –cocomplete. This, together with Proposition 2.5.7 and

[Hil22b, Thm. 6.1.2 (6)], then implies that Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf is T –presentable. That parametrised
limits in Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf are created in Cat was shown in Proposition 2.5.6. Finally, the formula for
parametrised colimits is an immediate consequence of Lemma 2.5.5 and the equivalences

Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf PrL,st,ω Pr
opopopopopopopopopopopopopopopopop
R,st,ω-filt

Ind

≃

(−)ω

≃

where the second equivalence is by Proposition 2.2.15.

Our next goal is to articulate the relationship between Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T and T –Mackey functors valued

in Catperf . The basic ingredient will be the following evaluation functors.

Construction 2.5.9 (The evaluation functor). Let V ∈ T . Writing s : ∗ →֒ T/V for the
inclusion of the final object, consider the solid part of the diagram

Catperf Cat

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T/V

CatT/V

s∗ s∗ (15)

where the hooked arrows are faithful functors. The functor s∗ here implements the evaluation

at V ∈ T . Since objects in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T are in particular fibrewise idempotent–complete and stable,

and morphisms are in particular fibrewise exact, we obtain the dashed lift as shown. Observe
that the top horizontal inclusion and the solid s∗ functors preserve all limits. Observe also
that, on objects, s∗ : Cat → CatT = Fun(T op,Cat) is concretely given by the functor which
sends C ∈ Catperf ⊂ Cat to the object C := s∗C ∈ Fun(T op,Cat) given by C at the final object
in T and ∗ everywhere else.

Lemma 2.5.10. For every V ∈ T , the composite functor Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

Res−−→ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T/V

s∗−→ Catperf,

where s∗ is as constructed above, preserves arbitrary limits and colimits.
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Proof. Since the restriction functor is given by the global section of the T –functor Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

p∗−→
Fun(V ,Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ) where p : V → ∗ is the unique T –functor to the final T –category, it clearly

preserves all limits and colimits. Hence, we are left to studying s∗ for a fixed V ∈ T . Thus
without loss of generality, instead of writing T/V everywhere, we just assume that T has a final
object.

For the case of limits, by Proposition 2.5.6 the faithful inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂ CatT is closed

under limits. Thus, we see that all the solid arrows in (15) preserves limits, and so the dashed
lift s∗ also preserves limits as wanted.
For the case of colimits, we claim that the right adjoint s∗ to the solid s∗ functor in (15)

restricts to a right adjoint s∗ : Cat
perf → Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . To see this, note that the concrete description

of the functor s∗ from Construction 2.5.9 clearly yields a fibrewise stable and T –semiadditive
category (since all the proper restrictions are zero from Observation 2.1.18). It is similarly

easy to see that morphisms in Catperf (ie. exact functors) get sent to morphisms in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

(ie. fibrewise exact and preserve T –products, the latter of which are all zero by the argument

above). Hence, all in all, we obtain the restricted adjunction s∗ : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⇋ Catperf : s∗, which

implies that s∗ preserves colimits, as desired.

Given these, we are now ready to phrase the embedding of T –perfect–stable categories into
T –Mackey functors valued in perfect–stable categories.

Theorem 2.5.11. We have a conservative T –faithful inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂ CMonT (Cat

perf).
Moreover, this inclusion preserves and reflects parametrised (co)limits.

Proof. We first construct the said T –faithful functor. By definition we have the following solid
non-full T –faithful inclusions

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T CatT = CofreeT (Cat)

CofreeT (Cat
perf)

which preserve finite T –products: the top horizontal inclusion by Proposition 2.5.4 and the
vertical inclusion since Catperf ⊂ Cat preserves limits. By Notation 2.1.38, we in fact have the
dashed factorisation which must, by the preceding points, also preserve finite T –products. Now
by definition CMonT (−) := Fun

sadd
T (Fin∗T ,−) ⊆ FunT (Fin∗T ,−) and so applying CMonT (−)

and invoking [Hil22b, Cor. 3.4.6] we get a T –faithful inclusion

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂ CMonT (Cat

perf)

where we can dispense with the T –semiadditivisation of the source by virtue of Proposi-
tion 2.1.28 and Proposition 2.5.4.
Now to see that it is conservative, simply note that we have the commuting triangle of

categories

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

CMonT (Cat
perf) ≃ MackT (Cat

perf)
∏
V ∈T Catperf

∏
V∈T evV

∏
V∈T evV

(16)

where the diagonal map is conservative. Therefore, the vertical map must be conservative as
well.
For the final statement, first note that by construction, the inclusion Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂

CMonT (Cat
perf) preserves finite indexed products, and so also finite indexed (co)products
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by T –semiadditivity of both source and target. Hence, by Lemma 2.2.12 the inclusion also
reflects these. To deal with the fibrewise (co)limits, since all the restriction functors in sight

preserve (co)limits, it suffices by [Sha23, Cor. 5.9] to argue that Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → CMonT (Cat

perf) ≃
MackT (Cat

perf) preserves and reflects arbitrary limits and colimits. Since (co)limits in
MackT (Cat

perf) are computed pointwise by [Bar17, Cor. 6.7.1], the bottom horizontal evalu-
ation map in (16) is conservative and preserves (co)limits. On the other hand, the diagonal
functor in (16) preserves arbitrary (co)limits by Lemma 2.5.10. Combining these, we get that
the vertical functor in (16) preserves arbitrary (co)limits in addition to being conservative from
the previous paragraph, and hence by Lemma 2.2.12 it also reflects (co)limits, as wanted.

Remark 2.5.12. We now give an intuitive description of objects in MackT (Cat
perf) ≃

CMonT (Cat
perf) which lie in Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Let C ∈ MackT (Cat

perf) and let f : W → V be a
map in T . Write f# : CW → CV for the associated transfer map. From the pullback

W
∐
C W

W V

id⊔c

id⊔c
y

f

f

we obtain by the datum of a Mackey functor a decomposition f∗f# ≃ id ⊕ c#c∗. Hence, by
inclusion and projection, we obtain the following transformations

u : id =⇒ f∗f# and c : f∗f# =⇒ id

By unwinding the definitions in the proof of the theorem, we then see that C lies in the

non–full subcategory Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T if u exhibits f# ⊣ f∗ and c exhibits f∗ ⊣ f#. These conditions

can however be enforced provide we work with the (∞, 2)–category of spans. As such, we
expect that an (∞, 2)-categorical version of spans and of Mackey functors should precisely

yield Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T .

For the purposes of our motivic analyses later, we will also record here the following:

Proposition 2.5.13. Fix C ∈ PrT ,L,κ. The functor Fun(−, C) : CatT → PrT ,L,κ taken along
left Kan extensions preserve finite parametrised colimits.

Proof. Since every finite parametrised colimit can be decomposed as the finite indexed co-
products and finite fibrewise colimits, we will split up the proof into these two cases. For
the indexed coproducts, we just note that for a fixed f : U → V in Fin/V , we have
Fun(f!I, C) ≃ f∗f

∗Fun(I, C), and so since Proposition 2.5.4 gives that f∗f
∗Fun(I, C) is also

the indexed coproduct in PrT ,L,κ, we are done in this case. Since we have argued for an arbi-
trary U ∈ FinT , this also covers the case of ordinary finite coproducts by setting U =

∐n
i=1 V .

Hence, we are left with showing the case of pushouts. Suppose we have a pushout diagram

I J

K P

i

k
p

p

q

By Lemma 2.5.5, we have an equivalence Fun(P , C) ≃ Fun(J, C) ×Fun(I,C) Fun(K, C) in
PrT ,R,κ-filt using the restriction maps p∗, q∗, i∗, k∗, and so upon passing to left adjoints un-

der PrT ,L,κ ≃ Pr
opopopopopopopopopopopopopopopopop
T ,R,κ-filt, we obtain the desired result.
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3 The theory of parametrised cubes

In this section, we lay down the theory of parametrised cubes associated to atomic orbital base
categories T . As we shall see in Construction 3.1.5, this hypothesis on T will be exploited in
an essential way to identify the “singletons” in a parametrised cube, which will in turn play a
key role in our treatment of C2–pushouts in the setting of equivariant K–theory in §4.3. The
key insight is that the inclusions of the initial and final objects in ∆1 will allow us to encode
the idea of a “subset” in a purely abstract and categorical manner (where 1 means being in a
“subset” and 0 means the converse). The advantage of this point of view is at least two–fold
in that it not only lets one speak of cubes in a very general setting but also allows many proofs
to be carried out using concise adjunction manipulations.
As far as we are aware, this use case of atomic orbitality of base categories is new and might

represent a third expression – alongside that of T –semiadditivity and T –symmetric monoidality
for which it was first designed by [BDG+16a] – of the algebraic richness of the atomic orbitality
hypothesis. As alluded to in the introduction, the rather general and abstract treatment of
cubes here will serve as the foundations for a theory of parametrised functor calculus, a subject
that will be treated in forthcoming work.
We now outline the contents of this section: in §3.1, we will introduce the basic definitions and

constructions of cubes; we will then provide a general utility (co)limit decomposition result
Proposition 3.2.2 and record the interaction of parametrised tensor powers with cofibres as
Proposition 3.2.8 in §3.2; lastly, we will specialise the general theory to the equivariant setting
where we look at G/H–cubes when |G/H | = 2 in preparation for our K–theoretic applications
in §4.3.

3.1 Basic notions

Definition 3.1.1. Let w : W → T be a map in FinT and let C be a T –category. We write
∆1 ∈ CatT = Fun(T op

/T ,Cat) for the constant T/T –category with value ∆1. By the parametrised

w–cube we will mean the T/T –category w∗w
∗∆1 and by a parametrised w–cube in C we will

mean a T –functor Q : w∗w
∗∆1 → C.

Proposition 3.1.2. The parametrised cubes w∗w
∗∆1 are all parametrised posets, i.e. they

belong to the full subcategory Fun(T op,Poset) ⊆ Fun(T op,Cat). In fact, these are fibrewise
given by cubes of various dimensions.

Proof. This is just because the inclusion Poset ⊆ Cat∞ preserves all limits (with left adjoint
τ≤−1) and hence in particular preserves products. On the other hand, we know that for any
C ∈ Cat∞ admitting finite products, Cofree(C) also have all indexed products coming from the
products on C. Therefore all in all, Cofree(Poset) ⊆ Cofree(Cat∞) admits (and is closed under)
indexed products. In particular, since ∆1 is a parametrised poset, so is w∗w

∗∆1 as required.
The last statement is simply because these indexed products are computed as various products
in Poset of ∆1, which are cubes.

Construction 3.1.3. Upon applying Fun(T op,−), the join–slice adjunction (cf. for instance
[Lan21, Cor. 1.4.17]) induces the parametrised join–slice adjunction

(−)⊳ : CatT ⇋ CatT ,∗/ : (−)p/
where (−)p/ is the slice construction on a category equipped with a choice of object, i.e.

(D, d)/p := ∗ ×D D∆1

where the map D∆1 → D is the source map. In particular, if D has an
initial object ∗, then any functor C → D will induce an extension C⊳ → D.
We thank Sil Linskens for pointing out the need for the strict initial object assumption in

the following result.
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Proposition 3.1.4. Let D be a T –category with a strict initial object (i.e. any morphism to
the initial object in D must be an equivalence) and F : C → D be an arbitrary fully faithful
T –functor whose essential image does not contain the initial object of D. Then the extension
F ⊳ : C⊳ → D is also fully faithful.

Proof. Since fully faithfulness is a fibrewise notion, we can just prove this fibrewise and hence
reduce to proving it in the unparametrised case. Since we already know that the composite
C → C⊳ → D is fully faithful and since, on the space of objects, it is standard that (C⊳)≃ ≃
C≃ ⊔ {∅C} (see for example [CMN+20, Prop. A.4]), we are left to argue that the induced map
of mapping spaces is an equivalence when one of the objects is ∅C the initial object in C⊳. To
this end, first note that ∅C does not admit any map from any X ∈ C: this is because we have a
functor C⊳ → ∗⊳ ≃ ∆1, and so any such map would give a map from 1 to 0 in ∆1, which does
not exist. Thus the object ∅C ∈ C⊳ is also a strict initial object. Hence, we are left to argue
that MapC⊳(∅C , X)→ MapD(F

⊳(∅C), F ⊳(X)) is an equivalence. But this is true because by the
universal property, we must have that F ⊳(∅C) ≃ ∅D, and so both sides are contractible.

The following is the key construction in the theory of parametrised cubes.

Construction 3.1.5 (Singleton inclusion). Let w : W → T be a map in FinT . We would like
to construct a map

ψw : w!w
∗∗ −→ w∗w

∗∆1

which generalises the inclusion of the singletons in Goodwillie’s definition of strong cocarte-
sianness. First note by atomic orbitality that we have the pullback in FinT

W
∐
C W

W T

y

id
∐
c

id
∐
c w

w

(17)

where C is some object in FinT . In particular, we have the decomposition

w∗w∗w
∗∆1 ≃ id∗id

∗w∗∆1 × c∗c∗w∗∆1 ≃ w∗∆1 × c∗c∗w∗∆1

Now by adjunction, to construct ψw, it would suffice to construct its adjoint ψw : w∗∗ →
w∗w∗w

∗∆1. By the decomposition above, this is equivalent to constructing maps

w∗∗ → w∗∆1
(
w∗∗ → c∗c

∗w∗∆1
)
⇔

(
c∗w∗∗ ≃ c∗w∗∗ → c∗w∗∆1

)

To this end, we declare the first map to be the inclusion of the target and the second map to
be the inclusion of the source. This yields the map ψw which one should think of the inclusion
of the singletons in a cube. We will see that this is always fully faithful in Corollary 3.1.8.
Therefore, by Construction 3.1.3, the map ψw constructed above induces a map

ϕw : (w!w
∗∗)⊳ −→ w∗w

∗∆1

This map ϕw should be thought of generalising the subsets of size at most 1 in a cube, as the
following important example will illustrate.

Example 3.1.6. In the special case when T ∈ T is the final object,W =
∐n
j=1 T , and w : W → T

is the fold map, we will see how the above construction yields the usual inclusion of singletons in
the n–cube

∏n
j=1 ∆

1 = Pos([n]). To wit, since T ×T ≃ T by finality, we have a decomposition

(

n∐

j=1

T )× (

n∐

j=1

T ) ≃
∐

(a,b)∈Z/n×Z/n,
a−b≡n0

T ⊔
n−1∐

j=1

∐

(a,b)∈Z/n×Z/n,
a−b≡nj

T
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where the term
∐

(a,b)∈Z/n×Z/n,
a−b≡n0

T should be thought of as the diagonal tuples in (
∐n

T ) ×

(
∐n T ). Hence, the pullback (17) in this case looks like

∐

(a,b)∈Z/n×Z/n,
a−b≡n0

T ⊔
n−1∐

j=1

∐

(a,b)∈Z/n×Z/n,
a−b≡nj

T
∐n
j=1 T

∐n
j=1 T T

id⊔c

id⊔c

w

w

In this case, the map ψ :
∐n
j=1 ∗ ≃ w!∗ →

∏n
j=1 ∆

1 ≃ w∗∆
1 constructed in Construction 3.1.5

comes from specifying the map w∗∗ → w∗w∗∆
1 ≃ ∆1 × c∗c∗∆1 describable as

(∗, . . . , ∗) −→ (∆1 ×
∏

1≤j≤n,j 6=1

∆1,∆1 ×
∏

1≤j≤n,j 6=2

∆1, . . . ,∆1 ×
∏

1≤j≤n,j 6=n

∆1)

choosing 1 in the first copy of ∆1 and 0’s in
∏

1≤j≤n,j 6=k∆
1 for all k. Equivalently, the k–th

summand in w!∗ ≃
∐n
j=1 ∗ picks out 1 in the k–th copy of ∆1 in

∏
1≤j≤n∆

1 and 0’s in the other

copies of ∆1. Hence, the k–th summand in w!∗ sits as the k–th singleton in
∏n
j=1 ∆

1 ≃ Pos([n]),
as claimed.

We now record the following fundamental observation which will serve both as a basic prin-
ciple for our proofs as well as as an indication that our notion of singletons is “correct” from
the parametrised point of view, in that it is a notion that is stable under basechange along
arbitrary morphisms in T .
Remark 3.1.7 (Stability of singleton inclusions under basechange). Let b : B → T be a map in
T . Recall first that we have an adjunction from Recollection 2.1.20

b! : FinB ⇋ FinT : b∗

where b! is given by postcomposing with b : B → T and b∗ is pullback along b. In particular,
applying b∗ to the pullback (17) gives us a pullback

b∗W
∐
b∗C b∗W

b∗W B

y

id
∐
a

id
∐
a w

w

We would like to show now that b∗ψw ≃ ψw, so that singleton inclusions are stable under
basechange.
By pasting pullback squares, we also see that we have the pullback

b∗C C

b∗W W

y

z

a c

z

(18)

Now recall that the adjoint of ψw was a map defined as the composite

w∗∗ →֒ w∗∗ ∐ c!c∗w∗∗
w∗ψw≃

(
(1,0) (0,0)

)
−−−−−−−−−−−−−→ w∗∆1 × c∗c∗w∗∆1
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Here, the map
(
(1, 0) (0, 0)

)
is matrix notation for the map induced by the four maps

w∗∗ 1−→ w∗∆1 w∗∗ 0−→ c∗c
∗w∗∆1 c!c

∗w∗∗ 0−→ w∗∆1 c!c
∗w∗∗ 0−→ c∗c

∗w∗∆1

We claim now that b∗ψw : w!w∗ → w∗w
∗∆1 is defined similarly, so that b∗ψw ≃ ψw as wanted.

Adjoining over b∗ψw gives the map

w∗∗ →֒ w∗∗ ∐ a!a∗∗ w∗b∗ψw−−−−−→ w∗∆1 × a∗a∗∆1 (19)

But then w∗b∗ ≃ z∗w∗, and so together with the pullback (18), the map w∗b∗ψw from (19) can
be analysed as

z∗w∗∗ ∐ a!a∗∗
z∗w∗ψw≃((1,0) (0,0))−−−−−−−−−−−−−−→ z∗w∗∆1 × a∗a∗w∗∆1

which is the desired form of map.

Corollary 3.1.8. The map ϕw : (w!w
∗∗)⊳ → w∗w

∗∆1 is fully faithful.

Proof. By Proposition 3.1.4, it suffices to show that the map ψw : w!w
∗∗ → w∗w

∗∆1 is fully
faithful. Now, since fully faithfulness is a fibrewise notion, it suffices to check the statement in
each fibre, and since these maps are stable under basechange by Remark 3.1.7, we may without
loss of generality argue in the fibre over T ∈ T . In case w : W → T is not an equivalence,
then we know by Observation 2.1.18 that evT (w!∗) ≃ ∅, and so the map ψw is vacuously fully
faithful in the fibre over T ∈ T . On the other hand, if w : W → T were an equivalence, then
the map ψw : w!∗ → w∗∆

1 is just the inclusion of 0 in ∆1, which is also fully faithful. Hence,
ψ is fully faithful in either case, as was to be shown.

Example 3.1.9 (G–cubes and C2–pushouts). Let G be a finite group, H ≤ G a subgroup, and
consider the case of T = OG. The G–category w∗∆

1 =
∏
G/H ∆1 should then be thought

of as the |G/H |–dimensional cube equipped with the G–action dictated by the one on G/H .
For example, one would expect such a diagram to have G–fixed points only the initial and
the final object, and the underlying diagram to be a |G/H |–cube. And indeed, we do have
that evG/G(w∗w

∗∆1) ≃ ∆1 and evG/e(w∗w
∗∆1) ≃∏

|G/H| ∆
1, as expected. In the rest of the

article, we will be especially interested in the case when |G/H | = 2. In this case, a G–diagram
indexed by (w!w

∗∗)⊳ ⊆ w∗w
∗∆1 may be schematically represented as the datum

A B

B

f

f

where A is a G–object, B is a H–object, the maps f are maps of H–objects ResGH A
f−→ B,

and the G–action on G/H swaps the two copies of f ’s. We will call the G–colimits of such
diagrams C2–pushouts for reasons that we hope are clear given this schematic representation.
In the next section, we will give a formula to compute such G–colimits in terms of ordinary
pushouts and indexed coproducts.

3.2 Cubical decompositions

We would like now to apply the general nonsense Corollary 2.2.10 to the cubical setting, the
highlights of which are the decomposition Propositions 3.2.2 and 3.2.8.

Observation 3.2.1. Let I ∈ CatT . Then there is a pushout in CatT = Fun(T op,Cat)
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I ∗

I ×∆1 I⊲

c

t

p

ℓ

π

To see this, since all constructions and operations in sight in the square above are done fibrewise,
we may reduce to showing the statement in the unparametrised case in Cat. Here, we know
that we have the join–slice adjunction (cf. for instance [Lan21, Cor. 1.4.17])

(−)⊲ : Cat ⇋ Cat∗/ : (−)/p

where (−)/p is the slice construction on a category equipped with a choice of object, i.e.

(D, d)/p := ∗ ×D D∆1

where D∆1 → D is the target projection. Hence, we just need to show
that the pushout construction P (I) := (I ×∆1) ∪I ∗ is also left adjoint to (−)/p. For this, let
(D, d) ∈ Cat∗/ and simply consider

MapCat∗/
(P (I), (D, d)) ≃ MapCat(P (I),D) ×MapCat(∗,D) {d}

≃ MapCat(I ×∆1,D)×MapCat(I,D) {d}
≃ MapCat(I,D∆1 ×D ∗) = MapCat(I, (D, d)/p)

as required.

Using the notations from the pushout in the observation above, we may now extract the
following important decomposition result for parametrised (co)limits that we will be especially
interested in.

Proposition 3.2.2. Let i : I →֒ I⊲ be the inclusion and let the morphism can: i∗ → c∗ℓ∗

in Fun(I, C) be the canonical structure map. The limit functor limI⊲ : Fun(I
⊲, C) → C can be

computed as follows: letting ∂ ∈ Fun(I⊲, C), we have a pullback in C

limI⊲∂ ℓ∗∂

c∗i
∗∂ c∗c

∗ℓ∗∂

y
η

c∗can

Similarly, for any ∂ ∈ Fun(I⊳, C), we obtain the pushout decomposition

c!c
∗ℓ∗∂ ℓ∗∂

c!i
∗∂ colimI⊳∂

ε

c!can

p

Proof. We will first need to collect a few elementary formal observations:

• Since the inclusion of the source s : I →֒ I ×∆1 has a right adjoint f (because 0 ∈ ∆1 is
an initial object), we get that f∗ ⊣ s∗ and so s∗ ≃ f∗.

• Hence, if we write v : I × ∆1 → ∗ for the unique map, then since v ≃ cf , we get
v∗ ≃ c∗f∗ ≃ c∗s∗.

• Moreover, since ft ≃ id, we also get that s∗t∗ ≃ f∗t∗ ≃ id.

• Next, since πs ≃ i, we get s∗π∗ ≃ i∗.

46



• Under these identifications, the canonical map in the statement of the result can be
obtained by applying s∗ to ηtπ∗ : π∗ → t∗t

∗π∗ since s∗π∗ ≃ i∗ and s∗t∗t
∗π∗ ≃ id ◦ c∗ℓ∗ ≃

c∗ℓ∗. It is a straightforward check to see that this is the canonical structure map.

Now, by Observation 3.2.1, we have a pullback description of Fun(I⊲, C) as

Fun(I⊲, C) C

Fun(I, C)∆1

Fun(I, C)

ℓ∗

π∗
y

c∗

t∗

(20)

Hence, by Lemma 2.2.9, we then get the pullback diagram

limI⊲∂ ℓ∗∂

v∗π
∗∂ c∗t

∗π∗∂ ≃ c∗c∗ℓ∗∂

y
ηcℓ∗∂

v∗η
t
π∗∂

The identifications above now allow us to conclude that this pullback is of the form in the
statement of the result. As usual, the the case of colimits can now be deduced be deduced by
passing to opposite categories.

Construction 3.2.3. We view the inclusion Λ2
0 ⊆ (∆1)×2 as

00 10 00 10

01 01 11

→֒

In this way, for any n ≥ 1, we may describe the objects in the full subcategory
∏n
i=1 Λ

2
0 ⊆∏n

i=1(∆
1)×2 as those tuples (ai)1≤i≤n where ai ∈ {00, 10, 01}. We want to decompose

∏n
i=1 Λ

2
0

in terms of subcategories that we will now specify:

• Let Mn ⊆
∏n
i=1 Λ

2
0 be the full subcategory (

∏n
i=1 ∆

1)× {0}. Concretely in terms of the
tuples description above, this is the full subcategory consisting of those tuples such that
ai ∈ {00, 10}.

• Let Bn ⊆
∏n
i=1 Λ

2
0 be the full subcategory

∏n
i=1 Λ

2
0\{(10, . . . , 10)}, i.e. of those tuples

where some of the ai’s must either be 00 or 01.

• Let Fn ⊆ Bn be the full subcategory of those tuples where ai ∈ {01, 10}, that is, where
none of the ai’s are 00 and at least one of them is 01.

• Let Jn := Tn ∩Bn.
Similarly, since for any map f : U → V in T , f∗Λ2

0 is fibrewise just products of multiple copies
of Λ2

0, we may similarly define in a fibrewise fashion the T –full subcategories Jf , F f , Bf ,Mf ⊆
f∗Λ

2
0. Here, Jf , Bf ,Mf are clearly T –subcategories, and to see that F f is too, we need to

argue that it is closed under restrictions. More precisely, we need to show that if A
a−→W

w−→ V

are maps in T , then the map (F f )W ⊆ (f∗Λ
2
0)W

a∗−→ (f∗Λ
2
0)A factors through (F f )A. For this,

let us set up some notations and consider the pullback diagram in FinT

∐
i,j Yij

∐
i Zi U

A W V

y
⊔pij

⊔qij

y
⊔ui

⊔vi

f

a w
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We then get (f∗Λ
2
0)W ≃ (w∗f∗Λ

2
0)W ≃ (

∏
i ui∗Λ

2
0)W ≃ ∏

i Λ
2
0 and (a∗w∗f∗Λ

2
0)A ≃

(
∏
i

∏
j pij∗Λ

2
0)A ≃

∏
i

∏
j Λ

2
0. Under these identifications, the map (f∗Λ

2
0)W

a∗−→ (f∗Λ
2
0)A

is then simply the product
∏
i∆:

∏
i Λ

2
0 →

∏
i

∏
j Λ

2
0 of the diagonal maps. From the tuples

definition of Fn above, it is then clear that (F f )W ⊆
∏
i Λ

2
0 is sent to (F f )A ⊆

∏
i

∏
j Λ

2
0 as

was to be argued.

Observation 3.2.4. The reason we will be interested in the subcategories above is that we have
a union of posets

∏n
i=1 Λ

2
0 =Mn ∪Jn Bn and so we have a pushout in Cat

Jn Mn

Bn
∏n
i=1 Λ

2
0

p

One way to see this is that fully faithful inclusions of posets induce monomorphisms of their
associated simplicial sets under the nerve functor, and so such inclusions are in particular cofi-
brations in the Joyal model structure (cf. [Lur09, Thm. 2.2.5.1]), whence the strict pushout
being a homotopy pushout in Cat. Hence, since pushouts in CatT = Fun(T op,Cat) are com-
puted pointwise, we also have a pushout in CatT

Jf Mf

Bf f∗Λ
2
0

p

Lemma 3.2.5. The inclusion Fn ⊆ Bn is cofinal.

Proof. To apply Quillen’s Theorem A (e.g. [Lan21, Thm. 4.4.20]), we need to show that for
every tuple a ∈ Bn, the category (Fn)a/ is weakly contractible. We will show this by showing
that (Fn)a/ has an initial object. To this end, consider the tuple ã defined as follows:

ãi =

{
01 if ai ∈ {00, 01}
10 if ai = 10

The map 00 → 01 then supplies us with a map η : a → ã. Since a ∈ Bn, some of the ai’s are
either 00 or 01, and so ã indeed lies in Fn. Hence, we have an object (η : a→ ã) in (Fn)a/.
Now since we are dealing with a poset, to show that ã is initial in (Fn)a/ and since Bn ⊆∏
n Λ

2
0 is fully faithful, it suffices to show that Map∏

n Λ2
0
(ã, f) ≃ ∗ for all (a → f) ∈ (Fn)a/.

For this, consider the map

Map∏
n Λ2

0

(
ã, f

) η∗−−→ Map∏
n Λ2

0

(
a, f

)
≃ ∗ (21)

where the last term is contractible by definition of (a → f) ∈ (Fn)a/. Now noting that
Map∏

n Λ2
0
(x, z) ≃ ∏

iMapΛ2
0
(xi, zi), the map (21) is easily seen to be an equivalence since

00→ 01 induces an equivalence MapΛ2
0
(01, 01)→ MapΛ2

0
(00, 01).

Corollary 3.2.6. The inclusion of T –categories F f ⊆ Bf is T –cofinal, and so restriction
along this inclusion induces an equivalence colimBf

≃ colimF f
.

Proof. We may deduce this statement from the unparametrised Lemma 3.2.5 immediately since
T –cofinality may be checked fibrewise by [Sha23, Thm. 6.7].
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Notation 3.2.7. Let C⊗ be a T –symmetric monoidal category, f : U → V a map in T , and
(A → B) = ϕ : ∆1 → f∗C a morphism in f∗C. It will be convenient to use the notation

colimJf
f⊗(A→ B) for the Jf–shaped colimit of the functor Jf ⊆ f∗∆1 f∗ϕ−−→ f∗f

∗C f⊗−−→ C.
We now come to the main proposition of this subsection:

Proposition 3.2.8. Let C be a T –pointed category with all T –colimits equipped with a T –
distributive symmetric monoidal structure C⊗. Let f : U → V be a map in T . If we have a
cofibre sequence A→ B → C in f∗C, then applying f⊗ yields a cofibre sequence in C

colimJf
f⊗(A→ B) −→ f⊗B −→ f⊗C.

Proof. We write ∂ : Λ2
0 → f∗C for the diagram (0 ← A → B) for the diagram defining the

cofibre C. Since f⊗ was assumed to be distributive, we have a colimit diagram

δ⊲ : (f∗Λ
2
0)
⊲ −→ f∗

(
(Λ2

0)
⊲
) f∗(∂

⊲)−−−−→ f∗f
∗C f⊗−−→ C

and so we obtain that f⊗C is the colimit of the diagram δ : f∗Λ
2
0 → C. Now applying the

colimit decomposition Corollary 2.2.10 on the pushout from Observation 3.2.4, we obtain the
pushout diagram in C (where we have suppressed the restriction functors for readability)

colimJf
δ colimMf

δ

colimBf
δ f⊗C

p

But then Mf has a final object and the evaluation at the final object of the functor Mf ⊆
f∗Λ

2
0
δ−→ C is f⊗B, hence we get colimMf

δ ≃ f⊗B. Next, by distributivity, tensoring with the

zero object yields the zero object, and so since by definition F f contains at least one 01 in the

tuples description from Construction 3.2.3, we see that the restricted functor F f ⊆ f∗Λ2
0
δ−→ C

has constant value the zero object. Therefore, all in all, by Corollary 3.2.6, we have that
colimBf

δ ≃ colimF f
δ ≃ 0. Finally, by definition of our notation, colimJf

f⊗(A → B) =

colimJf
δ. Combining all of these gives the claimed cofibre sequence.

3.3 Special case of index 2 quotients in the equivariant setting

In preparation for our application to the algebraic K–theory of 2–groups in the next section,
we will be considering the special case of T = OG and where all parametrised colimits in sight
come from an index 2 subgroup H ≤ G. As we shall see, the special facts in the following
observation conspire to make this situation particularly simple.

Observation 3.3.1. Let us collect all the elementary group theory we will need here. Let H ≤ G
be an index 2 subgroup and K ≤ G be another subgroup.

1. If the inclusion H∩K ≤ K is proper, then it is also an index 2 inclusion. This is because,
fixing any x ∈ K\H , we know by |G/H | = 2 that for any other k ∈ K, k = xh for some
h ∈ H . But then h = x−1k ∈ K and so h ∈ H ∩K, whence |K/H ∩K| = 2.

2. By the usual double coset decomposition, we know that G/K × G/H ∼=∐
g∈K\G/H G/H

g ∩ K =
∐
g∈K\G/H G/H ∩ K where we have used that H ≤ G was

a normal subgroup since |G/H | = 2. But then, again by |G/H | = 2, there are only two
possibilities for what the set K\G/H can be, whence

G/K ×G/H =

{
(G/K)

∐
2 if K ≤ H

G/K ∩H if K 6≤ H
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Proposition 3.3.2. Let H ≤ G have index 2 and let w : G/H → G/G be the unique map.
In this case, the map ϕ : (w!w

∗∗)⊳ →֒ w∗w
∗∆1 from Construction 3.1.5 induces via Proposi-

tion 3.1.4 an equivalence ϕ : ((w!w
∗∗)⊳)⊲ → w∗w

∗∆1. Equivalently, in the notation of Con-

struction 3.2.3, the map ϕ induces an equivalence ϕ : (w!w
∗∗)⊳ ≃−→ Jw.

Proof. Equivalences can be checked fibrewise, and so fixing a subgroup K ≤ G and writing
r : G/K → G/G for the unique map, we will prove by induction on the order of G that

r∗ϕ : r∗((w!w
∗∗)⊳)⊲ ≃ ((r∗w!w

∗∗)⊳)⊲ −→ r∗w∗w
∗∆1 (22)

is an equivalence. As the base case, the statement is vacuously true when |G| = 1.
First suppose that K � G. By the dichotomy in Observation 3.3.1 (2), we have the two

cases of pullbacks

G/K
∐
G/K G/H G/H ∩K G/H

G/K G/G G/K G/G

y

i⊔gi

id⊔id w
y

j

ℓ w

r r

according as K ≤ H or K 6≤ H . In the case K ≤ H , we see that r∗ψ : r∗w!w
∗∗ → r∗w∗w

∗∆1

is identified with the ordinary singleton inclusion

(i∗ ⊔ i∗g∗)w∗∗ ≃ r∗∗ ⊔ r∗∗ −→ r∗∆1 × r∗∆1 ≃ (i∗ × i∗g∗)w∗∆

since the map ψ was stable under basechange by Remark 3.1.7, and the map r∗∗ ⊔ r∗∗ →
r∗∆1 × r∗∆1 is the ordinary singleton inclusion by Example 3.1.6. Therefore, in this case we
indeed have that (22) is an equivalence. As for the case K 6≤ H , writing z : G/H ∩K → G/G
for the unique map, we have the identification of r∗ψ with

ψ : ℓ!z
∗∗ −→ ℓ∗z

∗∆1

again by stability of singleton inclusions with basechange Remark 3.1.7. But then by Obser-
vation 3.3.1 (1) we know that H ∩K ≤ K was an index 2 inclusion and |K| < |G|, and so by
the inductive hypothesis, (22) is also an equivalence, finishing the proof for this case.
Finally, for the case when K = G, we write i : {G/G} →֒ Oop

G for the inclusion. We would
like to argue that applying i∗ (which is the evaluation at G/G) to ϕ gives an equivalence in Cat.
Now, we know that i∗w∗w

∗∆1 ≃ ∆1. On the other hand, i∗w!∗ ≃ ∅ by Observation 2.1.18.
Therefore, we see now that i∗ϕ is identified with the map

(∅⊳)⊲ −→ ∆1

which is clearly an equivalence. This completes the inductive step and hence the proof of the
proposition.

4 Noncommutative motives and equivariant algebraic

K–theory

In the final section, we put together all the general theory developed above to treat the
parametrised version of algebraic K–theory. As with ordinary algebraic K–theory, the key
notion is that of split Verdier sequences. Building upon the theory of T –perfect-stable cate-
gories from §2.5, we shall introduce these sequences in the parametrised context in §4.1 and
deduce their properties from the unparametrised context via Theorem 2.5.11. Using these
sequences, we construct two variants of parametrised noncommutative motives NMotpwT and
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NMotnmT , called pointwise and normed motives, respectively. The former will be the one with
a desirable universal property and which corepresents K–theory, whereas the latter will be the
one that may be refined multiplicatively for formal reasons (c.f. Theorems 4.2.11 and 4.2.15
resp. Proposition 4.2.17). Next, we shall employ the theory of parametrised cubes laid down
in §3 to show that these two types of motives coincide in the equivariant case when G is a 2–
group, i.e. |G| = 2n for some n. The strategy is to show that additive functors satisfy descent
against certain C2–pushouts by transforming these diagrams into ordinary pushouts for which
descent is known to be true. By a dévissage argument using the solvability of p–groups (which
may be viewed as an equivariant replacement of “currying”), we then bootstrap the C2–square
descent to show in Theorem 4.3.11 that the two motives agree for arbitrary 2–groups. Finally,
we combine this with Theorem 2.4.10 to treat the case of Swan K–theory in §4.4.

4.1 Split Verdier sequences and additive functors

In our setting, the notion of (split) Verdier sequences, so central in giving a universal charac-
terisation of algebraic K–theory, will simply be a direct adaptation of those of [CDH+21] in
light of Theorem 2.5.11.

Definition 4.1.1. A sequence C i−→ D p−→ E in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T with vanishing composite is called a

Verdier sequence if it is both a fibre and cofibre sequence. It is moreover said to be a split
Verdier sequence if it can be completed to T -adjunctions

C D Ei p

q

r

ℓ

j

(23)

where an arrow stacked above another denotes being a left adjoint. If we only have the left
adjoints q and ℓ (resp. only right adjoints r and j), then we say that the Verdier sequence is
left–split (resp. right–split).

Remark 4.1.2. Since Catperf is semiadditive, we get that (co)limits in MackT (Cat
perf) are

computed pointwise by [Bar17, Cor. 6.7.1]. On the other hand, [CDH+21, §A.1, A.2] give
us very good control of the fibre and cofibre sequences in Catperf in terms of (split) Verdier
sequences. Hence, in conjunction with the creation of fibre and cofibre sequences under the

inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂ CMonT (Cat

perf) from Theorem 2.5.11, we will have a good control of the
parametrised (split) Verdier sequences as defined above. The following is a word–for–word
adaptation of [CDH+21, Lem. A.2.5] in our setting.

Proposition 4.1.3. Suppose we have a sequence C i−→ D p−→ E in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T with vanishing

composite. Then the following conditions are equivalent:

1. the given sequence is a fibre sequence, and p admits a fully faithful left (resp. right)
adjoint ℓ,

2. the given sequence is a cofibre sequence, and i is fully faithful and admits a left (resp.
right) adjoint q.

Furthermore, if (1) and (2) hold, then both the original sequence and the left (resp. right)

sequence E ℓ−→ D q−→ C are Verdier sequences.

Proof. Since the inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂ CMonT (Cat

perf) preserves and reflects fibres and cofibres

by Theorem 2.5.11, and since these are pointwise in MackT (Cat
perf) by the remark above, we

can check the Verdierness of these sequences by checking fibrewise. This immediately reduces
the result to [CDH+21, Lem. A.2.5].
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Corollary 4.1.4. Suppose we have a cofibre sequence C i−→ D → E in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T such that i was

fully faithful. Then it is already a Verdier sequence.

Proof. Again, by appealing to Theorem 2.5.11, we may prove this statement in MackT (Cat
perf),

where it is known by [CDH+21, Cor. A.1.10].

Lemma 4.1.5. Let f : W → V be in T . Then a split Verdier sequence

C D Ei p

q

r

ℓ

j

in
(
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

)
W

gives rise to one in
(
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

)
V
.

f∗C f∗D f∗Ei p

q

r

ℓ

j

Proof. We saw in Proposition 2.5.4 that Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T is T -semiadditive, and so f! ≃ f∗. Hence

f∗ preserves (co)fibre sequences and we have bifibre sequences in the three directions above.
Furthermore, [Hil22b, Lem. 4.3.2] says that the desired three layers of sequences are all adjoints
of each other, and hence they form a split Verdier sequence.

Fact 4.1.6 (Split Verdier classification). Suppose

C D Ei p

q

r

ℓ

j

is a split Verdier sequence. This can then be recovered as the pullback

D C∆1

E C

q→qjp

p
y

tgt

qj

whose vertical fibres are then C. This can be deduced from the analogous nonparametrised

result in Catperf , recorded for instance in [CDH+21, Prop. A.2.12], since the inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂

MackT (Cat
perf) preserves and reflects (co)limits by Theorem 2.5.11, and since (co)limits in

MackT (Cat
perf) are computed pointwise by Remark 4.1.2.

We learnt of the following observation from the forthcoming [CDH+, Lem. 1.1.4], which was
written in the more structured setting of Poincaré categories. We include the argument for
Catperf here for the reader’s convenience.

Lemma 4.1.7. There is an adjunction L : Fun(∆1,Catperf) ⇄ Catperf : R where L(C f−→ D) ≃
C ×D D∆1

and R(E) ≃ (E∆1 → E), where both D∆1 → D and E∆1 → E are the target maps.
Moreover, the right adjoint R preserves all colimits.

Proof. To see that we have such an adjunction, we would like to construct an equivalence

MapFun(∆1,Catperf )(C
f−→ D, E∆1 tgt−−→ E) ≃ MapCatperf (C ×D D∆1

, E) (24)
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natural in all the variables. For this, consider the split Verdier sequence D →֒ C ×D D∆1

։ C
classified by C f−→ D via Fact 4.1.6. Since the functor Funex(−, E) preserves split Verdier
sequences, we obtain another split Verdier sequence

Funex(C, E) →֒ Funex(C ×D D∆1

, E) ։ Funex(D, E)
By the classification Fact 4.1.6 yet again, we then obtain an equivalence

Funex(C ×D D∆1

, E) ≃ Funex(D, E) ×Funex(C,E) Fun
ex(C, E)∆1

Applying core groupoids (−)≃ to this yields the equivalence (24), which is clearly natural in
all the inputs, as wanted. Finally, to see that the right adjoint preserves colimits, we just need
to argue that the functor (−)∆1

commutes with colimits. Using that Catperf ≃ PrL,st,ω ≃
PropR,st,ω-filt and that the faithful inclusion PrR,st,ω-filt ⊂ Ĉat creates limits, we obtain

Ind(colim
j∈J

Ej)∆
1 ≃ (

PrL
colim
j∈J

IndEj)∆
1 ≃ (

PrR
lim
j∈Jop

IndEj)∆
1 ≃

PrR
lim
j∈Jop

(IndEj)∆
1 ≃

PrL
colim
j∈J

Ind(Ej)∆
1

where the outer equivalences are by [Lur09, Prop. 5.3.5.15], whence the desired conclusion.

Construction 4.1.8. Since Fun(∆1,Catperf) and Catperf are semiadditive, the left adjoint
L from Lemma 4.1.7 preserves finite products. Hence we can apply CMonT to obtain a
T -adjunction LT : Fun(∆1,CMonT (Cat

perf)) ⇄ CMonT (Cat
perf) : RT where the T -right

adjoint preserves all fibrewise colimits. Furthermore, both adjoints clearly restrict to Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊂

CMonT (Cat
perf) so that we get the T –adjunction

LT : Fun(∆1,Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ) ⇄ Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T : RT

By the preservation and reflection of fibrewise (co)limits from Theorem 2.5.11, the right adjoint
here also preserves all fibrewise colimits, and so in particular, κ–filtered colimits. Thus, LT

preserves κ-compact objects for all regular cardinals κ. Thus, if (C f−→ D) is a T -exact functor
between κ-compact T -perfect stable categories, then C×DD∆1

is κ-compact too.

Corollary 4.1.9. For any regular cardinal κ there is a small set Sκ of split Verdier sequences

on κ-compact T -perfect-stable categories such that any split Verdier sequence in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T can be

written as a fibrewise κ-filtered colimit of sequences in Sκ.

Proof. First of all, for any regular cardinal κ, since Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T is κ–compactly generated

by Proposition 2.5.7, we have by [Lur09, Prop. 5.3.5.15] that Fun(∆1,Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ) ≃

Indκ Fun(∆
1, (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ). On the other hand, by κ–compact generation, we also have that

finite limits in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T commute with κ–filtered colimits: this is because equivalences can be

checked by mapping out of a set of κ–compact objects by virtue of κ–compact generation, and
mapping out of these commutes with all κ–filtered colimits and all limits; hence, we can reduce
this commutation statement to the category of spaces where it is true.
All in all, combining the statements from the previous paragraph with the fact that the

functor (E f−→ C) 7→ E ×C C∆
1

preserves κ–compactness by Construction 4.1.8, we obtain that if

we are given a split Verdier sequence in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T as in Definition 4.1.1, then we may write E qj−→ C

as a κ–filtered colimit colima∈I(Ea
(qj)a−−−→ Ca) where Ca, Ea ∈ (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ. This, moreover, yields

that the map of pullback squares

Da C∆1

a D C∆1

Ea Ca E C
pa

y
tgt −→

q→qjp

p
y

tgt

(qj)a qj
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is an equivalence upon applying colima∈I , where Da is also in (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ. In this way, we have

written the given split Verdier sequence as a κ–filtered colimit of split Verdier sequences of
κ–compact objects Ca →֒ Da ։ Ea, as wanted.

Before moving on to the next subsection where we construct (two variants of) parametrised
noncommutative motives, let us now declare what we mean by an additive T –functor out of
Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf and collect some standard consequences of the notion.

Definition 4.1.10. Let A be a T –stable category. A T -functor Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → A is said to be

additive if it sends split Verdier sequences to fibre sequences and preserves the final objects.

We write FunaddT (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ,A) ⊆ FunT (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ,A) for the T -full subcategory of such.

Observation 4.1.11 (Waldhausen sequences). Write s : ∆0 → ∆1 and t : ∆0 → ∆1 for the
inclusion of the source and the target, respectively. One of Waldhausen’s many key original

insights, translated in the parametrised setup, is the following: for C ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , we have the

split Verdier sequence

C C∆1 Cs∗ t∗

s∗

fib

t!

t∗

(25)

where c takes X to X
=−→ X . This means that for any additive F : Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf → AAAAAAAAAAAAAAAAA, we have the

split fibre sequence

F (C) F (C∆1

) F (C)F (s∗) F (t∗)

F (fib) F (t∗)

which yields the equivalence

F (fib)× F (t∗) : F (C∆1

) F (C)× F (C) : F (s∗) + F (t∗)
≃

This is of foundational importance as we will see in the next basic observation which may be
seen as “trickling down” the additivity property through a level of decategorification. As in
the nonparametrised situation, it is a straightforward matter to see using Proposition 2.2.16
that all such sequences are obtained by applying C ⊗ − to the version of (25) for SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω.

Lemma 4.1.12 (Waldhausen’s trick, [CDH+21, Rmk. 2.7.6 (ii)]). Let F : Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf → A be an

additive invariant. If we have a cofibre sequence α ⇒ β ⇒ γ of maps C → D in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , then

we have an equivalence of morphisms Fβ ≃ Fα⊕ Fγ : FC → FD.

Proof. The key for these kinds of statements is that both natural transformations

(β ⇒ γ), (α⊕ γ ⇒ γ) : C −→ D∆1

have the same fibres, i.e. α. Hence, applying F and postcomposing further with the equivalence

F (fib)×F (t∗) : F (D∆1

)
≃−→ F (D)×F (D) from Observation 4.1.11 yields that the two morphisms

F (β ⇒ γ), F (α⊕ γ ⇒ γ) : F (C) −→ F (D∆1

)

are equivalent. Finally, postcomposing now these two equivalent morphisms with

F (s∗) : F (D∆1

)→ F (D) shows that we have an equivalence of morphisms

F (β) ≃ F (α⊕ γ) ≃ F (α)⊕ F (γ) : F (C) −→ F (D)

as was to be shown.
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Remark 4.1.13. In fact, the proof of the second part of the lemma above shows that any
additive functor already sends left–split or right–split Verdier sequences to fibre sequences.

We end this subsection by recording how stable valued additive functors interact with certain
pushout diagrams. This will be needed in our analysis of equivariant algebraic K–theory when
G is a 2–group in §4.3.

Definition 4.1.14. A square in Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf

A B

C Pp

is said to be a right-split Verdier pushout if it is a pushout diagram and the vertical arrows are
right-split Verdier inclusions.

The following lemma gives the source of right-split Verdier pushouts that will concern us.

Lemma 4.1.15. Suppose we have the solid diagram in Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf

A B

C

where the dashed arrows are the respective right adjoints. Then the pushout in Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf of the
solid diagram is a right-split Verdier pushout.

Proof. We work in the presentable setting by virtue of the equivalence Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf ≃ PrL,st,ω from
Proposition 2.1.37. Now recall that colimits in PrL,st,ω are computed as limits in PrR,st,ω-filt
by Proposition 2.2.15. And so we get the solid pushout in PrL,st,ω and dashed pullback square
in PrR,st,ω-filt

Ind(A) Ind(B)

Ind(C) Ind(P)
p

Now since limits in both PrL,st,ω and PrR,st,ω-filt are computed underlying by Lemma 2.5.5
and Proposition 2.5.6, and since the top and left dashed maps are themselves compact–
preserving left adjoints by our hypothesis, we see that the bottom and right dashed maps
are also compact–preserving left adjoints (i.e. the dashed square is also a pullback in PrL,st,ω).
Moreover, since sections pull back to sections and since Ind(A) → Ind(C) is a section of
Ind(C) → Ind(A), we see that Ind(B) → Ind(P) is a section of Ind(P) → Ind(B). This pair
being adjoint to each other then automatically implies that Ind(B)→ Ind(P) is fully faithful.
Since all maps in sight preserve compact objects, we may apply (−)ω to the solid diagram to
get a right–split Verdier pushout, as wanted.

The following result is where our stability hypothesis comes in.

Lemma 4.1.16. Let F : Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf →M be an additive T –functor where M is T –stable. If we
have a right-split Verdier pushout as in Definition 4.1.14, then
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F (A) F (B)

F (C) F (P)

is a pushout in M.

Proof. First we extend the diagram with E := cofib(B →֒ P) to obtain

A B 0

C P Ep p

Since taking cofibres of right-split Verdier inclusions give right-split Verdier sequences by Propo-
sition 4.1.3, we get right-split Verdier sequences

A C E B P E

Hence, by Remark 4.1.13, the maps F (C)/F (A)→ F (E) and F (P)/F (B)→ F (E) are equiva-
lences. Now consider the horizontal maps of vertical cofibre sequences

F (A) F (B) 0

F (C) F (P) F (E)

F (C)/F (A) F (P)/F (B) F (E)

≃

≃

where the equivalences are by the previous sentence. Hence, the dashed map is an equivalence
too. On the other hand, we have this map of cofibre sequences

F (B) F (B)∐F (A) F (C) F (C)/F (A)

F (B) F (P) F (P)/F (B)

≃

Since we are working stably, this implies that the middle vertical is an equivalence, as was to
be shown.

4.2 Two variants of noncommutative motives

In this section, we follow closely the methods of [CDH+] in constructing the noncommutative
motives in our setting. Essentially all the proofs of this section are straightforward parametrised
modifications of their arguments and we are grateful to them for sharing a draft of their
upcoming work which made our motivic approach possible.

Notation 4.2.1. Let κ be a regular cardinal. We write C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T for the smallest T -symmetric

monoidal subcategory of Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T containing (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ. In particular, since (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ is small

by Proposition 2.5.7, C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T is also small. We need this slight enlargement for the techni-

cal reason that we do not know a priori that (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ inherits the T -symmetric monoidal
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structure of Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T since it is not clear that the multiplicative norms preserve parametrised-

κ-compact objects.

Definition 4.2.2. Let κ be a regular cardinal. Let Rpw,κ be the collection of diagrams in

C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ⊆ PShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ) consisting of:

• the diagram constT (∅)⊲ = ∗ → C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T picking the zero category (ie. the initial object),

• all split Verdier sequences in (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ ⊆ C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T .

Let Rnm,κ be the closure of Rpw,κ under f⊗ for arbitrary maps f : U → V in FinT .

Now, using the construction and notation from Proposition 2.3.7, we may define the following
intermediate notions of noncommutative motives.

Definition 4.2.3. Let κ be a regular cardinal. We define:

• unstable pointwise κ-motives NMotpw,un,κT to be LRpw,κPShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ),

• unstable normed κ-motives NMotnm,un,κT to be LRnm,κPShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ).

Remark 4.2.4. Note that Rpw,κ and Rnm,κ are small since C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T is, and so NMotpw,un,κT

and NMotnm,un,κT are T -presentable.
Remark 4.2.5. For the purposes of capturing the notion of additivity, we may without loss of
generality let Rpw be the tensor ideal generated by the map SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω,∆

1

/SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp associated to the

Waldhausen sequence for SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω. To see this, we argue now that a functor F : Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf → A which
sends sequences of the form (25) to fibre sequences already sends any split Verdier sequence (see
(23) for notation) to a fibre sequence. To wit, given such a split Verdier sequence, it is easy to
see that we have a cofibre sequence iq ⇒ idD ⇒ jp in Funex(D,D). Hence, by Lemma 4.1.12,
we get a splitting

idFD ≃ F (i) ◦ F (q)⊕ F (j) ◦ F (p) : FD → FD
which implies that the sequence FC → FD → FE is a fibre sequence in A, as wanted. There-
fore, it is enough to require that Rpw consists only of the Waldhausen sequences (25), which by
the last sentence in Observation 4.1.11, is a tensor ideal generated by the Waldhausen sequence
for SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω. This completes the proof of the lemma.

Notation 4.2.6. Write jκun : C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T

yκun−֒−→ PShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ) → NMotpw,un,κT for the canonical

composition. Since split Verdier sequences were already cofibre sequences in C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T by
definition, we get from [Hil22b, Thm. 6.4.2] that this functor is T -fully faithful.

Recall now the notion of additive T –functors from Definition 4.1.10.

Proposition 4.2.7. For every T -cocomplete category E , (jκun)
∗ : FunLT (NMotpw,un,κT , E) →

Funadd
T (C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T , E) is an equivalence.

Proof. This is immediate by Proposition 2.3.7 and the universal property of presheaves [Sha23,
Thm. 11.5].

Construction 4.2.8 (The big unstable pointwise motives). Let κ ≤ κ′ be two regular car-

dinals. Then the composition C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ⊆ C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ′

T →֒ NMotpw,un,κ
′

T preserves initial objects
and sends split Verdier sequences to cofibre sequences. Hence by Proposition 4.2.7 we obtain

a strongly T -colimit-preserving functor NMotpw,un,κT → NMotpw,un,κ
′

T . This is T -fully faithful
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since it sends compact-generators to compact objects and is T -fully faithful on these. Similar
considerations also apply when we replace motives with presheaves. From these, and since

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ≃ colimκ C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T , we then define

NMotpw,unT := colim
κ

NMotpw,un,κT PShT (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf) := colim

κ
PShT (C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T )

Applying colimκ on all functors in sight give us a T -fully faithful functor

jun : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

yun−֒−→ PShT (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf) −→ NMotpw,unT

Since the poset of regular cardinals is a large category and each of NMotpw,un,κT is large, we
deduce that NMotpw,unT is a large T -presentable category since large unions of large sets is
large. We refer to [CDH+, §1.2] for a more thorough discussion of set-theoretic considerations.

Proposition 4.2.9 (“[CDH+, Prop. 1.2.6]”). For a T –(co)complete category E, (jun)
∗ :

FunLT (NMotpw,unT , E)→ Funadd
T (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) is an equivalence.

Proof. By Corollary 4.1.9 we have FunaddT (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) ≃ limκFun

add
T (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T , E) by restricting

from the tautological equivalence FunT (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) ≃ limκFunT (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T , E). But we also have

the tautological equivalence FunLT (NMotpw,unT , E) ≃ limκFun
L
T (NMotpw,un,κT , E). Therefore we

can apply Proposition 4.2.7 to conclude.

Construction 4.2.10 (Big stable motives). Define the T -presentable-stable category of
parametrised noncommutative motives to be NMotpwT := SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (NMotpw,unT ). This yields

Zpw : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

jun−֒−→ NMotpw,unT
can−−→ NMotpwT

Since T –stabilisation is a left adjoint in PrT ,L, we also have NMotpwT ≃ colimκNMotpw,κT where
NMotpw,κT := SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (NMotpw,un,κT ). We then obtain commuting composites

NMotpw,un,κT

Zpw,κ : C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T PSh
st
T (C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ) NMotpw,κT

can

Uκ

jun

λκ

where Uκ is the composite

C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T →֒ PShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T )
can−−→ PSh

st
T (C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ) := SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp⊗ PShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T )

We will use this second description to handle monoidal matters later.

Theorem 4.2.11 (Universal property of pointwise stable motives). For every T -presentable-
stable category E, the precomposition Z∗

pw : FunLT (NMotpwT , E)→ FunaddT (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) is an equiv-

alence.

Proof. This is an immediate consequence of Proposition 4.2.9 and Proposition 2.2.19.

Construction 4.2.12 (Pointwise connective algebraic K-theory). Recall from [BGT13] that
connective algebraic K-theory is given by the finite product-preserving functor

K : Catperf
Q•−−→ Fun(∆op,Catperf)

(−)≃−−−→ Fun(∆op,S) colim−−−→ S
where Q

n
C ≃ FunT (TwAr(∆

n), C), Quillen’s Q–construction. Since CMon(S) → S preserves
sifted colimits by [Lur17, §3.2.3], it in particular preserves geometric realisations. Hence the ge-
ometric realisation used above to define K acquires a canonical commutative monoid structure
because we have the factorisation
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Catperf S

CMon(S)

(−)≃

Thus we can apply the T -cofree Construction 2.1.5 and T -semiadditivise to get

Kpw
T : CMonT (Cat

perf) −→ CMonT (S)

which we call the pointwise parametrised algebraic K-theory space. Levelwise, this looks like

MackT (K) : Fun×(Span(T ),Catperf)
Q

•
−−→ Fun(∆op,Fun×(Span(T ),Catperf))

(−)≃

−−−→ Fun(∆op,Fun×(Span(T ),CMon(S)))

colim
−−−→ Fun×(Span(T ),CMon(S))

We will have use of this description soon in analysing motivic suspensions. Note also that Kpw
T

is an additive theory by the usual unparametrised additivity theorem and since we define split
Verdier sequences in CMonT (Cat

perf) as those that are pointwise split Verdier in the usual
sense. Moreover, one can deloop the algebraic K-theory space K to get an algebraic K-theory
spectrum K : Catperf → Sp which is the spectrum associated to the prespectrum whose n-th
term is colim•∈(∆op)n(Q•C)≃ (cf. [BGT13, §7.2] or Waldhausen’s original treatment [Wal85]
for more details using the equivalent S•–construction), and we write Kpw

T for the analogous
pointwise K–theory spectrum. By construction, this fits into the commuting diagram

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T MackT (Cat

perf)

MackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackT (Sp) ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT

KKKKKKKKKKKKKKKKK
pw
T

MackT (K)

Lemma 4.2.13. Let C,D ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Then Funex

T (D,Q
n
C) ≃ Q

n
Funex

T (D, C).

Proof. Since Q
n
C ≃ FunT (TwAr(∆

n), C), we get FunT (D,QnC) ≃ Q
n
FunT (D, C) from Nota-

tion 2.1.9 (1). But then, both Q
n
C and FunT (D, C) inherit T -(co)limits from C (the former by

Notation 2.1.9 (2)), and so clearly we obtain the statement required.

Lemma 4.2.14 (Motivic suspension, “[BGT13, §7.3], [CDH+, Prop. 1.2.9]”). Let C ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T .

Then colim•∈∆op yunQ•
(C) is already motivically local and moreover,

colim
•∈∆op

junQ•
(C) ≃ Σjun(C) ∈ NMotpw,unT

Proof. To see the first part, let D ∈ Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf . Then note that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT
(yunD, colim

•∈∆op
yunQ

•
(C)) ≃ colim

•∈∆op
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT

(yunD, yunQ
•
(C))

≃ colim
•∈∆op

Funex(D,Q
•
(C))≃

≃ colim
•∈∆op

(

Q
•
Funex(D, C)

)≃
=: KKKKKKKKKKKKKKKKKT (Funex(D, C))

and hence, since Funex(−, C) preserves split Verdier sequences and since KKKKKKKKKKKKKKKKKT is additive, we
obtain that indeed colim•∈∆op yunQ•

(C) is motivically local as claimed.
For the second part, recall we have the simplicial split Verdier sequence

C → Déc•C → Q
•
C
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where we have adopted the terminology décalage from [CDH+21, Lem. 2.4.7]. The construc-
tion Déc•C is also called the simplicial path object in [BGT13, Proof of Prop. 7.17]. Now since

jun : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → NMotpw,unT sends split Verdier sequences to cofibre sequences by definition

of unstable motives, and cofibre sequences are stable under colimits, we can apply jun to the
simplicial split Verdier sequence and take geometric realisation in NMotpw,unT to get a cofibre
sequence in NMotpw,unT

jun(C)→ colim
n∈∆op

junDéc•C → colim
•∈∆op

junQ•
C

But then we know that the middle term is always augmented over 0 and so is zero, hence the
last term is a suspension of the first term, as required.

Theorem 4.2.15 (Motivic corepresentability of pointwise K-theory, “[CDH+, Prop. 2.1.5]”).

Let C,D ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Then there is a natural equivalence

mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapNMotpw
T
(ZpwC,ZpwD) ≃ Kpw

T (Funex(C,D))

In particular, Kpw
T is corepresented by Zpw

(
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

)
by Proposition 2.2.24.

Proof. Firstly, note that in NMotpw,unT , ΣnjunD ≃ colim•∈(∆op)n junQ•
D since

ΣnjunD ≃ Σn−1
(
colim
•∈∆op

junQ•
D
)
≃ colim

•∈∆op

(
Σn−1junQ•

D
)

≃ colim
•∈∆op

(
Σn−2

(
colim
•∈∆op

junQ•
D
))

and so on by Lemma 4.2.14. Now, the left hand parametrised spectrum in the theorem state-
ment is the one associated to the prespectrum whose n-th term, for n ≥ 1, is

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapNMotpw,unT
(junC,ΣnjunD) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapNMotpw,unT

(junC, colim
•∈(∆op)n

junQ•
D)

≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT
(yunC, colim

•∈(∆op)n
junQ•

D)

≃ colim
•∈(∆op)n

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT
(yunC, junQ•

D)

≃ colim
•∈(∆op)n

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf

T

(C,Q
•
D)

≃ colim
•∈(∆op)n

(
Q

•
Funex(C,D)

)≃

≃ Ω∞ΣnKpw
T

(
Funex(C,D)

)

where the second equivalence is since for n ≥ 1, colim•∈(∆op)n yunQ•
D is already in NMotpw,unT

by Lemma 4.2.14; the fourth since jun is T -fully faithful; the fifth by Lemma 4.2.13; and the
last by definition of Kpw

T . Hence both parametrised spectra in the statement have equivalent
associated spectra, giving the desired conclusion.

As in Construction 4.2.8, we can construct NMotnm,unT , and we denote the canonical maps by

kun : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf → NMotnm,unT and Znm : Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf → NMotnmT . By definition of Rnm, the functors

kun and Znm are in particular additive.

Proposition 4.2.16 (“[CDH+, Prop. 1.2.11]”). There is a T -symmetric monoidal structure

on NMotnm,unT such that kun : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T −→ NMotnm,unT refines canonically to a T -symmetric

monoidal functor.
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Proof. We first argue for the case of small motives. From [NS22, Prop. 6.0.12], the Yoneda

embedding C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T →֒ PShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ) refines to a T -symmetric monoidal functor. Fur-
thermore, since the T –cartesian symmetric monoidal on ST is T –distributive by [NS22, Prop.
3.2.5], we see by [NS22, Thm. 3.2.6] that the T –Day convolution symmetric monoidal structure

on PShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ) is T –distributive. Hence, by Proposition 2.3.7 and by construction of Rnm,
NMotnm,un,κT attains a canonical T –symmetric monoidal structure which affords a refinement
of kun to a T –symmetric monoidal functor. This completes the case of small motives.
Now for the case of the big motives, applying again [NS22, Cor. 6.0.12], we get that the

T -symmetric monoidal inclusion C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ⊆ C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ′

T induces a T -symmetric monoidal re-

finement of PShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ

T ) → PShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ′

T ). On the other hand, Proposition 2.3.7 (2)

implies that this induces a T -symmetric monoidal refinement of NMotnm,un,κT → NMotnm,un,κ
′

T .
Thus since filtered colimits of T -symmetric monoidal categories are formed underlying by the
straightforward parametrised analogue of [Lur17, §3.2.3], we obtain a canonical T -symmetric
monoidal structure on NMotnm,unT together with a T -symmetric monoidal refinement of

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → NMotnm,unT .

Proposition 4.2.17 (Monoidality of normed motives). The T -functor Znm : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T →

NMotnmT canonically refines to a T -symmetric monoidal functor.

Proof. We already know that kun : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → NMotnm,unT is canonically a T -symmetric

monoidal functor by Proposition 4.2.16. Moreover, by [Hil22b, Lem. 4.2.3] and Proposi-
tion 2.2.19, NMotnm,unT → NMotnmT also refines uniquely to a T -symmetric monoidal func-
tor.

Unlike in the pointwise situation where algebraic K–theory is a construction and its corepre-
sentability in motives is a result, we now define the normed parametrised algebraic K–theory
to be that which is corepresented by the unit in normed motives.

Definition 4.2.18. The normed parametrised algebraic K–theory spectrum Knm
T is defined as

Knm
T : Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T NMotnmT SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT

Znm mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(1,−)

Observation 4.2.19. Let us now highlight some points based on all our considerations so far:

1. The T –functor Knm
T : Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT canonically refines to a T –lax symmetric monoidal

functor because mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(1,−) canonically refines to such.

2. Since Znm : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → NMotnmT is additive, by Theorem 4.2.11, we obtain a canonical

comparison map
Ψ: NMotpwT −→ NMotnmT

which also yields a transformation of additive functors

(
Kpw

T ⇒ Knm
T

)
: Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT

We do not know in general if these comparison maps are equivalences. However, we are
able to show that it is so in the case of equivariant algebraic K–theory for G a 2-group,
and this is the content of the rest of the article.

3. It might be tempting to try to prove directly that the map Kpw
T ⇒ Knm

T is an equivalence
by proving Theorem 4.2.15 in the case of normed motives. When one traces through this
strategy, the key hiccup is in proving Lemma 4.2.14 that the Q–construction is already
motivically local where we have used crucially that the parametrised algebraic K–theory
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space functor KT is additive, i.e. that it interacts well with maps inRpw. What is needed
in the normed setting is of course that it interacts well with maps inRnm ⊇ Rpw. Indeed,
as mentioned above, this is what we will show in the equivariant case for 2–groups in
§4.3.

4.3 Pointwise K–theory is normed for 2-groups

In this subsection, we specialise the considerations of §4.2 to the case of T = OG where G is a
finite group, giving G–equivariant algebraic K–theory. The end goal is to show Theorem 4.3.11,
which says that KG refines to the structure of a normed ring G–spectrum when G is a 2–group.
In other words, we will show that the comparison map

Ψ: NMotpwG → NMotnmG and hence also Kpw
G =⇒ Knm

G

from Observation 4.2.19 (2) are equivalences. First, recall the notations U and λ from Con-
struction 4.2.10. Let us also take stock of the theory developed in §3 in our current situation.
While we have opted to use the more efficient stars and shrieks notation there, it would be ben-
eficial now to switch to the more conventional notation in equivariant homotopy theory. We do
this mainly because it is easier to keep track of the groups involved and because C2–pushouts
have an especially suggestive notation.

Notation 4.3.1. For a subgroup H ≤ G and w : G/H → G/G the unique map, we will from
now on denote w∗, w!, w∗ by ResGH , Ind

G
H ,

∏
G/H respectively. In the presence of G–symmetric

monoidal structures, we will write NGH for w⊗. When |G/H | = 2, we will write the colimit of
the C2–pushouts discussed in Example 3.1.9 by B∐AB. In particular, by Proposition 3.2.2 in
the case when I = w!∗, we may express B∐AB as the ordinary pushout

IndGH ResGH A A

IndGHB B∐AB

ε

IndGHf

p

Finally, given a cofibre sequence A→ B → C of H–objects in a pointed G–category with a G–
distributive symmetric monoidal structure, a straightforward combination of Proposition 3.2.8
and Proposition 3.3.2 gives us a cofibre sequence of G–objects

A⊗B∐NGHA
B ⊗A −→ NGHB −→ NGHC

We aim to prove that Rpw is ⊗–multiplicatively closed, i.e. if H ≤ G and we have a split

Verdier in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H

C D E

then NGH(U(D)/U(C)) → U(NGHE) induced by the λ-equivalence U(D)/U(C) → U(E) is itself
a λ-equivalence. If we can show this, then we would have shown that the inclusion Rpw,κ ⊆
Rnm,κ (cf. §4) is an identification, and so the comparison map Ψ : NMotpwG → NMotnmG from
Observation 4.2.19 is an equivalence. Since size issues will not play a role in our discussions
here, we will suppress any mention of κ.

Corollary 4.3.2. Let H ≤ G with |G/H | = 2. Suppose we have a pushout

A B

X Y
p
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in a G–distributive symmetric monoidal G-stable category C. Then we have the pushout

A⊗B∐NGHA
B ⊗A NGHB

X ⊗ Y∐NGHX
Y ⊗X NGHY

p

Proof. Writing C for cofib(A → B) ≃ cofib(X → Y ), we get from the G/H-distributivity of
NGH together with Notation 4.3.1 that we have the map of cofibre sequences

A⊗B∐NGHA
B ⊗A NGHB NGHC

X ⊗ Y∐NGHX
Y ⊗X NGHY NGHC

and so since C was stable, the left square is a fibrewise pushout.

Lemma 4.3.3. Suppose H ≤ G with |G/H | = 2, and A i−→ B is a split Verdier inclusion in

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H . Then the canonical map

Z(A⊗ B)∐Z(NGHA)Z(B ⊗A) −→ Z(A⊗ B∐NGHAB ⊗A)

is an equivalence in NMotG.

Proof. By Notation 4.3.1 we have the pushout

IndGH ResGH NGHA NGHA

IndGH(A⊗ B) A⊗ B∐NGHA
B ⊗A

p

ε

which is moreover a right-split Verdier pushout by Lemma 4.1.15. Hence by Lemma 4.1.16 we
obtain the pushout square

IndGH ResGH Z(NGHA) Z(NGHA)

IndGHZ(A⊗ B) Z(A⊗ B∐NGHA
B ⊗A)

p

ε

from which, using Notation 4.3.1, we may conclude as desired.

Next, recall the notion of saturation closure from [Hil22b, Def. 6.3.5].

Observation 4.3.4. Let C be equipped with a G–distributive symmetric monoidal structure.
Suppose that S were a tensor ideal, i.e. if for any Z ∈ C and f : A → B in S, we have that
idZ ⊗ f is also in S. Then by a standard argument, we know that S is also a tensor ideal.
To wit, consider the collection U ⊆ S of morphisms f such that idZ ⊗ f is again in S for any
Z ∈ C. By hypothesis on S, we know that S ⊆ U . Moreover, since Z ⊗ − commutes with
all colimits by G–distributivity of the symmetric monoidal structure, it is easy to see that the
three axioms in [Hil22b, Def. 6.3.5] are satisfied so that U is a G–strongly saturated collection
containing S, whence U = S by minimality of S.
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Lemma 4.3.5. Let H ≤ G with |G/H | = 2 and C a G–distributive symmetric monoidal G-
stable category. Suppose S is a collection of morphisms in C which is a tensor ideal and S its
G-strong saturation. If NGH sends morphisms in S to morphisms in S, then NGH also preserves
all morphisms in the saturation S.

Proof. Write U ⊆ S for the collection of morphisms which get sent to a morphism in S by NGH .
By hypothesis, S ⊆ U . We claim that U is G–strongly saturated. The 2-out-of-3 property is
clear, and so we only have to check the first two axioms. To see axiom (2), we need to show that
if ∂ : J → FunH(∆1, C) is a diagram that is pointwise in the full subcategory FunUH(∆1, C),
then NGHcolimJ∂ ∈ FunSG(∆

1, C). For this, recall by G/H-distributivity that NGHcolimJ∂ is
computed as the cone point of the G-colimit diagram

(
∏

G/H

J)⊲ →
∏

G/H

(J⊲)

∏
G/H ∂−−−−−→

∏

G/H

FunH(∆1, C) NGH−−→ FunG(∆
1, C)

Now the hypothesis on ∂ ensures that, when restricted to
∏
G/H J , this composite lands in

FunSG(∆
1, C) ⊆ FunG(∆

1, C) and since by definition FunSG(∆
1, C) is closed under G-colimits,

we obtain that the cone point NGHcolimJ∂ is indeed in FunSG(∆
1, C) as required.

Finally, to see axiom (3), suppose we have a pushout of H–objects in C

A B

X Y
p

where the left vertical is in U (and so, by definition of saturation, the right vertical is in S).
Then by Corollary 4.3.2 we obtain the pushout square

A⊗B∐NGHA
B ⊗A NGHB

X ⊗ Y∐NGHX
Y ⊗X NGHY

p

(26)

Hence if we can show that the left vertical map is in S, then by definition, the right vertical
map will be in S too. For this, by Notation 4.3.1 we have

IndGH ResGH NGHA NGHA

IndGH(A⊗B) A⊗B∐NGHA
A⊗B

ε

p

and similarly for X ⊗ Y ∐NGHX
X ⊗ Y . Since the respective maps on the upper three terms

between the ones for the pair (A,B) and the ones for the pair (X,Y ) are all in S by hypothesis
(the bottom left uses that S is a tensor ideal by Observation 4.3.4), so is the induced map
A⊗B∐NGHA

A⊗B → X ⊗ Y ∐NGHX
X ⊗ Y by axiom (2) of [Hil22b, Def. 6.3.5]. Therefore, the

pushout (26) gives that NGHB → NGHY is also in S as required.

Lemma 4.3.6. Let H ≤ G with |G/H | = 2 and C a G–distributive symmetric monoidal
G-stable category. Let T be a collection of morphisms and S ⊇ T the smallest tensor ideal
containing T . If NGH sends morphisms in T to morphisms in S, then NGH also preserves all
morphisms in S.
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Proof. By Lemma 4.3.5, it suffices to show that NGH sends morphisms in S to S. So let U ⊆ S
be the collection of morphisms which get sent to S under NGH . By hypothesis, this contains
T , and it is easy to check that it is also a tensor ideal because S is again a tensor ideal by
Observation 4.3.4. Hence by minimality we see that U = S as required.

To state the next result, observe that by Proposition 2.5.13 we have the identification
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆

1

H ∐s!SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpGSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆
1

H ≃ FunG(∆
1∐∆0∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG). Furthermore, by Corollary 2.2.20, we also have

the identification
⊗

G/H FunH(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) ≃ FunG(
∏
G/H ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG).

Lemma 4.3.7. Let s : ∆0 →֒ ∆1 be the source inclusion, H ≤ G with |G/H | = 2, and
ϕ : ∆1∐∆0∆1 →֒∏

G/H ∆1 the inclusion from Proposition 3.3.2. Then the functor

FunG(∆
1∐∆0∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)→ FunG(

∏

G/H

∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

induced by
⊗

G/H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH
s!−→ FunH(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)) is given by left Kan extension along the inclusion

ϕ, and so in particular preserves ω–compact objects and is G-fully faithful since ϕ is G-fully
faithful.

Proof. Write ∂ : ∆1 → CatH for the map classifying ∆0 s−→ ∆1. By Corollary 2.2.20, we obtain
the commuting square in

∏
G/H ∆1 ∏

G/H CatH
∏
G/H PrH,L,st

CatG PrG,L,st

∏
G/H ∂

∏
G/H Fun(−,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)

× ⊗

Fun(−,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)

Note, importantly, that it is easy to see that the essential image of these compositions factor
through PrG,L,st,ω ⊂ PrG,L,st. By the commutativity of this diagram and the identification

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆
1

H ∐s!SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpGSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆
1

H ≃ FunG(∆
1∐∆0∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) from Proposition 2.5.13, applying Fun(−, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) to the

diagram in CatG

∆0 ∆1

∆1 ∆1∐∆0∆1

∏
G/H ∆1

s

s
p

s×id

id×s

ϕ

where the outer diagram is encoded by
∏
G/H ∆1–shaped diagram

∏
G/H ∂ then yields the

desired statement.

For the next result, recall the notation from Observation 4.1.11 as well as [Hil22b, Prop.
6.3.6] which says that strong saturations are the same as motivic equivalences in the current
setting.

Proposition 4.3.8. Let H ≤ G be a subgroup of index 2. Then NGH sends the morphism

t∗ : U((SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpωH)∆
1

)/U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpωH)→ U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpωH) in Rpw to a morphism in Rpw.

Proof. Note the following commutative square, which we learnt from Achim Krause.
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SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H

s!

cofib ≃

s∗

Hence applying NGH to the whole square, we get in turn the diagram

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆
1

H ∐s!SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpGSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆
1

H ≃ FunG(∆
1∐∆0∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) FunG(

∏
G/H ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) ≃ NGH(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆

1

H )

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆
1

H ∐s∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpGSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆
1

H NGH(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆
1

H )

≃

ϕ!

≃

where the G/H-pushout on the top left is with respect to the s! diagram and the bottom left
is with respect to the s∗ diagram. Since, by Lemma 4.3.7, the top arrow is ϕ! which preserves
ω–compact objects and is G-fully faithful, so is the bottom arrow. Therefore, together with the
G/H-distributivity of NGH , we obtain from Notation 4.3.1 the following solid cofibre sequence

in PrG,L,st,ω ≃ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆
1

H ∐s∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpGSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆
1

H NGH(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ) NGHSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG
(t×t)∗

(t×t)!

which is moreover Verdier by Corollary 4.1.4. Note that this is then automatically split by
Proposition 4.1.3 since the right hand Verdier projection admits the dashed adjoints by [Hil22b,
Lem. 4.4.3], where everything in sight preserves ω–compact objects. Hence, upon applying
(−)ω and by definition of the motivic localisation, the diagonal map in

U(NGH(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H ))

U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H )∐s∗
U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

ω
G

)
U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

ω,∆1

H )
U
(
NGHSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

ω
H

)

U(NGH(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H ))

U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H ∐s∗
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω
G

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H )

is a morphism in Rpw. So to show that the top horizontal map is in Rpw, it will suffice to show
that the left vertical map is in Rpw: this is merely the observation that we have, by definition,

a map of cofibre sequences in PShst(Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf)

U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω,∆
1

H )∐s∗
U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

ω
G)
U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω,∆

1

H ) U(NGH(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H ))
U(NGH(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

ω,∆1

H ))

U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H )∐s∗
U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

ω
G

)
U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

ω,∆1

H )

U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω,∆
1

H ∐s∗SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpωGSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H ) U(NGH(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H ))
U(NGH(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

ω,∆1

H ))

U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H ∐s∗
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω
G

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω,∆1

H )

and the left vertical is in Rpw by Lemma 4.3.3, and hence the right vertical is in Rpw too.

Lemma 4.3.9. Let H ≤ G with |G/H | = 2. Then NGH preserves morphisms in Rpw.
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Proof. By Remark 4.2.5, we could have replaced Rpw with the tensor ideal generated by the

map t∗ : U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω,∆1

)/U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω) → U(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω) coming from the Waldhausen split Verdier sequence.
By Lemma 4.3.6, it suffices to show that NGH sends this morphism to one Rpw. This input is
in turn supplied by Proposition 4.3.8.

The final ingredient to the main theorem is the following standard fact in group theory.

Proposition 4.3.10. Let p be a prime, G be a p-group, and H ≤ G a subgroup. There is a
normal series H = N0 ⊳ N1 ⊳ · · · ⊳ Nk = G such that the quotients Nm/Nm−1

∼= Cp for all m.

Proof. If H ≤ G is itself already normal, then this is immediate since we can just obtain
this from the Cp-solvability of the p-group G/H . Suppose H ≤ G is a proper subgroup. We
claim that we have the proper inclusion H � NHG into the normaliser: given this, we can
now induct by taking successive normalisers and applying the statement in the case of H ≤ G
being normal. To see the claim, consider the left action of H on the left H-cosets of G. Since
H fixes the coset H , this action has a point with singleton orbit, and so since everything in
sight are p-groups, we get from the orbit-stabiliser theorem that there is another H-coset gH ,
for some g ∈ G\H , fixed by the left H–action. This means that for all h ∈ H , we get that
hgH = gH , so that g ∈ G\H is a normaliser of H which is not in H , as asserted.

Theorem 4.3.11. Let G be a 2-group. The inclusion Rpw,κ ⊆ Rnm,κ is an identification, and
hence the comparison Ψ : NMotpwG → NMotnmG from Observation 4.2.19 is an equivalence.

Proof. Let H ≤ G be a subgroup. We need to show that NGH preserves λ-equivalences. Equiva-
lently, by [Hil22b, Prop. 6.3.6], we need to show NGH preserves morphisms in Rpw, the G-strong

saturation of Rpw = 〈C s∗−→ C∆1 t∗−→ C〉. By Proposition 4.3.10, let H = N0 ⊳ N1 ⊳ · · · ⊳ Nk = G

be a C2-normal series. Since NGH ≃ NNkNk−1
◦ · · · ◦ NN1

N0
, it would suffice to show that NNmNm−1

preserves morphisms in Rpw. But then Nm−1 ⊳ Nm is a normal inclusion of index 2, and so
this assertion is true by Lemma 4.3.9.

In view of Observation 4.2.19, the following is now an immediate consequence of the theorem.

Corollary 4.3.12. Let G be a 2–group. Then Kpw
G ⇒ Knm

G : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is an equivalence.

In particular, Kpw
G refines to the a G–lax symmetric monoidal structure and induces

KG : CAlgG(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G ) −→ CAlgG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

4.4 Borel equivariant algebraic K–theory

Having performed a general analysis of normed equivariant algebraic K–theory, we record here
a large source of examples via Theorem 2.4.10 coming from categories with G–actions.

Proposition 4.4.1. Let G be a finite group. The functor evG/e : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G → Bor(Catperf)

canonically refines to a G–symmetric monoidal functor evG/e : (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G )⊗ → Bor((Catperf)⊗).

Moreover, it admits a G–fully faithful right adjoint Bor(Catperf) →֒ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G .

Proof. By Theorem 2.4.10 (2), we are left to show that evG/e is the unit of the Bousfield

localisation in the Ĉat version of Proposition 2.4.1. As noted there, this is fibrewise induced by

taking homotopy fixed points in the target of the H–equivariant map Res : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H → Catperf

to yield

ev : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H → (Catperf)hH ≃ Fun(BH,Catperf)

as desired. We now immediately obtain that the G–right adjoint is as claimed because fibrewise
the adjunction is given by the dashed lift
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Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H Fun(BH,Catperf)

MackH(Catperf)

evH/e

evH/e

for which the diagonal Bousfield localisation is given for instance by [BGS20, §8] (compare also
with Proposition 2.4.4), and the vertical inclusion is by Theorem 2.5.11.

Corollary 4.4.2. Let G be a 2–group. Then the G–functor

KG : BorG(Cat
perf) Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G ⊂MackG(Cat

perf) SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG
MackG(K)

(27)

canonically refines to a G–lax symmetric monoidal functor KG : Bor((Catperf)⊗) −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
⊗
G. In

particular, we obtain a functor KG : Fun
(
BG,CAlg(Catperf)

)≃ −→ CAlgG
(
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp

⊗

G

)≃
.

Proof. That the functor Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG refines to a G–lax symmetric monoidal functor is by

Corollary 4.3.12. That the inclusion BorG(Cat
perf) →֒ Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G refines to a G–lax symmetric

monoidal functor is because it is right adjoint to evG/e, which in turn enhances to a G–
symmetric monoidal functor by Proposition 4.4.1. Finally, applying CAlgG to this composite
and Theorem 2.4.10 (3) gives the last statement.

Example 4.4.3. We collect here two important sources of examples, showing that normed
equivariant algebraic K–theory are in ample supply.

1. Since SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω
G ∈ (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G )⊗ is the unit object, it is a G–commutative algebra, and hence

KG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp
ω
G) canonically refines a G–normed ring spectrum. In light of [BH21, Prop. 7.6]

- the connection to which we do not make precise in our work - we expect that any G–
normed ring spectrum will give rise to a G–normed ring K–theory spectrum. This would
then specialise to the case above by considering the G–normed ring spectrum SG.

2. By the last statement in Corollary 4.4.2, any symmetric monoidal perfect–stable C⊗
equipped with a symmetric monoidal G–action gives rise to a collection of spectra{
K(ChH)

}
H≤G

which canonically assemble to a G–normed ring spectrum.
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