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Abstract Accurately describing the distribution of CO2 in the atmosphere with atmospheric tracer transport
models is essential for greenhouse gas monitoring and verification support systems to aid implementation of
international climate agreements. Large deep neural networks are poised to revolutionize weather prediction,
which requires 3D modeling of the atmosphere. While similar in this regard, atmospheric transport modeling is
subject to new challenges. Both, stable predictions for longer time horizons and mass conservation throughout
need to be achieved, while IO plays a larger role compared to computational costs. In this study we explore four
different deep neural networks (UNet, GraphCast, Spherical Fourier Neural Operator and SwinTransformer)
which have proven as state‐of‐the‐art in weather prediction to assess their usefulness for atmospheric tracer
transport modeling. For this, we assemble the CarbonBench data set, a systematic benchmark tailored for
machine learning emulators of Eulerian atmospheric transport. Through architectural adjustments, we decouple
the performance of our emulators from the distribution shift caused by a steady rise in atmospheric CO2. More
specifically, we center CO2 input fields to zero mean and then use an explicit flux scheme and a mass fixer to
assure mass balance. This design enables stable and mass conserving transport for over 6 months with all four
neural network architectures. In our study, the SwinTransformer displays particularly strong emulation skill: 90‐
day R2 > 0.99 and physically plausible multi‐year forward runs. This work paves the way toward high resolution
forward and inverse modeling of inert trace gases with neural networks.

Plain Language Summary Changes in the CO2 concentration can be measured in our atmosphere.
To connect these to emissions, and activity from biosphere and ocean ecosystems, traditionally an atmospheric
transport model is used that tracks the flow of CO2 with the winds. Now, with progress in artificial intelligence
(AI), it can be questioned, if these atmospheric transport models can be replaced with an AI model. In this work
we introduce CarbonBench, a benchmark data set to train and compare different AI models. Moreover, we
design a state‐of‐the‐art AI model to predict how CO2 distributes in the atmosphere. All our data and code are
open‐source, with the aim to enable further research toward leveraging AI for monitoring greenhouse gases and
supporting climate agreements.

1. Introduction
Limiting greenhouse gas emissions in line with the Paris agreement to mitigate anthropogenic climate change
requires monitoring, reporting and verification (MRV) efforts, especially of carbon dioxide (CO2) (Friedlingstein
et al., 2023). Atmospheric measurements of CO2 from ground‐based observatories, aircraft and satellite can
provide independent, science‐based estimates. However, these observations represent the concentration in the
free air, not directly the emissions and other surface fluxes. Atmospheric transport models build the necessary
bridge, allowing to understand CO2 concentrations from the perspective of anthropogenic emissions, biosphere
and ocean fluxes (Ciais et al., 2011; Gurney et al., 2002; Kaminski & Heimann, 2001). They solve the continuity
equation of the mass of CO2 in the atmosphere by computing horizontal advection and vertical movement of air
parcels using driving meteorological reanalysis fields (Brasseur & Jacob, 2017).

Since its early ages in the late 1980s, solving 3D tracer transport with numerical schemes has been hampered by
prohibitive computational costs when going to higher resolution (Williamson, 1992). Yet, low resolution
transport models, suffer from a variety of modeling errors (Gaubert et al., 2019; Schuh et al., 2019). More
specifically, representations of convective transport (Belikov et al., 2013; Munassar et al., 2023; Remaud
et al., 2023; Schuh & Jacobson, 2023), turbulent vertical mixing (Kretschmer et al., 2012), summertime diabatic
mixing (Jin et al., 2024), numerical advection scheme (Agusti‐Panareda et al., 2017; Eastham & Jacob, 2017) and
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reanalyzed meteorological fields (Yu et al., 2018; Zhang et al., 2021) in atmospheric transport models display
significant uncertainties. Increasing resolution has been proposed as one potential remedy to the situation (Agustí‐
Panareda et al., 2019; Remaud et al., 2018).

However, a primary application of transport models is in inverse modeling of the surface fluxes to contribute
regularly to MRV efforts such as the annual Global Carbon Budget updates (Friedlingstein et al., 2023). Starting
from prior surface fluxes, the transport model is used to map them to atmospheric concentrations which can be
compared against observations to subsequently optimize the fluxes through Bayesian calibration (Chandra
et al., 2022; Chevallier et al., 2005, 2006; Peters et al., 2007; Remaud et al., 2018; Rödenbeck, 2005; Rödenbeck
et al., 2003, 2018; van der Laan‐Luijkx et al., 2017). This iterative process typically requires many expensive calls
of the transport model and its adjoint, thereby rendering the usage of high fidelity solvers difficult (Chevallier
et al., 2023).

Recently, AI‐based emulation has revolutionized numerical weather prediction: deep neural networks trained on
high resolution meteorological reanalysis can both, outpace and outperform, traditional medium‐range weather
forecasting systems (Bi et al., 2022; Bonev et al., 2023; Chen et al., 2023; Keisler, 2022; Kochkov et al., 2023;
Lam et al., 2023; Pathak et al., 2022; Price et al., 2023). Crucially, these emulators require less vertical layers,
allow for larger time steps and leverage computing infrastructure optimized for matrix multiplication like GPUs.
Hence, the neural networks learn to solve the Navier Stokes equations, by implicitly representing both, the large‐
scale dynamics that could be explicitly solved, and subgrid‐scale processes that have to be parameterized, some
works even make this division explicit (Arcomano et al., 2022; Kochkov et al., 2023; Krasnopolsky & Fox‐
Rabinovitz, 2006). Furthermore, foundation models are being introduced which support other tasks beyond
medium‐range weather forecasting, such as climate modeling (Lessig et al., 2023; Nguyen et al., 2023) or short‐
term forecasts of atmospheric composition (Bodnar et al., 2024).

Modeling the atmospheric carbon cycle with neural networks has not yet gathered as much attention. Still, there
are works on emulating the footprints obtained from Lagrangian particle dispersion models of CH4, which are
useful for regional inverse modeling: Over a few UK regions, the NAME model has been emulated with con-
volutional neural networks (CNNs) (Cartwright et al., 2023) and with Gradient Boosting Trees (Fillola
et al., 2022) and over a few US regions, STILT has been emulated with FootNet (He et al., 2023), also a CNN. If
more broadly considering approaches to modeling the CO2 and CH4 surface fluxes, machine learning has been
used to upscale eddy covariance measurements as functions of climate and remote sensing to the globe, to obtain
land fluxes of CH4 (McNicol et al., 2023) and CO2 (Jung et al., 2011, 2020; Nelson et al., 2024; Tramontana
et al., 2016). For the latter, Upton et al. (2024) recently introduced additional atmospheric constraints, bridging
between atmospheric inverse modeling and machine learning‐based upscaling.

Here, we introduce atmospheric transport modeling of CO2 with neural network emulators. Our main contri-
butions are three‐fold:

1. We create a new data set (CarbonBench), the first systematic benchmark for training and testing machine
learning emulators of Eulerian atmospheric transport.

2. We develop a SwinTransformer‐based emulator tailored for transport modeling through physics‐based ad-
justments that allow for strong empirical performance: forward runs with global RMSE below 1 ppm are
possible for multiple years.

3. We compare performance against three other large deep neural network architectures (UNet, GraphCast, and
SFNO). While the SwinTransformer outperforms, with our generic architectural changes also the baselines
achieve stable and mass‐conserving transport for over 6 months.

Thus, we provide the first step toward a high resolution CO2 inversion system leveraging AI to support the World
Meteorological Organizations Global Greenhouse Gas Watch (G3W) and other efforts in line with the Paris
agreement.

2. Methods
2.1. Task

In this work, we are tackling offline tracer transport with neural networks. That is, we solve the continuity
equation for the inert trace gas CO2 given prescribed meteorology. In other words, we predict the 3D field of CO2
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concentration in the atmosphere at time t + 1 given the CO2 concentration
field from the previous time step t and meteorology and surface fluxes as
additional inputs (Figure 1). Like conventional solvers, our learned neural
networks are autoregressive: longer forward runs can be produced by feeding
the predicted CO2 concentrations back in as inputs, alongside prescribed
fluxes and meteorology from the next time step. This allows in principle to
generate arbitrarily long trajectories of CO2 fields, if sufficient forcing data is
available.

More specifically consider the CO2 mass mixing ratio μ, a source/sink term Σ
and the vector of wind fields V, then tracer transport follows from integrating

dμ
dt
+ V ⋅∇μ = Σ (1)

over the spherical shell D = S2 × [r, r + h]⊂R3, with S2 the sphere, r the radius of Earth and h the height of
the atmosphere. The integration is typically done by specifying von Neumann boundary conditions dμdn = 0, with n
being the outward‐facing normal derivative on D, in other words: the flux out of the atmosphere is none. This
would model surface fluxes with the source/sink term Σ, allowing for emissions inside the atmosphere. However,
one may alternatively want to model surface fluxes as the lower boundary condition. In offline tracer transport
models, the winds V are prescribed. An alternative approach would be online tracer transport, where in addition to
the tracer transport, the full atmospheric dynamics are modeled (Patra et al., 2018).

When numerically integrating the continuity equation, one needs to discretize over a grid, which requires splitting
the operator into resolved and unresolved scales. For atmospheric transport, one furthermore typically splits the
operator into horizontal advection and vertical convection, whereby for the former any subgrid‐scale closure is
ignored, but for the latter it is parameterized (Heimann & Körner, 2003). Hence we end up with the equation

dμ
dt
+ u

dμ
dx
+ v

dμ
dy
+ w(ω,T,q, z)

dμ
dz
= Σ (2)

with the vertical velocity w being a function of updraft ω, temperature T, specific humidity q and geopotential
height z. Throughout this work, we use neural networks to solve directly for the time derivative:

dμ
dt
= f (μ,u,v,ω,T,q, z,… ; θ) (3)

with f (⋅; θ) being a neural networks with parameters θ. We then integrate using Euler steps μt+ 1 = μt +
dμ
dt .

During training, this means we approximate Δμt = μt+ 1 − μt with the neural network f (⋅; θ) by optimizing
parameters through minimizing the squared loss:

θ̂ = arg min
θ

E‖ ( f (Xt; θ) − Δμt)‖
2
2 (4)

2.2. CarbonBench Data Set

For training the neural network emulators, we collect two existing data sets and reprocess them into a deep
learning‐ready format. The first data set (CarbonTracker) is an inversion of CO2, that is, it has been obtained by
optimizing the surface fluxes by transporting them and then matching modeled atmospheric concentrations
against observed ones. The second data set (ObsPack) contains atmospheric measurements of CO2, allowing to
compare our model predictions against an absolute baseline, independent of the training targets.

2.2.1. CarbonTracker

The CarbonTracker North America inversions (Peters et al., 2007) utilize the TM5 (Krol et al., 2005) transport
model and the ensemble Kalman filter to perform inverse modeling of the surface fluxes. More specifically, they

Figure 1. Offline atmospheric tracer transport modeling with deep neural
networks.
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start with a set of prior fluxes for the land and ocean (e.g., from Earth system models) and add these to prescribed
fluxes for anthropogenic emissions and wildfires to obtain a first version of total CO2 surface fluxes. In a next
step, they leverage an atmospheric transport model and the ensemble Kalman filter to optimize the surface fluxes
such that they match well to observed data of atmospheric CO2 concentrations. Finally, the optimized fluxes are
transported one more time to obtain a 3D field of atmospheric CO2 concentrations. Here, we only use the final
product from the inverse modeling process: the optimized surface fluxes and corresponding 3D fields. Moreover,
we treat all surface fluxes as prescribed inputs, and not just the anthropogenic and wildfire components.

We collect 3D atmospheric CO2 concentration fields, 2D CO2 surface fluxes and 3D meteorological fields of
q,T,u,v,ω, z from the CarbonTracker CT2022 version (Jacobson et al., 2023). These represent a closed system,
that is, they fulfill a discretized version of the continuity Equation 1. Moreover, as they have been produced
through inverse modeling, they are also closely resembling observations of atmospheric CO2. For a complete list
of the variables used, see Table S1 in Supporting Information S1.

We prepare three versions of the data set through aggregation that allow for quicker experimentation and testing
of methods at multiple resolution. Each data set we split into training (years 2000–2016), validation (2017) and
testing (2018–2020) sets, the three resolutions are:

• LowRes: 5.625° × 5.625° × 10 hybrid vertical levels ×6h.
• MidRes: 2.8125° × 2.8125° × 20 hybrid vertical levels ×6h.
• OrigRes: 2° × 3° × 34 hybrid vertical levels ×3h.

Note, while OrigRes is close to the original data resolution, it is not exact—we shift the time steps in comparison
to CarbonTracker by 1.5 hr (except for fluxes) and we still regrid the surface fluxes, which had been optimized at
1° × 1° in CarbonTracker. In addition, in CarbonTracker North America, the full atmosphere is modeled at this
higher resolution over a zoomed window in North America. We deliberately chose the horizontal resolution such
that LowRes (MidRes) horizontal fields have 32 × 64 (64 × 128) pixels, which is ideal for most modern deep
neural network architectures from computer vision (Rasp et al., 2024). Furthermore, the underlying TM5 at-
mospheric transport model of CarbonTracker North America solves the equations at higher temporal resolution
with a dynamically varying time step of ≤90 minutes to ensure numerical stability. Still, external wind fields from
ERA5 (Hersbach et al., 2020) are only provided at 3h resolution, in line with the OrigRes data in CarbonBench.

2.2.2. Data Preprocessing

In order to prepare the three deep learning‐ready data set versions, we introduce a preprocessing chain. Through
this chain, we aim to standardize data set format and ensure that the processed data is directly useable to
implement offline tracer transport emulators in the spirit of Equation 3. Furthermore, the chain enables future
work to leverage the presented neural networks on data sets from other transport models. We perform the
following preprocessing steps:

1. Horizontal regridding: intensive meteorological variables with bilinear interpolation, extensive quantities
(CO2 mixing ratio and air mass) are divided by cell area, and then, alongside CO2 surface fluxes regridded with
conservative interpolation.

2. Conversion to standard units and variables: masses in [Pg], Concentrations as ppm mass mixing ratio

[
10− 6kgCO2
kgDryAir ] , fluxes as [

kgCO2
m2s ], pressure in [hPa]. We aggregate surface fluxes into ocean, land and anthro-

pogenic fluxes, where the former two would be optimized during an inversion and the latter one prescribed.
3. Vertical aggregation: interpolation in pressure coordinates through taking a pressure weighted mean for

intensive quantities, and through summation for extensive quantities (masses).
4. Temporal resampling: linear resampling to target resolution.
5. Flux staggering: surface fluxes are staggered, such that they represent the mean flux between a time step and

the next time step.
6. Flux mass correction: anthropogenic surface fluxes are corrected, such that any mass conservation errors

introduced through preprocessing are removed and the mass difference between two time steps matches
exactly the surface fluxes.

7. Temporally splitting into independent training, validation and testing data sets.
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8. Deep learning‐optimized storage: we store our data set in Zarr files, with chunking that optimizes loading of all
data at a single time step: We store two arrays per time step, one with all 2D fields and one with all 3D fields.

9. Statistics: we compute mean and std. dev. statistics for all fields and for all per‐level temporal deltas of all
fields.

The preprocessing routines are implemented as part of the Neural Transport Python library (https://github.com/
vitusbenson/neural_transport).

2.2.3. ObsPack Station Data

The NOAA ObsPack GLOBALVIEWplus product (Schuldt et al., 2023) collects measurements of atmospheric
CO2 from many different scientific laboratories around the globe with instruments at ground‐based stations and
towers and onboard ships, aircraft and weather balloons. In this study, we use all measurements flagged as
representative from the v9.1_2023‐12‐08 product. We compare these CO2 measurements with our modeled data
by extracting the grid cells closest to the horizontal (lat/lon) and vertical position (geopotential height) of the
measurement and averaging over 6 hr time windows. We use the exact same method to extract station time series
from the target CarbonTracker data, as we use for the AI models. This allows for an absolute comparison point:
the target CarbonTracker data does not achieve perfect prediction of the ObsPack data, meaning we can compare
the performance of AI models directly with TM5, the transport model used in CarbonTracker. In future work, the
ObsPack station data does also allow for cross‐dataset comparison. Note, however, if AI models trained on two
different data sets are compared, differences in performance may also stem from the differences in the prescribed
surface fluxes, meteorology and initial conditions, and not merely from the learned transport model.

2.2.4. Evaluation

We evaluate models by performing quarterly forward runs starting on 1 January, 1 April, etc. and running for
3 months each. We then average statistics over the full test period (2018–2020) and compute a range of per-
formance metrics, such as RMSE, R2, decorrelation time (#days with R2 > 0.9), RMS mass error, relative mean
and relative variability. We compute these metrics over individual spatial and temporal coordinate axes and also
over sets of axes, to obtain a full picture.

2.3. Neural Networks

In this section we describe the neural networks studied in this work. We restrict ourselves to a rather conceptual
description and refer the reader to the original papers for in‐depth explanations of each architecture. In addition
we report the adjustment to the original architectures which we introduce in this work to enable their applicability
to atmospheric transport modeling.

2.3.1. Motivation

Atmospheric transport modeling requires processing high dimensional data: at the coarsest resolution, our model
input has 32 × 64 × (10 × 10 + 7) ≈ 220k dimensions (assuming a setup of 10 3D and seven 2D fields, see
Table S1 in Supporting Information S1—and accordingly ∼20k output dimensions). At such scales, training a
standard 2‐layer neural network, the multi‐layer perceptron (MLP), becomes computationally intractible. In deep
learning this challenge is typically approached by introducing inductive biases. These allow to significantly
reduce the dimensionality of each matrix multiplication. In this study, from the vast variety of available archi-
tectures, we pick four. They are representative of generic architectural classes and previous work has found them
successful at emulating weather and climate data.

Moreover, three out of the four networks coincide with general classes of conventional numerical methods
(compare Figure 2): (a) UNet uses a regular mesh, like finite difference solvers on regular grids, (b) GraphCast
uses an icosahedral mesh, again analogous to finite difference solvers, (c) SFNO is similar to a pseudo‐spectral
solver, only (d) SwinTransformer is unconventional in the way that it favors a brute‐force split‐process‐combine
approach, with little resemblance to conventional numerical methods, that is, it has the least inductive bias.
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2.3.2. Vertical Discretization

In all four approaches, we only consider inductive biases for the horizontal dimension. In the vertical direction we
stack all data along the channel dimension and feed that as input. In other words, the models receive an array of
values (for forcing, tracers and surface fluxes) per horizontal grid cell, and then process these in a latent space,
allowing for vertical mixing and interactions across variables. This approach is independent of the particular
vertical discretization pertinent in the data. While it is possible to include inductive biases that reflect vertical
neighborhood, we refrain from doing so, as that is not standard for weather modeling—likely motivated by the
possibility for strong vertical mixing due to convection.

In this work, we use CarbonTracker data, which comes at hybrid model levels. Hybrid levels interpolate smoothly
between a terrain‐following component in the lower troposphere (close to the surface) and constant pressure
levels in the upper stratosphere. More specifically, the pressure of each vertical layer is an affine transformation of
the surface pressure (which varies with orography).

2.3.3. UNet

UNets (Ronneberger et al., 2015) are fully CNNs consisting of an encoder and a decoder arranged in aU‐shape—
referring to gradual spatial downsampling and subsequent upsampling. We employ UNets that treat the globe as a
cylinder, having periodic convolutions in zonal (longitude) direction and zero‐padded convolutions at the poles
(Rasp et al., 2020; Scher, 2018). Vertical layers and different variables are simply stacked along the channel
dimension.

Our UNet has 4 stages within the encoder and decoder, each consisting of two 3 × 3 2d conv layers, that are
followed by LeakyReLU and BatchNorm layers and a residual connection. Spatial downsampling is achieved
through 2 × 2MaxPooling and upsampling through 2 × 2 nearest interpolation. In the first encoder stage, we use
a single 7 × 7 conv layer instead. We add skip connections between the encoder and decoder stages. The network
operates on input sizes that are divisible by 16, but through bilinear upsampling in the first and nearest down-
sampling in the last layer, we allow for other input shapes as well.

2.3.4. SwinTransformer

SwinTransformers (Liu et al., 2021) are transformer neural networks processing 2D inputs by attention between
embeddings of windows, which are shifted in each layer. We allow for periodic shifts in zonal (longitude) di-
rection and retain processing at the highest resolution (no hierarchical layers), two architectural design choices
which have been proven useful for weather forecasting (Willard et al., 2024). However, in contrast to Willard
et al. (2024), we adopt relative positional encoding, as in Liu et al. (2022).

Our SwinTransformer has 12 layers each consisting of a Multi‐head Self‐Attention block followed by LayerNorm
and a pixelwise MLP (with GELU activation and LayerNorm) and residual connections between blocks. The self‐
attention is masked in such a way, that only attention within windows of nearby pixels is computed, we use 4 × 8
pixel windows. Windows are shifted by half their size at every second layer, with zonally periodic shifts and
masked shifts at the poles—to cover information transfer in all spatial directions. In contrast to previous work we

Figure 2. Conceptual depiction of the four deep neural networks included in this study.
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found using patch embedding to introduce artifacts at longer rollouts, which is why our model directly operates at
pixel level (i.e., in 1 × 1 patches). Input shapes need to be divisible by the window shape, we allow for other input
shapes through nearest interpolation.

2.3.5. GraphCast

GraphCast is a graph neural network tailored for weather forecasting. It follows an encode‐process‐decode layout
(Battaglia et al., 2018), with the encoder and decoder mapping between the regular grid (lat‐lon) and an icosa-
hedral mesh (Keisler, 2022). Thus, they are responsible for two tasks: first, they perform regridding, akin to
conventional regridding tools, but here learned, and second, they map the input data into an high‐dimensional
latent space, as typical for deep neural networks. On the icosahedral mesh in latent space, the processor
component processes the data to obtain a powerful embedding from which the time delta of the target variables
can be extracted. More specifically, the processor uses message passing layers in local neighborhoods of each grid
cell with additional long‐range connections (Lam et al., 2023). This can be understood as local stencils on the
sphere that process information just like in a conventional finite difference solver, with the addition of some non‐
local interactions between supernodes, that can further enhance predictions.

Our GraphCast has a processor with 8 layers, each performing message passing between neighboring nodes on an
icosahedral multi‐mesh that has been refined 3 times (levels 0–3). The encoder uses a bipartite graph to map
between the regular grid representation and multi‐mesh nodes by assigning all grid cells to a multi‐mesh node
whose center is less than 0.75 times the maximum inter‐node distance in the level 3 mesh away from that node.
The encoder and decoder map between data space and a latent space with 256 channels. Like the original
GraphCast we use Swish activations and layer norm. Our message passing layer use a mean operation to
aggregate incoming information from neighboring nodes.

2.3.6. Spherical Fourier Neural Operator

Spherical Fourier Neural Operators (SFNO) (Bonev et al., 2023) are an extension of the Fourier Neural Operator
(FNO) (Li et al., 2021) to the sphere, by replacing Fourier transforms with spherical harmonics transforms (SHT).
An FNO Block performs channel‐wise spatial processing in the spectral domain and combines this with channel‐
mixing in the grid domain. The SFNO consists of many blocks, each using the SHT and inverse SHT to
map between grid and spectral space. We use linear transformations in spectral space and local MLPs in grid
space.

2.4. Details

We train our deep neural networks using the Neural Transport Python library (https://github.com/vitusbenson/
neural_transport). Our experiment scripts are published in the CarbonBench Python repo (https://github.com/
vitusbenson/carbonbench).

2.4.1. Optimization

We train our models with ADAM in a two‐stage fashion. First, with a cosine learning rate schedule and linear
warm up on next‐step prediction. Afterward with a constant learning rate and a n‐steps‐ahead schedule, where we
iteratively increase the lead time during training every 2 epochs until 31‐steps‐ahead. For hyperparameter tuning
(we tune the learning rate with a coarse grid search per model architecture) and ablation studies, we train for 100k
steps, and for the final models (i.e., the best performing ablations) we train for 300k steps during the first opti-
mization stage, that is, next‐step prediction. In both cases we use the same n‐steps‐ahead training during the
second optimization stage after the next‐step training, as this had a big impact on performance over longer
rollouts. In this work, we optimize always against the full 3D CO2 field from CarbonTracker, future work may
consider additionally including a part of the ObsPack measurements (which are only used for evaluation in this
work) or weighting targets differently.

2.4.2. CentFlux

We scale and shift the model output with the std. dev. and mean of the temporal deltas of each target variable
vertical layer. Afterward, we add the previous time step 3D field to obtain a raw prediction for the next time step.
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In addition, we add the surface fluxes to the lowest vertical layer. Due to steadily rising anthropogenic emissions,
the input CO2 mean is increasing over time, which would represent a covariate shift, to which neural networks are
rarely robust. To account for this, we center the input CO2 field at each time step to have zero mean. This fix
should allow stable transport for arbitrary levels of atmospheric CO2. Throughout this manuscript we call the
addition of surface fluxes at the lowest vertical level and the centering of CO2 input fields jointly CentFlux.

2.4.3. SpecLoss

Previous work identified divergence in the power spectra to be symptomatic for models becoming unstable for
longer rollouts (Chattopadhyay & Hassanzadeh, 2023). To improve in this regard we introduce an additional loss
term that regularizes predictions. SpecLossmeasures the difference in spectral power densities between observed
and predicted 2D fields (i.e., at each vertical level). We leverage the spherical harmonics transform to obtain
spectral coefficients, from which we compute the spectral power density. Our approach is similar to a regula-
rization term used in NeuralGCM (Kochkov et al., 2023).

2.4.4. Massfixer

Tracer transport fulfills the continuity equation, which stems from mass conservation, in other words, the total
mass of simulated CO2 in the atmosphere at t + 1 should match the mass at t plus the total mass input through the
surface fluxes. While some conventional numerical approaches like finite volume methods fulfill tracer mass
conservation by design, others, such as semi‐Lagrangian or pseudo‐spectral schemes do not. Also deep neural
networks are only softly constrained to fulfill mass conservation (if zero emulation error is achieved, mass is
necessarily conserved). Similarly to previous attempts to correct conventional approaches (Diamantakis &
Flemming, 2014), we adopt a simple mass fixer, that scales the predicted mass at each time step by the desired
mass calculated from the surface fluxes. This fixer leads to proportionally larger adjustments in grid cells with
more tracer mass.

3. Results
3.1. Model Intercomparison

We evaluate global and local test set performance of the four neural network architectures, each with tuned
hyperparameters, and report the results in Figure 3. UNet, GraphCast, SFNO and SwinTransformer all achieve
stable transport for at least 6 months with local performance almost equal to TM5, that is, to the ground truth that
models had been trained on. The best model is SwinTransformer, which achieves a global R2 of 0.99 over
quarterly forecasts, that is, almost perfect emulation. Performance degrades when looking at the other three
models, with UNet > SFNO > GraphCast. Here, GraphCast has more than double the global RMSE compared to
SwinTransformer, but still stays below 1 ppm over 90 day forward runs. Furthermore, GraphCast runs become
unstable after 178 days, while the other three models display decorrelation times above 3 years, indicating long‐
term stability (Figure 3a). At station level, the difference are of lower magnitude, but still significant (Figures 3c
and 3d). In the following we assess the performance of the SwinTransformer, the best performing model, in more
detail, with the equivalent plots for the other models provided in the supplementary material.

3.2. Best Performing Model

The SwinTransformer produces stable forecasts in terms of RMSE, R2, relative mean and relative std. dev. over
90 days. Figure 4 compares the performance for different levels. Mostly, the performance varies little for different
layers, with the exception that the surface layer has a significantly larger RMSE compared to all other layers (over
1.5×). Moreover, while in the lower troposphere after a brief annealing phase during the first few forecast steps
the predictions are of approximately constant quality, there is a drift with increased performance degradation in
the upper stratosphere (the top three layers).

Qualitatively, SwinTransformer captures the large‐scale motion of CO2 in the atmosphere, as depicted by maps of
total column CO2 (Figure 5). The largest errors appear in eastern Asia, a region known for large anthropogenic

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004655

BENSON ET AL. 8 of 19

 19422466, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004655 by M
PI 322 C

hem
ical E

cology, W
iley O

nline L
ibrary on [14/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



emission. Otherwise, error patterns appear to follow fronts in the atmospheric field, indicating mildly decreased
performance over sharper gradients (Figure 5).

Zooming in on a few stations from the ObsPack Globalview product, SwinTransformer generally performs
similar to the training target TM5 (Figure 6). Interestingly, for the Svalbard station, SwinTransformer captures the

Figure 3. Intercomparison between the best models per architecture. In blue (a and b), the performance is evaluated by
scoring the global predicted 3D field against the ground truth CO2 field from the test period of the LowRes data set—this
allows for comparisons between the AI models. In orange (c and d), the performance is evaluated at ObsPack stations. This
allows, in addition, to compare against TM5 (dashed black lines), the transport model used to produce the ground truth data set.
At ObsPack stations, in addition to the mean scores (mean over the stations), we also display uncertainty estimates: the std. dev.
over stations scaled by the square root of the number of stations. Local R2 (c) and global (b) and local RMSE (d) are computed
for quarterly 90‐day forward runs, the decorrelation time (a) is estimated from a single 3 year forward run.

Figure 4. Key metrics per vertical layer for quarterly forecasts over the test set for SwinTransformer. We report metrics per
time step and vertical level, that is, they represent properties of the 2D maps of atmospheric CO2 mass mixing ratios at
different vertical levels. The metrics are averaged over quarterly reset 90‐day forward runs. Dashed lines indicate arbitrarily set
thresholds which subjectively signify stable simulation (e.g., RMSE < 1 ppm is a goal for many CO2 MRV systems).
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seasonal cycle in the observations well, whereas TM5 oversmoothes it. There are barely any jumps visible at the
quarterly intervals (gray dotted lines), where the SwinTransformer initial state is reset. This is in line with the
previous result, that SwinTransformer displays little performance degradation over 90 day horizons. While it is
unclear exactly why SwinTransformer outperforms TM5 in Svalbard, this may be related to the stations vicinity to
the poles and differences in the boundary layer vertical transport of the two models.

Figure 5. Maps of Total Column CO2 Target, Prediction by SwinTransformer and Error for different lead times. Shown is a
single forward run starting from 1 January 2018.

Figure 6. Performance of SwinTransformer (orange line) compared to TM5 (the training target, here: Inversion, green line) at
six measurement stations from the ObsPack Globalview product. Shown are 90‐day forward runs, the light gray lines indicate
the dates on which the runs are reset.
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3.3. Mass Conservation

Figure 7 presents global and per‐level mass conservation results with SwinTransformer. Globally SwinTrans-
former with the mass fixer achieves an RMSE of 0.00058 PgC, which may be considered negligible in comparison
to the total atmospheric mass of ∼865 PgC in 2018. This remaining mass error likely stems from numerical
problems: our deep neural networks operate with 32‐bit floating points, which can give performance issues
especially when dealing with division of relatively large numbers. Notably, the mass fixer greatly enhances the
conservative properties of SwinTransformer in comparison to the free‐running neural network (purple line,
Figure 7 left side): it has over 0.01% relative mass RMSE, which particularly manifests in an overprediction of
mass in november and december.

Analyzing the mass error per vertical layer gives insight into the vertical transport learned by SwinTransformer.
Figure 7, right side, indicates that the upward vertical transport is too weak in northern hemisphere winter (too
little mass in upper stratosphere) and too strong in summer. Notably, vertical transport in the lower layers close to
the surface displays little mass error, albeit those layers being more heavily influenced by diurnal variability and
surface fluxes.

3.4. Long‐Term Stability

While this paper mostly focuses on prediction horizons up to 90 days, we also performed a 3‐year rollout of the
SwinTransformer over the full test period. SwinTransformer remains stable even after over 3 years rollout, but
starts to display errors above 1 ppm in many regions (Figure 9).

More specifically, the surface layer RMSE first crosses 1 ppm after 217 days (Figure 8) and the RMSE near the
surface generally displays cyclical behavior, with highest errors in northern hemisphere summer. The highest
layer, representing the upper stratosphere, is unstable over rollout time: it is being oversmoothed and accumulates
too little mass over time. For most inverse modeling purposes, this is of lesser concern, as the upper stratosphere
contains less carbon and there are typically no direct measurements of CO2 taken at such altitude.

Overall the results are particularly promising as previous work has repeatedly noted challenges in the stability of
long‐term rollouts of neural network‐based PDE emulators (Bonev et al., 2023; Brandstetter et al., 2022; Lippe
et al., 2023). Moreover, CO2 transport may be considered particularly challenging as atmospheric CO2 con-
centrations keep rising, naturally pushing the distribution of the atmospheric tracer field away from the training
distribution and constituting an out‐of‐domain (OOD) problem. Still, future work needs to assess the robustness
of our models to distribution shifts beyond the rise in CO2 during the test set. For example, considering gener-
alization to significantly different surface fluxes could be relevant. While preliminary experiments with trans-
porting zeroed‐out surface fluxes indicated no non‐physical behavior, caution needs to preside and thus
extrapolation far from training data may be a limitation of the transport emulator.

Figure 7. Mass Conservation of SwinTransformer globally (left) and per level (right). In the left panel, the total mass in the
target atmosphere (gray line) and in the predicted atmosphere (red line) match exactly with a cumulative sum of the surface
fluxes (orange dotted line), that is, they are plotted on top of each other indicating mass conservation. The flux sum is the sum
of the Anthropogenic (brown), Land (green) and Ocean (blue) fluxes. In addition, we show performance without the
massfixer (purple line). The right panel shows the difference of the total mass per level and time step between the
SwinTransformer prediction (after applying the massfixer) and the target.
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3.5. Differences Between AI Model Architectures

The four AI models included in this study build on different underlying principles (mesh‐based vs. pseudo‐
spectral vs. brute‐force). Hence it is less surprising that there are differences in the patterns of model residuals
between models. Figure 10 presents RMSE patterns. For all models, RMSE seemingly scales with CO2 vari-
ability: regions with large biosphere dynamics such as the tropics or boreal forests, and areas with large
anthropogenic emissions such as eastern Asia in the near‐surface layers have consistently larger errors. UNet,
SFNO and GraphCast all have higher errors at the poles. For SFNO this is very limited to the pole grid cell itself,
likely because the spherical harmonics there do not allow for zonal variability. For UNet, the impact is a bit larger,
mirroring the smoothing effect of convolutions with zero padding at the poles. GraphCast has the most severe
problems with the poles. This might be related to the encoder and decoder of GraphCast, which map between grid
cells on the regular grid and nodes on the icosahedral mesh. Near the poles, many grid cells are mapped to a single
node, which could potentially result in stability problems.

Figure 8. Key metrics per vertical layer for a single 3‐year rollout with SwinTransformer starting from 1 January 2018. As in
Figure 4, we report metrics per time step and vertical level. Dashed lines indicate arbitrarily set thresholds.

Figure 9. Maps of surface layer (1,013 hPa in a standard atmosphere) CO2 Target, Prediction by SwinTransformer and Error
for different lead times of a 3‐year rollout starting from 1 January 2018.
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3.6. Ablations

In our experiments we found the four AI models to not work very well for CO2 prediction out‐of‐the‐box.
Especially the mesh‐based methods UNet and GraphCast displayed issues with low stability over longer rollouts.
In contrast, the final models presented in this paper are stable and mass‐conserving for over 90 days. Table 1
presents insights into the design choices that lead to the improved performance on the LowRes data set. It reports

Figure 10. RMSE patterns of the four AI models. For each model, shown is the RMSE per horizontal grid cell averaged over
time and vertical level (left side) and per latitude and vertical level averaged over time and longitude (right side). Scores are
for quarterly 90‐day forward runs.
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metrics over 90 day forward runs. In our experiments the ranking of models remained consistent if only studying
7 day RMSE and R2, except for models that develop instabilities (e.g., UNet or GraphCast).

For each of the four models, we ablate the model size and two training tricks that particularly increased the
stability. The first one, CentFlux, is a combination of centering the 3D CO2 fields and adding the prescribed
surface fluxes to the lowest vertical layer. The second one, SpecLoss, is an additional loss term that penalizes
deviations in the spectral power spectrum (computed with the spherical harmonic transform) between the model
output and the target.

For all models, CentFlux is essential to achieve stable rollouts and improves the performance significantly.
SpecLoss additionally enhances scores, but the gains are smaller. In fact, SpecLoss only marginally improves
power spectral densities: Figure S1 in Supporting Information S1, we compare these for GraphCast, which
displays the largest gain from SpecLoss, with only small improvements visible. As the additional loss term still
improves error metrics, we keep it nonetheless.

The four models have different optimal model sizes. While the best GraphCast in our experiment (size XS), has
5.2 M parameters, the best UNet (size S) has 9.6 M, and the best SFNO and SwinTransformer (both size M) have
35.7 and 37.9 M parameters respectively. Note, models with more parameters do not necessarily have better
performance: UNet outperforms SFNO slightly on RMSE. Still, that in our experiments it was significantly more
challenging to scale GraphCast to larger size compared to SwinTransformer is probably one of the reasons why

Table 1
Ablation Study Highlighting the Best Configuration Per Model Architecture (Underline) and the Best Overall Model (Bold)

Model CentFlux SpecLoss No. of parameters (M) Decorr time R2 RMSE

UNet S ✗ ✗ 9.6 1.5 0.07 >100

UNet S ✓ ✗ 9.6 >90 0.98 0.57

UNet S ✓ ✓ 9.6 >90 0.98 0.52

UNet XS ✓ ✓ 2.7 >90 0.98 0.62

UNet M ✓ ✓ 35.7 >90 0.98 0.52

GraphCast XS ✗ ✗ 5.2 41.25 0.87 1.63

GraphCast XS ✓ ✗ 5.2 >90 0.95 0.96

GraphCast XS ✓ ✓ 5.2 >90 0.96 0.86

GraphCast XXS ✓ ✓ 1.3 >90 0.95 0.92

GraphCast S ✓ ✓ 8.8 >90 0.96 0.87

GraphCast XS mesh = 0–2 ✓ ✓ 5.2 >90 0.94 0.99

SFNO M ✗ ✗ 35.7 >90 0.97 0.67

SFNO M ✓ ✗ 35.7 >90 0.98 0.59

SFNO M ✓ ✓ 35.7 >90 0.98 0.58

SFNO S ✓ ✓ 8.9 >90 0.98 0.59

SFNO L ✓ ✓ 53.5 >90 0.98 0.59

SwinTransformer M ✗ ✗ 37.9 >90 0.97 0.79

SwinTransformer M ✓ ✗ 37.9 >90 0.99 0.37

SwinTransformer M ✓ ✓ 37.9 >90 0.99 0.34

SwinTransformer S ✓ ✓ 6.4 >90 0.99 0.36

SwinTransformer L ✓ ✓ 85.2 >90 0.99 0.34

SwinTransformer M ps = 4 ✓ ✓ 38.8 >90 0.97 0.70

Note. For each model, we compare three different sizes, whether to center the input CO2 field to account for covariate shift
and to add surface fluxes directly to the lowest vertical layer (Centering and Flux Addition, i.e., CentFlux), and, whether to
leverage an additional loss term which measures divergence in the spectral power densities (SpecLoss). For GraphCast, we
additionally ablate the resolution of the icosahedral multi‐mesh (mesh, default is 0–3), and for SwinTransformer, we ablate the
patch size (ps, default is 1). We report three metrics: decorrelation time, R2 and RMSE—all over 90‐day forward runs.
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GraphCast is the worst model architecture in our intercomparison. Finally,
note that due to computational constraints we did not re‐tune all hyper-
parameters for all ablations, but relied on one set of hyperparameters per
model architecture. Doing this tuning could, in principle, change results.

3.7. Computational Costs

One reason why AI‐based emulators of ERA5 have garnered interest is
because they offer significant speed‐ups over conventional NWP models at
inference time. Conceptually these speed ups arise as most ERA5 emulators
use 10× less vertical layers (13 instead of 137), 30× higher time step (6 hr
instead of 12 min), purely explicit solvers (no iterative scheme for implicit
steps necessary) and compute accelerators (GPUs/TPUs instead of CPUs).
These speed ups at inference time come with a trade‐off: first significant
compute resources need to be allocated in order to train the models. For
weather forecasting such an investment is often quickly justified, as many
model runs are necessary every day, so after training a single AI‐based
emulator can be used many times.

Naturally, one may wonder if a parallel to neural network emulation of at-
mospheric transport can be drawn. However, the SwinTransformer is not

significantly faster compared to TM5 (Figure 11). Performance here is highly hardware dependent, but as a rough
estimate SwinTransformer takes ∼1.5sec for a 30 day forward run on a single Nvidia A40 GPU. Figure 11
compares the speed of the four AI models and TM5 at different resolutions. For this, we measured the model time
in an idealized scenario, removing all pre‐ and postprocessing of model inputs and outputs, and instead directly
reading and writing the raw tensors from memory. We then measure the speed of 30 day forecasts with 10
repetitions on a Nvidia A40 GPU. Generally, we notice only small differences between the AI models.

Running the TM5‐MP model, which improves upon TM5 through OpenMPI parallelization (Williams
et al., 2017), takes ∼8 minutes on a machine with 24 CPUs for a 1 month forward run on a 3° × 2° grid and ∼2
minutes on 6° × 4° (Segers et al., 2020). We assume 50% time is spent in IO and plot estimated runtimes for TM5
without IO in Figure 11, with OrigRes and MidRes runs to take 4 min and LowRes to take 1 min on a single
modern machine with 24 CPUs.

The lack of speed‐up can possibly be explained with a number of factors. First, TM5 is run on a 2° × 3° grid,
which does not require an extremely small time step. Second, TM5 uses about the same number of vertical layers
as SwinTransformer. Third, tracer transport in TM5 is entirely linear (in the surface fluxes), and the mass fluxes
for each grid cell are pre‐computed. After this is done, transport becomes cheap. Fourth, while TM5 still does not
run on GPUs, it reaps a number of benefits from its maturity, such as leveraging fast FORTRAN code and
parallelization through OpenMPI.

4. Discussion
In this work, we trained deep neural networks to emulate the atmospheric transport of CO2. We test four models
and find SwinTransformer to perform best, with almost perfect emulation for 90 days, and stable and mass‐
conserving emulation for multiple years ahead. For this we adjust the model architecture, decoupling the drift
in CO2 from its dynamics by leveraging centered CO2 fields as inputs and using a post‐hoc flux scheme to correct
the mass balance. Yet, the presented model is not giving large computational advantages compared to conven-
tional approaches, at least not at low resolution.

Storm‐resolving models allow for explicit treatment of convection, with large impact on vertical transport of air
masses and CO2. Some modeling centers are already experimenting with storm‐resolving transport model runs
(Agustí‐Panareda et al., 2014, 2022, 2023; Gelaro et al., 2015), which typically require to run an online transport
model. Here, AI models could leverage model output and offer an alternative route ahead.

Considering higher resolution might offer room for speed ups: doubling the horizontal resolution of conventional
solvers increases the computation costs by roughly 10× (Hoefler et al., 2023), partly due to a need for smaller time
stepping. Yet, some of the errors of transport representation in current inverse modeling schemes are attributed to

Figure 11. Pareto frontier of inference runtime versus model performance
(RMSE at ObsPack Globalviewplus stations), plotted relative to the TM5
OrigRes target data. Runtime improvements are excluding IO and based on
estimated TM5 runtimes.
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low resolution (Agustí‐Panareda et al., 2019; Remaud et al., 2018). Hence, developing multi‐resolution training
schemes, for example, by utilizing the cross attention mechanism (Alkin et al., 2024; Jaegle et al., 2021, 2022;
Serrano et al., 2024), which is straight‐forward with the data in CarbonBench, may enable more accurate low‐
resolution models that are still computationally feasible for inverse modeling by emulating the high resolution
solvers. In other words, by leveraging high resolution training data, AI‐based solvers could exhibit higher ac-
curacy even if run at low resolution. Moreover, modeling the atmosphere in a highly compressed space may yield
further improvements (Han et al., 2024), for instance, such a transport model could render the usage of full
resolution wind fields from ERA5 feasible.

Furthermore, there is still a lot of room for common techniques used to speed up AI models. Model distillation is a
technique to significantly reduce the parameter count of neural networks without loosing much in terms of skill.
Quantization leverages lower numerical precision to decrease memory footprint and increase speed. On a pro-
gramming language level, just‐in‐time compilation, for example, through torchscript, can speed up certain op-
erations. And more generally, data loading can be optimized through asynchronous techniques, clever caching
and parallelization.

Future work may also explore the applicability of the neural network solvers for inverse modeling, that is inferring
surface fluxes from observed atmospheric measurements. The implementation of the neural networks is fully
differentiable, which opens new avenues for obtaining the sensitivities required for the inversions. Furthermore,
SwinTransformer already displays high stability in surface layers over at least 3 year forward runs and matches
TM5 accuracy at measurement stations, which underlines its suitability as a forward model for inverse modeling,
to be explored still is the robustness of its tangent‐linear or adjoint, which would be required for variational
inversions. Additionally, some inverse modeling approaches rely on the creation of large ensembles. Since neural
networks natively support batched processing, there is potential for speed ups (generating a full ensemble can be
as cheap as a single forward run).

Data Availability Statement
We construct the CarbonBench data set from existing open data from CarbonTracker North America version
CT2022 (Jacobson et al., 2023) (http://doi.org/10.25925/z1gj‐3254) and from ObsPack GLOBALVIEWplus CO2
v9.1 (Schuldt et al., 2023) (http://doi.org/10.25925/20231201). We provide code that downloads the data effi-
ciently from the original data providers and processes it into the formats used in this study, yet in line with the
original data licenses we do not re‐distribute the data. The software to run all our experiments and reproduce the
results in this paper is archived in Benson (2024). The code consists in the CarbonBench Python repo (https://
github.com/vitusbenson/carbonbench), with the deep neural networks implemented in the Neural Transport
Python library (https://github.com/vitusbenson/neural_transport), a versatile software package containing data
set creation, data loading, training and evaluation routines intended to be easily usable in other research projects.
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