Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantum enhanced balanced heterodyne readout for differential interferometry

MPG-Autoren
/persons/resource/persons202939

Junker,  Jonas
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons216226

Wilken,  Dennis
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4315

Heurs,  Michele
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2401.04940.pdf
(Preprint), 870KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gould, D. W., Adya, V. B., Chua, S. S. Y., Junker, J., Wilken, D., McRae, T. G., et al. (2024). Quantum enhanced balanced heterodyne readout for differential interferometry. Physical Review Letters, 133(6): 063602. doi:10.1103/PhysRevLett.133.063602.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-BD82-9
Zusammenfassung
Conventional heterodyne readout schemes are now under reconsideration due to
the realization of techniques to evade its inherent 3 dB signal-to-noise
penalty. The application of high-frequency, spectrally entangled, two-mode
squeezed states can further improve the readout sensitivity of audio-band
signals. In this paper, we experimentally demonstrate quantum-enhanced
heterodyne readout of two spatially distinct interferometers with direct
optical signal combination, circumventing the 3 dB heterodyne signal-to-noise
penalty. Applying a high-frequency, spectrally entangled, two-mode squeezed
state, we show further signal-to-noise improvement of an injected audio band
signal of 3.5 dB. This technique is applicable for quantum-limited
high-precision experiments, with application to searches for quantum gravity,
gravitational wave detection and wavelength-multiplexed quantum communication.