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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Screening of pesticides identified po-
tential risk factors for the development
of synucleinopathies.

• In a yeast cell model, cymoxanil and
metalaxyl caused aSyn mislocalization,
leading to aggregation in the cytoplasm.

• Cymoxanil and metalaxyl promoted the
formation of aSyn inclusions in a
mammalian cell aggregation model of
synucleinopathies.

• Both cymoxanil and metalaxyl were
found to decrease cell viability and to
increase the number of apoptotic cells.
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A B S T R A C T

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and
the presence of Lewy bodies, which predominantly consist of aggregated forms of the protein alpha-synuclein
(aSyn). While these aggregates are a pathological hallmark of PD, the etiology of most cases remains elusive.
Although environmental risk factors have been identified, such as the pesticides dieldrin and MTPT, many others
remain to be assessed and their molecular impacts are underexplored. This study aimed to identify pesticides that
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could enhance aSyn aggregation using a humanized yeast model expressing aSyn fused to GFP as a primary
screening platform, which we validated using dieldrin. We found that the pesticides cymoxanil and metalaxyl
induce aggregation of aSyn in yeast, which we confirmed also occurs in a model of aSyn inclusion formation
using human H4 cells. In conclusion, our approach generated invaluable molecular data on the effect of pesti-
cides, therefore providing insights into mechanisms associated with the onset and progression of PD and other
synucleinopathies.

1. Introduction

Pesticides are a diverse group of chemicals that are widely used for
pest control, including insecticides, herbicides, fungicides, and roden-
ticides (Bonner and Alavanja, 2017). While they have played a crucial
role in increasing food production and combating vector-borne diseases,
their indiscriminate and intensive use has led to environmental
contamination and adverse health effects (Carvalho, 2017; Nic-
olopoulou-Stamati et al., 2016). Concerningly, the global usage of pes-
ticides is projected to steadily increase by 0.5% every year, reaching 4.4
million tons by 2026. Despite mandatory risk assessments and safety
evaluation, lack of coherence between countries has resulted in con-
tradictory reports, and questionable “safe limits” (Tweedale, 2017).
Although occupational activity is the main source of pesticide exposure,
their widespread use in agriculture, homes, and public gardens puts the
entire population at risk. In fact, the European Food Safety Authority
(EFSA) has reported that many food samples consistently contain
pesticide residues above legal limits of maximum residue levels (MRLs)
(Richardson et al., 2019). Pesticides have also been detected in human
breast milk, which raises concerns about their impact on post-natal
development (Lu et al., 2015). Alarmingly, chronic exposure to even
low pesticide doses can lead to various health complications, such as
gastrointestinal, carcinogenic, respiratory, reproductive, endocrine, and
neurological disorders (Mostafalou et al., 2013). Indeed, environmental
contaminants such as pesticides as well as metals, and solvents have
been associated with the development of neurodegenerative diseases
(Cannon and Greenamyre, 2011; Chin-Chan et al., 2015; Kwok, 2010;
Shvachiy et al., 2023).

Several epidemiological studies associated exposure to dieldrin,
paraquat, rotenone, maneb, and ziramwith increased risk of Parkinson’s
disease (PD) (Cao et al., 2018; Freire and Koifman, 2012), part of a
heterogeneous group of disorders referred to as synucleinopathies (Kim
et al., 2014). In PD, there is a progressive loss of dopaminergic neurons
in the substantia nigra pars compacta (SNpc) and a decline of dopamine
(DA) levels in the striatal neurons. The onset and progression of PD
involve several cellular mechanisms, including oxidative stress, excito-
toxicity, impaired proteasomal and lysosomal pathways, and the for-
mation of intraneuronal eosinophilic inclusions known as Lewy Bodies
(LB) containing insoluble protein aggregates of phosphorylated tau
(p-tau) and amyloid beta protein (Aβ) (Ross and Poirier, 2004; Soto,
2003), but of mainly alpha-synuclein (aSyn) (Walker et al., 2019;
Breydo et al., 2012).

aSyn, encoded by the SNCA gene, is a small natively unfolded protein

expressed in presynaptic neuron terminals. Although its physiological
function is not fully understood, it has been established that it plays a
role in synaptic trafficking and vesicle budding, as well as SNARE
complex formation and DA release (Kim et al., 2014; Longhena et al.,
2017). Under normal physiological conditions, aSyn exists in a dynamic
equilibrium of monomers and helical oligomers (tetramers) but, in dis-
ease, it aggregates into insoluble fibrils (Longhena et al., 2017). The
exact triggers for this abnormal aggregation remain unclear, but muta-
tions, abnormal expression levels, truncation, dysfunction of clearance
pathways, and post-translational modifications are considered plausible
explanations. Another factor that can promote aSyn oligomerization is
exposure to pesticides, normally through oxidative stress,
ubiquitin-proteasome inhibition, mitochondria dysfunction, ROS accu-
mulation, and altered lipid metabolism (Antony et al., 2013). Rapidly
identifying environmental factors contributing to PD development is
therefore critical, given the current increasing exposure to such haz-
ardous contaminants.

Traditionally, neurotoxicity assessment is based on animal experi-
mentation, but this approach is expensive, time-consuming, and raises
ethical concerns. Yeast cells, on the other hand, are easy to use, genet-
ically tractable, and widely exploited in high-throughput studies and as
a primary drug-screening platform (Tenreiro and Outeiro, 2010; Ten-
reiro et al., 2017; Delenclos et al., 2019; Su et al., 2010). Of note, the
development of a “humanized yeast” model for synucleinopathies has
facilitated our understanding of the disease and the cellular processes
affected by aSyn. In yeast, aSyn overexpression results in
dose-dependent cytotoxicity: when 1 copy is expressed, aSyn is associ-
ated with the plasma membrane with no cytotoxic effect; when 2 or
more copies are expressed, aSyn localization shifts to the cytoplasm,
where it aggregates into vesicles analogous to LB, becoming cytotoxic
(Outeiro and Lindquist, 2003). The “S. cerevisiae toolbox” has already
provided insights into understanding PD pathogenesis by identifying
ER-to-Golgi trafficking defects, impairment of the quality control sys-
tems, as well as alterations in lipid metabolism, mitochondrial stress,
chronological life span, and induction of autophagy and mitophagy as
associated with aSyn aggregation and cytotoxicity (Outeiro and Lind-
quist, 2003; Gitler et al., 2008; Cooper et al., 2006; Sampaio-Marques
et al., 2012). Yeast expressing human aSyn has also been used in screens
to identify genes or chemical compounds that can reduce aSyn-induced
cytotoxicity, with the goal of uncovering novel treatments (Su et al.,
2010; Tardiff and Lindquist, 2013; Tardiff et al., 2014). Applying the
reverse principle, our research aims to identify pesticides that may
potentially contribute to the development and progression of PD. Our
results unveiled that cymoxanil and metalaxyl induced aSyn mis-
localization, leading to its aggregation in the cytoplasm, which was
further confirmed through a mammalian cell aggregation model. Thus,
we identified cymoxanil and metalaxyl as environmental risk factors for
the onset and progression of PD.

2. Materials and methods

2.1. Yeast strains

The Saccharomyces cerevisiae strains used in this study, along with
their respective genotypes, are detailed in Table 1.

To generate a strain harboring only 1 copy of the SNCA gene, a strain
with 2 genomic copies of the fusion GAL1pr-SNCA(WT)-GFP was mated

Table 1
List of S. cerevisiae strains used in this work.

Strain SNCA
gene

Genotype Source

W303 0 copies MATα (can1-100 his3-11 15 leu2-3112
trp1-1 ura3-1 ade2-1)

Euroscarf

W303
SNCA
(WT)-
GFP

2 copies MATa (ura3-1::GAL1pr-SNCA(WT)-
GFP URA3+ trp1-1::GAL1pr-SNCA
(WT)-GFP TRP1+)

Sancenon
et al. (2012)

W303
SNCA
(WT)-
GFP

1 copy MATa (ura3-1::GAL1pr-SNCA(WT)-
GFP URA3+)

This study
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with a wild-type strain of the opposite mating type. After sporulation
and tetrad dissection, a strain encoding only 1 copy of the SNCA gene
was isolated and selected based on genotyping results.

2.2. Growth conditions

Cells were grown overnight in an orbital shaker, at 30 ◦C, 200 rpm, in
Synthetic Complete (SC) medium [5.0 g/L ammonium sulfate
((NH4)2SO4), 1.7 g/L yeast nitrogen base w/o amino acids and w/o
ammonium sulfate ((NH4)2SO4), 1.4 g/L dropout mix lacking leucine,
histidine, tryptophan, and uracil; 0.4 g/L leucine; 0.08 g/L histidine;
0.08 g/L tryptophan; 0.08 g/L uracil] with 20 g/L of raffinose in a ratio
of flask volume/medium of 5:1. Cells were diluted in SC medium with
10 g/L of galactose for promoter induction, or 20 g/L of glucose for
promoter repression. Where indicated, cells were exposed to the pesti-
cides (Sigma-Aldrich) described in Table S1. Pesticides were stored in
light-protected aliquots and resuspended in dimethyl sulfoxide (DMSO)
immediately prior to usage. The DMSO concentration never exceeded
0.5% (v/v).

2.3. Microbroth dilution assay

A microbroth dilution assay was used to determine the minimum
inhibitory concentration of pesticides. Yeast cells from an overnight
culture grown in SC-raffinose (OD600nm between 1 and 2) were diluted to
an OD600nm of 0.05 in SC medium containing 10 g/L of galactose and
various pesticide concentrations. After incubation at 30 ◦C for 24 h,
OD600nm was measured using a microplate reader (Spectra max Plus
Molecular Devices).

2.4. Fluorescence microscopy

aSyn localization and aggregation was evaluated by fluorescence
microscopy (Leica Microsystems DM-5000B) with a 100× oil immersion
objective. Images were obtained with a Leica DFC350 FX Digital Camera
and processed with LAS X Microsystems software.

2.5. Cell line culture and transfection

Human neuroglioma cells (H4) were cultured in P75 flasks with Opti-
MEM I reduced serum medium (Life Technologies-Gibco) supplemented
with 10% fetal bovine serum (FBS; PAN-Biotech) and 1% pen-
icillin–streptomycin (PS; PAN-Biotech). Cultures were maintained in a
37 ◦C incubator with 5% CO2 and controlled humidity. For transfection,
approximately 80,000 cells were plated per well in a 12-well plate
(Costar, Corning) and allowed to grow for 24 h, after which the medium
was refreshed. Cell transfection was performed using Fugene, according
to the manufacturer’s recommendations (Promega). Briefly, 100 μL of
Opti-MEM I medium without FBS and PS was mixed with 3 μL of Fugene
and incubated for 5 min at room temperature (RT). Subsequently, 1 μg of
SynT and synphilin-1 DNA, at a ratio of 1:3, was added to the mixture
and incubated for 30 min at RT. A total of 100 μL of each mixture was
carefully dispensed dropwise into each well, and cells were further
incubated for 48 h. When required, cymoxanil and metalaxyl, dissolved
in DMSO immediately prior to use, were added 24 h post-transfection, in
final concentrations of 1, 10 or 20 μM. The DMSO concentration in all
cases was always lower than 0.1% (v/v).

2.6. Immunocytochemistry

Forty-eight hours after transfection, cells were washed with 1×
phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde
(PFA) for 30 min at RT. After fixation, cells were permeabilized with
0.1% Triton X-100 (Sigma-Aldrich) for 20 min at RT. Subsequently, a
blocking step with 3% bovine serum albumin (Nzytech) in 1 × PBS for 1
h was performed. Then, cells were incubated overnight at 4 ◦C with

primary antibody mouse anti-ASYN (1:1000, BD Transduction Labora-
tory), previously shown to be specific for ASYN (Masaracchia et al.,
2020; Dominguez-Meijide et al., 2021; Lázaro et al., 2014), which we
confirmed by Western Blot (not shown). The following day, cells were
washed and incubated with the Alexa Fluor 488 goat anti-mouse sec-
ondary antibody (Life Technologies-Invitrogen) for 2 h at RT. Finally, to
visualize cellular nuclei, the cells were stained with DAPI (Carl Roth) at
a dilution of 1:5000 in 1× PBS for 10 min. Subsequently, coverslips were
mounted onto SuperFrostR microscope slides, treated with Mowiol
(Calbiochem) and allowed to dry. The slides were then stored at RT until
further imaging and analysis.

2.7. Image acquisition and analysis

Images were acquired utilizing an epifluorescence microscope Zeiss
Axio Observer equipped with a 100× oil objective lens. A total of 30
images were acquired for each experimental condition, employing pre-
defined settings tailored to each staining protocol. For quantification of
the number and area of the aSyn inclusions, a “binary” black and white
image is required, where a threshold can be applied, and the inclusions
are differentiated from the background. Subsequent image analysis was
performed using the “Analyse particles” plugin in the Fiji open-source
software.

2.8. Quantification of aSyn inclusions

Transfected cells were assessed by examining the pattern of aSyn
inclusions and categorized into four distinct groups: cells devoid of in-
clusions, those with 1–4 inclusions, those harboring 5 to 9 inclusions,
and those displaying 10 or more inclusions. Results were expressed as
the percentage relative to the total count of transfected cells, obtained
from three independent experiments.

2.9. Quantification of apoptotic cells

Apoptotic cells were assessed by monitoring alterations in nuclear
morphology following DAPI staining, with a total of 300 cells counted
per condition. Results were expressed as the percentage of cells exhib-
iting characteristic nuclear morphology changes associated with
apoptosis. The results were obtained from three independent
experiments.

2.10. Cellular viability

Cellular viability was evaluated using the trypan blue assay. Briefly,
cells from each condition were collected, mixed with 0.4% of trypan
blue dye (1:1 ratio) and quantified through an automated cell counter
(Countess from Invitrogen). Results were subsequently standardized to
the control and expressed as the percentage of viable cells, as deter-
mined from three independent experiments.

2.11. Statistical analyses

Data were analysed using GraphPad Prism 5 (San Diego California,
USA) software and expressed as the mean ± SD of at least three inde-
pendent experiments.

3. Results and discussion

3.1. Screening of pesticides as potential risk factors for synucleinopathies

To identify pesticides that could potentially contribute to the onset
and progression of PD, we exposed a strain of S. cerevisiae harboring one
copy of the aSyn-GFP fusion gene to increasing concentrations of
different classes of pesticides. These encompassed organochlorine,
acylalanine, azole, urea, benzimidazole, allylamine, carbamate and

L. Amaral et al.
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phthalimide compounds (Table S1).
We assessed the cytotoxicity of pesticides by microbroth dilution to

establish the minimum inhibitory concentration (MIC), the lowest con-
centration that completely prevented visible growth of the strain.
Concurrently, we analysed aSyn localization and the formation of in-
clusions by fluorescence microscopy. To be considered a positive hit, the
pesticide should induce a shift in aSyn localization from the plasma
membrane to the cytoplasm and stimulate aSyn inclusion formation. The
tested pesticides exhibited diverse impacts on cell growth and aSyn
localization and inclusion formation, resulting in distinct phenotypes.
These outcomes were categorized into four groups (Fig. 1 and Table 2).

Group I pesticides, which includes dieldrin, metalaxyl and tebuco-
nazole, led to aSyn inclusion formation without inhibiting cell growth at
the tested concentrations. (Fig. 1 and Table 2). In group II, cymoxanil

and myclobutanil led to both cell growth inhibition and aSyn inclusion
formation, whereas carbendazim, terbinafine and oxamyl, classified as
group III, did not lead to either. Finally, folpet and fluconazole, in group
IV, inhibited cell growth but did not promote aSyn aggregation,
demonstrating that aggregation is not an unspecific effect of cellular
stress (Fig. 1 and Table 2). In summary, we found that cymoxanil,
metalaxyl, tebuconazole, myclobutanil and dieldrin increased aSyn ag-
gregation. Dieldrin led to a distinct pattern, with smaller aggregates and
mostly around the cell periphery even after exposure to the highest
concentration, while the other pesticides mostly led to larger inclusions
in the cytosol. We also observed that aggregation was not associated
with toxicity in all scenarios. This could be due to relatively low aSyn
levels (cells express only 1 copy of aSyn-GFP) or reflect a different nature
of aggregates (Alam et al., 2019; Stefanis, 2012; Perrino et al., 2019;
Raiss et al., 2016).

Tebuconazole and myclobutanil are known to affect the ergosterol
biosynthesis pathway, which can alter plasma membrane composition
(Lamb et al., 1999). Indeed, given the mode of action of azole com-
pounds (Kwok and Loeffler, 1993) and the fact that aSyn is a lipid-bound
protein (Outeiro and Lindquist, 2003), it would be challenging to
ascertain whether the observed phenotype resulted directly from an
effect on aSyn or was a secondary outcome resulting from plasma
membrane alterations, particularly in the case of tebuconazole, which is
a stronger inhibitor, and thus these pesticides were excluded from follow
up studies.

In all, we concluded that cymoxanil and metalaxyl may constitute
possible previously uncharacterized environmental risk factors for syn-
ucleinopathies and confirmed a predicted effect of dieldrin in increasing
PD risk through aSyn aggregation.

3.2. Cymoxanil and dieldrin induce dose-dependent formation of aSyn
inclusions in a yeast synucleinopathy model

Cymoxanil is an acetamide fungicide introduced in the 70s,
commonly used to combat downy mildew and late blight diseases in
various crops, either alone or in combination with other fungicides
(Genet and Vincent, 1999). While its precise biochemical mode of action
remains poorly understood, it is established that cymoxanil indirectly
affects nucleic acids and amino acid synthesis (Leroux, 1999) and

Fig. 1. The effect of pesticides on aSyn localization and formation of inclusions. S. cerevisiae cells harboring one copy of aSyn-GFP were grown in SC medium with 20
g/L of raffinose at 30 ◦C 200 rpm, diluted to an OD600nm of 0.05 in SC medium with 10 g/L of galactose in 96-well round bottom plates, and immediately exposed to
increasing concentrations of pesticides (diluted in DMSO), as well as a pesticide-free control. After incubation at 30 ◦C for 24 h, aSyn localization and inclusion
formation were analysed by fluorescence microscopy (Bar, 5 μm).

Table 2
Summary of the pesticides tested and respective phenotypes. The highest tested
concentration, the MIC, the lowest concentration inducing aSyn aggregation,
and the resulting phenotype of S. cerevisiae harboring one copy of the aSyn-GFP
are provided. A lack of growth inhibition or aSyn aggregation at the tested
concentrations is denoted by (− ).

Pesticide Maximum
concentration
tested (μg/mL)

MIC
(μg/
mL)

Minimum
concentration for
aSyn aggregation
(MAC) (μg/mL)

Phenotype

Tebuconazole 15 ─ 0.23 I. aSyn
aggregation
without growth
inhibition

Dieldrin 250 ─ 7.8
Metalaxyl 200 ─ 200

Cymoxanil 200 50 6.25 II. aSyn
aggregation
and growth
inhibition

Myclobutanil 200 200 6.25

Carbendazim 200 ─ ─ III. No aSyn
aggregation
and no growth
inhibition

Terbinafine 200 ─ ─
Oxamyl 250 ─ ─

Folpet 50 0.78 ─ IV. No aSyn
aggregation
and growth
inhibition

Fluconazole 200 50 ─

L. Amaral et al.
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inhibits cellular respiration (Ribeiro et al., 2000). We found that 50
μg/mL of cymoxanil inhibited cellular growth and aSyn inclusion for-
mation was already visible in cells exposed to the lowest concentration
of 6.25 μg/mL (Fig. 2, Table 2).

Metalaxyl is a broad-spectrum acylalanine fungicide that blocks the
incorporation of uridine into RNA, which consequently inhibits rRNA
synthesis (Fisher and Hayes, 1982). Although slightly persistent in the
environment, metalaxyl has been found in edible food and water. In fact,
46% of surface water samples were found to contain metalaxyl in

concentrations reaching 0.191 μg/L, above the EU Maximum Allowable
Concentration which is 0.1 μg/L (Allinson et al., 2015). Although met-
alaxyl neither inhibited yeast cell growth nor induced dose-dependent
aSyn formation in the concentrations tested, it promoted the forma-
tion of aSyn inclusions at the highest concentration (200 μg/mL) (Fig. 2,
Table 2).

As a control, we used the pesticide dieldrin, extensively linked to PD
(Richardson et al., 2006; Vale et al., 2003). This compound is a highly
lipophilic and persistent organochlorine insecticide known for its

Fig. 2. aSyn localization and inclusion formation upon treatment with cymoxanil, metalaxyl and dieldrin. S. cerevisiae cells harboring one copy of aSyn-GFP were
grown in SC medium with 20 g/L of raffinose at 30 ◦C 200 rpm, diluted to an OD600nm of 0.05 in SC medium with 10 g/L of galactose in 96-well round bottom plates,
and immediately exposed to cymoxanil, metalaxyl or dieldrin (diluted in DMSO), as well as a pesticide-free control. After incubation at 30 ◦C for 24 h, aSyn
localization and inclusion formation were analysed by fluorescence microscopy (Bar, 5 μm).

Fig. 3. Cymoxanil leads to intracellular accumulation of aSyn previously localized in the plasma membrane. S. cerevisiae cells harboring one copy of aSyn-GFP were
grown in SC medium with 20 g/L of raffinose at 30 ◦C 200 rpm, then diluted to an OD600nm of 0.1 in SC medium with 10 g/L of galactose. A) Cells were exposed
immediately to 12.5 μg/mL of cymoxanil for 24 h. B) aSyn expression was induced for 4 h in 10 g/L of galactose medium. Then, cells were maintained in the same
medium or transferred to 20 g/L of glucose to repress expression and exposed to 12.5 μg/mL of cymoxanil. In both conditions, cymoxanil was diluted in DMSO, and a
pesticide-free control was also added. After incubation at 30 ◦C, aSyn localization and inclusion formation were analysed by fluorescence microscopy (Bar, 5 μm).

L. Amaral et al.
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inhibition of the GABA(A) receptors, resulting in hyperexcitation and a
massive Ca2+ influx (Vale et al., 2003). Despite its ban in the USA in the
late-80s due to its adverse effects and persistence in the environment (up
to approximately 25 years) (Meijer et al., 2001), dieldrin continues to be
used in non-developed countries. Its continued presence in the envi-
ronment presents health risks to the general population due to its bio-
accumulative nature and persistence (Jorgenson, 2001). Although
dieldrin did not affect cellular growth at any of the tested concentra-
tions, it did induce aSyn inclusions at concentrations exceeding 7.8
μg/mL (Fig. 2 and Table 2).

3.3. Cymoxanil leads to intracellular accumulation of aSyn previously
localized in the plasma membrane

In yeast cells, human wild type aSyn typically undergoes intracel-
lular trafficking, and is delivered to the plasma membrane via the
secretory pathway (Dixon et al., 2005). Upon reaching the plasma
membrane, the N-terminal repeat region of aSyn binds to
detergent-resistant membrane domains known as lipid rafts (Zabrocki
et al., 2008). This process is vital, as any mutation in the N-terminus can
prevent aSyn from binding to the plasma membrane, thereby inhibiting
inclusion formation (Vamvaca et al., 2009). At non-toxic levels or in the
absence of any toxic treatment, aSyn remains localized in the plasma
membrane. However, our observation of large aSyn inclusions within
the cytoplasm after 24 h of exposure to cymoxanil, which has an un-
known mode of action, prompted us to investigate whether cymoxanil

directly induced the formation of aSyn inclusions or if it interfered with
the delivery of aSyn to the membrane. This interference could occur
through mechanisms such as the upregulation of aSyn expression or the
inhibition of the secretory pathway. To verify this hypothesis, aSyn
expression was induced in galactose-containing medium for 4 h (aSyn
expression) and then halted by switching to a glucose-containing me-
dium (aSyn repression). This transition was carried out immediately
before exposure to 12.5 μg/mL of cymoxanil (Fig. 3B). As a control, cells
were also maintained in galactose-containing medium during cymoxanil
exposure. After 4 h, we observed the presence of small aSyn inclusions in
both conditions. This observation suggests that cymoxanil indeed pro-
moted the formation of aSyn inclusions of protein that had previously
been localized in the plasma membrane.

3.4. Cymoxanil and metalaxyl induce formation of aSyn inclusions in a
mammalian cell aggregation model of synucleinopathies

In order to validate the findings obtained in our yeast screen, we took
advantage of a well-established model of aSyn inclusion formation based
on the co-expression of aSyn and synphilin-1, an aSyn-interacting pro-
tein (Masaracchia et al., 2020; Dominguez-Meijide et al., 2021; Lázaro
et al., 2014; Santos et al., 2022; McLean et al., 2001). In this model, we
co-transfected human H4 cells with synphilin-1 and a modified C-ter-
minal variant of wild-type aSyn named SynT (Masaracchia et al., 2020).
Cells were then exposed to increasing concentrations of cymoxanil and
metalaxyl (1, 10 and 20 μM) for 24 h. Afterwards, we assessed the

Fig. 4. Cymoxanil and metalaxyl induce formation of aSyn inclusions in a human cell model of synucleinopathies. A) Representative images of cells co-expressing
SynT and synphilin-1 treated with cymoxanil and metalaxyl for 24 h (Bar, 5 μm). B) Inclusion quantification. At least 40 cells were scored per experiment and
classified into different groups according to the number of aSyn inclusions. The data are presented as mean ± SD of 4 independent experiments. Asterisks (Two-Way
ANOVA **p < 0.01, ***p < 0.001 and ****p < 0.0001) depict significant differences relative to the control. C) Average area of the aSyn inclusions in cells positive for
aSyn expression. The data are presented as mean ± SD of 3 independent experiments. Asterisks (One-Way ANOVA * p < 0.05 and **p < 0.01) depict significant
differences relative to the control. D) Cell viability was assessed by trypan blue assay after 24 h of treatment with cymoxanil and metalaxyl. The data normalized to
the control are presented as mean ± SD of 3 independent experiments. Asterisk (One-Way ANOVA **p < 0.01) depict significant differences relative to the control. E)
Nuclear morphology was assessed by DAPI staining where 300 cells were counted per experiment after a 24 h treatment with cymoxanil or metalaxyl. The data are
presented as mean ± SD of 3 independent experiments. Asterisk (One-Way ANOVA **p < 0.01) depict significant differences relative to the control. F) Representative
images of cells displaying nuclear morphology changes associated with apoptosis upon treatment with cymoxanil or metalaxyl for 24 h (Bar, 5 μm). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

L. Amaral et al.
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presence of aSyn inclusions through immunocytochemistry. In this
analysis, at least 40 transfected cells were categorized into four groups
based on the number of aSyn inclusions (Fig. 4A and B) or size (Fig. 4C).
Our results showed that metalaxyl and cymoxanil affected aSyn inclu-
sion formation with different trends. All concentrations of metalaxyl
similarly decreased the percentage of cells lacking inclusions, and
increased inclusion size. Cymoxanil clearly increased inclusion number
and area depending on the dose, leading to a large increase in the per-
centage of cells with 1–4 inclusions, but not of cells with more than 4
inclusions. Furthermore, 20 μM of metalaxyl and, to a higher extent,
cymoxanil decreased viability (Fig. 4D). We also found an increase in the
percentage of cells displaying apoptotic nuclei with 10 μM of cymoxanil
and 20 μM of metalaxyl (Fig. 4E and F).

4. Conclusions

Our study illustrates how the versatile humanized yeast model can
provide significant insight into potential environmental factors associ-
ated with the development of synucleinopathies. Among the pesticides
examined, metalaxyl and cymoxanil emerged as candidates. In the yeast
model, cymoxanil triggered the formation of aSyn inclusions after 24 h
of treatment, through a shift in the localization of aSyn from the plasma
membrane to the cytosol. These findings suggest that cymoxanil has a
direct impact on the cellular dynamics of aSyn, promoting its mis-
localization and aggregation. To further underscore the significance of
our observations, we sought validation in a mammalian aggregation
model. Both metalaxyl and cymoxanil were found to induce aSyn in-
clusion formation, accompanied by a decrease in cell viability and an
increase in apoptotic cells, highlighting the detrimental effects induced
by the pesticides.

Collectively, our findings identified metalaxyl and cymoxanil as
potential risk factors in the development of synucleinopathies, including
PD. These results underscore the importance of further investigations
into the relationship between pesticides and neurodegenerative dis-
eases, providing valuable insights for future research and risk assess-
ment in the context of synucleinopathies.
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