Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Carrier Mobility of Strongly Anharmonic Materials from First Principles

MPG-Autoren
/persons/resource/persons301234

Quan,  Jingkai       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21413

Carbogno,  Christian       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2408.12908.pdf
(Preprint), 9MB

PhysRevB.110.235202.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Quan, J., Carbogno, C., & Scheffler, M. (2024). Carrier Mobility of Strongly Anharmonic Materials from First Principles. Physical Review B, 110(23): 235202. doi:10.1103/PhysRevB.110.235202.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-C2E5-3
Zusammenfassung
First-principle approaches for phonon-limited electronic transport are typically based on many-body perturbation theory and transport equations. With that, they rely on the validity of the quasi-particle picture for electrons and-phonons, which is known to fail in strongly anharmonic systems. In this work, we demonstrated the relevance of effects beyond the quasi-particle picture by combining ab initio molecular dynamics and the Kubo-Greenwood (KG) formalism to establish a non-perturbative, stochastic method to calculate carrier mobilities while accounting for all orders of anharmonic and electron-vibrational couplings. In particular, we propose and exploit several numerical strategies that overcome the notoriously slow convergence of the KG formalism for both-electronic and nuclear degree of freedom in crystalline solids. The capability of this method is demonstrated by calculating the temperature-dependent electron mobility of the strongly anharmonic oxide perovskites SrTiO3 and BaTiO3 across a wide range of temperatures. We show that the temperature-dependence of the mobility is largely driven by anharmonic, higher-order coupling effects and rationalize these trends in terms of the non-perturbative electronic spectral functions.