

View

Online


Export
Citation

TUTORIAL |  AUGUST 19 2024

Structural color in fruits: Biomaterials to inspire physical
optics 
R. Middleton   ; M. Sinnott-Armstrong 

APL Photonics 9, 081102 (2024)
https://doi.org/10.1063/5.0208528

 28 August 2024 12:05:26

https://pubs.aip.org/aip/app/article/9/8/081102/3308975/Structural-color-in-fruits-Biomaterials-to-inspire
https://pubs.aip.org/aip/app/article/9/8/081102/3308975/Structural-color-in-fruits-Biomaterials-to-inspire?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-5309-3517
javascript:;
https://orcid.org/0000-0002-1806-565X
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0208528&domain=pdf&date_stamp=2024-08-19
https://doi.org/10.1063/5.0208528
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2458993&setID=592934&channelID=0&CID=900861&banID=522001041&PID=0&textadID=0&tc=1&rnd=5112877236&scheduleID=2377566&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fapp%22%5D&mt=1724846726725967&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fapp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0208528%2F20119010%2F081102_1_5.0208528.pdf&hc=d4060281f8bbdb1659167e0c3cb60b3ae02bcc3c&location=


APL Photonics TUTORIAL pubs.aip.org/aip/app

Structural color in fruits: Biomaterials to inspire
physical optics

Cite as: APL Photon. 9, 081102 (2024); doi: 10.1063/5.0208528
Submitted: 15 March 2024 • Accepted: 12 July 2024 •
Published Online: 19 August 2024

R. Middleton1,2,3,a) and M. Sinnott-Armstrong4,5,6

AFFILIATIONS
1 Dresden University of Technology, 01069 Dresden, Germany
2University of Bath, Claverton Down, Bath BA27AY, United Kingdom
3University of Bristol, Beacon House, Bristol BS8 1QU, United Kingdom
4Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
5Department of Biology, Duke University, Durham, North Carolina 27708, USA
6Department of Chemistry, University of Cambridge, Lensfield Rd., Cambridge CB2 1EW, United Kingdom

a)Author to whom correspondence should be addressed: rm2950@bath.ac.uk

ABSTRACT
This Tutorial introduces structural color in fruits as a phenomenon of diverse optical materials. Originally best known in abiotic materials
and animals, structural colors are being increasingly described in plants. Structural colors have already inspired a variety of useful products,
and plants are especially attractive as models to develop new bioinspired technologies thanks to the comparative ease of working with them
compared with animal systems. Already, human-engineered structural colors modeled after plant cellulose-based architectures have shown
promising applications in colorants and sensors. However, structural colors include a far broader group of materials and architectures beyond
cellulose. Understanding the new and diverse structures that have recently been described in plants should provoke research into new bioin-
spired products based on plant optical structures and biomaterials. In this Tutorial, we focus on fruits as new structures have recently been
discovered, leading to new opportunities for bioinspired technologies. We bring together a review of optical structures found in fruits from a
physical optics perspective, with a consideration of each structure as an opportunity in bioinspired and biomimetic design.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0208528

INTRODUCTION

New technologies are constantly needed to tackle emerging
and endemic problems in a wide variety of fields, ranging from
textiles to healthcare, electronics, food and agriculture, renewable
energy, and environmental challenges. One source of such new tech-
nologies is the natural world itself. Technologies that incorporate
or are inspired by biological solutions to problems that organisms
encounter in their environment have many benefits, from inspir-
ing new ideas to utilizing materials that are sustainable, nontoxic,
and/or biodegradable. Color-producing materials are of particu-
lar interest, not only in the paints and cosmetics industries, but
also for their potential applications in other areas of technology
(e.g., sensing). In this field, structural color in nature is a powerful
model. The development of new colorful materials based on bio-
logical solutions requires both an understanding of the diversity of

structures produced in nature and the continual discovery of new
structures.

In this Tutorial, we discuss the history of colorful, bioinspired
materials and describe the optical properties of recently discovered
structural colors in plants. Although we include examples of struc-
tural color found in flowers and leaves, the focus here is on fruits and
other “dispersules” (e.g., cones, which are not botanically speaking
fruits but are also dispersed by animals). We aim to draw attention
to light–matter interactions in the diversity of complex hierarchical
materials found in unrelated species.

Structural coloration and bioinspiration

Since the earliest historic records, humans have used diverse
materials and technologies to color our world, from pigments for
painting and writing, to fabric dyes, to cosmetics applied directly
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to human skin. Many colorants developed by humans have relied
on heavy metals and are highly toxic both to human health
and to the environment,1 such as the use of arsenic to produce
green fabrics and wallpapers.2,3 Even today, many paints, col-
orants, and dyes are toxic to human health and/or the environ-
ment, leading to a continual need for sustainable, environmentally
friendly, and non-toxic options.4 The ability to produce color from
new materials—especially non-toxic and biodegradable materials—
promises to revolutionize colorants.

This need has led to new interest in characterizing the sources
of colors in the natural world as an avenue for designing new col-
orants. The two primary methods of producing color in nature,
pigments and structural colors, have different properties and asso-
ciated advantages and disadvantages. Pigments provide the major-
ity of coloration in nature, especially in plants, but they have
limitations. Pigments tend to fade over time5 and generally pro-
duce a broad-waveband reflectance peak and non-angle dependent
hue (although some pigments change color in different chemical
environments6). Although none of these features make pigments
unattractive for their primary applications, structural colors offer a
range of additional optical phenomena.

Structural color arises from the interaction between light and
nanostructures that vary in refractive index on a wavelength or
sub-wavelength scale, usually resulting in constructive interference.
These colors can produce a variety of optical effects, ranging from
iridescence, polarized light reflectance, as well as (in some cases)
close to full reflectance intensity of a single wavelength at a single
angle.

One of the most common types of photonic structures in
the biological world are layered materials, where light interferes
by reflectance from subsequent layers as the wave passes into the
material and is reflected at each refractive index boundary. The dis-
tance between adjacent layers defines the phase difference between
reflected light and, therefore, which wavelengths will constructively
or destructively interfere. Interference is defined by the material and
optical wavevector. Any periodic refractive index contrast can pro-
duce interference effects of this kind, including structures made of
a single material (e.g., helicoidal cellulose,7 which produces index
contrast through varying material orientation) or out of alter-
nating materials of differing refractive indices.8,9 In addition to
multi-layered structures, diffraction gratings (periodic ridges, where
diffraction occurs due to lateral interference between light waves
reflected from adjacent ridges) also occur.10,11

Although structural color is strongly associated with uniform
periodicities, the biological world is rife with structures that exhibit
differing degrees of disorder,12 which alters the optical effects that
a structure can produce. A relatively widespread class of structure
is photonic glass, in which the scattering centers are tightly packed
as with photonic crystals, but without ordered packing. Such archi-
tectures retain short-range order (defined by the distance between
scattering centers, which are all near-touching) but lose the long-
range order seen in a photonic crystal, meaning that coherent
interference can be observed from all directions. This architecture
has been identified as particularly widespread in bird feathers.13

Increasing disorder, both at the scale of separation between
individual refractive indices and in the longer-range orientation of
the whole architecture, serves to decrease the prominence of, and
broaden, the reflectance peak.14 Scattering in disordered systems

also introduces a blue shift in the reflectance spectrum.15 Where
there is a great deal of disorder, this increased reflectance of shorter
wavelengths results in the reflection of UV/blue color dominating
the coloration.16,17

From the perspective of designing new bioinspired technolo-
gies, structural colors have a variety of advantages over pigments.
Structural colors can be used to achieve the same colors as pig-
ments, as well as additional optical effects. For instance, the physical
parameters of many photonic structures can be tuned to reflect
essentially any hue,18 including spectacularly intense colors even
from very small quantities of material.19 The introduction of disor-
der into the system allows further tuning of the intensity and peak
of the reflected color to suit a variety of functions. Furthermore,
the same nanostructural architectures producing structural colors
can be constructed from many different materials, thus escaping the
need to use specific dye molecules or toxic ingredients and instead
allowing tuning of both color and material to the desired purpose.
The ability to make the same colors from a variety of materials also
means that such materials can potentially combine color with other
functions, such as responsiveness to external conditions like light or
temperature for use as sensors and in displays.20

This review

Although there are many non-biological structural colors (e.g.,
labradorite,21 sedimentary opals,22 and “thin film effects”23 like
oxide layers and oil films on water), many of the most stunning
colors are found in the biological world (Fig. 1). Perhaps the most
well-known of these are the feathers of birds24,25 and the cuticle of
beetles26 and butterflies.27 In this review, we present an overview
of existing research on structural colors in fruits. Structural col-
ors in fruits (see Table I) are of particular interest because their
evolutionary adaptations to multiple roles in nature suggest that
fruit structural colors may fulfill multiple functions simultaneously,
which could be exploited by humans in bioinspired designs. The
primary biological function of fruit colors is in visually attracting
animals to visit and eat the fruit, thereby removing and dispers-
ing the seed(s).28 However, the visual function is complex: fruits
not only attract legitimate seed dispersers, but also risk attracting
seed predators who destroy the seed.29–31 Fruit colors may also serve
alternative functions, such as protection against UV radiation.32

These multiple biological roles suggest strategies for engineering
colorants, which also integrate multiple functions, including more
subtle effects such as “hidden” non-visible (e.g., ultraviolet) wave-
lengths in addition to other human-visible colors, all produced by
the same material.33 Because the study of structural colors in fruits
is still in its infancy, new species and structures are being discovered
regularly, and new alternative functions that may serve as the basis
for bioinspired materials will likely continue to be discovered into
the future.

Here, we focus in particular on the physical optics of the three
main types of structural coloration in fruits: 1. helicoidal cellulosic
cell wall reflectors, 2. lipid layers embedded in the cell wall, and 3.
epicuticular wax coatings. For each material, we address the optical
mechanism, the biomaterials in which it occurs, how it may be iden-
tified, and what application it has in understanding and engineering
biomaterials.

APL Photon. 9, 081102 (2024); doi: 10.1063/5.0208528 9, 081102-2

© Author(s) 2024

 28 August 2024 12:05:26

https://pubs.aip.org/aip/app


APL Photonics TUTORIAL pubs.aip.org/aip/app

FIG. 1. Examples of structural colors from animals, plants, and human-made (non-biological) materials. (a) Artificial polymer opal,34 (b) 3d photonic crystals in the weevil
Pachyrhynchus congestus,1 (c) opal-type structures in the alga Cystoseira tamariscifolia,35 (d) artificial diffraction grating in a CD,36 (e) diffraction grating from the cuticle of
the beetle Serica sericea,37 (f) diffraction grating from the petals of the daisy relative Ursinia speciosa,10 (g) dichromatic sequins made from thin layers of extruded polymers
(plastics),38 (h) guanine multilayer reflector in the copepod Copilia mirabilis,39 (i) multilayer interference in the spikemoss Selaginella erythropus,40 (j) artificial helicoidal
CNC film,19 (k) helicoidal chitin in the beetle Chrysina gloriosa cuticle,41 and (l) helicoidal cellulose in the fruits of the marble berry Pollia condensata.42 Images in all panels
reproduced with permission from original sources. Additional photos (g) and (l) by authors.

TABLE I. List of known species with structural colors in their fruits as of the publication of this Tutorial, organized according
to the type of photonic structure. Here, we have divided multilayer reflectors into two categories: Bragg stacks (where the
chemical composition of the materials constructing the structure remains unknown) and lipidic reflectors (where lipids of
various types alternate with the cell wall).

Helicoidal cellulose

Pollia condensata, P. japonica
(Commelinaceae/Commelinales)

Vignolini et al.,42 Middleton et al.43

Margaritaria nobilis (Phyllanthaceae/Malpighiales) Kolle et al.,44 Vignolini et al.45

Multilayer

Elaeocarpus angustifolius (Elaeocarpaceae/Oxalidales) Lee46

Delarbrea michieana (Myodocarpaceae/Apiales) Lee et al.47

Multilayer (lipidic)

Viburnum tinus, V. davidii, V. dentatum, V. lautum
(Adoxaceae/Dipsacales)

Middleton et al.,9 Sinnott-Armstrong et al.,48 Devide49

Lantana strigocamara (Verbenaceae/Lamiales) Sinnott-Armstrong et al.32

Epicuticular waxes

Prunus domestica (including ssp. intermedia), P. spinosa
(Rosaceae/Rosales)

Middleton et al.17
Vitis vinifera (Vitaceae/Vitales)
Ribes sanguineum (Grossulariaceae/Saxifragales)
Vaccinium myrtillus, V. corymbosum (Ericaceae/Ericales)
Berberis aquifolium, B. darwinii, B. x stenophylla
(Berberidaceae/Ranunculales)
Juniperus occidentalis, J. virginiana
(Cupressaceae/Cupressales)
Abies koreana (Pinaceae/Pinales)
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Helicoidal cellulose

Helicoidal cellulose nanocrystals, laid down in a periodic pat-
tern, produce polarized reflection of blue light in several species
of fruits and seeds (Pollia sp., Margaritaria nobilis)42,45 as well as
in leaves.50 During synthesis of the plant cell wall, cellulose is laid
down over time.43,51 In some cases, the synthesis of that cell wall
forms pseudolayers, where cellulosic fibrils are laid down consecu-
tively with a regular angular offset to form a helicoidal arrangement
(Fig. 2).

Such helicoidal structures are found in the thickened cell walls
of surface cells in some structurally colored fruits [Figs. 2(a)–2(d)]
and leaves.50 In structural colors produced by helicoidal cellulose,
the periodicity of the helicoid corresponds to a wavelength of visible
light, producing resonance [Fig. 2(e)]. The rotation of the fibrils pro-
duces a repetitive spatial variation in refractive index, as the fibrils
themselves have anisotropic optical density, producing a single layer
element with every 180○ rotation. The resulting refractive index vari-
ation is, therefore, helical and as such structurally reflects only light
with a circular polarization that matches the handedness of the cel-
lulosic material and a wavelength that is twice the periodicity in the
material [Figs. 2(f) and 2(g)] (where the periodicity of the material
is here defined as the single layer element, in which fibrils rotate by
180○).

Helicoidal arrangements of plant cell wall fibrils are com-
mon in many plant cells, including in those that do not produce
structural color due to insufficient organization and quantity of
layers.52–55 Only in certain species are helicoids sufficiently peri-
odic with enough layers to reflect light; thus, the materials to build
this variety of structural color exist throughout plant cells but are
only elaborated upon in a few species’ fruits and leaves. Reflective
helicoidal cellulose was first identified in leaves,56–60 long before its
discovery in fruits of two distantly related genera, Margaritaria44,45

and Pollia.42,43 Other organisms, such as beetles and mantis shrimp,
also take advantage of helicoids to create color and other optical
effects.61,62

Identification of helicoidal materials used as a colorant in
nature is, in principle, straightforward because such helicoidal struc-
tures reflect circularly polarized light. Observation of materials that
reflect circularly polarized light indicates a helicoidal source. A prac-
tical method to identify circularly polarized materials in the field
is by viewing materials with “3D cinema glasses,” which show the
color through one circular polarization oriented differently in each
eye, which thus allows detection of left- and right-handed polarized
reflection. In nature, helicoidal cellulose always reflects left-
polarized light (with one exception, in Pollia condensata, where left-
and-right handed reflecting cells are interspersed63). Helicoids may
also be confirmed by electron microscopy, either through scanning

FIG. 2. Helicoidal cellulose has been identified in several species’ fruits. (a) Photo of Pollia condensata fruit and (b) light microscopy photo of P. condensata, showing
polarization of individual cells. Photos of additional species with similar helicoidal cellulose nanofibrils, including (c) Margaritaria nobilis45 and (d) Pollia japonica.43 (e)
Schematic showing the interaction of light with helicoidal layered cellulose, which results in polarized reflection of light. (f) TEM image showing helicoids in P. condensata. (g)
Reflectance measurements from individual cells of P. condensata, with some cells reflecting only left-polarized light (blue) and others only right-polarized light (red). Images
in panels (b),(e)–(g) reproduced with permission from Vignolini et al., Proc. Natl. Acad. Sci. U. S. A. 109(39), 15712–15715 (2012). Copyright 2012 PNAS. Photo credits: (a),
(c), and (d) from Middleton.
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electron microscopy (SEM) of cell wall cross sections, where the cell
wall can be dried without excessive damage, or through transmission
electron microscopy (TEM) of cell wall cross sections.57

Helicoidal cellulose nanocrystals (CNCs) extracted from (non-
reflective) cellulose fibers, typically from cotton,64 have already
served as the basis for engineered, colorful materials. CNCs self-
assemble from suspension to produce a colored helicoidal material,
which is flat unless disrupted or patterned. CNCs are very sta-
ble materials and demonstrate numerous potential applications of
helicoidal cellulose in sensors and colorants.65

Although this phenomenon has parallels with the biologi-
cally constructed helicoidal cellulose in the structurally colored
fruits mentioned here, there are key differences. In the lab, CNCs
self-assemble through passive coalescence of the low-energy state
arrangement of cellulose nanocrystals. In developing fruits, how-
ever, cellulose materials are laid down through an active control
process that is yet to be fully understood.66 The pattern of deposi-
tion in Pollia japonica has been confirmed by direct imaging of the
spectra reflected from the growing cell wall.43 Unlike the pure cel-
lulose crystals that form CNC materials, the cell wall also includes
other materials, such as lignin and hemicelluloses.67 Another key
difference between the helicoids found in CNC materials and those
in Pollia condensata fruits is the existence of right-hand circularly
polarized helicoids, which are not observed in the artificial analog.

It is thought that this handedness reversal may be produced by
additional material (along with hemicelluloses) acting as a guide to
reverse the handedness.68 This has been hypothesized because cell
walls of left- vs right-handedness have different mechanical prop-
erties (which would not be true if the change in orientation were
simply a case of the same materials constructed symmetrically in the
opposite direction).63

Understanding the assembly of helicoidal cellulosic fibrils in
plant cell walls, as a phenomenon parallel to self-ordering heli-
coidal cellulose, might therefore provide insights into engineering
prospects for the material. Fruit cells, for instance, eliminate iri-
descence through hierarchical structuring: the cell walls are curved,
which reduces iridescence but retains reflectance in the blue region
of the visible spectrum. Artificial engineering incorporating micron-
scale curved architectures allows an engineered material to be
uniformly colored, rather than iridescent, particulates.69 Through
forming a curved cell wall, helicoidal structural colors achieve the
useful properties of being both non-iridescent and particulate, which
allows for direct coating of materials.64,70

Lipid inclusions in cell walls

A different type of multilayered structural color occurs in the
cell walls of several species’ fruits (Viburnum tinus, Lantana strigo-

FIG. 3. Layered lipid inclusions embedded in fruit cell walls has also been reported from several species. (a) Photo of Viburnum tinus fruit, along with (b) a light microscopy
image of V. tinus (scale bar = 200 μm). (c) Lantana strigocamara and (d) Viburnum davidii also produce similar layered lipid inclusions. (e) The structural colors of these
species are produced by layered lipid globules arranged as a multilayer reflector. (f) TEM imaging shows that the layers alternate between lipid globules and a cellulosic
matrix. (g) Average reflectance from V. tinus fruits demonstrates a peak in reflectance at ∼400 nm, in the blue region of the visible spectrum. Images in panels (b) and (g)
reproduced with permission. Photo credits: (c), (d), and (f): Sinnott-Armstrong.
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camara; Fig. 3). Similar-looking structures occur in Elaeocarpus
angustifolius46 and Delarbrea michieana,47 although whether the
globules are made of lipids or some other material remains unclear
in these species and as such we refrain from a full discussion of these
species here.

In V. tinus and L. strigocamara, globular lipid bodies
embedded within the cell wall9,48 produce a brilliant blue color
[Figs. 3(a)–3(d)]. The globular bodies are of a photonic lengthscale
(roughly 150–200 nm thick in these species) and alternate with a
matrix of a similar thickness [with some variation between species;
Figs. 3(e) and 3(f)]. Although the refractive index contrast between
the lipid globules and the cellulosic matrix is low, there is nonethe-
less sufficient contrast that the globular multilayer acts as a reflector.
In the species Viburnum tinus, in which lipid multilayer structures
were originally identified,9 the globules are arranged in layers with
a relatively consistent spacing [Figs. 3(a), 3(e), and 3(f)]. The layers
are well modeled as a multilayer with the introduction of significant
disorder that widens the reflectance peak over a wider wavelength
range, reduces its intensity with respect to the number of layers, and
increases the angular range over which the light is reflected. This
disorder is introduced in the material by the globular nature of the
layers and by the imperfect uniformity of the spacing of layers and
their orientation with respect to incoming light.

This same architecture has evolved multiple times in differ-
ent species.48,71 This is unusual because large quantities of similarly
sized lipid globules are rarely found within the cell wall itself.72,73

In each of these species, the architecture of the cell wall and glob-
ular multilayers is slightly different, producing similar overall blue
colors but with different perceptual characteristics (e.g., metallic vs
plastic-like). This biological diversity demonstrates that small modi-
fications to this basic photonic architecture can produce a variety of
hues and optical effects. To our knowledge to date, this lipid-based
multilayer reflector is restricted to fruits and has not been identified
in any other plant organ.

Without using electron microscopy methods to directly image
the fruit cell wall, the unequivocal identification of lipidic multi-
layer structures is more complicated than with helicoidal cellulose.
Differences between the color of pigments released from the plant
material and the color it appears suggest structural color. Differ-
ences in the appearance of coloration in reflectance and transmission
also suggest structural color. However, to confirm the presence of
architectures of the right lengthscale to produce structural color and
to characterize the structure itself, staining with osmium tetroxide
and TEM imaging of cross sections are necessary. Further chemi-
cal analyses can then be applied to identify the materials composing
the structure.74 This combination of optical characterization and
electron microscopy, alongside modeling of the observed structures,
can be used to understand whether the observed structures are the
source of structural color.

These structural colors arising from lipids embedded in the
cell wall are produced by 3D architectures, with limited iridescence
on the macroscale. The hierarchical architecture of these structural
colors, wherein multilayers occur within the larger structure of the
cell itself, allow for the production of variably saturated colors and
reflectances (appearing as “shine”) with the same basic structure
and materials. Its biological morphogenesis remains an open ques-
tion, along with how it might be reproduced artificially. Artificial
materials have not yet been engineered exploring this architecture

either using the same biomaterials or through replacement with
other materials in the two phases.

Epicuticular wax scattering

In what is likely the most common (but underreported) form of
structural color in fruits, epicuticular waxes (waxes on the surface of
the plant) can scatter light to reflect color (Fig. 4). In conjunction
with underlying absorbing pigments (which are generally neces-
sary in structural color to make the reflected light visible against
background scattering), this scattering effect can produce vivid col-
oration17 [Figs. 4(a)–4(d)]. In this case, a layer of wax particles
[Figs. 4(e) and 4(f)] external to the cuticle reflects light before it
enters the plant tissue. The wax layer is formed from a coating of wax
crystals that self-assemble on the surface of the cuticle.75 Epicuticu-
lar plant waxes are a diverse set of molecules and chemical mixtures,
encompassing n-alkenes, n-alcohols, and long-chain fatty acids, and
the chemical composition of epicuticular waxes can vary dramati-
cally species-to-species. The range of crystal shapes produced is also
highly varied, which provides opportunities for tunable coloration
depending on the crystal shape, density, and chemical composition.

Unlike helicoidal cellulose and lipid layers, thin, disordered
layers of epicuticular waxes are infiltrated with air. Light is scat-
tered by the highly disordered ultra-thin particle layer, although
without a periodic structure producing coherent interference. This
produces greater scattering intensity at shorter wavelengths, or a
UV-blue biased optical profile [Fig. 4(g)]. Unusually, it means that
the reflectance profile of these fruits has no peak in the visible
(or UV) portion of the spectrum (the maximum visible intensity
is defined by human or avian visual receptors). Despite this, they
are chromatically distinctive to both humans and birds with addi-
tional UV receptors.17 Other wax structures are known to produce
white or glaucous reflectance,76 but on UV-blue bloom fruits, the
structure produces chromatic coloration, due to the steepness of the
reflectance spectrum profile of the light scattered from their surfaces
and the dark pigmentation inside the outermost cells, which absorbs
the scattered light that passes through the wax layer. Epicuticular
waxes have evolved to produce UV-blue color on fruits at least seven
times,17 although it is clear that similar wax structures contribute to
the optical appearance of many more fruits,77 as well as leaves and
stems.78 Although bloom most often leads to UV-blue reflectance,
other geometries of epicuticular waxes can produce different colors.
For example, the gold sheen on Tradescantia leaves79 is produced
through thin film interference on oriented wax crystals.

Epicuticular wax is found on almost all the above-ground
surfaces of land plants80 and has highly variable chemistries as
well as hydrophobic and hydrophilic properties.81 This diversity of
chemistries and properties means that epicuticular waxes can serve a
variety of functions in different species. For instance, they contribute
to pest and infection defense82,83 as well as water management.84

Epicuticular waxes are also biocompatible and good stable stores
of carbon.85 These properties make them potentially useful in coat-
ings and sprays in food and crop husbandry, on outdoor surfaces, as
well as in coatings for medical devices and body-interfacing materi-
als.86 For identification, epicuticular wax is in general easily removed
from the surface through either mechanical abrasion or dissolution
in organic solvents. The color can also be eliminated through the
application of refractive-index matching oil to the surface. The wax
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FIG. 4. Epicuticular waxes are a common but underappreciated mechanism of altering plant, and especially fruit, colors. (a) Damson fruit (Prunus domestica) with high density
epicuticular waxes appears blue. (b) Blueberry wax in reflectance light microscope (scale bar 200 μm). (c) Blueberries (Vaccinium sp.) and (d) juniper berries (Juniperus
communis) also produce epicuticular waxes. (e) and (f) SEM images of epicuticular waxes from plum (Prunus domestica) and juniper berries. (g) Reflectance spectra from
different subspecies of wild and domesticated plums (P. spinosa/P. domestica) with epicuticular waxes, showing increasing reflectance into the UV (below 400 nm) region of
the visible spectrum. Images in panels (c) and (e)–(g) reproduced with permission from Middleton et al., Sci. Adv. 10(6), eadk4219 (2024). Copyright 2024 AAAS.

itself can be tested for pigmentation through dissolving and measur-
ing with a spectrophotometer. The spectral profile in blue-scattering
wax coatings is UV-blue biased with, in general, no spectral peak,
therefore also generally reflecting strongly in the UV—although
molecular UV-absorption in some cases reduces this effect.17

The crystals are self-assembled from the extrusion of the wax
compounds onto the surface, making epicuticular waxes a promis-
ing opportunity for artificial replication thanks to their self-assembly
to form complex morphologies. Some morphologies of wax have
already been replicated artificially,17,87,88 although in other waxes,
it remains an open question how the varied mixture of com-
pounds contributes to the repeated crystallization of nanostructures
of similar shape and size.

Other plant structural colors

Although we have focused here on fruits, other plant organs
also produce structural colors (Fig. 5). In flowers, the most com-
mon mechanism is diffraction gratings (surface corrugation on the
photonic scale) including a high degree of disorder, which produces
an iridescent blue/UV signal, which is salient to bee pollinators10,89

[Fig. 5(a)]. In the California poppy (Eschscholtzia californica), coni-
cal protrusions from the surface cells focus light on pigments in the
cytoplasm, thus enhancing the orange appearance of the petals.90

In buttercups (Ranunculus sp.), a double planar interface leads to
high specular reflectance and the characteristic intensity of the yel-
low color [Fig. 5(c); Ref. 91]. None of these phenomena have yet
been identified in any plant organ aside from flowers.

Leaves produce helicoidal cellulose stacks similar to those
found in some fruits57–60 [Fig. 5(d)]. However, some species produce
a type of structural color uniquely known in leaves, reflectance from
modified chloroplast-like organelles40,92–94 [Fig. 5(e)]. The func-
tional significance of leaf coloration and reflectance is much more
complicated to determine than in fruits or flowers, where color
serves as a signal to pollinators or seed dispersers.28 Leaf surfaces
fulfill a range of roles, primarily harvesting solar energy through
photosynthesis but also serving other functions such as protecting
against herbivory.95 Most of the structurally colored leaves reported
thus far occur in understory rainforest environments with low inten-
sity illumination,96 which suggests that there may be a common
environmental factor selecting for the evolution of structural color
in leaves.97 However, the exact link remains speculative.

One significant question that remains open is why almost all the
structural colors found in plants are blue, rather than other colors.
Theoretically, any wavelength of visible light could be produced by
nanostructures, yet the overwhelming tendency among plants is to
create only blue to UV hues, with few exceptions.33 One possibility
is that blue pigments are more energetically expensive to produce or
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FIG. 5. Other plant structural colors and optical effects. (a) Diffraction gratings occur in flowers, such as those of Hibiscus trionum.10 (b) Conical protrusions of cellulose
and cuticle in Eschscholtzia californica (California poppy) focus light on the lower wall of the cells, resulting in enhanced color and a silky appearance.90 (c) A double planar
interface produces high specular reflectance in buttercups Ranunculus repens.91 (d) Helicoidal cellulose, as seen in Pollia and Margaritaria species, also occurs in leaves,
such of those of Microsorum thailandicum.57 (e) Iridoplasts, modified chloroplasts, which reflect blue light and can change orientation in response to high or low light levels,
occur in some Begonia species.92 Images in panels (a)–(c) and (e) reproduced with permission from original sources. Photo credit: (d) Lundquist.

difficult to evolve than pigments producing other colors, resulting
in greater opportunity for blue structural colors to persist.97 Fur-
thermore, plants have pigments capable of producing green, red,
yellow, and orange hues (chlorophyll, anthocyanins, flavonols, and
carotenoids, along betalains in some groups of plants).98 The preva-
lence of these pigment-based methods of producing most other
colors may render structural color an unnecessary and expensive
method of producing colors that are already easy to evolve using
materials plants already possess. Reasoning from the perspective of
physical optics suggests that the addition of disorder tends to add
a blue contribution to the spectrum, meaning that disordered pho-
tonics can produce “pure” blue, but only mixed colors at longer
wavelengths.15 Both perspectives are reasonable and may contribute
to the prevalence of blue structural colors over other structural col-
ors. However, structures producing other hues are found in the
animal kingdom,26,99 so it is somewhat surprising that so few have
been identified in plants. The lack of non-blue structural colors in
plants may also partly result from limited research, rather than their
true lack in nature.

Engineering structural color

The most common, plant-derived biomaterial used in engi-
neering applications is cellulose and its derivatives.100 In the repro-
duction of cellulose nanocrystal helicoids, like those found in the
outermost cells of Pollia and Margaritaria fruits, cellulose nanocrys-
tals are suspended and then allowed to assemble to the low-energy
packing state, which produces a left-handed helix.19 Although CNCs
have also been coated onto a substrate using non-entropic assembly,
through spin-coating,101 the majority of applications have made use
of the self-assembling properties of cellulose nanocrystals, with tun-
able pitch lengths using charge properties of the crystals. However,
the use of CNCs has been extended further, into inkjet print-
ing,102 microfluidic encapsulation,103 infiltration and embedding in
other materials,104 and others.105 An important benefit of the CNC

material is its innate assembling properties, meaning that it permits
a bottom-up and therefore scalable approach.

In contrast, there has been very little exploration of the poten-
tial of reproducing the other fruit coloration strategies. Recrystalliza-
tion of waxes for coloration and other effects17 has been suggested,
and carnauba waxes are already used as a biodegradable and non-
toxic coating in food packaging,106 although the latter does not
utilize waxes for color production. The lipid globules encapsulated
in cell wall structures have had less attention, in part because their
discovery is still quite recent, but also because a widely known
self-assembling analog to these materials remains to be identified.

In order to use the photonic architectures found in fruits
as engineered materials, they need to be reproduced with either
top-down or bottom-up approaches or a combination of both. Engi-
neering approaches do not need to mimic the biological method
to constructing photonic materials, but understanding how plants
achieve the construction of such complex structures may stimulate
new engineering methods and ideas to produce similar structures
on a large scale. The synthesis of helicoidal cellulose in plant cell
walls is believed to occur by active biocontrol, not by passive self-
assembly.43 Microtubules are thought to guide the placement of
cellulose microfibrils, in what is effectively a vast parallelization of
a top-down approach to laying down cellulose into a helicoidal
arrangement.66 This parallelization means that the system as a whole
is functionally “self-assembling” from the perspective of the plant,
despite requiring some cellular machinery. This combination of both
top-down (through guided deposition of cellulose) and bottom-up
(through the self-assembly of CNCs) is particularly exciting for the
current state of the art in material engineering in part because it
means that abiotic controls (thermal, chemical, or through photonic
activation) can alter the color produced by the structure without
needing to change the system.107 Many such self-assembling biolog-
ical molecules work alongside active biological control to build up
complex architectures. By incorporating these self-ordering natural
materials for photonic engineering within scalable (and top-down)
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processes, we have the potential to access new realms of nano-
engineering.

The range of structural color produced synthetically is now
wide and continues to grow. Yet, many of these materials and meth-
ods for creating them have not made it into everyday use. The
transfer of technologies based on structural colors does carry some
constraints that differ from those of other plant products, such as
pigments. Some structurally colored materials require such different
handling to pigments that they cannot simply substitute pigments
in current manufacturing processes, and instead require rethinking
the manufacturing process in order to accommodate the proper-
ties of the structurally colored materials. Other structural colors
have restricted ranges of use (due to temperature- or mechanical-
robustness). A common issue for engineered structural color is that
they exhibit iridescence, which makes them unsuitable for use as
ordinary colorants. Structural colors found in fruits could be part
of a solution to this problem, as the effects we describe in this paper
are in general non-iridescent.

Many plant biomaterials have benefits with regard to biocom-
patibility and sustainability. Plants produce materials of incredible
strength, durability, flexibility, and adaptability to extreme environ-
ments. There have been valuable advances in developing structural
color from animal biomaterials such as chitin/chitosan, keratin,
melanin, and silk.108 As we have seen from animal-derived products,
the potential for biomaterials is great; we believe that the future of
plant science will continue to provide significant lessons and oppor-
tunities for engineers and physicists of all kinds. In particular, those
pursuing the development of producing durable, hardwearing, self-
replicating, responsive, and multifunctional materials have much to
learn from plant optical biomaterials.
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72D. Stępiński, M. Kwiatkowska, A. Wojtczak, J. T. Polit, E. Domínguez, A. Here-
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