English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Unveiling the evolution of structures and properties of wingceltis (Pteroceltis tatarinowii) phloem fibers throughout the traditional pulping process

MPS-Authors
/persons/resource/persons121255

Eder,  Michaela       
Michaela Eder, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chen, B., Eder, M., Kan, Y., Zhai, S., Ren, H., Mei, C., et al. (2024). Unveiling the evolution of structures and properties of wingceltis (Pteroceltis tatarinowii) phloem fibers throughout the traditional pulping process. Wood Science and Technology. doi:10.1007/s00226-024-01573-y.


Cite as: https://hdl.handle.net/21.11116/0000-000F-C581-0
Abstract
Xuan paper is a classic Chinese handmade paper with long history and has been listed as a national intangible cultural heritage since 2009, which is mainly composed of wingceltis (Pteroceltis tatarinowii) phloem fibers and straw fibers. Due to the unique properties of wingceltis phloem fibers, Xuan paper is spotless, flexible, stable, and durable, and is widely used by calligraphers, painters, or museums for restoration. Uncovering the variation of phloem fiber properties throughout the traditional pulping process is essential for a comprehensive understanding of the special performance of Xuan paper. In this study, chemical, structural, and mechanical characterization was conducted on the raw bark (phloem fiber), treated phloem fiber, and pulp fiber at different steps of the traditional pulping process for making Xuan paper. The compositional and morphological analysis revealed the effective removal of the matrix polymers, while the phloem fiber almost retained the original fiber structure during the traditional process. Wide-angle X-ray scattering results indicated that the relative crystallinity of cellulose increased and crystals expanded after the lime cooking and exposure to sun and rain. Compared to the raw phloem fibers, the ultimate stress and tensile stiffness of pulp fibers decreased by 24.35% and 9.79%, respectively. However, the fracture strain and fracture toughness of pulp fibers showed a drastic promotion, which might be attributed to the energy dissipation caused by the cell wall structure, the breaking and reforming of hydrogen bonds, and the slipping and rearrangement of cellulose microfibrils.