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How a closed system thermalizes, especially in the absence of global conservation laws but in the
presence of disorder and interactions, is one of the central questions in non-equilibrium statistical
mechanics. We explore this for a disordered, periodically driven Ising chain. Our numerical results
reveal inhomogeneous thermalization leading to a distribution of thermalization timescales within a
single disordered sample, which we encode via a distribution of effective local temperatures. Using
this, we find an excellent collapse without any fitting parameters of the local relaxation dynamics
for the entire range of disorder values in the ergodic regime when adapting the disorder-averaged
diagonal entanglement entropy as internal ‘time’ of the system. This approach evidences a remark-
ably uniform parametrization of the dynamical many-body evolution of local temperature within
the otherwise highly heterogeneous ergodic regime, independent of the strength of the disorder.

Introduction: Spatially heterogeneous relaxation dy-
namics towards equilibrium is a hallmark of nonergod-
icity, being found in paradigmatic settings of glasses
and jammed systems [1]. Such dynamical heterogeneity,
e.g., evidenced in the coexistence of different relaxation
timescales, can arise from spatial variations associated
with the presence of metastable states. This can lead
to global nonexponential decay of correlation functions
in time despite local exponential decay rates. Alterna-
tively, relaxation processes can be inherently complex
also, contributing to local nonexponential decay [2]. In
ergodic systems, such as supercooled liquids, even regions
of slower relaxation eventually thermalize [3].

In quantum systems undergoing unitary dynamics, the
nature of thermalization, or its absence, has been a focal
point of research in recent years [4–6]. Thermalization in
ergodic systems occurs, loosely speaking, as sub-system
density matrices evolve to a thermal state, with the re-
mainder of the system effectively acting as its bath. The
presence of disorder may impede thermalization, for in-
stance, by the emergence of a set of quasi-local integrals
of motion, resulting in emergent effective integrability
and non-ergodicity, a phenomenon dubbed many-body
localization (MBL) [4, 7–12]. In this parameter regime,
spatial and dynamical heterogeneity has been observed
in local entanglement measures [13, 14] as demonstrated
in models such as the XXZ spin chain. Indeed, entan-
glement can exhibit substantial spatial heterogeneity in
this regime, as indicated by the subvolume scaling of
the standard deviation of the cut-to-cut entanglement
entropy [15]. Because of the difficulty of studying the
real-time dynamics of disordered interacting quantum
systems, a definite consensus on the nature of this regime
has been slow to emerge, e.g., Refs. [16–29].

Here, we show that even the weakly disordered er-
godic regime can exhibit considerable spatial structure,
which we investigate in detail. We focus on a noninte-
grable driven disordered Ising chain without global con-
servation laws. While even weak disorder tends to slow

down relaxation, eventual thermalization can be remark-
ably robust [16]. We analyze thermalization after a sud-
den quench via the time evolution of the local subsystem
(inverse) temperature, βj(n), where j denotes a bond
involving two sites after n the time steps. The βj(n)
evolution reveals apparent glassiness in the sense of a
distribution of local relaxation timescales within a single
disorder configuration. Indeed, the time evolution of the
spatial and disorder averaged βj(n) shows well-developed
nonexponential behavior in finite-size numerical simula-
tion. With increasing disorder, we further observe mixed
dynamics, i.e., locally nonexponential decay of the βj(n)
accompanied by regions in space with exponential relax-
ation in time towards ‘infinite temperature’.

The broad distribution of thermalization times, even at
a single disorder value, suggests that relying on a single
time scale may not be sufficient. Relatedly, it is chal-
lenging to compare the time evolution between different
disorder realizations and, further, strengths. Here, we
propose a unified description employing the ensemble-
averaged diagonal entanglement entropy Sd(t) to mon-
itor the dynamical evolution of βj(n) across the entire
ergodic regime. This extends the framework introduced
by Evers et al. [28] for non-driven systems, which used
the average entanglement entropy to track particle den-
sity imbalance decay. We find a straightforward data
collapse of the evolution of average inverse temperature
for several disorder values, offering a homogeneous per-
spective on thermalization dynamics despite its inherent
heterogeneity. While previous work [28] required extra
fitting parameters to obtain a scaling collapse, our in-
trinsic parametrization of time obviates this need.

Driven Ising Model: The time-dependent Hamilto-
nian of this periodically driven system is defined as,

H(t) =

{
2Hx if 0 < t < T

2

2Hz if T
2 < t < T,

ar
X

iv
:2

40
3.

08
36

9v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  1

3 
M

ar
 2

02
4



2

FIG. 1. Stretched exponential decay of the average local tem-
perature β(n) with Floquet time step n. The line indicates
a stretched exponent fit: A exp[−(t/τ)α)]. The correspond-
ing values of the thermalization time τ(L) and the stretched
exponent α(L) are provided in the legend for L = 20. Lower
panel: Spatiotemporal inhomogeneity of the evolution of lo-
cal bond temperature βj(n) as defined in Eq. (2) for different
values of Γ = 0.7, 0.6, 0.5 as a function of log(n) for a typical
disorder configuration. The white coloring represents infinite
temperature (βj=0).

Hx =

L∑
i=1

gΓσx
i ,

Hz = J

L−1∑
i=1

σz
i σ

z
i+1 +

L∑
i=1

(h+ g
√
1− Γ2Gi)σ

z
i , (1)

σx
i and σz

i are the Pauli matrices on site i. We follow the
standard parametrization of the model, see Refs. [30–
32]. The interaction strength J = 1 and g, h and T are
0.9045, 0.8090 and 0.8, respectively. Such a parametriza-
tion is motivated by the clean static model, where strong
thermalization is obtained with these parameter values
for system sizes readily accessible in exact diagonaliza-
tion studies [33]. The longitudinal field is disordered
and chosen from a Gaussian distributed random vari-
able Gi with zero mean and unit variance. The Γ con-
trols the disorder strength, and the model is believed to
have an MBL transition at Γ ≃ 0.3 [30, 31]. The strobo-
scopic time evolution is performed with Floquet operator
UF(T ) = e−iHxT/2e−iHzT/2 using a Hadamard transfor-
mation, see Ref. [31] for further details. The initial state
for these calculations is the Néel state |1010 . . .⟩.
Local temperature: The local temperature βj(n) is de-

fined for each bond by minimizing the Frobenius norm
distance between the canonical density matrix e−βjHb ,

and the sub-system density matrix ρbj ,

minβj

∣∣e−βjHb − ρbj (n)
∣∣ , (2)

with Hb(j) = σz
jσ

z
j+1 + hj/2σ

z
j ⊗ 12×2 + hj+1/212×2 ⊗

σz
j + {z ↔ x, hj ↔ gj} is the local bond Hamilto-

nian with hj , gj being the local fields, and ρbj (n) =
TrL−{j,j+1} |ψ(n)⟩⟨ψ(n)| is the reduced density matrix

for that bond. The norm is defined as |A| ≡ tr(
√
A†A).

We expand the definition of β from Ref. [34] to the time
domain. This approach includes the time-evolved wave-
function’s structure through the sub-system density ma-
trix. It is important to note that the precise value of
βj(n) is contingent upon the chosen definition of norm,
as examined in detail in Ref. [34].
(Non-)Exponential Heating: An interacting driven

system heats to an infinite temperature featureless
state [35, 36]. The heating rate τ generally depends ex-
ponentially on the drive frequency, τ ∝ exp(ω/J) for
ω/J ≫ 1, where J is a microscopic energy scale [37–40].
In the presence of disorder, it has been seen that the
(average) heating slows down considerably [31, 41–44].
As shown in Fig. 1, the time evolution of the disorder
and spatially averaged (indicated by the overline) β(n)
indeed exhibits a stretched exponential decay, with the
decay exponent inversely correlated to the strength of the
disorder, similar to the decay of the correlation function
as reported earlier in Refs. [27, 31, 45]. A pronounced
finite size effect is also observed and shown in the Ap-
pendix.
The lower panel of Fig. 1 highlights the spatially inho-

mogeneous evolution of βj(n) for a given disorder config-
uration for several Γ values. The upper panel of Fig. 2
shows βj(n) at different locations for a single disorder
configuration. For weak disorder, Γ = 0.7, thermali-
sation is exponential everywhere, e−n/τj , however with
spatially varying τj . The |βj(n)| decays to ∼10−3 for
L = 20, and is expected to vanish in the thermodynamic
limit. With increasing disorder, the variation in τj in-
creases, and for even stronger disorder Γ = 0.45, the
heating becomes slow, possibly as a stretched exponen-
tial (see Fig. 2(c)). Even there, a few subsystems still
exhibit fast thermalization, i.e., an exponential decay of
|βj(n)| in time, n. This distribution of thermalization
time scale is reflected in a stretched exponential decay,
e−(t/τ)α =

∫
duP (u)e(−t/u), of the average β(n) as high-

lighted in Fig. 1 with a timescale that increases, and an
exponent α which decreases, with increasing disorder.
Thermalization time: Fitting each βj(n) trace is im-

practical because of fluctuations in the data and uncer-
tainties associated with the fit. We instead extract a local
decay time τj via

τj :=

∫ T

0
n|βj(n)|dn∫ T

0
|βj(n)|dn

. (3)
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FIG. 2. Time evolution of local inverse temperature |βj(n)| at different locations, j, for several disorder values Γ =
0.6, 0.5, 0.4, 0.45 for L = 20. Log-linear scale highlights exponential decay at large Γ for a typical disorder configuration.
With decreasing Γ, the thermalization time increases. For the small value of Γ = 0.45, the curves appear to fall into two groups
characterized by rapid and slow decay rates.

Concretely, the pure exponential |βj(n)| ∝ e−n/τ ′
j yields

τj = τ ′j+T/(1+e
T/τ ′

j ) → τ ′j for sufficiently large number
of Floquet time steps T . Indeed, for the larger Γ = 0.7,
the individual samples show exponential decay within the
simulation time window. With decreasing Γ < 0.5, not
all the traces of βj(n) show pure exponential decay; in-
stead, there is mixing of both exponential and stretched
exponential decays (Fig. 2, right panel). This affects the
calculation of the decay time as defined in Eq. (3), and we
refrain from doing this analysis for smaller values of the
Γ, i.e., larger disorder values close to the putative MBL
transition. In this regime, the simple way of describ-
ing the exponential heating dynamics using the Fermi-
Golden rule [40, 46, 47] is probably inapplicable, and one
might need to go beyond this perturbative treatment.

Figure 3 shows the τj distribution in the ergodic phase
for Γ = 0.7, 0.6, 0.5. A pronounced exponential tail is ob-
served for all the disorder values, with a plateau forming
at smaller Γ, revealing a broad distribution of timescales.
At Γ = 0.5, significant finite size and time effects are ev-
ident (see also Appendix), suggesting the need for larger
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FIG. 3. Probability distribution of the local thermalization
time τj for system sizes L = 18, 20, 22, and disorder values Γ =
0.7, 0.6, 0.5. The distribution is broad with an exponential
tail. For smaller Γ = 0.5, the distribution shows strong finite-
size effects. Typically, ∼ 2.5×103 disorder configurations are
used for these distributions.

system sizes L ≳ 22 to observe thermalization in all parts
of the sample.
For the largest system L = 22, the P(τj) shifts towards

the origin compared to smaller system sizes, indicating
a slow flow of the full distribution towards shorter ther-
malization time.
Density matrix evolution: Having established a rel-

atively broad distribution of τj , resulting in a stretched
exponential decay of the spatially averaged βj(n) (Fig. 1),
we now provide an entanglement perspective to the ther-
malization process. Figure 4 shows a typical evolution of
the half-system density matrix |ρnn′ |/max(ρnn′) for dif-
ferent evolution times, n, for Γ = 0.7, which becomes
thermal at these times. This behavior is representative
of all samples reaching thermal equilibrium.
Diagonal entanglement entropy: The entanglement

entropy is defined as, SE = −Tr
(
ρA log ρA

)
, where ρA

is the reduced half-system density matrix. At long time,
for the ergodic system, SE reaches the Page value i.e.,
SE = L/2 log(2) − 1/2 [48]. In this regime, the diagonal
elements ρAkk dominate; these scale as ρAkk ∝ 1/

√
D, while

the off-diagonal terms are suppressed as
√
D1/2 [49],

where D = 2L is the Fock space dimension. The diagonal
entropy in this basis is

Sd = −
∑
k

ρAkk log ρ
A
kk. (4)

For a Haar random state, ρAkk ∝ 2−L/2, therefore Sd ∝
(L/2) log(2), the volume law scaling for ergodic systems.
Further, the diagonal entropy can be expressed in terms
of the participation entropy SP = 2Sd (see Appendix

for details), where SP(n) = −∑D
j=1 pj(n) log pj(n), with

pj(n) = |⟨j|ψ(n)⟩|2 is the probability of occupation of
each spin basis state |j⟩, and |ψ(n)⟩ is the time evolved
wavefunction.
Therefore, Sd is an alternative measure of delocaliza-

tion in configuration space. Indeed, Ref. [50] showed that



4

0 32 64
k

0

32

64
k
′

S̃d = 0.648

n = 5

0 32 64
k

S̃d = 0.679

n = 10

0 32 64
k

S̃d = 0.691

n = 50

0.0

0.5

1.0

FIG. 4. Time evolution of the half-system density matrix
ρAkk′ (normalized such that its maximum value is unity) for
Γ = 0.7, L = 12 and for a typical disorder configuration. As
expected for a featureless random state, the diagonal elements
dominate over time as the system heats up. Additionally, the
diagonal entropy reaches maximum S̃d = Sd/(L/2) ≃ log(2),
as indicated in the figure.

for a pure state with few random non-zero elements rel-
ative to the dimension of the space, the scaling of Sd
with subsystem volume L/2 is exactly given by that of
its participation entropy SP.

Synchronized dynamics: The upper panel of Fig. 5
shows the time evolution of the disorder averaged x(n) =
−log βtyp(n) with Floquet cycle n for several values of
disorder Γ = 0.7 . . . 0.3. The typ. denotes the median
value of βj(n) across the bonds j. For intermediate disor-
der values, x(n) shows logarithmically slow propagation
(see, e.g., Γ = 0.45); however, with increasing time, it
accelerates as seen by the leftward bending of the curve
to eventual thermalization. Such bending happens at
progressively higher n with increasing disorder, and to
observe this at an even larger disorder, larger L is neces-
sary.

Most strikingly, when Sd is adapted as an ensemble av-
erage internal time of the system, we observe an excellent
collapse of the mean x(n) for several disorder values as
seen in Fig. 5. This collapse, requiring no fitting param-
eters, implies that the diagonal entropy Sd faithfully de-
scribes central aspects of the thermalization of the closed
system, such as the time to heat up to infinite tempera-
ture at finite disorder values. Concretely, disorder slows
down entropy production, thus delaying thermalization.
Once the simulation time is parametrized by the entropy
itself, the universal nature of the dynamics is revealed.

Conclusions: For the thermalization of a disordered
interacting Floquet system, we analyze the dynamics
of sub-system temperature βj(n) in the ergodic regime.
Generically, some blocks heat up faster than others, but
all blocks eventually thermalize, leading to a broad dis-
tribution of thermalization times. Blocks with long ther-
malization times are not particularly rare and may ex-
hibit either long exponential decay time constants or even
nonexponential decay. This distribution of time scales
leads to a slower decay of the spatial and disordered aver-
age inverse temperature βj(n), resulting in nonexponen-
tial heating over time in the ergodic phase, resembling
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FIG. 5. Time evolution of the disorder averaged typical in-
verse local temperature x(n) = −log βtyp(n) for several disor-
der values until the putative transition point Γc ≃ 0.3 and for
L = 20. The initial slow growth gives way to faster thermal-
ization at later n. This feature has yet to manifest for smaller
Γ. Below: The collapse of the evolution when diagonal en-
tropy Sd is adapted as an implicit measure of time, n, for the
above figure. Inset: The same data, plotted against the SP,
normalized with the Fock space dimension D.

the relaxation dynamics of classical glassy liquids. Ex-
ploring the connection between inhomogeneous thermal-
ization dynamics and the avalanche mechanism or many-
body resonances [25–27, 51–56], which predict stretched
exponential decay of correlation functions, is an obvious
avenue for further study.

Identifying diagonal entropy Sd as an internal system
time allows a collapse of the thermalization dynamics
across all the disorder values in the ergodic phase, reveal-
ing a remarkable, albeit hidden, homogeneity. The ther-
malization process involves shrinking off-diagonal matrix
elements of the density matrix. In this sense, the approx-
imation of time with diagonal entropy Sd measures the
heating rate along with the Fock space delocalization.

The prediction of any dynamical exponent is challeng-
ing due to limits imposed by finite time and system sizes,
as copiously noted in Hamiltonian models [16, 17, 28, 57–
60], disordered Floquet models [27, 31], and even in clean
models, where L ≳ 22 is often necessary to observe heat-
ing towards infinite temperature [47]. Indeed, there is
substantial variation in stretched exponents with increas-
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ing system sizes, particularly evident in two-point corre-
lators, and their fate even in the ergodic phase in the
asymptotic limit [31, 45] is at this point unclear. We
note that the data collapse we observe is largely inde-
pendent of system size and thus appears less afflicted by
finite-size effects.
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APPENDIX

Finite L dependence

Figure 6 upper panel shows the system size dependence
of the decay of the disorder averaged inverse local tem-
perature β(n). With decreasing Γ, i.e., increasing the
strength of the disorder, the L-dependence is more se-
vere for finite time simulations. The system thermalizes
quickly for larger Γ = 0.7, and the data shows less finite-
size corrections.

Estimation of decay time τj

Figure 6 lower panel shows the decay of βj(n) for two
typical disorder configurations for different values of dis-
order strength, and L = 20. The dashed line represents
the estimated curve using the decay time τj defined in
Eq. (3). The estimate of τj reasonably reproduces the de-
cay for pure exponential traces. When βj(n) shows non-
exponential decay for a stronger disorder, the τj gives
only a rough estimate as visible at smaller Γ ≳ 0.5.
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FIG. 6. Upper panel: L-dependence of the decay of β(n) with
n for different values of Γ = 0.7, 0.6, 0.5. Lower panel: Decay
of βj(n) for two typical disorder configurations. The dashed
lines show the curve corresponding to the estimated decay
times defined in Eq. (3).

Proof of SP = 2Sd

Here, we establish the relation between the Fock
space (FS) participation entropy SP and the diagonal en-
tropy in the FS basis defined in Eq. (4).

SP = −
2L∑
i=1

|ci(t)|2 log
(
|ci(t)|2

)
from the definition of the participation entropy. Now,
the probabilities, |ci(t)|2 can be written in terms of the
diagonal elements of the density matrix of the system,

ρ in the following way. We note, |ci(t)|2 = ci(t)c
∗
i (t) =

⟨i|ψ⟩⟨ψ|i⟩ = ⟨i|ρ|i⟩, where ρ = |ψ⟩⟨ψ| is the system’s
density matrix.

SP = −
2L∑
i=1

ρii log ρii

Here, we can decompose the i-th diagonal element of the
full density matrix, i.e., ρii, as a product of diagonal
elements of the sub-system density matrices.

ρii = ⟨i|ρA ⊗ ρB |i⟩
= ⟨j|⟨k|ρA ⊗ ρB |j⟩|k⟩
= ρAjjρ

B
kk (5)

here, |i⟩ = |j⟩|k⟩. Therefore,

SP = −
2L∑
i=1

ρii log ρii

=

2L/2∑
j=1

2L/2∑
k=1

ρAjjρ
B
kk log

(
ρAjjρ

B
kk

)
[using Eq. 5]

=

2L/2∑
j=1

2L/2∑
k=1

ρAjjρ
B
kk

(
log

(
ρAjj

)
+ log

(
ρBkk

))
=

2L/2∑
k=1

ρBkk

2L/2∑
j=1

ρAjj log
(
ρAjj

)
+

2L/2∑
j=1

ρAjj

2L/2∑
k=1

ρBkk log
(
ρBkk

)
= 2

2L/2∑
j=1

ρAjj log
(
ρAjj

)
= 2Sd (6)
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