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• UAV-derived phenology for 3099 in
dividuals and 74 Northern Hemispheric 
tree species

• High agreement with in-situ leaf 
unfolding and discoloration data (R2 =

0.49/0.79)
• Variations in the length of the growing 

season of up to two months
• Functional traits explaining interspecific 

phenological differences by up to 55 %
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A B S T R A C T

Tree phenology is a major component of the global carbon and water cycle, serving as a fingerprint of climate 
change, and exhibiting significant variability both within and between species. In the emerging field of drone 
monitoring, it remains unclear whether this phenological variability can be effectively captured across numerous 
tree species. Additionally, the drivers behind interspecific variations in the phenology of deciduous trees are 
poorly understood, although they may be linked to plant functional traits. In this study, we derived the start of 
season (SOS), end of season (EOS), and length of season (LOS) for 3099 individuals from 74 deciduous tree 
species of the Northern Hemisphere at a unique study site in southeast Germany using drone imagery. We 
validated these phenological metrics with in-situ data and analyzed the interspecific variability in terms of plant 
functional traits. The drone-derived SOS and EOS showed high agreement with ground observations of leaf 
unfolding (R2 = 0.49) and leaf discoloration (R2 = 0.79), indicating that this methodology robustly captures 
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phenology at the individual level with low temporal and human effort. Both intra- and interspecific phenological 
variability were high in spring and autumn, leading to differences in the LOS of up to two months under almost 
identical environmental conditions. Functional traits such as seed dry mass, chromosome number, and continent 
of origin played significant roles in explaining interspecific phenological differences in SOS, EOS, and LOS, 
respectively. In total, 55 %, 39 %, and 45 % of interspecific variation in SOS, EOS, and LOS could be explained by 
the Boosted Regression Tree (BRT) models based on functional traits. Our findings encourage new research 
avenues in tree phenology and advance our understanding of the growth strategies of key tree species in the 
Northern Hemisphere.

1. Introduction

Plant phenology is an important indicator of the ecological impacts 
of climate change (Cleland et al., 2007; Menzel et al., 2020; Piao et al., 
2019) and influences essential functions of terrestrial ecosystems such as 
photosynthetic activity (Keenan et al., 2014; Piao et al., 2007; Tang 
et al., 2016) or evapotranspiration (Gaertner et al., 2019; Kim et al., 
2018). Spring phenology is primarily controlled by temperature 
(Ettinger et al., 2020; Flynn and Wolkovich, 2018; Menzel et al., 2006) 
and shows mostly advancing trends in the northern hemisphere due to 
global warming in recent decades (Melaas et al., 2018; Menzel et al., 
2020; Vitasse et al., 2022). In contrast, autumn phenology is slightly 
delayed with global warming, but the responses are much more het
erogeneous (Garonna et al., 2016; Piao et al., 2019) and the drivers are 
still not fully understood (Gill et al., 2015; Kloos et al., 2024; Lu and 
Keenan, 2022; Zohner et al., 2023). Offsetting the onset dates of spring 
and autumn phenology against each other, the growing season length 
(phenological season; Körner et al., 2023) can be obtained.

In analyses of both trends and drivers for spring and autumn 
phenology, as well as the resulting growing season length, phenological 
variability is a frequently underestimated factor. For example, in twelve 
years of phenological observations in a North American forest (16 can
opy species), roughly six weeks of interspecific difference in budburst 
and almost three weeks of difference in leaf coloration were observed 
(Richardson and O’Keefe, 2009). Two years of in-situ budburst obser
vations in six deciduous tree species and a total of 825 individuals in a 
European woodland showed species-specific differences of up to 42 days 
(Cole and Sheldon, 2017). On the other hand, phenological variability 
can also be observed within tree species: Budburst, for example, has 
been observed to vary between individuals of Quercus petraea by up to 
26 days and the onset of senescence by up to 51 days between in
dividuals of Betula pendula at the same location. In general the autumn 
phenology seems to exhibit a higher intraspecific variability 
(Capdevielle-Vargas et al., 2015; Delpierre et al., 2017; Marchand et al., 
2020). The age and height of the trees play an important role in 
observing spring and autumn phenology for smaller and subcanopy in
dividuals in a stand (Augspurger and Bartlett, 2003; Gressler et al., 2015; 
Osada and Hiura, 2019; Uphus et al., 2021).

For trend- and driver-analyses in plant phenology, these forms of 
variability primarily translate into unexplained variance. From an 
ecological perspective, phenological variability may also constitute a 
major factor for resilience against extremes, e.g., late spring frost dam
age (Diez et al., 2012). Consequently, this inter-and intraspecific vari
ability is of great interest. The correlation of interspecific variation of 
phenology to biotic factors (and especially plant functional traits) could 
be used to get a better understanding of climate-resilient forest species 
and to open avenues to extrapolation of single species results. In the last 
decades, many studies have demonstrated the significance of functional 
traits for the onset dates of certain phenological phases of different, 
however mostly herbaceous species: In previous studies, for example, 
plant height (e.g., Horbach et al., 2023; Sporbert et al., 2022; Sun and 
Frelich, 2011), seed dry mass (e.g., Bolmgren and Cowan, 2008; Du and 
Qi, 2010; Segrestin et al., 2020), leaf area (Liu ZhiGuo et al., 2011; Sun 
et al., 2006) and leaf thickness (Craine et al., 2012; Horbach et al., 
2023), leaf area per leaf dry mass (specific leaf area, SLA; Bucher et al., 

2018; Bucher and Römermann, 2021; Horbach et al., 2023; Sporbert 
et al., 2022), leaf dry mass per leaf fresh mass (leaf dry matter content, 
LDMC; Horbach et al., 2023; Sporbert et al., 2022) and chemical prop
erties of the leaf such as phosphorus (P; Bucher et al., 2018), carbon (C; 
Bucher and Römermann, 2021; Sporbert et al., 2022) or nitrogen (N; 
Bucher et al., 2018; Craine et al., 2012; Sporbert et al., 2022) content 
were associated with different phenological phases. Less recognized 
traits in connection with plant phenology are the rooting depth (Dorji 
et al., 2013) and the diameter of the spring/xylem vessels (Lechowicz, 
1984; Panchen et al., 2014). Finally, Zohner and Renner (2017) revealed 
that the native region of a plant also has an influence on spring and 
autumn phenology and can therefore determine the length of the 
growing season.

However, to date, the link between onset dates of phenological 
phases, especially the beginning and end of the growing season, and 
functional traits has hardly been studied for deciduous tree species. On 
the one hand, this is because there are barely any sites with an adequate 
number of different tree species with mature individuals. On the other 
hand, the in-situ observation of different phenological phases and 
functional traits on the individual level is extremely time-consuming 
and resource-intensive. A relatively new approach for solving the 
phenological monitoring problem is the derivation of plant phenology 
via unmanned aerial vehicles (UAV): Various phenological metrics 
(especially SOS and EOS) can be monitored via drone images and the 
resulting spectral indices (e.g., Dandois and Ellis, 2013; Klosterman and 
Richardson, 2017; Kleinsmann et al., 2023). The main advantage of this 
method is that, compared to satellite remote sensing, the spatial reso
lution is much higher, and thus analyses at the individual level are 
possible. At the same time, a larger area and more individuals can be 
covered than with in-situ observations. Studies specifically analyzing 
deciduous tree phenology have received ambiguous but acceptable re
sults when comparing drone-derived phenology and the phenology 
deduced from other data sources such as in-situ observations or satellite 
remote sensing (Berra et al., 2019; Berra and Gaulton, 2021). Only a few 
studies exist which evaluate the phenology of several deciduous tree 
species via drone: Wu et al. (2021) combined PlanetScope and drone 
data for the autumn phenology of eleven canopy tree species in north
east China and found high agreement with phenocams, while Fawcett 
et al. (2021) showed understory effects in the drone-derived spring 
phenology of a heterogeneous ecosystem in the UK. These understory 
effects might also explain poor drone coverage of inter- and intraspecific 
spring phenological variability in a Japanese study (19 deciduous broad- 
leaved species; Budianti et al., 2021), whereas a follow-up study with 17 
species showed partly significant correlation between drone and 
ground-observed phenometrics (Budianti et al., 2022).

However, several research gaps appear: First, there are (to our 
knowledge) no analyses in the still young research field of drone 
monitoring that have tested whether realistic phenological data sets can 
be generated for a large number (>20) of deciduous tree species using a 
drone flight series. Second, there are hardly any studies available that 
systematically analyze the inter- and intraspecific variability of spring 
and autumn phenology and the length of the growing season for a large 
number of deciduous tree species at one site. As a result, there is little 
knowledge about the relationship or influence of functional traits on 
different phenological phases and metrics, such as SOS, EOS, or LOS, 
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especially for deciduous tree species. Applying a year-round drone 
monitoring of 74 deciduous tree species from the Northern Hemisphere 
with a total of 3099 individuals at a unique study site in southeast 
Germany, our study asks the following research questions:

1. Can the spring and autumn phenology, along with the resulting 
length of the growing season, of a diverse array of deciduous tree 
species at a single site be accurately determined using drone data and 
a universal method applicable to all species?

2. To what extent do the determined phenological metrics (SOS, EOS, 
LOS) vary between and within the individual tree species under 
almost identical environmental conditions?

3. Can the observed interspecific phenological variability be explained 
by functional traits of the respective tree species, and if so, which 
traits play a dominant role?

We hypothesize therefore that the phenological metrics SOS, EOS, 
and LOS for a diverse array of deciduous tree species at a single site can 
be accurately determined using drone data and a universal method 
applicable to all species, and the observed interspecific phenological 
variability can be partly explained by plant functional traits.

2. Materials and methods

2.1. Study site

The study was conducted in the “Weltwald Freising” (World Forest), 
which is located in southeastern Germany (48◦24′50″N, 11◦40′00″E; 462 
to 508 m a.s.l.; State Office for Digitization, Broadband and Surveying, 
2023; Fig. 1). The area of the forest is about 100 ha and >400 tree and 
shrub species of the Northern Hemisphere have been planted there since 

1987 (Rudolf, 2023). The arboretum is divided according to the conti
nental origin of the tree and shrub species. Species are planted in plots, 
each containing from a few single individuals to nearly 200 specimens of 
the respective species. Only deciduous tree species were selected for the 
analysis since their phenological phases are easier and more robust to 
detect using drone data than for evergreen species.

Most of the soils in the study area are deep, mixed substrates of 
Tertiary (gravels, sands) and Quaternary (loess loam) sediments, which 
have a high nutrient availability and water retention capacity. The 
regional climate is subatlantic to subcontinental, the mean annual 
temperature is 9.4 ◦C and the mean annual precipitation is 736 mm 
(2001–2020; DWD, 2024; Rudolf, 2023). In the observation year 2022, 
the mean temperature in the study area was 9.6 ◦C, and the annual 
precipitation total was 829 mm (for further details see Fig. S1; data 
provided by the Bavarian State Institute of Forestry). The climate in 
various parts of the forest should be homogeneous within the study area 
and between the individual continental areas due to the small differ
ences in altitude (see Fig. S2).

2.2. Data

2.2.1. Drone imagery
To observe the phenological development at the study site, flights 

with a Phantom 4 multispectral UAV (DJI, Nanshan, Shenzhen, China) 
at 100 m a.g.l. flight height with a ground sampling distance of 5–8 cm 
were planned twice per week in spring and autumn and once per week in 
summer in 2022. Due to limited optimal flight conditions we achieved 
27 flights in total. Images were taken once per second at the red (650 nm 
± 16 nm), near-infrared (NIR; 840 nm ± 26 nm), and RGB cameras at a 2 
MP resolution in NADIR position. The drone used an integrated dual- 
band high precision Real Time Kinematic (RTK) GPS with Networked 

Fig. 1. Map of Weltwald Freising. The areas marked in color represent the individual tree species plots, whereby the plots framed in white are the analyzed tree 
species plots within this study (for the selection criteria see Section 2.3.1; yellow: Asia; blue: Europe; red: North America; background map: Maxar, Microsoft; 
polygon data: Bavarian State Forestry, 2022).
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Transport of RTCM via Internet Protocol (NTRIP) network service to get 
a repeatable position accuracy (up to 0.1 m vertical and horizontal 
precision according to the manufacturer manual). To enhance accuracy 
further, at least five measured ground control points were placed in each 
flight area. The flight grid was set up with a frontal and lateral overlap of 
85 %. The orientation of the grid was set by the flight software auto
matically according to sun direction, sun angle, and date to avoid 
disturbance from sunlight on the camera sensor. This was important 
since flights were also conducted in early spring and late autumn with 
typically lower sun angles compared to summer months.

All settings were optimized for the highest flight speed and therefore 
to achieve largest coverage and avoid strong shadow movement. 
Optimal drone orthomosaics are usually generated under overcast and 
calm (no wind) conditions, as images with even illumination do not have 
any shadows and canopies are not blurred due to movement. Since such 
conditions are rare, flight days with uniform clear skies or overcast 
conditions and low wind speeds were targeted. The 8 flights were 
typically operated around noon with highest sun angle, in order to avoid 
long shadows. One flight lasted from 11 to 14 min and covered an area 
from 7.9 to 8.9 ha. The exact flight dates are listed in Table S1.

Before each flight, a picture of a calibration reflectance panel 
(AgEagle Aerial Systems Inc., Wichita, Kansas, USA) was taken since this 
was a requirement for the processing software PIX4d to calculate 
reflectance values for both spectral channels. The drone images were 
processed in PIX4d mapper Version 4.75 (Pix4D, Prilly, Switzerland) to 
generate RGB orthomosaics, Normalized Difference Vegetation Index 
(NDVI) maps, a digital terrain model (DTM), a digital surface model 
(DSM), and 3D point clouds. A custom configuration was used to process 
the images (Table S2) since the standard setting worked insufficiently 
with the drone cameras. The output resolution for all images was set to 
10 cm, except the DTM with 1 m resolution.

2.2.2. In-situ observations
For validation purposes, the phenology of selected tree species was 

observed from the ground in spring and autumn 2022. In spring, 45 of 
the 74 tree species observed with the drone were monitored from in-situ 
(Table S3). From the end of March to the end of May, the average 
phenological phase of each tree species was recorded plot-wise twice a 
week based on a categorical scale (Vitasse et al., 2013):

• 0: buds closed (no bud activity)
• 1: budburst (buds are open and leaves are partially visible)
• 2: leaf emergence (leaves fully emerged from the buds but are still 

folded, crinkled or pendant)
• 3: leaf unfolding (for each tree at least one leaf is fully unfolded)

For the validation of the drone-derived SOS, the date on which phase 
3 was observed for the first time from the ground was selected for each 
tree species.

In autumn, 27 of the 74 species monitored with the drone were 
additionally observed from the ground (Table S3). Between mid- 
September and early December, the degree of leaf discoloration and 
leaf fall of the respective tree species was estimated plot-wise twice a 
week in 10 % steps. For leaf discoloration, this included fallen leaves on 
the ground in the estimates. Therefore, the number of leaves hanging on 
the tree and immediately below was analyzed as a total and the pro
portion of discolored leaves was estimated accordingly. For validation 
with the drone-based EOS, the degree of leaf discoloration was finally 
interpolated at a daily time resolution and the date on which the pro
portion of discolored leaves for the first time reached at least 50 % was 
determined as ground-truth EOS. To validate the drone-derived 
phenology with the in-situ data, a simple linear regression was calcu
lated between the two data sets, and the associated coefficient of 
determination and p-value were defined. The mean difference between 
the two onset dates and the percentage of species exhibiting at 
maximum five days of deviation was used as a further evaluation 

measure for spring and autumn. Not all drone-monitored species were 
validated on the ground due to the extensive study area, which 
demanded significant time and personnel resources for on-site 
observations.

2.2.3. Functional traits
To explain differences in the interspecific variability of phenology in 

the study area as derived from drone flights, 13 functional traits of the 
tree species (Table 1) were included in the analysis, selected from an 
initial set of 23 numerical traits (Table S4). The age of the tree species 
was determined from planting dates provided by the Bavarian State 
Forestry (2022), whereas the mean tree height and crown area of each 
tree species were derived from the drone data (via crown extraction and 
selection, see 2.3.1). The number of chromosomes was determined for 
the individual tree species using the CCBD (Chromosome Counts Data
base; Rice et al., 2015) whereby the respective median was assigned to 
each species. In addition to the numerical traits, the continent of origin 
was included as a categorical trait variable for each tree species.

The other numerical traits were extracted from the TRY plant trait 
database (Kattge et al., 2020): Originally, a trait matrix with the trait 
measurements for all available species from the TRY database was 
created. The data were transformed into a normal distribution and then 
z-transformed. The gaps in the matrix were then filled using the 
Bayesian hierarchical probabilistic matrix factorization (BHPMF) gap- 
filling algorithm (Schrodt et al., 2015), which is based on probabilistic 
matrix factorization (PMF) and the taxonomic hierarchy of the plant 
kingdom. Subsequently, the matrix values were transformed back, and 
finally outliers were removed based on the z-transformation.

For 70 study species (Alnus rugosa, Carya tomentosa, Populus tricho
carpa, and Pterocarya fraxinifolia are not included in TRY), a mean value 
was then calculated for each trait and species from the individual values 
in the TRY data set. Based on the “stable species hierarchy” hypothesis, 
it can be assumed that although these mean values do not necessarily 
correspond to the values for the study area in absolute terms, the hier
archical arrangement of values between species should remain approx
imately the same (e.g., Kazakou et al., 2014; Cordlandwehr et al., 2013; 
Violle et al., 2015).

The final selection of numerical traits (Table 1) for the Boosted 
Regression Trees (BRT) analysis (Section 2.3.3) was based on two 
criteria: In the first step, all traits were selected for which a connection to 
plant phenology had already been established in the existing literature 
(see Table 1). In the second step, additional traits were included which 
showed a statistically significant correlation with the phenological 
metrics determined from the drone data (Table S4; Section 2.3.2).

2.2.4. Climate distances
To represent the climatic origin of each tree species, we combined 

species-specific distribution maps with so-called climate distances 
(Buras and Menzel, 2019). These climate distances represent conflated 
Manhattan distances of the 30-year climatology of 11 climate variables 
(e.g. growing season length, climatic water balance of the driest month, 
for details see Supplementary Table S2 in Buras and Menzel, 2019) 
representing the period 1961–1990. Climate distances were based on 
CRU TS (v 4.01; Harris et al., 2020) temperature data and GPCC pre
cipitation data (Schneider et al., 2011) which are available at monthly 
temporal and 0.5◦ spatial resolution. To represent the climatic distance 
of each species under investigation, we extracted the climate distances 
to the grid-cell representative of our study site (48.25◦N, 11.25◦E) for all 
terrestrial grid cells on Earth. Thus, the extracted values represent a 
measure of the dissimilarity of each grid cells’ climate to the climate in 
our study site. Further details on the derivation of climate distances are 
specified in Buras and Menzel (2019).

To assign a climate distance for each tree species, the distribution 
area of the respective species was determined. For European species, the 
distribution in terms of chorological maps (Caudullo et al., 2017) and 
relative probability of presence (RPP; de Rigo et al., 2016) were 
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obtained from the website of the Joint Research Centre of the European 
Commission. Synanthropic occurrences were excluded to keep the focus 
on the natural distribution of the species. Equally, we excluded frag
mented isolated occurrences to avoid including entire grid cells for the 
sake of only a few observations. For all other species, the GBIF (Global 
Biodiversity Information Facility, 2021) occurrence data were used. We 
limited our research to tree-species observations after 1900 and 
excluded species that did not occur in at least 100 grid cells considering 
a global resolution of 0.5◦ x 0.5◦. For the resulting 60 (of 74) individual 
species distributions, we extracted all climate distances for further 
processing. To avoid the effect of a large distribution area, we identified 
for each tree species the regions in the chorological map where the 
climate distance to the study area was within the lower 20 % quantile. 
Within these regions, we calculated the median of climate distances to 
the study area.

2.3. Methods

2.3.1. Extraction and selection of tree crowns
To extract phenology on an individual tree level, single tree canopies 

needed to be identified from the drone images. As input for the tree 
detection algorithms a canopy height model (CHM) was calculated from 
the difference between the DSM and the DTM. DTMs were constructed 
from the end of March (22nd and 28th) drone images, when all decid
uous trees had no leaves, and the ground was clearly visible. DSM was 
obtained from drone images at the end of July (27th) when all canopies 
were fully developed.

Treetops were detected by a variable window filter (Popescu and 
Wynne, 2004) using the vwf function in the R (R Core Team, 2022) 
package ForestTools (v.1.0.1; Plowright and Roussel, 2023). The algo
rithm detects local maxima, which correspond to a treetop, via a specific 
window filter size in the CHM. The window size was set by a height- 
dependent function, starting from 3 m to 8 m CHM height with a con
stant value of 1, growing windows with a linear function (height * 0.06 
+ 0.52) from 8 to 35 m CHM height and a final constant of 2.62 above a 
CHM height of 35 m. The function was derived by comparing different 
functions against a manually derived treetop map from a small subset 
area of the Weltwald from the CHM and the orthomosaic. All treetops 
below 5 m were ignored since these mostly included shrubs and/or 
saplings. In a further step, unrealistic and falsely detected treetops were 
removed, and missing treetops were added by comparing the tops with 
multiple orthomosaics from spring, summer, and autumn.

Crowns were segmented from the filtered treetops with the algorithm 
by Dalponte and Coomes (2016) using the R (R Core Team, 2022) 
package lidR (v3.1.0; Roussel et al., 2023; Roussel et al., 2020). The 
algorithm used a height threshold of 5 m, a growing threshold 1 of 0.35, 
a growing threshold 2 of 0.55, and a maximum amount of 90 pixels for 
the crown diameter of a detected tree.

After the extraction of the tree crowns for the study area, the canopy 
area (in m2) was calculated for all crowns. All individuals with a canopy 
area < 3 m2 were removed from the analysis to avoid tree crowns with a 
low pixel count. Within each plot, tree crowns were manually filtered, 
removing “non-circular” crowns (incorrectly determined by the algo
rithm, significantly longer than wide) from the final dataset. In addition, 
only crowns that were located within the planted plots and species 
(derived from Bavarian State Forestry, 2022) with a minimum number 
of five individuals within the plot were included in the analyses to 
ensure a higher representativeness of the results. In the last step, 10 cm 
(one pixel) reverse buffers were calculated around each tree crown to 
avoid overlaps and mixed pixels from two crowns. After the selection 
process, 74 tree species (Table S3) and 3099 individuals were included 
in the final analysis.

2.3.2. Extraction of phenological metrics
The extraction of the phenological metrics for the single trees was 

done in R (R Core Team, 2022) with the phenex package (v.1.4-5; Lange 

Table 1 
Functional traits used for analysis of interspecific variability in phenology. The 
table indicates their units, lists studies that have linked the relationship of the 
respective trait to a plant phenological phase, and summarizes the respective 
type of correlation. The table distinguishes between tree species (bold) and non- 
tree species (normal font) studies.

Plant trait Unit Link to plant phenology Correlation between 
trait and 
phenological onset 
date

Tree (plant) height m Horbach et al., 2023; 
Sporbert et al., 2022; 
Liu et al., 2021; 
Segrestin et al., 2020; 
König et al., 2018; 
Lauterbach et al., 2013; 
Sun and Frelich, 2011; 
Du and Qi, 2010; 
Bolmgren and Cowan, 
2008; Vile et al., 2006; 
Louault et al., 2005

Positive (all 
phenophases, 
especially flowering)

Leaf area mm2 Sporbert et al., 2022; 
Segrestin et al., 2020; 
Craine et al., 2012; Liu 
ZhiGuo et al., 2011; 
Sun et al., 2006

Positive (leaf 
unfolding) and 
negative (flowering, 
fruiting, senescence)

Leaf thickness mm Horbach et al., 2023; 
Craine et al., 2012

Negative (leaf 
unfolding and 
flowering)

Leaf area per leaf dry 
mass (SLA)

mm2 

mg− 1
Horbach et al., 2023; 
Sporbert et al., 2022; 
Bucher and 
Römermann, 2021; 
Bucher et al., 2018; 
König et al., 2018; 
Lauterbach et al., 2013; 
Sun and Frelich, 2011; 
Vile et al., 2006

Positive (fruiting) 
and negative (leaf 
unfolding)

Leaf dry mass per 
leaf fresh mass 
(LDMC)

g g− 1 Horbach et al., 2023; 
Sporbert et al., 2022; 
Bucher and 
Römermann, 2021; 
König et al., 2018

Positive (leaf 
unfolding) and 
negative (flowering)

Seed dry mass mg Sporbert et al., 2022; 
Liu et al., 2021; 
Segrestin et al., 2020; 
Craine et al., 2012; Du 
and Qi, 2010; 
Bolmgren and Cowan, 
2008; Vile et al., 2006; 
Louault et al., 2005

Negative (flowering)

Leaf N content per 
leaf dry mass

mg g− 1 Sporbert et al., 2022; 
Bucher and 
Römermann, 2021; 
Segrestin et al., 2020; 
Bucher et al., 2018; 
Craine et al., 2012

Negative (leaf 
unfolding, flowering, 
fruiting)

Leaf C content per 
leaf dry mass

mg g− 1 Sporbert et al., 2022; 
Bucher and 
Römermann, 2021; 
Craine et al., 2012

Positive (leaf 
unfolding, fruiting, 
senescence)

Leaf P content per 
leaf dry mass

mg g− 1 Segrestin et al., 2020; 
Bucher et al., 2018

Negative (flowering)

Root rooting depth m Dorji et al., 2013 Positive (flowering)
Stem conduit 

diameter
micro 
m

Lechowicz, 1984; 
Panchen et al., 2014

Positive (leaf 
unfolding)

Chromosome 
number

n Included due to high 
correlation values with 
extracted phenological 
metrics (2.3.2; 
Table S4)

Negative 
(senescence)

Fine root length per 
fine root dry mass 
(specific root 
length, SRL)

cm g− 1 Included due to high 
correlation values with 
extracted phenological 
metrics (2.3.2; 
Table S4)

Positive (leaf 
unfolding)
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and Doktor, 2022). In the first step, a raster stack of all 27 NDVI images 
of the year was created. Subsequently, we computed the median of the 
NDVI pixels within each of the respective tree crowns for each of the 27 
scenes. A double logistic function was then fitted (Fischer, 1994) for 
each tree crown using the non-corrected 27 median NDVI values. To 
determine individual SOS and EOS dates from these fitted NDVI curves, 
percentage thresholds were set between the lowest, early-season (i.e., 
before peak-season NDVI) and highest NDVI value (SOS) and the highest 
and lowest, late-season NDVI (EOS) in the time series (“local” 
threshold). The SOS/EOS dates were then defined on the day when NDVI 
first exceeded or fell below these thresholds. Each threshold was tested 
in 10 % increments and the SOS/EOS results were compared to the 
observed in-situ data. The best validation results were obtained with a 
threshold of 0.5 for SOS and 0.7 for EOS. These phenological metrics 
were then used for all further analyses (for illustration, see Fig. S3). 
Finally, the length of the growing season (LOS) was calculated by sub
tracting SOS from EOS for each tree crown. To analyze differences in 
tree species phenology with respect to the continent of origin, a two- 
sided Wilcoxon test was calculated between the respective continent 
groups.

2.3.3. Boosted regression trees (BRT)
To explain the interspecific variability of SOS, EOS, and LOS in the 

study area by traits (2.2.3), a BRT analysis was conducted. BRTs are 
derived from Random Forests, distinguished by their use of a different 
learning procedure called Boosting. They have the advantage that pre
dictor variables of any type (numeric, binary, categorical) can be used 
and that they are relatively insensitive to outliers and collinearity, which 
means that no variance inflation has to be calculated in advance (Elith 
et al., 2008; Sporbert et al., 2022). We altogether computed three BRTs, 
i.e. each one to model the variance of the tree species median SOS/EOS/ 
LOS. As predictor variables we used 1) the 13 selected numerical traits 
(Table 1), 2) the continent of origin of the tree species as a categorical 
variable, and 3) the climatic distance calculated in each case (Section 
2.2.4). The models were set up in R (R Core Team, 2022) using the 
package dismo (v1.3-14; Hijmans et al., 2023). We used a Gaussian error 
distribution, a tree complexity of 1, a learning rate of 0.003, and a bag 
fraction of 0.5 for all models. Finally, partial dependency plots and the 
relative importance (%) of all predictor variables in the models were 
calculated. To evaluate the model performance, we used cross- 
validation (cv) correlation and predicted (BRT) vs. observed (drone- 
derived) SOS, EOS, and LOS plots (see Figs. S4–6).

3. Results

3.1. Validation of drone phenology

When comparing the ground observations (first leaf unfolding) and 
the drone-derived spring phenology (SOS, local threshold: 0.5) for the 
individual tree species, a good agreement of the dates was found (R2 =

0.49; p < 0.001; Fig. 2). 53 % of the observed tree species had an in-situ/ 
drone SOS difference of at most five days and the mean difference be
tween drone-derived and in-situ SOS was 5.6 days. For early leaf- 
unfolding species, the drone-derived SOS tended to be recorded later 
than the observed leaf emergence, while later sprouting species had the 
tendency to be assigned with earlier SOS values in comparison to the in- 
situ data. Validation differences between the individual continents of 
origin could not be determined, although North American species ten
ded to leaf out later compared to the other continents.

When comparing the autumn phenology data, even higher agree
ment between the drone EOS (local threshold: 0.7) and the ground ob
servations (50 % leaf discoloration) was observed than in spring (R2 =

0.79; p < 0.001; Fig. 3). 93 % of the data points were within the 5-day 
deviation between drone-derived and observed autumn phenology and 
the mean difference between drone and in-situ EOS was 2.8 days. No 
differences were found within the validation in the distinction between 

early and late senescent species or in the continent of origin, whereas 
North American species were more likely to be early senescing species.

3.2. Tree phenology

The spring phenology (SOS) of the 74 tree species observed in the 
study area in 2022 ranged from the end of March to the end of May, with 
a difference of 41 days between the median of the first (Prunus padus; 4th 
of April) and the last leaf-unfolding species (Carya tomentosa; 15th of 
May; Fig. 4). In addition, it should be noted that there were a few species 
(Prunus padus, Larix gemlinii var. principis-rupprechtii, Larix decidua var. 
polonica) that unfolded their leaves/needles much earlier (6–14 days 
median difference) than the vast majority. Remarkable differences in 
SOS were also observed within species (Fraxinus pennsylvanica with an 

Fig. 2. Scatterplot of the observed first leaf unfolding, and the calibrated SOS 
determined by the drone images for the respective tree species. The observed 
tree species are color-coded according to the continent of origin (yellow: Asia; 
blue: Europe; red: North America). The dark gray line in the plot represents the 
area where the in-situ data and the drone data for spring phenology match 
perfectly. The dark gray area marks a maximum deviation of five days between 
in-situ and drone phenology (inside: 53 % of the observed tree species). The 
coefficient of determination is shown at the bottom right of the plot.

Fig. 3. Scatterplot between the observed 50 % leaf coloring, and the calibrated 
EOS determined by the drone images for the respective tree species. The 
observed tree species are color-coded according to the continent of origin 
(yellow: Asia; blue: Europe; red: North America). The dark gray line in the plot 
represents the area where the in-situ data and the drone data for autumn 
phenology match perfectly. The dark gray area marks a maximum deviation of 
five days between in-situ and drone phenology (inside: 93 % of the observed 
tree species). The coefficient of determination is shown at the bottom right of 
the plot.
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interquartile range (IQR) of 11 days as well as Betula costata and Quercus 
alba with an IQR of 9 days each as the three most variable species). 
Notably the North American species leaved out significantly later 
compared to species of the other two continents (10-day difference to 
Europe in the median and 8 days to Asia; Asia/North America: W = 82.5, 
p < 0.001; Europe/North America: W = 112, p < 0.001).

Autumn phenology (EOS) for the observed species extended from 
late August to mid-November. The median of the first (Fraxinus penn
sylvanica, 18th of September) and the last senescing species (Ostrya 
carpinifolia, 7th of November) had a difference of 50 days (Fig. 5). As in 
spring, there were also considerable differences within the species (IQR 
of 19 days for Larix kaempferi and 18.5 and 16.5 days for Populus alba 
and Larix x eurolepis, respectively, as the three most variable species). 

When comparing the continental areas of origin, no significant pheno
logical differences were found between the different continents.

The length of the growing season (LOS) calculated from SOS and EOS 
ranged from 108 to 213 days (Fig. 6). The difference between the me
dian of the species with the shortest (Fraxinus pennsylvanica, 137 days) 
and the longest vegetation period (Larix decidua var. polonica, 196 days) 
was 59 days. As in spring, it should also be noted that a small proportion 
(approx. 14 %) of the species observed had a remarkably longer vege
tation period than most of the other species (~>180 days LOS in Fig. 6). 
Here, too, there was considerable intraspecific variability (IQR of 20 
days for Larix kaempferi and 19.5 and 17.75 for Fraxinus pennsylvanica 
and Malus sylvestris, respectively, as the three most variable species). 
From a continental origin perspective, European species had a 

Fig. 4. Drone-derived SOS for the 74 tree species observed in the study area, ordered by median. The respective boxplots are composed of the SOS of the individuals 
and the tree species are colored according to the continent of origin (yellow: Asia; blue: Europe; red: North America). The number (n) of observed individuals of the 
respective tree species is indicated on the left-hand side. Small figure: SOS of the tree species of the respective continent of origin, which is composed of the medians 
of the large figure. The asterisks mark the significance of a two-sided Wilcoxon test between the respective continents (* = p-value <0.05; ** = p-value <0.01; *** =
p-value <0.001, Bonferroni corrected).
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Fig. 5. Drone-derived EOS for the 74 tree species observed in the study area, ordered by median. The respective boxplots are composed of the EOS of the individuals 
and the tree species are colored according to the continent of origin (yellow: Asia; blue: Europe; red: North America). The number (n) of observed individuals of the 
respective tree species is indicated on the left-hand side. Small figure: EOS of the tree species of the respective continent of origin, which is composed of the medians 
of the large figure. The asterisks mark the significance of a two-sided Wilcoxon test between the respective continents (* = p-value <0.05; ** = p-value <0.01; *** =
p-value <0.001, Bonferroni corrected).
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Fig. 6. Drone-derived LOS for the 74 tree species observed in the study area. Large figure: LOS of the respective tree species, ordered by median. The respective 
boxplots are composed of the LOS of the individuals and the tree species are colored according to the continent of origin (yellow: Asia; blue: Europe; red: North 
America). The number (n) of observed individuals of the respective tree species is indicated on the left-hand side. Small figure: LOS of the tree species of the 
respective continent of origin, which is composed of the medians of the large figure. The asterisks mark the significance of a two-sided Wilcoxon test between the 
respective continents (* = p-value <0.05; ** = p-value <0.01; *** = p-value <0.001, Bonferroni corrected).
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significantly longer vegetation period than North American species (11- 
day difference in the median; W = 653.5, p < 0.001).

3.3. Relationship between phenology, functional traits, and climate 
distances

In the BRT analysis of the SOS and the functional traits as well as 
climate distance (cv correlation = 0.63), the three most important 
explanatory variables were the seed dry mass (relative influence: 20.2 
%), the continent of origin (20.1 %) and the leaf thickness (12.8 %; 
Fig. 7a). If the tree species came from North America, a significant delay 
in SOS was observed, while the continents of Europe and Asia showed 
only minor differences (Fig. S7). A positive relationship between SOS 
and the traits mentioned was found for seed dry mass, with tree species 
with lighter seeds (<500 mg) leafing out earlier. In contrast, there was a 

negative relationship for leaf thickness, where later SOS was associated 
with tree species with a lower leaf thickness (<0.2 mm).

In the BRTs for EOS (cv correlation = 0.20), the number of chro
mosomes (15.7 %), the stem conduit diameter (15.7 %), and the SRL 
(12.6 %; Fig. 7b) were the three most important explanatory variables. A 
positive relationship between EOS and traits was found for stem conduit 
diameter, whereby an earlier EOS was more likely for tree species that 
had a smaller stem conduit diameter (<100 μm; Fig. S8). In contrast, the 
number of chromosomes and SRL had a negative relationship with EOS: 
tree species with fewer chromosomes (<20) and a lower SRL (<2000 cm 
g− 1) were more likely to be associated with a later EOS.

Finally, the BRT analysis for the LOS (cv correlation = 0.37) showed 
a combination of the results of SOS and EOS (Fig. 7c). The most 
important explanatory variables were the continent of origin (17.3 %), 
SRL (16.6 %) and seed dry mass (13.9 %). If the tree species came from 

Fig. 7. Relative importance (%) of the functional traits and the climate distance for the individual phenological metrics (a: SOS; b: EOS; c: LOS) from the BRT 
analysis. Positive correlations between the respective traits and the phenological metrics are marked in green and negative correlations in red; the continent is 
marked in gray due to its three categorical characteristics. The corresponding partial dependency plots can be found in Figs. S7–9. The respective cv correlation was 
0.63 (SOS), 0.20 (EOS) and 0.37 (LOS).
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Europe, a significant longer LOS was observed, while the continents of 
Asia and North America showed only minor differences (Fig. S9). The 
other variables were negatively related to EOS, with tree species with 
lighter seeds (<50 mg) and a lower SRL (<2500 cm g− 1) being associ
ated with a longer LOS.

4. Discussion

When assessing multiple phenological metrics using drone images 
across 74 deciduous tree species, both the drone-derived spring and, 
notably autumn phenology demonstrated a high degree of agreement 
with in-situ observations. A high inter- and intraspecific variability was 
found in the SOS, EOS, and LOS and a considerable part of the inter
specific variability of up to 55 % can be related to functional traits, with 
the continent of origin, seed dry mass and number of chromosomes 
being among the most important ones.

4.1. Measuring deciduous tree phenology with a drone at a multi-species 
site: Possibilities and limitations

The drone spring and autumn crown phenology for a variety of de
ciduous tree species derived from a single uniform method (non-cor
rected NDVI values, double logistic function, “local” threshold) matched 
in-situ observations mostly well. This confirms previous studies (e.g., 
Klosterman and Richardson, 2017; Berra et al., 2019) reporting that 
reliable and robust recording of plant phenology at the individual level 
is possible by drone monitoring. Compared to similar study approaches 
(Budianti et al., 2021; Budianti et al., 2022; Fawcett et al., 2021; Wu 
et al., 2021), equal or even better agreements between drone- and in- 
situ-based phenology could be shown here, especially as these former 
studies even used different species, derivation methodologies and 
measurement devices.

The fact that the drone-based spring phenology shows less agreement 
with in-situ observations than the autumn phenology can be explained 
by the understory-overstory interaction: In spring, the understory 
vegetation shows an earlier greening compared to the adult tree crowns 
(e.g., Donnelly et al., 2024; Richardson and O’Keefe, 2009; Vitasse, 
2013) and is therefore included in the (mixed-pixel) NDVI images of 
early spring. This temporal mismatch in spring is a general problem in 
remote sensing at different scales (e.g., Filippa et al., 2018; Ryu et al., 
2014; Budianti et al., 2021; Donnelly et al., 2022), primarily explaining 
that NDVI data inconsistently predict an earlier SOS date than the 
observed onset of leaf unfolding. In autumn, however, the understory 
vegetation only influences the images after the leaves of the trees have 
fallen and therefore does not distort the drone-derived onset of 
senescence.

Tree species exhibiting a later SOS according to drone data compared 
to in-situ observations also underscore the methodological uncertainty 
inherent in phenological assessments. While drone-derived phenology 
addresses each individual tree, field observations rely on assumptions of 
representativeness for the plot, given that the entire area cannot be 
observed from the ground. In addition, ground truth data encompass 
specific phenological stages (such as budburst, leaf-out, and first leaf 
unfolded), whereas drone data only assesses a calculated index based on 
the greenness of the vegetation. This obviously leads to a larger 
discrepancy in spring compared to autumn phenology, as leaf discolor
ation is much easier monitored visually and on a larger scale. To increase 
the quality of drone-based phenological onset dates, a comparison with 
canopy or hemispherical camera images (as applied by Fawcett et al. 
(2021) or Klosterman et al. (2018)) can add more precision. Neverthe
less, the evaluation results obtained in this study promise robust state
ments about key phases in the phenology of different tree species and 
their inter- and intraspecific variability.

4.2. Explaining intra- and interspecific variability of deciduous tree 
phenology

The trees exhibited high interspecific (up to 50-day difference in 
medians) and intraspecific (up to a 19-day interquartile range) pheno
logical variability under nearly identical environmental conditions in 
both spring and autumn. This resulted in differences in the length of the 
growing season of up to almost two months between individual trees.

A large phenological variability of individuals within a tree species 
was also observed in previous analyses (e.g., Marchand et al., 2020; 
Delpierre et al., 2017; Prislan et al., 2013). The reasons for this intra
specific variability are often the age and height of the trees observed 
(Augspurger and Bartlett, 2003; Marchand et al., 2020; Osada and 
Hiura, 2019), but also the microclimate (Delpierre et al., 2017; Osada 
and Hiura, 2019) and genetic diversity (Capdevielle-Vargas et al., 2015; 
Delpierre et al., 2017; Schmeddes et al., 2023). In our study area, all 
individuals of a tree species are planted in the same year and therefore 
differ only slightly in height, which is why the variability cannot be 
explained by the previous factors. Temporal patterns (as later leaf-out 
and earlier senescence mean less variability; Denéchère et al., 2021) 
are also not observable in both spring and autumn. In contrast, the large 
intraspecific variability is striking. In addition, as in comparable studies 
(e.g., Denéchère et al., 2021; Marchand et al., 2020; Capdevielle-Vargas 
et al., 2015), the intraspecific variability is lower in spring than in 
autumn events. This can be explained by the fact that the onset of 
senescence is more complex and therefore dependent on more factors 
than spring phenology (Gill et al., 2015; Lu and Keenan, 2022). 
Accordingly, the sensitivity to individual drivers can have accumulated 
effects on different individuals and thus result in greater autumnal 
phenological plasticity.

Comparing the phenological onset dates between the species, the 
interspecific phenological variability in spring was in line with previous 
studies (e.g., Cole and Sheldon, 2017; Panchen et al., 2014; Richardson 
and O’Keefe, 2009; Wesołowski and Rowiński, 2006). In contrast, the 
variability of autumn phenology was comparatively high (e.g., 
compared to Budianti et al., 2022; Budianti et al., 2021; Wu et al., 2021; 
Archetti et al., 2013; Richardson and O’Keefe, 2009), which can be 
explained by the high number and diversity of the species considered. 
Even though a comparison with other studies is only possible to a limited 
extent due to different meteorological and environmental conditions, 
parallels can be recognized in the chronological order of the pheno
logical onset dates of the tree species: While species such as Alnus incana 
(Donnelly et al., 2017) or the genera Prunus, Populus (Richardson and 
O’Keefe, 2009) or Corylus (Wesołowski and Rowiński, 2006) tend to leaf 
out early, greening of Nyssa sylvatica or the genera Quercus (Richardson 
and O’Keefe, 2009) and Fraxinus (Cole and Sheldon, 2017) are more 
likely to be observed later in the spring. In autumn, on the other hand, 
early leaf discoloration seems to be common, especially in Acer rubrum 
(Archetti et al., 2013; Richardson and O’Keefe, 2009), while the genera 
Populus and Quercus mainly senesce later in the year (Archetti et al., 
2013; Richardson and O’Keefe, 2009; Wu et al., 2021).

Both in spring and in autumn, the variation in phenological timing 
between the tree species can be interpreted as different growth strate
gies: While early leafing-out plant genera such as Larix or various species 
of the Rosaceae family (Prunus padus, Pyrus communis, Sorbus aucuparia, 
Malus sylvestris) or late senescing genera such as Larix or Quercus pursue 
maximization of carbon sequestration and use of seasonally limited re
sources (i.e., light) over a prolonged growth period (“phenological 
escape”; e.g., Lee and Ibáñez, 2021; Richardson and O’Keefe, 2009), 
genera such as Quercus or Carya presumably try to minimize the risk of 
late frost by late leaf emergence in spring (Bennie et al., 2010; Vitasse 
et al., 2014).

These strategies seem to have some inherent logic, but the pheno
logical behavior of a specific single species is difficult to derive from 
these general statements. One possibility is to link the growth strategies 
to continents of origin and to the respective functional traits of the tree 
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species. Our study shows that North American tree species and species 
with higher seed dry mass and lower leaf thickness are associated with 
later leaf-out. Interestingly, other studies have also linked the time of 
leaf emergence or phenological sensitivity to continental differences 
(Lee et al., 2022; Zohner and Renner, 2017), whereby a later leaf-out in 
North American species is primarily explained by higher variability of 
North American spring temperatures and the associated risk avoidance 
strategy with regard to late frost events (Zohner et al., 2017). In contrast 
to Zohner and Renner (2017) earlier leaf discoloration of North Amer
ican species is hardly observed in our study. Frost avoidance could also 
be the driver for other traits: tree species with heavier seeds may invest a 
lot of energy in reproduction and are therefore more likely to lower risks 
associated with energy loss due to late frost. Furthermore, tree species 
with thinner leaves are more susceptible to low temperatures and the 
resulting frost damage (Bucher et al., 2019; Bucher and Rosbakh, 2021) 
and therefore may exhibit a later leaf-out date, similar to Horbach et al. 
(2023).

A significantly distinct picture emerges when considering traits 
related to autumn phenology: tree species with a lower chromosome 
number and SRL as well as a larger stem conduit diameter tend to enter 
senescence later. A potential influence of chromosome numbers repre
sents a totally novel aspect in plant phenology, with only a few papers 
offering insights into potential explanatory connections. For example, it 
is known that species with monoploid large genomes are more likely to 
invest in inflorescence preformation and thus flower and senesce earlier 
(Schnablová et al., 2021). In principle, different chromosome numbers 
in angiosperm tree genera hint at phylogenetic differences (Carta et al., 
2018). Interestingly, for Italian vascular plant species, chromosome 
numbers were poorly related to climatic conditions, but to environ
mental categorical variables suggesting an evolutionary role. Carta et al. 
(2018) reported that lower chromosome numbers were associated with 
open, disturbed, drought-prone, i.e. instable habitats, while species in 
stable environments (favoring higher recombination rates) and with 
longer life cycles had generally higher chromosome numbers. Trans
lating our findings into Carta’s scheme would indicate that species from 
stable environments should have EOS earlier, whereas pioneers or spe
cies from disturbed habitats may profit from later EOS. With regard to 
the stem conduit diameter, due to the positive correlation with both 
spring and autumn phenology, it can be assumed that the species that 
unfolded their leaves later due to the strategy of frost avoidance with a 
larger conduit diameter (Lechowicz, 1984; Panchen et al., 2014) now 
make up for the initially lower carbon sequestration compared to other 
species through later senescence. Regarding SRL, our findings might be 
linked to nutrient and water acquisition as good water-use efficiency 
was linked to later dates of senescence (Bucher and Römermann, 2021).

Another aspect that should also be mentioned in this context is the 
drought summer of 2022 (Toreti et al., 2022). Regarding the general 
influence of drought on autumn phenology, the current study situation is 
contradictory (Gill et al., 2015; Lu and Keenan, 2022; Zani et al., 2020), 
with tree species’ phenology reacting individually to drought stress 
(Bigler and Vitasse, 2021; Grossiord et al., 2022). Both visually in the 
field and in the NDVI data, no drought stress could be detected within 
the plots of the study area in the summer of 2022, most likely due to 
optimal soils with high water storage capacities, which meant that no 
analyses could be carried out in this context. Nevertheless, this 
circumstance should be included in the final assessment when consid
ering autumn phenological variability.

The length of the growing season, which results from SOS and EOS, is 
a clear combination of the SOS/EOS-trait relationships. European spe
cies start leaf emergence earliest and change color later than North 
American and Asian species, resulting in a significantly longer growing 
season. SOS responses to chilling and forcing are suggested to be a result 
of an adaptation to the predictability of the winter-spring transition and 
late spring frosts (e.g. Zohner et al., 2017 or Walde et al., 2022), which 
should result, given sufficient chilling, in a stronger coupling to forcing 
of Northeastern Asia to Europe (Walde et al., 2022) and or Europe to 

North America (Zohner et al., 2017). LOS variations are associated with 
further traits, such as SRL, where a higher value is associated with 
earlier senescence and thus a shorter LOS. Finally, a high seed dry mass 
tends to result in later leaf emergence, which also results in a shorter 
LOS.

4.3. Limitations and uncertainties

Due to the large number of trait data sets and the complex meth
odology to derive single tree crown phenological onset dates, there are 
also several uncertainties and limitations in our study. Regarding the 
drone data it should be noted that there are different illumination con
ditions depending on the season and weather, which can influence the 
calculation of the NDVI values (Fawcett et al., 2021). In addition, the 
orthorectification also induces inaccuracies of up to 30 cm, which can 
primarily distort the edge pixels of the respective crowns. The in-situ 
observations were only observed plot-wise. As shown in the study 
though, there are clear intraspecific phenological differences, which 
cannot be described in a plot-by-plot summary. Not all individuals were 
clearly visible, especially in larger plots, which made the assessment 
even more difficult. In addition, only a subset of the species analyzed 
with the drone could be observed on the ground and the temporal fre
quency of the drone and in-situ data do not match. Regarding the 
functional traits used in the study, most of the traits were not measured 
on-site, but were only retrieved from database values, of which some 
were based on a gap-filling algorithm. Different values would certainly 
be measured on site, although the magnitude of the values should be 
realistic depending on the species (e.g., Kazakou et al., 2014; Cor
dlandwehr et al., 2013; Violle et al., 2015).

Regarding the methodology, it is particularly noteworthy that the 
polygons of the respective tree crowns are created automatically and 
therefore only represent the real crown shape to a limited extent, even if 
unrealistic crowns were removed in the selection process. With >3000 
individuals, we cannot rule out with 100 % certainty that another spe
cies has spread naturally somewhere in the plots and - due to very 
similar phenology - this individual has not been noticed. When 
extracting the phenology from the drone images, curve fitting represents 
a simplification of the phenological curve, but is also a well-accepted 
(Zeng et al., 2020) method to reduce the influence of false outliers 
(snow cover, drought influence). In addition, setting a general NDVI 
threshold for over 3000 individuals and 74 species is a clear simplifi
cation of the phenological conditions and a comparative calculation of 
phenological metrics with other vegetation indices would represent an 
interesting perspective for further research. Regarding the BRT, it 
should be noted that models based on 74 data points (species) do not 
promise the highest robustness but are appropriate in this context. 
Finally, the fact that only the phenology of a single year was observed in 
this study should also be taken into account when interpreting the re
sults. While the chronological order of the phenological onset times of 
the observed tree species should also remain roughly the same in other 
years (e.g., Cole and Sheldon, 2017; Archetti et al., 2013; Wesołowski 
and Rowiński, 2006), differences to other years can also arise depending 
on weather conditions and the climatic sensitivity of the species, and 
thus may slightly alter the results obtained.

5. Conclusion

Analyzing the phenology of 74 deciduous tree species and 3099 in
dividuals using drone images, our study generates important new in
sights from both technical and ecophysiological perspectives. We 
showed that the derivation of SOS, EOS, and LOS via drone images for a 
large number of tree species using just one methodology achieves robust 
results and is a promising approach for monitoring phenology on the 
tree-individual level. Significant phenological differences were found 
both within and between tree species, which led to differences in the 
length of the growing season of up to two months under nearly identical 
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environmental conditions. The interspecific phenological variation 
could be explained by functional traits, with the continent of origin, seed 
dry mass and leaf thickness in spring explaining the variability with the 
strategy of frost avoidance. In autumn, the number of chromosomes, the 
SRL and the stem conduit diameter played a dominant role. The results 
encourage new research approaches in the field of plant phenology and 
form an important basis for understanding different growth strategies of 
dominant deciduous tree species in the Northern Hemisphere. Finally, 
the methodological support with camera data and traits measured on- 
site offer further potential to generate in-depth phenological insights 
within this research field in the future.
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