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Global increase in the optimal
temperature for the productivity of
terrestrial ecosystems

Check for updates

Zhongxiang Fang1, Wenmin Zhang 1 , Lanhui Wang 2,3, Guy Schurgers 1, Philippe Ciais 4,
Josep Peñuelas 5, Martin Brandt 1, Hui Yang6, Ke Huang1, Qiu Shen7 & Fensholt Rasmus1

Vegetation growth may adapt to climate warming by adjusting the relationship between
photosynthetic capacity and temperature. However, changes in the optimal temperature for
ecosystem productivity during recent decades of warming remain uncertain. Here we provide
empirical evidence that global optimal temperature increased at a rate of 0.017 ± 0.002 °C y−1 from
1982 to 2016, using multiple datasets of satellite-derived productivity and climate variables. Model
simulations show that the optimal temperature will increase by 0.027 ± 0.001 °C y−1 until the end of
21st century. The global increasing optimal temperature is consistent with increasing mean air
temperatures andmodel simulations further confirm the key role of temperature in regulating changes
in optimal temperature, while being co-regulated by other factors, such as CO2 and precipitation.
These results suggest that vegetation is acclimating to warming and that the negative impacts of
climate change on ecosystem productivity may be less severe than previously thought.

Photosynthesis in global terrestrial ecosystems is a key driver of the land
carbon sink, which removes 30% of CO2 from anthropogenic emissions of
carbon1. The capacity of global photosynthesis to fix atmospheric CO2

depends on temperature, water and many other factors (e.g., nutrients and
VPD)2,3. Under controlled conditions, leaf-scale photosynthesis first
increases with warming until a maximum rate is reached defining an
optimum temperature (Topt), after which it decreases with additional
warming4–6. Topt is linked to the maximum gross primary productivity
(GPP) of terrestrial ecosystems7 and represents an essential ecophysiological
variable for modeling the global interactions between the terrestrial bio-
sphere and the atmosphere8.

Differences in Topt across ecosystems, inferred from in situ flux
observations, have been documented9 and many studies have reported
that Topt is closely associated with the mean air temperature of a
region8,10. For example, vegetation Topt is found to be higher in warmer
areas as compared to cold regions6; a phenomenon suggesting long-term
thermal adaptation. Whether Topt potentially can change over time as a
consequence of the observed increase in temperature during the recent
decades11 however remains unproven. Changes in the availability of

water or nutrients12, CO2 levels10, and land cover13 may regulate the
relationship between increasing temperatures and vegetation photo-
synthesis, which could cause temporal changes in Topt. These lines of
evidence support the hypothesis that temporal changes in Topt of pho-
tosynthesis might potentially occur in a warming climate14. If Topt is
increasing around the globe, it may support a continued increase of the
global vegetation carbon sink15 rather than slowing down or reversing
under the warming world16,17. Studying temporal changes in Topt at the
global scale is therefore pivotal to better understand the response of the
global carbon cycle to global warming18.

We define Topt as the monthly mean temperature at which GPP is
highest within a given spatiotemporal “window” (5 years temporal window
and 10 × 10 pixels of spatial window). Using multiple satellite-derived
estimates for GPP and reanalysis climatic data sets, we first estimate the
temporal dynamics of ecosystem Topt at the global scale during the period
1982 to 2016.We then study potential forcing variables of the changing Topt
and attempt a coarse extrapolation of potential changes in Topt for
2017–2100 using the outputs of Coupled Model Intercomparison Project
Phase 6 (CMIP6) under various climatic scenarios.
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Results
Global increase in Topt

Changes in Topt are detected using a 5-year temporalmoving window and a
1° spatial window (Supplementary Fig. 1) with multiple satellite-based
products of GPP proxies (NIR GPP, KNDVI, NDVI, EVI) that are inde-
pendent on climate variables as input (see Methods and Supplementary
Table 1). The results indicate that the global average Topt based onNIRGPP
has significantly (p < 0.05) increased from 18.64 ± 5.0 (mean ± std) to
19.18 ± 5.1 °C,with an average rate of 0.017 ± 0.002 °Cy−1 (Fig. 1A) over the
last 35 years. The increase in Topt was supported by increasing Topt derived
from other temperature independent GPP proxies (KNDVI, NDVI and
EVI). The majority of grid cells (69.6%) have a higher Topt in the period
2012-2016 than in the period 1982–1986 (Fig. 1B). A higher Topt in the later
period (2010–2014) than in the earlier period (2001–2005) was also
observed for most sites included in FLUXNET (Supplementary Fig. 2).
Moreover, increases in Topt are found with different spatiotemporal win-
dows (Supplementary Fig. 3), different combinations of GPP and tem-
perature data sets (Supplementary Fig. 4), different temporal compositionof
GPP data sets (Supplementary Fig. 5), a larger body of different vegetation
productivity proxy products (Supplementary Figs. 6, 7), different tem-
perature data sets (Supplementary Fig. 8), and different methods used to
smooth the response curve of vegetation productivity to temperature
(Supplementary Fig. 9), demonstrating the robustness of the observed
patterns.

The spatial patterns of the temporal trend of increasing Topt indicate
thatTopt significantly (p < 0.05) increased over 22.6%of the global terrestrial
ecosystems (Fig. 1C),whereas a significantly (p < 0.05) negative trend inTopt
is observed only for 6.0% of the global terrestrial ecosystems, mainly in
western Siberia, savannas, and grasslands in northern Australia and
southernAfrica. The increase inTopt is closely associatedwith the increase in
temperature from 1982 to 2016, both at the global scale and for different
climatic zones (Supplementary Fig. 10). Globally, Topt is lower than the 80th
percentile of temperature (Supplementary Fig. 10), indicating that Topt is
generally lower than extreme warm air temperatures. The difference

between Topt and the upper air temperature percentiles is particularly
pronounced in tropical zone, where Topt is much lower than the 50%
temperature percentiles. In contrast, Topt generally exceeds the 90th per-
centile of temperature in the polar zone (Supplementary Fig. 10), indicating
that air temperature is markedly lower than Topt in this biome.

Drivers of increasing Topt
The complex co-regulation of various climatic factors to vegetation growth
makes it challenging to derive contributions of these factors to vegetation
change solely based on earth observation data. We thus usedmonthly GPP
data sets simulated by process-based dynamic global vegetation models
coupled by “Trends and drivers of the regional scale sources and sinks of
carbon dioxide” (TRENDY, version 9) under four scenarios (S0, S1, S2, and
S3, see Methods and Supplementary Table 2) to investigate the relative
importance of drivers controlling changes in Topt. A good agreement
between satellite and modelling derived Topt under the standard scenario
(S3) reinforces confidence in the modelling simulations (Supplementary
Fig. 11). We used the TRENDY modelling simulations to identify the for-
cing variables driving the increasing Topt, by comparing the differences
between the trend in Topt from S3 and other simulations (seeMethods and
Supplementary Table 2). Globally, the simulation driven only by climate
(CL) shows a Topt trend much closer to the standard scenario (S3,
CO2+CL+ LC) than trends under scenarios that are driven only by either
CO2 or LC (Fig. 2A), suggesting that climate change plays the most
important role in controlling increasingTopt. The contribution of individual
climate factors (e.g., temperature, precipitation, and radiation) cannot be
differentiated due to the combined use of climate variables as input for the
TRENDY models. However, the simulations from the LPJ-GUESS model
allow to study the impact of individual climate forcing variables on
Topt (Fig. 2B).

Similar to the simulations of TRENDY, we show a good agreement in
Topt estimates based on satellite observations and the LPJ-GUESS model to
support the validity ofmodelling simulations ofTopt (Supplementary Fig. 12
and SupplementaryTable 3). The simulation driven by varying temperature

Fig. 1 | Global increase in Topt of ecosystem pho-
tosynthesis. A Temporal dynamics of Topt for four
GPP data sets with a 5-y temporal window and a 1°
spatial window for 1982–2016. The solid lines
indicate the dynamics of Topt, and the shaded areas
represent the 95% confidence interval of Topt. The
dashed black line indicates the trend in Topt based on
the NIR GPP data set. BHistogram of the difference
in Topt between the first period (1982–1986) and the
last period (2012–2016) for all 1° grids (n = 7971)
derived from the NIR GPP data sets. The density
function represents the standardized frequency (the
sum of the area between x-axis and density function
is 1).C Spatial patterns of trends inTopt derived from
the NIR GPP data sets using a 5-y temporal window
and a 1° spatial window for 1982–2016. The black
points denote significant trends (p < 0.05). Dark
gray indicates areas where Topt could not be suc-
cessfully retrieved (see Methods, Supplementary
Fig. 1d) formore than 40% of the temporal windows
considered, and light gray indicates irrigated crop-
land and areas with sparse or no vegetation.
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only (T) shows the highest increasing trend in Topt, which ismore similar to
the simulation under standard conditions, compared with trends in Topt

under other simulations with a varying CO2 level only (CO2), varying
nitrogen deposition only (NDE), varying precipitation only (PRE), and
varying solar radiationonly (RAD) (Fig. 2B).Themodelling results obtained
from these factorial simulations thereby suggest that air temperature is the
most important climate factor for changes inTopt, followedbyCO2 level and
solar radiation. Furthermore, satellite observations also show that changes
in temperature has the largest relative importance (71.12%) for the changes
in Topt (Supplementary Fig. 13).

We also evaluate the relationship between satellite-observed Topt and
its main climatic driver (air temperature). The trend in air temperature is
binned into 100 groups, and themean trend inTopt in each group is derived.
The trend in satellite-observed Topt is significantly positively correlated
(r = 0.66, p < 0.01) with the trend in mean air temperature in a 5-y moving
window derived from the ERA5 data set (Fig. 2C). The trends in Topt and
mean air temperature are consistent in most areas around the world,
accounting for 65.1% of the area under analysis, with 64.5% of the area
indicating consistently positive trends (++) and 0.06% indicating negative
trends (--) (Fig. 2C). The trends in Topt and temperature (+- or -+)
are found to be inconsistent in scattered regions in western Siberia,
eastern China, and south-central Africa, totaling an area of 34.9%.
As compared to the consistency found between Topt and temperature, the
majority of pixels (57.5%) showed inconsistency (+- or -+) between
trends in Topt and trends in precipitation (Supplementary Fig. 14) also
supporting the key importance of temperature as a driver of the observed
trends in Topt.

Projected changes in Topt

Projected changes in Topt and its relationship with increasing future air
temperatures are estimated by deriving themulti-modelmeanhistorical and
projected Topt from 23 CMIP6 models. We first compare the consistency
between Topt derived from the historical CMIP6 models and from satellite
observations (NIR GPP) using a 5-y temporal window and a 5° spatial
window, which showed a good agreement (Supplementary Fig. 15). Simi-
larly, the trends in Topt, the monthly mean temperature, and monthly
maximum temperature derived fromCMIP6models are simulated (Fig. 3A)
under scenarios of future climate (Supplementary Fig. 16). Topt under the
SSP245 scenario increased at a rate of 0.027 ± 0.001 °C y−1, which is higher
than the increases inmonthly mean temperature (0.022 ± 0.001 °C y−1), but
lower than the increases in monthly maximum temperature
(0.035 ± 0.001 °C y−1) (Fig. 3A, Supplementary Fig. 16). This finding sug-
gests that vegetation is adapting to future climatic warming but cannot
match the rate of maximum warming. The projected increases in Topt are
likely to slow down (Supplementary Figs. 16, 17), following the decrease in
the level of emissions from SSP585 to SSP126, or even halt (SSP126) after
2050. A global increase in Topt in the last 5-y period (2096–2100) is evident
under all scenarios, especially for SSP585, compared to the first 5-y period
(2017-2021). Overall, under the SSP245 scenario, higher latitudes will have
larger increase in Topt, matching a greater degree of warming in the future.
Specifically, polar and cold areas are expected to have the largest increases in
Topt (2.08 and 2.28 °C), together with the highest increase in monthly
maximum temperature (2.89 and 2.97 °C)), but lowest monthly mean
temperature (1.50 and 1.79 °C). Temperate and arid areas will have the
smallest increase in Topt (1.85 and 1.89 °C), together with lower increase in
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Fig. 2 | Forcing variables of changes in Topt. A Trends in Topt from Earth obser-
vation data (EO) and from multi-model mean (TRENDY) of dynamic global
vegetation models under different conditions: driven by varying CO2 only (CO2),
driven by climate change only (CL), driven by land cover change only (LC), driven by
varying CO2 and climate change (CO2+ CL), and driven by all above factors
(CO2+ CL+ LC) varying. The numbers superimposed on the bars denote the
magnitude of trends in Topt under the different scenarios.BTrends in Topt from the
LPJ-GUESS model under different conditions: driven by all factors varying (ALL),
driven by varying temperature only (T), driven by varyingCO2only (CO2), driven by
varying nitrogen deposition only (NDE), driven by varying precipitation only (PRE),

and driven by varying solar radiation only (RAD). The numbers superimposed on
the bars denote the magnitude of trends in Topt under the different scenarios. The
error bars indicate 95% confidence interval of trends in Topt. C The relationship
between the trend in satellite-observed Topt and the trend in a 5-ymoving window of
mean air temperature derived from the ERA5 data set for 1982–2016. D The con-
sistency between the trend in satellite-observed Topt and the trend in the 5-y moving
window ofmean air temperature derived from the ERA5 data set.+-, increasing Topt

and decreasing T; ++, increasing Topt and increasing T; --, decreasing Topt and
decreasing T; -+, decreasing Topt and increasing T;n = 5323.Gray indicates irrigated
cropland and areas with sparse or no vegetation.
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monthly maximum temperature (2.46 and 2.46 °C) but quite large monthly
mean temperature (1.94 and1.98 °C). Tropical areas facemoderate increases
in Topt (2.0 °C) (Fig. 3B, C), together with moderate increase in monthly
maximum temperature (2.48 °C) but largest monthly mean temperature
(2.10 °C) (Supplementary Fig. 16).

Discussion
Our study shows a global increase in Topt of ecosystem photosynthesis over
the last four decades, which suggests an acclimation of terrestrial ecosystems
to increasing temperatures under global warming. We further demonstrate
that increasing temperatures are the key driver for the increasing Topt. This
finding is partly supported by a local-scale study19. Spatial variations in the
increase of Topt are also evident, showing a substantially lower Topt in colder
areas compared to warmer areas6. Moreover, the increase in Topt is not
uniform across space, with a higher increase in Topt in cold and arctic areas,
which is likely related to the rapid warming in the northern high latitudes
(arctic warming)20. An increase in temperature can affect Topt in different
ways: Firstly, at the leaf level, changes in temperature can regulate photo-
synthetic Rubisco activity and electron transport, which is the principal
mechanism controlling photosynthesis11. The capacity of electron transport
and/or the thermal stability of Rubisco can therefore determine the accli-
mation of vegetation photosynthesis to increasing temperature21. However,

our papermainly focuses on the changes in Topt at ecosystem level based on
satellite observations and model simulations (no long term thermal accli-
mation included in themodels).We acknowledge that it cannot be inferred
from this analysis whether the above mentioned thermal acclimation
occurred at leaf level globally or not, although field observations already
showed thermal acclimation at ground level in many different regions8,9,19.
Secondly, higher temperatures induced higher vapor-pressure deficits
(VPD, a proxy of atmospheric aridity)22 could lead to stomatal closure to
reduce the loss of water at the cost of a decrease in CO2 exchange
(productivity)23, which may increase vegetation resistance to increasing
temperatures.However, at the ecosystemlevel, increasing temperaturesmay
drive changes in vegetation composition or lead to species adapting to
higher temperature tolerance, which could contribute to the Topt increases.
This is particularly evident in theNorthernhemisphere,woody encroaching
into tundrabiomedue toclimatewarming24,25,whichprobably increaseTopt.

Other factors (e.g. precipitation andCO2 level) also affect Topt (Fig. 2A)
by altering the relationship between vegetation productivity and tempera-
ture. Firstly, the responses of Topt to climatic variables can be affected by
water availability, especially in water-limited areas, where the extent to
which precipitation and solar radiation exerts control on Topt, are largely
dependent on dryness conditions12. This is likely attributed to the arid
conditions that result in water scarcity within the soil, limiting vegetation’s

A

0 4
°C

C

0.022 (±0.001)
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0.027 (±0.001)
0.035 (±0.001) °C y-1Slope = 

Fig. 3 | Projected changes in Topt of ecosystem productivity under the
SSP245 scenario. A Projected temporal change of Topt, monthly maximum tem-
perature, and monthly mean temperature for 2017–2100. Topt is estimated from 23
CMIP6 models with a 5-y temporal window and a 5° spatial window for 2017–2100.
The maximum and mean temperatures are calculated using the same spatio-
temporal windows as for Topt. The solid lines indicate the dynamics of Topt, max-
imum temperature, and mean temperature, and the shaded areas represent the 95%
confidence interval of the maximum temperature, optimal temperature, and mean

temperature. B The difference in mean Topt of two 5-y periods, 2017–2021 and
2096–2100, under the SSP245 scenario at the global scale and for different climatic
zones. The error bars indicate 95% confidence interval of the difference in Topt.
C Spatial patterns of the difference in Topt between two periods (2017–2021 and
2096–2100) under the SSP245 scenario. Gray indicates irrigated cropland and areas
with sparse or no vegetation. Dark gray pixels indicate areas with Topt successfully
extracted by less than 15 models.
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ability to uptakewater causing plants to close their stomata tomitigatewater
loss26, consequently reducing photosynthesis. Moreover, dryness can
increase the risks of dehydration and heat stress, reducing photosynthesis27.
ElevatedCO2 could promote increase in Topt for plant growth by enhancing
photosynthetic efficiency, improving water and nutrient use, and thereby
enabling better thermal tolerance21,28,29. However, a few areas showed sig-
nificantly decreasing Topt, such as southern Africa, western North America,
and the northwestern Amazon rainforest. The decrease in southern Africa
and western North America could be related to a regional cooling trend in
these areas (Fig. 2D), while the decrease in the northwestern Amazon
rainforest could be related low quality of the optical satellite dataset in this
region due to cloud cover30.

A globally increasing Topt can have important implications for how
terrestrial ecosystems are studied and for their functioning. Firstly, some
studies have assumed that Topt is constant

10, which is expected to be brea-
ched by the increasing temperatures in the foreseeable future31. The con-
tinuation of increasing temperatures would then be expected to have
increasingly adverse impacts on ecosystems4. Our results, however, suggest
thermal acclimation of ecosystems to increasing temperatures, which could
to some extent delay the adverse effects as compared to what is currently
expected31. Specifically, acclimation of global ecosystem photosynthesis to
the increasing temperature implies that global warming will have less
negative impacts on ecosystem productivity, whichmay eventually lead to a
longer period of greening trend (carbon uptake) in the future than pre-
viously thought. For example, assuming a constant Topt, Zhang et al.31

reported a much earlier future point in time when summer temperatures
would exceed Topt under future warming scenarios than the point in time
when the temperature would negatively affect ecosystem GPP under all
scenarios of future emissions, which could be partially attributed to
neglecting thermal acclimation. Secondly, the acclimation of ecosystems to
increasing temperatures could account for the decrease in the relative
contribution of temperature to vegetation productivity32. Lastly, ecosystem
acclimation also indicates the increase of heat tolerance of global ecosystems
by adjusting their traits and physiological processes (e.g., modifying their
phenology, growth patterns, and metabolic functions) in response to
changing environmental conditions, which would allow ecosystems to
better cope with extreme climate events.

A recent studyhowever shows insignificant changes in ecosystem-scale
Topt during recent decades

6, which is different from our results. We have
looked into this apparent discrepancy and have found that the difference
may be attributed to the several reasons: Firstly, Huang, et al.6 used obser-
vations from a 10-year temporal window without including a spatial
window10, which could lead to insufficient observations for the extraction of
Topt (Supplementary Figs. 18, 19) thereby creating larger uncertainty in the
Topt assessment ultimately concealing subtle trends. Secondly, the results
reported by Huang, et al. 6 were based on the monthly mean of daily
maximum temperatures (Tmax

opt ), while we use the monthly mean of daily
mean temperatures. Therefore, we examined the changes in Topt using both
Tmax
opt and themonthlymean of dailymean temperatures (Tmean

opt ) and found
that both of them produced globally increasing trends, and both trends are
highly consistent (Supplementary Fig. 20). This suggests that different
temperature metrics have little impact on the globally increasing trends in
Topt. Thirdly, based on our method, we also use the same NDVI data set
(used inHuang’s paper) to estimate Topt from1982 to 2016 (Supplementary
Fig. 6c). Trends in Topt derived from these data sets are generally consistent,
which also suggests a globally increasing trends in Topt. Lastly, we use a
fittingmethod of the Savitzky-Golay filter to fit 90% of GPP as a function of
temperature, where Topt is extracted at a point of maximum GPP. This
fitting approachmakes the output less sensitive to noise in the original GPP,
which is considered an advantage over the direct use of the maximum of
90% of GPP to calculate Topt applied in the previous study.

Our findings may be subject to some limitations. Firstly, good agree-
ments of trends inTopt derived fromdifferent vegetationproxieswere found
across global regions, except for tropical rainforests (Supplementary
Figs. 3–6). This may be caused by the relatively poor data quality of the

original AVHRR satellite data due to cloud cover and signal saturation of
NDVI in these tropical areas30. Secondly, to extract Topt, we used cubic
convolution interpolation to resample theGPPdata sets to 0.1° tomatch the
spatial resolution of the climate data sets, whichmay introduce bias in areas
characterized by high spatial variability. Thirdly, we used spatial windows to
obtain sufficient observations to extract Topt. However, the window size
could affect the extraction of Topt because plant function type within dif-
ferent size of windowsmay different, especially in the areas with high spatial
variability. However, we found similar spatial patterns of Topt trend, using
different sizes of spatial, suggesting the limited impacts of varying size of
moving window on the Topt. Lastly, our study shows that global ecosystem
Topt will continue to increase under global warming. However, these results
are mainly derived from CMIP6 model simulations, which rely on the
response equations of ecosystem photosynthesis to climate factors and
human emissions. These results should be interpreted with caution, parti-
cularly under the climate scenario of SSP585, because thermal acclimation
extending beyond 37 °C is uncertain11.

Our study document a widespread increase in Topt at the global scale,
but we cannot yet provide a detailed answer to whether the changes in Topt

over the last four decades are due to long-term genetic adaptation of the
vegetation or to a short-term physiological response of the vegetation to
climate change.More studies conducted at the species level9,19 are needed to
resolve this question. Our study only involves changes in the optimal
temperature of photosynthesis, and further research should also be targeted
towards exploring the changes in Topt for ecosystem respiration and net
ecosystem productivity and their inflection points under a projected
warming world33. These studies will be critical for deepening our under-
standing of the exchange of carbon and energy in terrestrial ecosystemswith
implications for current efforts in achieving carbon neutrality.

Methods
GPP proxy data sets
Many studies have suggested that Near-infrared reflectance (NIR) has high
correlations with GPP and it is at the same time less sensitive to non-
vegetation objects in most ecosystems34. We therefore used a monthly GPP
data set to estimate Topt, derived from satellite-based NIR, covering the
period from 1982 to 2018 with a spatial resolution of 0.05°35. NIR GPP is
generated independent on climate variables as input for the calculation of
the product. Furthermore, to test the robustness of our results we also used
four other data sets that are independent on temperature data sets to extract
Topt. This involved the use data sets from vegetation indices including 3rd
generation ofGlobal InventoryMonitoring andModeling System (GIMMS
3 g) normalized difference vegetation index (NDVI)36, 4th generation leaf
area index (LAI) (GIMMS LAI4g)37, the MODIS NDVI, the MODIS
enhanced vegetation index (EVI) and MODIS kernel NDVI (KNDVI)38

representing two different types of satellite sensor systems. The GIMMS
NDVI data set represents the longest continuous time series of vegetation
indices, covering from 1982 to 2016 with a 15-d temporal resolution and 1/
12° spatial resolution. The GIMMS LAI4g share the same spatial and
temporal resolutionwithGIMMSNDVI, but covers from1982 to 2015. The
monthlyMODISNDVI, andEVI data sets (MOD13C2) cover from2001 to
2016 with 0.05° spatial resolution. Monthly MODIS KNDVI is produced
fromMOD13C2 red and NIR reflectance from 2001 to 201638. KNDVI is a
nonlinear NDVI designed to have a higher sensitivity to vegetation bio-
physical and physiological processes, and thus is reported to have a more
accurate estimation of terrestrial photosynthesis38.

In addition, five other data sets were used to test the robustness of the
estimation of Topt, but were kept here secondary data sets, as these to some
extent make use of temperature information in the modelling of GPP, that
could potentially cause spurious co-varying trends with Topt: Improved
(light use efficiency) LUE GPP39, Global Land Surface Satellite (GLASS)
GPP40, solar-induced chlorophyll fluorescence (SIF) GPP (GOSIF GPP)41,
spatial contiguous SIF (CSIF)42, FLUXCOM GPP43, and FLUXSAT GPP
data sets. The Improved LUE GPP data set is based on the Monteith’s LUE
approach. The equation applied is improvedwith optimized spatiotemporal
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LUEs, GIMMS3g of the canopy fraction of photosynthetically active
radiation (FPAR), and meteorological information from Modern-Era Ret-
rospective analysis for Research andApplications, Version 2, (MERRA-2)39.
This globalmonthlyGPP is produced at a 1/12° spatial resolutionandcovers
1982-2016. GLASS GPP is produced using amodel of LUE, which is driven
by four variables and was found to be able to accurately estimate the spatial
and temporal dynamics ofGPP40. This data set covers the period 1982–2018
and is provided with an 8-d temporal resolution and a 0.05° spatial reso-
lution. We used.

SIF is considered a more direct indicator of plant photosynthesis
(GPP)44. The GOSIF GPP data set was produced from SIF data from
Orbiting Carbon Observatory-2 (OCO-2), data for terrestrial surface
vegetation and temperature from Moderate Resolution Imaging Spectro-
radiometer (MODIS), and MERRA-2 meteorological reanalysis data41.
These 8-d GPP data cover 2001 to 2020 with a 0.05° spatial resolution.
FLUXNET GPP data consist of globally distributed eddy-covariance
observations of fluxes of carbon and energy. Eddy covariance fluxes of
FLUXNET and climate data were used to derive FLUXCOM GPP by
upscaling methods (machine learning)43. Seasonal variations in the
FLUXCOM data set were found to be consistent with atmospheric
inversion-based carbon fluxes43. This monthly GPP data set covers 2001 to
2015 and is provided at a 1/12° spatial resolution.Daily FLUXSATGPPdata
set provided at 0.05° spatial resolution was produced by training a neural
networkwith FLUXNET2015 eddy covariance tower sites data andMODIS
reflectance data from 2000 to 202045,46.

All of the above GPP and vegetation index data sets were resampled to
0.1° using cubic convolution interpolation tomatch the spatial resolution of
the temperature data set. Themaximum-value composite (MVC)method47

was applied to produce all GPP and vegetation index data sets as monthly
observations to match the temporal resolution of the temperature data set.

FLUXNET 2015 observations
We used flux-tower (FLUXNET2015) based GPP and air temperature to
calculate the optimal temperature. The FLUXNET2015 dataset provides
measurements of CO2, water, and energy exchange between the biosphere
and the atmosphere, and other meteorological measurements (e.g., air
temperature), from 212 sites around the globe, covering the periods before
201548. The sites havingmore than10years of daily observations ofGPPand
temperature during 2001–2014 were chosen for the analysis (34 sites,
Supplementary Table 2). We estimated the optimal temperature for two
different 5-year periods: 2001–2005 and 2010–2014 (It should be noted that
the observations at some sites might not be available in 2001–2002 or
2013–2014, and observations in 2003–2007 or 2008–2012 were used as
alternatives).We also excluded the sites with a failure to capture the optima
temperature.

Climatic data
To estimate the robustness of the extraction of Topt, we used two data sets of
monthly mean temperature (Tmean) to derive the optimal temperature
(Tmean

opt ) based on mean temperatures: CRU TS (Climatic Research Unit
griddedTime Series) andERA5. TheERA5data set ofmonthly Tmeanwith a
0.1° spatial resolution was produced by the Copernicus Climate Change
Service at the European Centre for Medium-Range Weather Forecasts
(ECMWF). The data set is the fifth generation reanalysis of data for the
global climate (ERA5-land)49. The CRU monthly Tmean is derived from an
extensive network of observations from meteorological stations gridded at
0.5° spatial resolution from the period 1901–202050. We used Tmean

opt as basis
for the optimal temperature (Topt). Daily maximum temperature, however,
is also important for the thermal acclimation of vegetation. We therefore
also used the monthly means in the ERA5 data set of daily maximum
temperatures (Tmax) to derive the optimal temperature (Tmax

opt ) and com-
pared itwithTmean

opt (Supplementary Fig. 20). ThemonthlymeanERA5Tmax

was derived from hourly ERA5 temperatures with a 0.1° spatial resolution.
We averaged Tmax to into a monthly data set to match the spatiotemporal
resolution of the ERA5 monthly mean temperature.

CMIP6 data sets
We used data for GPP and temperature from 23 Earth system models
(ESMs) (Supplementary Table 4) in Phase 6 of the Coupled Model Inter-
comparison Project (CMIP6) to produce the projected Topt. The scenarios
used in CMIP6 combine Shared Socioeconomic Pathways (SSPs) and tar-
geted radiative forcing levels for the end of the 21st century51. SSP126,
SSP245, SSP370, and SSP585 represent various emissions of CO2 from the
lowest to the highest level51. We used data sets of monthly GPP and tem-
perature for 2017 to 2100 under different scenarios (SSP126, SSP245,
SSP370, and SSP585) to derive the projected changes in Topt.

Other auxiliary data sets
Global climatic zones. The current map of climatic zones is an
improvedmap of theKöppen-Geiger classification of climatewith a 1/12°
spatial resolution (Supplementary Fig. 21). Multiple independent data
sources have been used to maximize the accuracy of the classification of
climatic zones52.

ESA CCI land cover. We used the ESA climate change initiative (CCI)
land-cover map for 200053 with a spatial resolution of 300 m to derive
masks of irrigated cropland and areas with sparse or no vegetation. The
masked areaswere: irrigated cropland, barren land, permanent snow, and
ice-covered areas (Supplementary Fig. 21).

These auxiliary data sets were resampled to 1° using nearest-neighbour
interpolation to match the spatial resolution of the Topt data.

Analysis
Extraction of Topt. We followed the basic concept of a previously sug-
gested method6,9 to derive Topt. Unlike previous studies, however, we
extracted Topt by testing the relationships (response curves) between
monthly GPP and monthly mean temperature (both with 1° spatial
resolution) within a 5-y temporal window (12 × 5) and a 1° spatial win-
dow (10×10) (different spatio-temporal windows were also tested)
(Supplementary Fig. 3) to secure enough observations for a statistically
robust extraction of Topt. GPP and its corresponding T within a spatio-
temporal window were grouped into multiple bins by intervals of 0.5 °C.
We used the 90% quantiles of GPP and T as the response of GPP to T for
each bin, because other factors (e.g. residual cloud cover, sun-sensor
viewing angle configuration and extreme climatic events) may also affect
GPP. The Savitzky-Golay filter54 was then used to smooth the response
curve to reduce data noise. Topt for the five years was defined as the T at
which the corresponding GPP was at its maximum along the smoothed
response curve (Supplementary Fig. 1). Areas from where Topt was
extracted at the end of the curve were considered as areas of unsuccessful
extractions, as a maximum could not be established (Supplementary
Fig. 1d). For areaswhere Topt was successfully extracted, < 60%of all years
were excluded. Masks were applied to exclude irrigated cropland and
areas with sparse or no vegetation (Supplementary Fig. 21b).

Model simulations
TRENDY. To study the drivers of the changing Topt, we used six vege-
tation models (ISAM, LPJ-GUESS, LPX-Bern, ORCHIDEE, ORCHI-
DEEv3, andVISIT) for simulatingmonthly GPP at 0.5° spatial resolution
during 1982 to 2016 under different conditions (Supplementary Table 3).
GPP datasets from these models are based on photosynthetic light-
response curves with different factors, including light level, leaf-internal
CO2 concentration (so adjusted for stomatal response), water, nitrogen,
phosphorus and temperature55,56. It should be noted that the short-term
responses of vegetation to environmental factors have already been
included in the land models, but long-term responses (i.e., thermal
acclimation at leaf level) is not included. However, changes in the plant
function type (PFT) have already been included in these models, which
may lead to different Topt because the temperature ranges for optimal
photosynthesis differ per PFT composition57,58. Thesemodelswere driven
by historical changes in three factors (atmospheric CO2, climate, and land
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cover)13. Specifically, under Scenario 0 (S0), all of the above factors are set
as constant values (using the monthly recycling mean and variability of
factors from 1901 to 1920 in the following periods: 1921–1940, 1941-
1960, 1961-1980, 1981-2000, and 2000-2020). Scenario 1 (S1) was driven
by varying atmospheric CO2, but constant climate and land cover. Sce-
nario 2 (S2) was driven by varying atmospheric CO2 and climate, but
constant land cover. Scenario 3 (S3) was driven by varying atmospheric
CO2, climate, and land cover. We extracted Topt using a 5-y temporal
window and a spatial window of 5×5 grid cells under all scenarios. The
difference of changes in Topt between S1 and S0 (S1-S0) was then used to
estimate the impact of CO2 on Topt. Similarly, S2-S1 and S3-S2 indicate
the impact of climate change and land cover change, respectively
(Fig. 2A). We used a different spatial window size (5×5) than for the
extraction of Topt from satellite data sets, because of the relatively coarse
spatial resolution of the forcing data used as input for the model. The
importance of the size of the spatial window was tested and was found to
have only a minor impact on the extraction of Topt (Supplemen-
tary Fig. 3).

LPJ-GUESS. Climate variables including temperature, precipitation,
and solar radiation were combined into one variable in the TRENDY
models, which impedes a quantification of the contribution of individual
climate variables. We thus applied the Lund-Potsdam-Jena General
Ecosystem Simulator (LPJ-GUESS) model59, forced by individual climate
variables (temperature, precipitation, solar radiation, nitrogen deposi-
tion, and CO2), for simulating monthly GPP at 0.5° spatial resolution for
the period 1982 to 2016. Global monthly atmospheric CO2 levels and
historical monthly CRU climatic data sets (temperature, precipitation,
radiation) at 0.5° spatial resolution from 1901 to 2020 were used to drive
the model. In addition to the variables used to force the TRENDY
models, we also included nitrogen deposition as a variable, which is an
important factor for ecosystem photosynthesis. Firstly, model runs were
forced with all factors varying (temperature, precipitation, solar radia-
tion, CO2 level, and nitrogen deposition) under standard conditions
(ALL) to simulate monthly GPP. Secondly, similar to the TRENDY
simulations, the LPJ-GUESS model was forced with one varying
factor while the remaining factors were kept constant (monthly recycling
mean and variability from 1901 to 1920). Thirdly, the model-simulated
GPP data sets were used to extract Topt with a 5-year temporal window
and a spatial window of 5×5 grid cells under different conditions to
evaluate the contribution of each forcing variables to the changing
Topt (Fig. 2B).

Trend analysis. The Theil-Sen estimator and aMann-Kendall trend test
were used at the pixel level to assess historical (1982–2016) and projected
(2017–2100) trends in Topt. Yue-Pilon prewhitening method was used to
remove serial autocorrelations60 in time series of Topt which was calcu-
lated with a moving window. The significance level of p < 0.05 was
applied to retain clear and coherent spatial clusters/patterns of trends.
The Mann-Kendall trend test is a non-parametric test, which is robust
against outliers and does not require the data to be normally distributed.

Relative importance analysis. We used a relative weight analysis
approach61 to estimate to what extent the trend in Topt can be explained
by the climatic factors. The relative importance is assessed using the
“lmg” approach in amultiple regression62, where the trend in Topt is set as
response variable and trends in temperature, precipitation and radiation
as explanatory variables.

Data availability
All data used to support the findings of this study are publicly available. The
data used to generate figures are available through figshare (https://figshare.
com/articles/dataset/dataset_rar/26340871). NIR GPP data are available
from https://figshare.com/articles/dataset/Long-term_1982-2018_global_
gross_primary_production_dataset_based_on_NIRv/12981977/2.

Improved LUE GPP data are available from https://daac.ornl.gov/cgi-bin/
dsviewer.pl?ds_id=1789. GLASS GPP data are available from http://www.
glass.umd.edu/Download.html. GOSIFGPP data are available fromhttps://
globalecology.unh.edu/data/GOSIF.html. FLUXCOM GPP data are avail-
able from https://www.bgc-jena.mpg.de/geodb/projects/Home.php.
FLUXSAT GPP data are available from https://daac.ornl.gov/
VEGETATION/guides/FluxSat_GPP_FPAR.html. GIMMS NDVI data
are available from https://climatedataguide.ucar.edu/climate-data/ndvi-
normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms.
GIMMS LAI data are available from https://zenodo.org/records/8281930.
MOD13C2 NDVI, EVI, and reflectance data are available from https://
search.earthdata.nasa.gov/search. ERA5 climatic data are available from
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5.
CRU climatic data are available from https://crudata.uea.ac.uk/cru/data/
hrg/. CMIP6 outputs are available from https://esgf-node.llnl.gov/search/
cmip6/. Köppen-Geiger climate classification is available from: http://www.
gloh2o.org/koppen/. ESA CCI land cover data are available from https://
www.esa-landcover-cci.org/. TRENDY model simulations are available
from Hui Yang (huiyang.pku@gmail.com) upon request. LPJ-GUESS
model simulations are available from Guy Schurgers (gusc@ign.ku.dk)
upon request.

Code availability
Python code for processing the data and generating the figures are available
from the corresponding author upon request.
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