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Supplementary Figure 1 | Illustrations of Topt extraction. Relationships between monthly GPP and temperature extracted from the 
first 5-y temporal window (1982-1986) at a 1° spatial window. The map shows the locations of the selected sample plots. Panel d 
represents an example where Topt could not be retrieved as Topt was located at the end of the curve. The remaining figures are 
examples from around the globe, where Topt could effectively be retrieved.  
 
 

 
Supplementary Figure 2 | Optimal temperature in two different 5-year periods: 2001-2005 and 2010-2014 for different 
ecosystems. The optimal temperature is derived from the daily FLUXNET sites observations using a 5-y temporal window for 2001-
2005 and 2010-2014. Different colors of the points indicate different ecosystems according to IGBP classification. CSH, Closed 
Shrublands; DBF, Deciduous Broadleaf Forests; EBF, Evergreen Broadleaf Forests; ENF, Evergreen Needleleaf Forests; GRA, 
Grasslands; MF, Mixed Forests; OSH, Open Shrublands; WSA, Woody Savannas. 
 



 
Supplementary Figure 3 | Spatial patterns of trends in Topt using different combinations of sizes of spatial and temporal 
windows for 1982-2016. Temporal windows of 3, 5, and 7 years were tested to calculate Topt, and the sizes of the spatial windows 
were 1, 1.5, and 2°. Light gray indicates areas with sparse or no vegetation, and dark gray indicates areas where Topt could not be 
successfully retrieved (see Methods). 
 
 
    



 
Supplementary Figure 4 | Spatial patterns of trends in Topt with a 5-y temporal window and a 2.5° spatial window for 1982-
2016 based on different data sets. NIR GPP and LUE GPP are independent GPP data sets, and ERA5 and CRU are independent 
temperature data sets. Light gray indicates areas with sparse or no vegetation, and dark gray indicates areas where Topt could not be 
successfully retrieved (see Methods). 
 

 

 
Supplementary Figure 5 | Spatial patterns of trends in Topt with a 5-y temporal window and a 1° spatial window for 1982-2016 
based on different temporal composition of GLASS GPP data sets and for 2001 to 2016 based on different temporal 
composition of GOSIF GPP data sets, respectively. Light gray indicates areas with sparse or no vegetation, and dark gray indicates 
areas where Topt could not be successfully retrieved (see Methods). 



 
 
 

 

 
   

 
   

 

 
Supplementary Figure 6 | a-c, Spatial patterns of trends in Topt with a 5-y temporal window and a 1° spatial window for 1982-2016 
based on different vegetation growth data sets (LUE GPP, NIR GPP, and GIMMS NDVI). Light gray indicates areas with sparse or no 
vegetation, and dark gray indicates areas where Topt could not be successfully retrieved (see Methods). d, Temporal dynamics of Topt 
for different GPP data sets and vegetation index data sets with a 5-y temporal window and a 1° spatial window for 1982-2016 or 2001-
2016. The solid lines indicate the dynamics of global average Topt, and the shaded areas represent the 95% confidence interval of Topt. 
 
 
 
 
 



 
Supplementary Figure 7 | Spatial patterns of trends in Topt using different datasets for 1982-2015. LAI 

represents one part of decomposed GPP. Light gray indicates areas with sparse or no vegetation, and dark gray 

indicates areas where Topt could not be successfully retrieved (see Methods in the manuscript). 

 



 
Supplementary Figure 8 | Spatial patterns of trends in Topt using different temperature datasets for 1982-2016. 

NIR_Tair represents the result from air temperature, and NIR_Tsk indicates the result from skin temperature 

(temperature of the surface of the Earth, near to leaf temperature). Light gray indicates areas with sparse or no 

vegetation, and dark gray indicates areas where Topt could not be successfully retrieved (see Methods in the 

manuscript). 

 

 



 
Supplementary Figure 9 | Spatial patterns of trends in Topt using Loess smoothing with different combinations of degrees 
and fractions for 1982-2016. Light gray indicates areas with bare land or sparse vegetation, and dark gray indicates areas where 
Topt could not be successfully retrieved (see Methods). 

 

 
 

 
 
 



 
Supplementary Figure 10 | Relationships between Topt and 50-90% temperature percentiles. Time series of Topt and the 
percentiles of air temperature above 0 °C (considered as covering growing-season conditions) within a 5-y temporal window and a 1° 

spatial window for 1982-2016 at the global scale and for different climatic zones. The solid lines indicate the dynamics of Topt (red) 
and the air temperature percentiles (blue), and the shaded areas indicate their 95% confidence interval. The bars and error bars 
indicate the mean and 95% confidence interval, respectively, of Topt and the temperature percentile.  
 
 
 



 
 
Supplementary Figure 11 | Comparison of Topt derived from RS data (NIR GPP) and the TRENDY models. The RS data were 
resampled to 0.5° to match the spatial resolutions of the outputs from the TRENDY models. Topt was derived using a 5-y temporal 
window and a 2.5° (5×5) spatial window for 1982-2016 for comparing satellite observations and the output of the TRENDY models.  
 
 
 
 

   

 
 



 
Supplementary Figure 12 | Trends in Topt derived from remote sensing (RS) data (NIR GPP) (a), the LPJ-GUESS model under 
standard conditions (b), driven by all factors (temperature, precipitation, radiation, CO2, and nitrogen deposition), and (c-d) 
the agreement in trends. The RS data were resampled to 0.5° to match the spatial resolutions of the LPJ-GUESS model. Topt was 
derived using a 5-y temporal window and a 2.5° (5×5) spatial window for 1982 to 2016 for comparing satellite observations and the 
output of the LPJ-GUESS model. 
 
 
 
 
 
 
 

 

 
Figure 13 | Relative importance of three climatic factors (precipitation, incoming solar radiation and air temperature) for the 
trend in Topt derived from satellite observations.  
 
 



 
 

 
 
 
Supplementary Figure 14 | Consistency between the trend in satellite-observed Topt and the trend in the 5-y moving window 
of mean air temperature (T) and precipitation (P) derived from the ERA5 data set. +-, increasing Topt and decreasing T (or P); ++, 
increasing Topt and increasing T (or P); --, decreasing Topt and decreasing T (or P); -+, decreasing Topt and increasing T (or P). 
 

  

 

 
Supplementary Figure 15 | Comparison of Topt derived from RS data (NIR GPP) and the CMIP6 models. The RS data were 
resampled to 1.0° to match the spatial resolutions of the CMIP6 model outputs. Topt was derived using a 5-y temporal window and a 
5.0° (5×5) spatial window for 1982-2014 for comparing satellite observations and the output of the CMIP6 models.  

 
 
 
 
 
 
 



 
Supplementary Figure 16 | Projected temporal dynamics of (a) mean daily maximum temperature, (b) Topt and (c) mean 
temperature for 2017-2100 under different scenarios (SSP126, SSP245, SSP370, and SSP585). Topt was estimated from 23 
CMIP6 models using a 5-y temporal window and a 5° spatial window for 2017-2100. The maximum and mean temperatures were 
calculated using the same spatio-temporal windows as for Topt. The solid lines indicate the dynamics of maximum temperature, Topt, 
and mean temperature, and the shaded areas represent the 95% confidence interval of the maximum temperature, optimal 
temperature, and mean temperature. 
   



 

Supplementary Figure 17 | Projected changes in Topt of vegetation productivity under different scenarios. a, c, e, and g are 

the spatial patterns of the difference in Topt between two 5-y windows (2017-2021 and 2096-2100) under different scenarios. b, d, f, 

and h are the mean difference in Topt between two 5-y windows (2017-2021 and 2096-2100) under different scenarios at the global 

scale and for different climatic zones. The error bars indicate the 95% confidence interval of the differences in Topt. Topt was estimated 

from 23 CMIP6 models using a 5-y temporal window and a 5° spatial window for 2017-2100.  

 



 

 

Supplementary Figure 18 | Illustrations of Topt extraction using the method from Huang et al. (2019). Relationships between 
monthly GPP and temperature extracted from 10-y temporal window (2002-2011) but without using a spatial window. The map shows 
the locations of the selected sample plots, corresponding to the location of the plots in Fig. S1.  
 

 
Supplementary Figure 19 | Topt derived from the method of Huang et al. (2019) in three periods, 2002-2011, 1992-2001, and 
1982-1991. 
 

 
  



 
 
Supplementary Figure 20 | Comparison of Topt derived from the monthly mean of daily maximum air temperature (𝐓𝒐𝒑𝒕

𝒎𝒂𝒙) and 

from the monthly mean of daily mean air temperature (𝐓𝒐𝒑𝒕
𝒎𝒆𝒂𝒏) using a 5-y temporal window and a 1° spatial window for 1982-

2016. Trends in Topt where the temperature was extracted from (a) maximum daily air temperature and (b) mean daily air temperature. 
(c) Scatterplot of the correlations of trends in T𝑜𝑝𝑡

𝑚𝑒𝑎𝑛 and T𝑜𝑝𝑡
𝑚𝑒𝑎𝑛, and (d) the density distribution. (e) Differences in T𝑜𝑝𝑡

𝑚𝑎𝑥 and T𝑜𝑝𝑡
𝑚𝑒𝑎𝑛 for 

1982-2016 and (f) their density distributions. 
 
 
 
  



 

  
Supplementary Figure 21 | Global climatic zones and areas with sparse or no vegetation. (a) Global climatic zones at 
1/12°spatial resolution (Beck et al., 2018). (b) Global land cover in 2000, with irrigated cropland and sparse or no vegetation derived 
from the land-cover data product of the ESA climate change initiative at 1° spatial resolution.  
  



Supplementary Table 1. Vegetation proxy data sets and climate data sets used in this paper.  

Data Temporal coverage Temporal resolution Spatial resolution 

NIR GPP 1982-2018 Monthly 0.05° 

GMMMIS NDVI 1982-2016 15-d 1/12° 

GMMMIS LAI 1982-2015 15-d 1/12° 

MODIS NDVI/EVI/KNDVI 2001-2020 Monthly 0.05° 

GLASS GPP 1982-2018 Monthly/8-d 0.05° 

Improved LUE-GPP 1982-2016 Monthly 1/12° 

GOSIF GPP 2001-2020 8-d 0.05° 

FLUXSAT GPP 2001-2020 Daily 1/12° 

FLUXCOM GPP 2001-2015 Monthly 1/12° 

ERA5 T, P, and R 1979-2020 Monthly 0.1° 

CRU T  1901-2020 Monthly 0.5° 

Note: T = temperature; P = precipitation; R = radiation 

  



Supplementary Table. 2. Information about FLUXNET2015 sites used in this study. 

SITE_I

D 

SITE_NAME IGBP Latitude Longitude Elevation 

AU-

Tum 

Tumbarumba EBF -35.6566 148.1517 1200 

BE-Bra Brasschaat MF 51.3076 4.5198 16 

BE-Vie Vielsalm MF 50.3049 5.9981 493 

CA-Oas Saskatchewan - Western Boreal, 

Mature Aspen 

DBF 53.6289 -106.1978 530 

CA-Obs Saskatchewan - Western Boreal, 

Mature Black Spruce 

ENF 53.9872 -105.1178 628.94 

CA-TP3 Ontario - Turkey Point 1974 

Plantation White Pine 

ENF 42.7068 -80.3483 184 

CA-TP4 Ontario - Turkey Point 1939 

Plantation White Pine 

ENF 42.7102 -80.3574 184 

CH-Lae Laegern MF 47.4783 8.3644 689 

CZ-BK1 Bily Kriz forest ENF 49.5021 18.5369 875 

DE-Hai Hainich DBF 51.0792 10.4522 430 

DE-Lnf Leinefelde DBF 51.3282 10.3678 451 

DK-Sor Soroe DBF 55.4859 11.6446 40 

FR-LBr Le Bray ENF 44.7171 -0.7693 61 

FR-Pue Puechabon EBF 43.7413 3.5957 270 

IT-Lav Lavarone ENF 45.9562 11.2813 1353 

IT-Noe Arca di Noe - Le Prigionette CSH 40.6062 8.1517 25 

IT-Ren Renon ENF 46.5869 11.4337 1730 

IT-Ro2 Roccarespampani 2 DBF 42.3903 11.9209 160 

IT-SRo San Rossore ENF 43.7279 10.2844 6 

RU-Cok Chokurdakh OSH 70.8291 147.4943 48 

US-Me2 Metolius mature ponderosa pine ENF 44.4526 -121.5589 1253 

US-NR1 Niwot Ridge Forest (LTER NWT1) ENF 40.0329 -105.5464 3050 

US-

SRM 

Santa Rita Mesquite WSA 31.8214 -110.8661 1120 

US-Ton Tonzi Ranch WSA 38.4309 -120.966 177 

US-Var Vaira Ranch- Ione GRA 38.4133 -120.9508 129 

US- Willow Creek DBF 45.8059 -90.0799 520 



WCr 

US-Wkg Walnut Gulch Kendall Grasslands GRA 31.7365 -109.9419 1531 

 

 

Supplementary Table 3. TRENDY model simulations under different scenarios. 

Scenarios CO2 Climate Land cover Labels 

S0 0 0 0 - 

S1 1 0 0 CO2 

S2 1 1 0 CO2+CL 

S3 1 1 1 CO2+CL+LC, standard scenario  

S2-S1 0 1 0 CL 

S3-S2 0 0 1 LC 

Note: 0, constant value (monthly recycling mean and variability from 1901 to 1920); 1, varying value. 

CL=climate; LC=land cover. 

 

Supplementary Table 4. LPJ-GUESS model simulations under different scenarios. 

Scenarios Temperature Precipitation Radiation CO2 Nitrogen deposition 

ALL 1 1 1 1 1 

TEM 1 0 0 0 0 

PRE 0 1 0 0 0 

RAD 0 0 1 0 0 

CO2 0 0 0 1 0 

NDE 0 0 0 0 1 

Note: 0, constant value (monthly recycling mean and variability from 1901 to 1920); 1, varying value. 

 

 

Supplementary Table 5. Name, spatial resolution and source of origin of the 23 CMIP6 models used. 

Model name Spatial resolution Modeling center 

ACCESS-ESM1-5 1.2414° × 1.8750° 

Commonwealth Scientific and Industrial 

Research Organization and Bureau of 

Meteorology, Australia 

BCC-ESM1 2.8125° × 2.8125° 
Beijing Climate Center, China Meteorological 

Administration, China 

BCC-CSM2-MR 0.25 ° ×0.25° Beijing Climate Center, China Meteorological 



Administration, China 

CanESM5 2.8125° × 2.8125° 
Canadian Center for Climate Modeling and 

Analysis (CCCma), Canada 

CanESM5-CanOE 2.8125° × 2.8125° 
Canadian Center for Climate Modeling and 

Analysis (CCCma), Canada 

CAS-ESM2-0 1.40625° × 1.40625° Chinese Academy of Sciences, China 

CESM2-WACCM 0.9375 ° ×1.25° 
National Center for Atmospheric Research, 

Climate and Global Dynamics Laboratory, USA 

CMCC-CM2-SR5 0.9375 ° ×1.25° 
Fondazione Centro Euro-Mediterraneo sui 

Cambiamenti Climatici, Italy 

CMCC-ESM2 0.9375 ° ×1.25° 
Euro-Mediterranean Center on Climate Change, 

Italy 

CNRM-CM6-1 1.40625° ×1.40625° 
National Center for Meteorological Research, 

France 

CNRM-ESM2-1 1° ×1° 
National Center for Meteorological Research, 

France  

E3SM-1-1 1° ×1° Lawrence Livermore National Laboratory, USA 

E3SM-1-1-ECA 1° ×1° Lawrence Livermore National Laboratory, USA 

EC-Earth3-Veg 0.703125° ×0.703125° State Meteorological Agency, Spanish  

GFDL-ESM4 1° ×1.25° 
Geophysical Fluid Dynamics 

Laboratory/NOAA, USA 

INM-CM4-8 1.5° ×2.0° 
Institute for Numerical Mathematics (INM), 

Russia 

INM-CM5-0 1.5° ×2.0° 
Institute for Numerical Mathematics (INM), 

Russia 

IPSL-CM6A-LR 1.26° ×2.50° Institut Pierre Simon Laplace (IPSL), France 

MIROC-ES2L 2.8125° × 2.8125° 
Japan Agency for Marine-Earth Science and 

Technology, Japan 

MPI-ESM-1-2-

HAM 
0.9375° ×0.9375° ETH Zurich, Switzerland 

NorESM2-LM 1.875° × 2.5° Norwegian Meteorological Institute, Norway 

NorESM2-MM 0.9375° × 1.25° Norwegian Meteorological Institute, Norway 

UKESM1-0-LL 1.25° × 1.875° Met Office Hadley Centre, UK 
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