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Abstract

A core challenge for the brain is to process information across various timescales. This

could be achieved by a hierarchical organization of temporal processing through intrinsic

mechanisms (e.g., recurrent coupling or adaptation), but recent evidence from spike record-

ings of the rodent visual system seems to conflict with this hypothesis. Here, we used an

optimized information-theoretic and classical autocorrelation analysis to show that informa-

tion- and correlation timescales of spiking activity increase along the anatomical hierarchy

of the mouse visual system under visual stimulation, while information-theoretic predictabil-

ity decreases. Moreover, intrinsic timescales for spontaneous activity displayed a similar

hierarchy, whereas the hierarchy of predictability was stimulus-dependent. We could repro-

duce these observations in a basic recurrent network model with correlated sensory input.

Our findings suggest that the rodent visual system employs intrinsic mechanisms to achieve

longer integration for higher cortical areas, while simultaneously reducing predictability for

an efficient neural code.

Author summary

How the brain integrates information across different timescales is a fundamental ques-

tion in neuroscience. Results from primates suggest that higher areas in cortex are special-

ized on integrating information on longer timescales through stronger network

recurrence. However, due to anatomical differences and conflicting empirical evidence, it

remains open whether this is a property that is shared among species as a general feature

of temporal processing. For example, in rodents, higher cortical areas show an increase in

adaptation, which suggests stronger redundancy reduction that might oppose an

enhanced temporal integration. Here, we combined an information theoretic analysis

with an analysis of correlation timescales and found an increase in information and corre-

lation timescales across the anatomical hierarchy of the mouse visual system. Notably, this

upward trend is accompanied by a simultaneous reduction in the predictability of single-

neuron spiking, suggesting a decrease in temporal redundancy. We could reproduce these
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findings in recurrent network models, which demonstrates that enhanced temporal inte-

gration through an increase in recurrence does not necessarily oppose a reduction of

redundancy for individual neurons. Together with our empirical findings, this suggests

that mouse visual cortex might exploit both, enhanced temporal integration and stronger

adaptation, to tune hierarchical temporal processing.

Introduction

The brain has the ability to seamlessly process and integrate information on vastly different

timescales. In primates, past work suggested that this may be supported by two essential fea-

tures of neocortex: the highly recurrent architecture of cortical networks [1], and an organiza-

tion of different cortical areas into a temporal processing hierarchy [2–4]. It was found that

early sensory areas specialize on fast processing of sensory inputs [5–7], whereas higher (trans-

modal) areas perform temporal processing with long timescales—combining new information

with past information that is maintained over extended periods [8, 9].

This hierarchy is reflected by an increase in the intrinsic timescale of neural activity, as mea-

sured by the decay rate of autocorrelation [4, 10–12]. In addition, intrinsic timescales were

found to be indicative of the specialization for behaviorally relevant computations [13–16].

Finally, there exist gradients in intra-areal properties across the anatomical cortical hierarchy,

all of which point to a stronger recurrent coupling for areas specialized on long timescales [17,

18]. In particular, higher cortical areas have an increased dendritic spine density for pyramidal

neurons [1, 19], overall excitation-inhibition ratio [20], the expression of related receptor

genes [10, 21], gray matter myelination [10, 22], and the strength of functional connectivity

[11, 14, 23, 24]. From modelling studies, a stronger recurrence is known to enable stronger

and longer-lasting activity fluctuations [15, 25–27], consistent with the increase in timescales

for higher areas. Overall, this led to the understanding that in primates, temporal processing is

organized hierarchically [3], and that specializations along this hierarchy are likely governed

by differences in recurrent coupling [27, 28]. Yet, it is still open how a temporal hierarchy

shaped by recurrence fulfills requirements of neural coding and information processing, and

whether it manifests as a general organization principle in mammals.

Here, we investigate mouse visual cortex because it comprises an anatomical and functional

sensory processing hierarchy that differs from primate visual cortex in many interesting ways

[29]. Visual cortex in mice exhibits clear hierarchical feedforward–feedback projection pat-

terns [30], which are paralleled by differences in the recruitment of inhibitory and excitatory

neurons [31], and a functional hierarchy that follows the anatomical hierarchy [32]. In addi-

tion, the rodent analog of the ventral stream shows a hierarchy of temporal scales where higher

areas encode visual information more persistently [33]. Finally, population codes vary between

association and sensory cortices [34], and impairments to cortical frontal (transmodal) areas

have a greater impact on evidence accumulation over long timescales than posterior (sensory)

areas, which also exhibit shorter activity timescales during evidence accumulation [35]. Thus,

the mouse visual cortex also shows many signatures of hierarchical temporal processing.

However, the mouse visual cortex was found to differ substantially from primate cortical

organization. First, the sensory processing hierarchy seems to be more shallow [36–38], with

overall fewer and more primitive higher areas [39], and multisensory integration at a relatively

early stage in processing compared to primates [40]. Second, although there exists evidence for

gradients in interneuron numbers and intra-cortical connectivity from sensory to transmodal

areas [41], the degree of interareal variation of microstructural properties in mice [42, 43] is
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far less pronounced than in the highly differentiated primate cortex [44–47]. This raises the

question whether a temporal hierarchy shaped by recurrence also characterizes mice, or

whether the strong focus on sensory processing in a more shallow hierarchy requires a differ-

ent, coding-optimized organization altogether.

To address this question, it is important to note that a coding perspective entails a similar

trade-off as the temporal-processing perspective (long integration vs. fast relay): In order to

increase the signal-to-noise ratio, robust coding requires integrating information over time

[48], whereas, for low noise, efficient coding of sensory information requires temporal decorre-

lation to reduce redundancies [49–51]. This trade-off can be characterized using the predict-
ability R, which quantifies the proportion of information in current neural spiking that can be

predicted from the recent past [52]. This predictable information reflects temporal redun-

dancy, and facilitates, for instance, active information storage (maintaining past input to com-

bine it with present input [53–55]) and associative learning [56]. In addition, the closely

related information timescale τR gives the timescale over which past information has to be inte-

grated for prediction [52]. Together, predictability and information timescales provide a broad

view into the neural code, quantifying both, the amount and the timescale of redundancy in

neural spiking.

Here, we will use the information timescale, as well as a correlation timescale, to probe for

hierarchical temporal processing in mouse visual cortex. Moreover, we will test whether higher

cortical areas show an increase in predictability, in line with robust coding, or a decrease in

predictability, in line with efficient coding. Finally, we will compare results between spontane-

ous activity and natural stimuli, which is important to distinguish between stimulus-induced

and intrinsically generated timescales and predictability. Together, these results will clarify

whether mouse visual cortex shows signatures of hierarchical temporal processing, and

whether these are stimulus-induced, indicating a stronger role of feedforward processing, or

rather intrinsically generated, indicating a stronger role of recurrent processing.

Results

To identify systematic differences in temporal processing between sensory processing stages,

we analyzed a dataset from simultaneous Neuropixels recordings of the mouse visual system in

vivo [32, 57] (Fig 1C). This dataset contains spike trains collected from n = 57 experimental

sessions in adult mice under different stimulus conditions, and for thousands of neurons from

six cortical areas [primary visual cortex (V1), lateromedial area (LM), anterolateral area (AL),

rostrolateral area (RL), anteromedial area (AM) and posteromedial area (PM)] and two tha-

lamic areas [lateral geniculate nucleus (LGN) and lateral posterior nucleus (LP)]. We focused

on a stimulus condition from the Functional Connectivity experimental sessions, where a

(repeated) natural movie was used as stimulus (Fig 1D; see Materials and methods for details

on the recording and data selection).

Timescales and predictability of neural spiking activity

To analyze signatures of temporal processing in the recorded spike trains, we quantify single

neuron autocorrelation and predictability (Materials and methods). Autocorrelation C(T) con-

siders only the linear dependence to a single point in time with time lag T (Fig 1A). In contrast,

predictability R(T) gives the proportion of spiking information R(T) that can be predicted

from past spiking in an entire past range T (Fig 1B), and thus captures all linear and nonlinear

dependencies in that range T [52].

Using the autocorrelation, we estimate the correlation timescale of spiking activity, which is

computed as the decay time τC of an exponentially decaying autocorrelation (Fig 1A, Materials
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and methods). It is important to note that the resulting correlation timescale captures temporal

correlations from both, intrinsic neural mechanisms and visual stimuli. One way to disentan-

gle these contributions is to work with trial-based data where mean non-stationary inputs can

be estimated and removed [4, 33, 60], which gives rise to the so-called intrinsic timescale [4].

Here, we instead compute the correlation timescale for ongoing activity in an entire stimulus

block to obtain clean estimates on the single-neuron level. We then systematically compare the

estimated timescale under stimulation with a natural movie with the one obtained for sponta-

neous activity, where the latter reflects the intrinsic timescale [61].

In contrast to the autocorrelation C(T), the predictability R(T) increases monotonously

with T, because more past information can only increase predictability. From this, we estimate

(i) the total predictability Rtot of a unit as the value where R(T) saturates for large T, as well as

(ii) the information timescale τR, which can be interpreted as a rise time of the predictability,

and indicates a typical timescale on which past activity is informative, i.e. adds to the predict-

ability of current spiking (Fig 1B). Similar to the correlation timescale, the predictability and

Fig 1. Timescales and predictability of spiking activity in the mouse visual system. (A) Autocorrelation C(T) quantifies the

correlation between a neuron’s spiking activity in two time bins with time lag T. Typically, the measured autocorrelation (solid green

line) is decaying exponentially with lag T on a characteristic timescale τC (dashed line), here termed correlation timescale. (B)

Predictability R(T) gives the relative amount of spiking information in a time bin that can be predicted from spikes in all time bins in a

past range T. R(T) increases monotonously with T until it saturates when reaching the neuron’s total predictability Rtot (horizontal

dashed line), i.e., when adding past bins does not yield additional information. The information timescale τR is defined as the

characteristic rise time until Rtot is reached (vertical dashed line, c.f. main text). (C) Neuropixel-electrodes simultaneously record from

up to six visual cortical areas (V1, LM, RL, AL, PM, AM) and two thalamic areas (LGN and LP) (image credit: Allen Institute [58]). (D)

Example of spiking activity for a random subset of units from different brain areas during stimulation with a natural movie. The

box shows a scene from the movie (image adapted from [59]). (E) Examples of C(T) for LP, PM and AM (green, orange, red,

respectively). τC is estimated by fitting C(T) (thin lines) with an exponential decay (thick lines). (F) Examples of R(T), same units as in E.

https://doi.org/10.1371/journal.pcbi.1012355.g001
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information timescale reflect both stimulus-induced and intrinsic effects, and thus will be sys-

tematically compared between stimulus conditions.

In the data, we found that single unit autocorrelation is generally well approximated by an

exponentially decaying function (Fig 1E and S9 Fig), except for very short time lags, which we

accounted for in our fitting procedure (Materials and methods). Moreover, units with higher

correlation timescale typically also have higher information timescale (S2 Fig), indicating that

the different measures of timescale capture a similar trend in the data. Consistent with previ-

ous findings [52], τR is smaller than τC, because R(T) only increases for non-redundant past

information, i.e. information that could not be read out from a smaller past range T. In con-

trast, the autocorrelation C(T) only considers time-lagged bins, and hence also incorporates

redundant contributions [52].

To provide a better intuition of the above measures, we can relate them to simpler statistics

of single neuron spiking (S3 Fig). For instance, τR is correlated with the inter-spike-interval

(ISI), since a longer ISI implies larger timescales to predict neural spiking. As another example,

predictability is correlated with the coefficient of variation (CV), because higher predictability

also means a deviation from uncorrelated Poisson spike trains (CV = 1) towards spike trains

with higher temporal variability (CV> 1). In contrast, all measures are only weakly correlated

with the mean firing rate. Thus, although some relations exist, our chosen measures go beyond

simple firing statistics and quantify complementary aspects of the temporal statistics of neural

spiking: τC covers linear dependencies, τR captures non-redundant, also non-linear dependen-

cies, and Rtot describes the maximum information that could be predicted over the full past

range.

Timescales and predictability differ between thalamic and cortical visual

areas

When comparing the estimated timescales and predictability between different brain areas, we

found a significant difference between thalamic and cortical areas (Fig 2A–2C): Units from

LGN and LP had much lower timescales τC and τR compared to V1, or higher visual cortical

areas. Moreover, predictability Rtot is significantly smaller in thalamus compared to V1 or

higher cortical areas. These trends were confirmed with a second, independent dataset (Brain
Observatory 1.1 [32], c.f. S11 Fig). In sum, timescales and predictability in thalamus were

smaller than in cortex, which likely reflects the role of thalamus as a relay of information with

fast processing, fast forgetting, and temporal decorrelation [62, 63]. In contrast, the higher

timescales in cortical areas suggests an enhanced integration of temporal information, which

might be supported by the extensive recurrent connectivity in cortex, and longer reverbera-

tions of activity in these areas [61]. To better understand how this temporal processing is orga-

nized, we next focused on cortical areas.

Timescales and predictability indicate an organization of temporal

processing along the anatomical cortical hierarchy

In mouse visual cortex, the correlation timescale as well as the information timescale and

predictability are correlated with the anatomical hierarchy of cortical areas (Fig 2E and 2F).

Here, the cortical hierarchy is characterized by the anatomical hierarchy score based on inter-

areal feedforward and feedback connectivity from the Allen Mouse Brain Connectivity Atlas

[30]. In particular, median timescales increased with hierarchy score (Pearson correlation

coefficient rP = 0.91 and 0.87 for τC and τR), indicating longer integration times for higher

areas. In contrast, median predictability decreased (rP = −0.92), which indicates less temporal

redundancy within individual spike trains in higher cortical areas.
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Moreover, we carefully assessed whether the hierarchies of timescales and predictability

indeed follow the anatomical hierarchy, or, alternatively, are better described by a grouping

into primary and higher, extrastriate cortical areas (V1 vs. higher cortical areas, Fig 2A–2C).

This is important, since cortex in rodents is thought to have fewer hierarchical stages, where

visual information from V1 is provided more readily (and in parallel) to multimodal interac-

tions or motor outputs [65], which is supported by direct V1 input to essentially all extrastriate

(higher cortical) visual areas [66–68]. To this end, we used hierarchical Bayesian modelling

(Materials and methods), which allowed us to compare the group and hierarchy hypotheses.

Moreover, this allowed us to disentangle differences in temporal processing from trivial differ-

ences in average firing rate and visual responsiveness (whether or not units have of a clear

receptive field).

For the group hypothesis, we modelled timescales and predictability with a different log

mean for each group (V1, higher cortical). For the cortical hierarchy hypothesis we modelled a

linear relation between an area’s hierarchy score and the median timescales or predictability.

Fig 2. Timescales and predictability indicate a gradual hierarchy of temporal processing in mouse visual cortex. (A–C) Hierarchy

according to groups of visual areas. Gray markers indicate the median over all sorted units from different groups (thalamus, V1, higher

cortical areas), colored dots indicate the median over units for individual areas. Bars indicate 95% confidence intervals on the median

obtained by bootstrapping, and p-values for comparisons of different groups were obtained by Mann-Whitney-U tests. (A) Correlation

timescales τC are lowest for thalamus (areas LGN and LP) compared to primary visual cortex (V1) and higher cortical areas (LM, RL, AL,

PM, AM). (B) The same trend holds for τR, which increases from thalamic areas to V1 to higher cortical areas. (C) Rtot increases from

thalamus to V1, but it is again smaller for higher cortical areas. (D–F) Timescales and predictability as a function of anatomical hierarchy

score [30, 32]. (D) Median τC increases with hierarchy score of the respective cortical areas, which is well approximated by linear

regression (dashed line, Pearson and Spearman correlation coefficients and corresponding p-values shown below). (E) The same relation

holds for τR. (F) Median Rtot in contrast decreases with hierarchy score. (G) Model comparison between the model based on cortical

groups (V1, higher cortical in A–C), and the model based on linear relationship with hierarchy score (D–F). Shown is the difference in

expected log pointwise predictive density (ELPD) from leave-one-out (LOO) cross-validation [64]. Boxes indicate the mean and bars the

standard deviation over LOO samples. The cortical hierarchy model has higher predictive power for all measures, but models show more

similar performance for Rtot.

https://doi.org/10.1371/journal.pcbi.1012355.g002
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In addition, each model included average firing rate and responsiveness of each unit as

predictors.

First, the Bayesian regression confirmed our earlier results: Posteriors over log means of the

groups indicated a credible increase in timescales and decrease in predictability for higher cor-

tical areas when compared to V1 (S15 Fig). Moreover, posteriors over the mean slope indicated

a credible positive slope for both timescales, and a negative slope for the predictability (S13

Fig).

Second, the Bayesian regression suggested a hierarchical organization over a grouping.

When comparing the two models by leave-one-out cross-validation, we found that the hierar-

chy-score model has more predictive power than the group model for the correlation and

information timescale, whereas both models performed more similarly for predictability (Fig

2G). Again, these results were confirmed with the Brain Observatory data (S11 and S13 Figs).

In sum, the Bayesian model comparison implied that the increase in timescales is better

described by a linear increase with anatomical hierarchy score than a group difference between

primary visual cortex and higher cortical areas. This suggests that temporal processing in cor-

tex is organized gradually along the anatomical hierarchy, and not in a two-stage processing

architecture.

Predictability depends on visual stimulation and stimulus selectivity, while

timescales are rather invariant

Until now, it is open which mechanisms might underlie the observed hierarchy of temporal

processing. One hypothesis is that feedforward processing leads to longer timescales under

visual stimulation because of transformation invariant, temporally persistent stimulus repre-

sentations in higher areas [33, 69–71]. An alternative hypothesis is that stronger recurrence

enables longer integration of visual information [15], which is thought to be a cause of long

intrinsic timescales in primates [1] To test these hypotheses, we note that feedforward process-

ing predicts overall higher timescales and a more pronounced hierarchy under stimulation

with a natural movie (with long stimulus timescales) when compared to spontaneous activity

in the absence of a time-varying visual stimulus, where the correlation timescale corresponds

to the intrinsic timescale. In contrast, recurrent integration predicts that timescales are rather

invariant to the stimulus condition.

When comparing timescales between the previous natural movie condition and spontane-

ous activity that was recorded while showing the animal a grey screen (Materials and meth-

ods), we found that median τC and τR were similar between stimulus conditions (pooled from

all units in all cortical areas, Fig 3A and 3B). Moreover, we found that a cortical hierarchy of

timescales also exists for spontaneous activity (S12, S13 and S15 Figs). This hierarchy was strik-

ingly similar for the correlation timescale, whereas for the information timescale the correla-

tion with the hierarchy score was smaller under spontaneous activity (S12 Fig) and the

Bayesian regression indicated a smaller mean slope (S13 Fig). This suggests that the hierarchy

of correlation timescales is little affected by the stimulus condition, while the hierarchy of

information timescales becomes more pronounced under visual stimulation.

In contrast to the timescales, median predictability differed between stimuli by� 22% (Fig

3C), which we similarly found when pooling and comparing units for each cortical area sepa-

rately (S22 Fig). Moreover, when applying the Bayesian regression to predictability for sponta-

neous activity, we neither found a credible decrease from V1 to higher cortical areas, nor a

credible negative slope with the anatomical hierarchy score (S13 and S15 Figs). Thus, while the

hierarchy of timescales is found for both stimulus condition, a decrease in predictability shows

mainly under a time-varying visual stimulus, where also the overall predictability is larger.
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To further test the relation between the measures and stimulus encoding, we assessed how

timescales and predictability related to stimulus selectivity measures for individual neurons

(e.g., direction and image selectivity). To this end, we considered the Brain Observatory 1.1
data set, which contains recordings under natural movie stimulation and a range of other con-

ditions (drifting gratings, static images) required to quantify stimulus selectivity. From the nat-

ural-movie recordings we again estimated timescales and predictability of each unit, and

compared them to each unit’s direction-selectivity, which was previously computed from drift-

ing-gating recordings [32]. When pooling units across cortical areas, we found that timescales

were only weakly and negatively correlated with the direction selectivity (r = −0.14 and r =

−0.12, Fig 3D and 3E), whereas predictability was more strongly and positively correlated

(r = 0.35, Fig 3F). When repeating the analysis for each cortical area individually, timescales

were not significantly correlated with direction-selectivity, but predictability was (S23 Fig).

Moreover, we found the same overall dependence as on direction-selectivity also on image-

selectivity (S24 and S25 Figs).

Together, these results imply that the hierarchy of timescales is supported by network-

intrinsic mechanisms (independent of stimulus conditions or visual coding properties),

whereas the hierarchy of predictability is more closely related to visual input. This also suggests

that the decrease in predictability along the hierarchy might reflect an active cancellation of

predictability in visual stimuli, or is an inherent property of higher-level visual representations

(see Discussion).

Fig 3. Predictability depends on visual stimulation and stimulus selectivity, while timescales are rather invariant. (A) Comparison of

correlation timescale τC under stimulation with a natural movie (blue) and spontaneous activity under grey screen illumination (orange),

for N = 4200 units pooled from all cortical areas. Correlation timescales are very similar between stimulus conditions with difference in

medians of Δ = 0.3%. (B) Information timescales τR, in contrast, are more broadly distributed for spontaneous activity, with slightly larger

difference in medians (Δ = 7.1%). (C) Rtot shows the largest difference between stimulus conditions (Δ = −21.8%). For A–C, p-values are

obtained using Wilcoxon signed-rank tests. (D–F) Timescales and predictability as a function of direction selectivity, where each dot

represents a unit. Timescales and predictability were computed under natural stimulation in the Brain Observatory 1.1 data set, and

direction selectivity was calculated from a separate stimulus condition (drifting gratings). (D, E) Timescales τC and τR show a significant

yet weak negative correlation with direction selectivity (line shows linear regression, with Pearson correlation r = −0.14 and −0.12,

respectively). (F) In contrast, predictability is positively correlated and has a larger correlation coefficient (r = 0.35).

https://doi.org/10.1371/journal.pcbi.1012355.g003
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Gradients of timescales and predictability are consistent with an increase in

recurrence in network models with correlated external input

It has been hypothesized that long correlation timescales are a result of enhanced recurrent

activity propagation in cortical networks [1, 25–27], which is in line with the observed stimulus

independence of the timescale hierarchy. However, it is not known how higher recurrence

affects predictability and information timescales. In particular, one might expect that higher

recurrence also leads to more predictable spiking, thus contradicting the observed decrease in

predictability for higher areas.

To test this we considered a minimal model of recurrent activity propagation. The branch-

ing network [72, 73] consists of sparsely connected units that are either active or silent in each

discrete time bin. Activity propagation in the network is governed by the branching parameter

m, which gives the mean number of units that an active unit activates in the next time step.

Moreover, independent of recurrent activations, each unit is activated by temporally uncorre-

lated external input with mean rate h (Fig 4A). Recurrence in the network is then characterized

by the recurrent amplification a/h = 1/(1 −m), which gives the mean number of generated

spikes a per external input activation h (c.f. [74]). To test how recurrent amplification a/h
affects timescales and predictability, we simulated branching networks consisting of N = 1000

units with k = 10 outgoing connections each, and estimated τC, τR and Rtot using the same pro-

cedure as for the experimental data (Materials and methods).

In branching networks, the correlation timescale τC is known to scale linearly with the

recurrent amplification a/h, which is caused by long-lasting reverberations of activity in the

network [15, 25]. We could reproduce this linear increase by fitting τC for individual units

in the network, and found a similar increase in τR with a/h (Fig 4B and 4C). Notably, also

the predictability Rtot increased with a/h, which constitutes an important difference to the

experimental data. However, Rtot was more than an order of magnitude smaller than in the

experimental data, indicating that a source of predictability is missing in the model (Fig

4D).

Since neurons in cortex receive temporally correlated inputs rather than uncorrelated Pois-

son noise [51], we replaced the constant external activation rate h for each unit by a fluctuating

rate h(t), which was modeled by an Ornstein-Uhlenbeck process with autocorrelation time τext

= 30 ms (Fig 4E). As before, the external input is unique for each unit, and thus induces tem-

poral correlations without increasing spatial correlation between units. With temporally corre-

lated input, and intermediate values of recurrent amplification (0< a/h� 20), we recovered

qualitative agreement between model and experimental data; timescales increased with a/h
(Fig 4F and 4G), whereas predictability Rtot decreased until reaching a/h� 20 (Fig 4H). More-

over, when comparing the two models, timescales share the same overall trend, but predict-

ability differs systematically, and, at small a/h, is much higher with correlated than with

uncorrelated input (Fig 4H vs. Fig 4D). This is consistent with the observation that the Bayes-

ian analysis that did not find a credible decrease in predictability for spontaneous activity (S13

and S15 Figs), and that predictability is higher under a temporally correlated (movie) stimulus

(Fig 3C).

In sum, the combined treatment of recurrence and temporally correlated input suggests

that both, an increase in timescales and a decrease in predictability, are consistent with increas-

ing recurrence along the anatomical hierarchy in cortex. Although timescales and predictabil-

ity in the model are almost an order of magnitude smaller than in the data, the models’

simplicity and few mechanistic components enable a systematic explanation of the emergent

effect (see Discussion and Fig 4I and 4J). Moreover, we confirmed that the same effect also

occurs in a leaky integrate-and-fire (LIF) model with excitatory and inhibitory neurons, which
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was implemented on a neuromorphic chip [63, 75] (S26 Fig). In this case, recurrent amplifica-

tion was adapted through synaptic plasticity, while the membrane dynamics and refractoriness

of the LIF neurons provided the additional source of predictability (inputs were temporally

uncorrelated). We conclude that the increase in timescales and decrease in predictability is a

general effect that occurs when (i) recurrent activity propagation leads to stronger and longer-

lasting fluctuations of activity, and (ii) some other source of single-neuron predictability exists,

which then has a diminishing effect on single-neuron predictability with increasing

recurrence.

Fig 4. Gradients of timescales and predictability are consistent with an increase in recurrence in network models

with correlated external input. (A) Schematic of a branching network: Each of the N = 1000 units is connected

randomly to k = 10 other units (arrows). In a given time step, units are either active or inactive, and, if active, can activate

each connected neighbour with fixed probability m/k for the next time step. In addition to recurrent activations, each unit

gets a temporally uncorrelated external input (red traces). (B–D) Timescales and predictability increase with recurrent

amplification a/h = 1/(1 −m) in the network, i.e., the mean number of generated spikes per external activation. (E–H)

Same setup as before, but each unit receives temporally correlated external input that follows an Ohrnstein-Uhlenbeck

process with timescale τext = 30ms (blue traces). (F-H) For correlated input, the timescales behave similarly as before, but

predictability is higher and decreases with recurrent amplification until a/h� 20. All measures are consistently about an

order of magnitude smaller than for the experimental data, which we attribute to the simplicity of the model (see main

text). Small dots indicate the median over 20 randomly selected units for 10 simulations. Big dots indicate median values

over all simulations. (I) Example raster plots for uncorrelated (top) and correlated input (bottom), at a/h = 5 (left) and a/

h = 30 (right). Each panel shows the population rate, spiking of a single unit, and population raster of 40 units. (J) Sketch

of single-unit predictability for different sources of temporal correlations. Recurrent activations yield sizable

predictability only for very high recurrent amplification (red line, c.f. panel D). Otherwise, predictability through

correlated input is higher (grey dashed line). Hence, in the presence of correlated input, increasing recurrent

amplification decreases predictability, because more and more spikes are caused by recurrent activations with lower

predictability (blue line, c.f. panel H). When recurrent amplification is high enough (star), most activations are recurrent,

and both models give the same behavior.

https://doi.org/10.1371/journal.pcbi.1012355.g004
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Discussion

Here, we used information theory and an autocorrelation analysis to characterize the temporal

statistics of spike trains across the mouse visual system. We found that these statistics differ

systematically between processing stages from thalamus to higher cortical areas. In particular,

the information and correlation timescales increase along an anatomical hierarchy in cortex,

whereas predictability of neural spike trains decreases. Moreover, we found similar gradients

and median values of timescales under spontaneous activity, indicating that the observed gra-

dients in timescales are also shaped by network-intrinsic mechanisms like an increase in recur-

rent coupling that could serve an enhanced temporal integration for higher areas [1, 15, 25, 26,

34]. In contrast, we observed a decrease in predictability mainly under stimulation with a natu-

ral movie, which could be the result of an overall higher sensitivity of lower areas to lower-

level sensory features with higher predictability [76, 77], or a stronger cancellation of redun-

dant, predictable stimuli, in line with hierarchical predictive and efficient coding [78, 79]. In a

basic model of recurrent activity propagation, as well as a plastic leaky integrate-and-fire

model on a neuromorphic chip, we verified that information and correlation timescales indeed

increase with recurrent coupling, whereas single-neuron predictability can even decrease with

recurrence. In sum, our results therefore suggest that enhanced temporal integration in higher

areas could be complementary to the observed increase in adaptation along a cortical process-

ing hierarchy [80], where adaptation attenuates responses to redundant, predictable stimuli

[81, 82].

Hierarchy of timescales in rodents

An increase in timescales along the hierarchy was surprising, because the original study by Sie-

gle et al. did not find a hierarchy of intrinsic timescales for spontaneous activity (Extended

Data Fig 9 in [32]). However, a later study analysing the same data found a hierarchy of intrin-

sic timescales [33]—but focused on natural movie stimulation instead of spontaneous activity,

and used a different fitting approach [4]. Therefore, we carefully assessed the robustness of our

fitting procedure of the correlation timescale τC, and found that the discrepancy to the results

in [32] is most likely caused by differences in the fitting range (Materials and methods). In par-

ticular, we found that when the maximal time lag Tmax used for fitting is less than 1000 ms,

then estimated timescales are generally much smaller (Panel A in S5 Fig), and no correlation

between correlation timescales and anatomical hierarchy score is found (S5 and S7 Figs). In

contrast, for Tmax > 1000 ms the inferred hierarchy was robust to the exact choice of Tmax

(Panels B and C in S5 Fig). The presented results are further supported by a similar hierarchy

of information timescales (Fig 2E), which are estimated with an entirely different approach,

and do not rely on fitting an exponential decay rate (Materials and methods).

In primates, a hierarchy of timescales was found along a global hierarchy of cortical areas,

spanning different modalities and different levels of cognitive abstraction [4, 83]. Here, for

mice, we found a hierarchy of timescales specifically for the visual sensory pathway. This is an

important finding, since cortex in rodents is thought to have fewer hierarchical stages, which

allows visual information to be provided more readily (and in parallel) to multimodal interac-

tions or motor outputs [65]. This is supported by direct V1 input to essentially all extrastriate

(higher cortical) visual areas [66–68], as well as evidence that several extrastriate areas process

information related to other sensory modalities [84–86]. At the same time, anatomical feedfor-

ward- and feedback-connectivity motifs as well as several functional properties also point to a

hierarchical ordering of extrastriate areas [32]. Therefore, we tested whether the observed

increase in timescales is gradual (following the anatomical hierarchy), or parallel (reflecting an

organization into two stages, V1 vs. extrastriate visual areas). We found that a model with
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gradual increase had more predictive power for both, the correlation and information time-

scale (Fig 2G, S11 and S12 Figs), suggesting a hierarchical organization of temporal processing

in mouse visual cortex.

However, we also found deviations from a single gradient in timescales. In particular, the

rostro-lateral area (RL) consistently had the smallest median timescales among extrastriate

areas that were more comparable to primary visual cortex, despite its higher anatomical hierar-

chy score compared to the lateromedial area (LM). This might be due to the functional special-

ization of the posterior parietal areas (RL, AL, AM) and the posteromedial area (PM), which

are thought to process information related to motion and behavioral actions, whereas LM is

thought to play a stronger role in object perception, analogous to the dorsal and ventral

streams described in other species [87–89]. Thus, our results might also support a grouping of

areas into two parallel yet hierarchically organized pathways. This was similarly found in a

functional connectivity study that suggested a sensory-to-motor and a transmodal pathway

[36].

Recurrence could shape hierarchy of timescales and predictability

After identifying the gradient of timescales and predictability along the anatomical hierarchy,

we uncovered potential mechanisms behind it in an easy-to-interpret model of recurrent activ-

ity propagation. In line with previous studies [1, 25, 26], the branching network model illus-

trates how recurrent activity propagation leads to long timescales of single unit spiking

activity, even though individual units in the branching network are memory-less (Fig 4B and

4C). Whereas recurrent activations clearly increase the timescale, the magnitude of single-unit

correlation through recurrent activations is small [15]—and in fact much smaller than that

induced by temporally correlated input (Fig 4D vs. Fig 4H). Hence, in the presence of corre-

lated input (e.g., through visual stimulation with a natural movie), increasing recurrent ampli-

fication decreases predictability, because more and more spikes are caused by recurrent

activations with lower predictability (Fig 4J). These model results are consistent with the

experimental observation that predictability is higher under visual stimulation than for sponta-

neous activity, and positively correlated with stimulus selectivity (Fig 3C and 3F).

Yet, in the data, recurrent amplification might not be the only mechanism causing the

observed long timescales. For example, clustered connectivity is known to lead to long time-

scales in balanced neural networks [90]. Overall, we do not expect this mechanisms to alter the

effect of recurrence, but it might explain why timescales and predictability are higher in the

data compared to the simple branching network. Another important mechanism besides

recurrence that could give rise to a hierarchy of timescales is inter-areal feedback through

long-range projections between cortical areas. For example, in a model based on measured

connectivity in macaque cortex, long-range feedforward and feedback excitatory connections

were shown to influence the exact layout of the hierarchy [1]. However, a more recent study

found that a detailed balance between long-range excitatory inputs and local inhibitory inputs

could prevent longer or shorter timescales to spill over from other areas, which yields a better

segregation, and facilitates functional specialization [91]. Moreover, in [1], it was found that

recurrence is a necessary requirement to achieve long timescales in the first place, since leaving

out recurrent connections in the model led to much smaller timescales in general. This sup-

ports our perspective that recurrent amplification plays a key role in shaping temporal process-

ing along the anatomical hierarchy.

However, evidence for stronger recurrent coupling in higher areas is not as clear in mice as

it is in primates. In particular, the density and numbers of dendritic spines of layer 3 pyramidal

neurons (which are interpreted as markers of recurrence [92]) are much more similar between
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cortical areas in mice than in primates [42, 43, 45]. On the other hand, mouse cortex exhibits

other gradients in microstructural properties [41], in particular a decrease in the density of

parvalbumin (PV)-containing (inhibitory) interneurons for higher areas. This suggests that a

gradient of recurrence in mice is rather controlled by the levels of inhibition than the net num-

ber (or density) of excitatory synapses [93].

Coding perspective

Turning to a coding perspective, a hierarchy of timescales could also result from a feedforward

representation of increasingly more complex visual features: A successive integration of tem-

porally short-lived, simple features into temporally long-lived, complex ones could lead to

long timescales in those neurons that represent the complex features [3, 8, 33, 71], which was

found empirically in rat V1 [94]. In line with this, we found the hierarchy of information time-

scales to be more shallow under spontaneous activity (S12 and S13 Figs), indicating that visual

stimulation has an effect on the information timescale hierarchy. However, we also found that

median timescales and the correlation timescale hierarchy were very similar between visual

stimulation and spontaneous activity, (Fig 3, S12 and S13 Figs), mirroring findings in monkey

somatosensory cortex [95]. This indicates that stimulus encoding and complex feature repre-

sentations do play a role, but cannot be the sole cause for long correlation and information

timescales.

In particular, our results indicate that network-intrinsic mechanisms, such as an increase in

recurrent coupling, are also important for shaping the temporal processing hierarchy. Such

mechanisms are thought to cause stronger noise correlations in population codes [96], which

were found to yield long timescales of information consistency and more stable representa-

tions for better readout and evidence accumulation in higher cortical areas [33, 97, 98].

However, feedforward feature representation and long timescales through intrinsic mecha-

nisms are not necessarily separate processes. There exists the exciting possibility that the

intrinsic generation of long timescales in neural activity could contribute to the activity-depen-

dent learning of temporally invariant complex visual features [94, 99]. In this case, feedforward

and recurrent processing would be inextricably linked for temporal processing, which could

explain the similarity in median timescales across stimulus conditions.

Of particular interest from a coding perspective are also our results on predictability Rtot,

because they imply that the temporal redundancy in individual spike trains decreases along

the hierarchy. However, it is not clear which mechanism is responsible for such a decrease in

redundancy. Our modeling results suggest that, in analogy to the timescale hierarchy, such a

decrease in predictability can be caused by an increase in recurrent coupling, because stronger

recurrent coupling can lead to a reduction of temporal correlations from external stimuli (Fig

4). Moreover, decreasing predictability could reflect efficient coding, where subsequent pro-

cessing stages in cortex remove more and more temporal redundancy in individual spike

trains [49, 79, 81]. On a mechanistic level, efficient-coding is in line with the observed increase

in adaption along the cortical shape-processing hierarchy in rats [80], where adaptation atten-

uates responses to redundant, predictable stimuli [81, 82].

Finally, a decrease in predictability could be the result of complex, temporally invariant

input representations formed in higher areas. These invariant representations have been

shown to contain less stimulus information in absolute terms, because most of the information

about low-level features such as contrast, luminance, position or phase is pruned in higher

areas [76, 77], which also results in worse stimulus decoding performance for these areas [33].

Our results on predictability are compatible with this idea, because predictability is positively

correlated with stimulus selectivity and higher under visual stimulation (Fig 3), hence a
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decrease in predictability can be related to a decrease in absolute stimulus information for

higher areas. Notably, all mechanisms may co-exist to serve complementary functions: Recur-

rence could enable long integration for temporal processing on the network level, while adap-

tation could ensure efficiency of the neural code on a single-neuron level, and both

mechanisms could aid the formation of invariant, high-level representations by supporting

temporal learning and the pruning of low-level, highly predictable information in higher corti-

cal areas.

In comparison to cortex, thalamus displayed significantly lower predictability and time-

scales (Fig 2A–2C). However, whereas low timescales are in line with lower-level representa-

tions in thalamus, the fact that predictability is also lower than in all cortical areas suggests that

additional mechanisms exist for temporal decorrelation, in line with redundancy reduction

and efficient coding in LGN [62]. More generally, this might be due to the function of LGN

and other thalamic areas as a relay of information, or a controller, requiring fast processing

with little redundancy, little integration, and fast forgetting [63].

Conclusion

Until now it has remained open whether single sensory pathways in cortex show a hierarchical

organization of temporal processing, especially in rodents, where cortex exhibits less cognitive

processing and fewer levels of abstractions compared to primates. Here, we found that the

visual pathway in mouse cortex indeed shows signatures of such a hierarchy in the form of a

gradual increase in correlation and information timescales, and a decrease in predictability

along the anatomical hierarchy. Our analysis of data from different stimulus conditions and

recurrent network models further indicated that the gradients in timescales are supported by

stimulus-independent, network-intrinsic mechanisms, such as an increasing recurrence along

the anatomical hierarchy. In contrast, the stimulus-dependent decrease in predictability is in

agreement with efficient coding and the observed increase in adaptation in rodents, as well as

a formation of increasingly invariant, high-level visual representations, and might constitute

another hallmark of hierarchical temporal processing in mammals.

Materials and methods

Experimental data sets

To investigate temporal processing in the mouse visual system, we analyzed data from the

Visual Coding Neuropixels data set, which is openly available through the Allen Brain Observa-

tory [32, 57]. This data set contains extracellular electro-physiological recordings of mouse

brain activity obtained with Neuropixels probes [100]. This setup enabled to simultaneously

record from cortical and sub-cortical structures involved in visual processing (Fig 2A), with

six cortical areas [primary visual cortex (V1), lateromedial area (LM), anterolateral area (AL),

rostrolateral area (RL), anteromedial area (AM) and posteromedial area (PM)], and two tha-

lamic areas [(the lateral geniculate nucleus (LGN) and lateral posterior nucleus (LP)], with a

minimum of n = 12 and a maximum of n = 24 mice per brain area and experimental setup (see

S1 Fig for the number of mice and analyzed sorted units per brain area). The probes record

with high temporal precision with 30 kHz sampling rate and sub-millisecond temporal resolu-

tion, which is ideal to study temporally precise processing with spikes. For the experiments,

the mice were head-fixed and were shown a range of visual stimuli.

The data set contains data from two experiments (Functional Connectivity and Brain Observa-
tory 1.1), which differ in the sequences of stimuli that were shown to the mice. To study temporal

processing in the mouse visual system in a naturalistic and stationary environment, our main

results were obtained from the Functional Connectivity experiment, which contains two blocks
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of around 15 minutes of consecutively recorded spiking activity during the repeated presentation

of a 30 second naturalistic movie (termed natural_movie_one_more_repeats in the

AllenSDK). Furthermore, we contrast our findings on the natural movie condition with results

obtained from another single block of around 30 minutes of spontaneous activity, where the ani-

mal was shown a gray screen (termed spontaneous). In addition to the Functional Connec-
tivity experiment, we also analyzed the Brain Observatory 1.1 data, with two 10 minute blocks of

natural movie stimulation with 120 second clips repeated 5 times per block (termed natural_
movie_three). This did not only serve as a control, but also enabled the comparison of time-

scales and predictability to other metrics of visual processing that could be estimated within the

Brain Observatory 1.1 data set (Fig 3). To make results comparable across experiments and stim-

ulus conditions, we adjusted the duration of the analyzed snippets of spike recordings to match

the shorter recording duration of the natural movie condition of the Brain Observatory 1.1.

Therefore, we only used the last 10 minutes of each block for the natural movie condition, and

the last 20 minutes in the spontaneous activity condition in the Functional Connectivity data.

This is important, because different recording lengths can cause systematic biases in the compar-

ison of timescales and predictability [52]. Furthermore, at the beginning of each block a transient

of 1 minute was removed to improve stationarity of the recording, and natural movie blocks

were concatenated to then yield a total recording length of 18 minutes.

Finally, we only analyzed sorted units that fulfilled certain quality metrics and criteria that

are relevant to our analysis. Spike sorting was done in [32], and we used the spike sorted data

from there. Moreover, we only selected units based on quality metrics that are provided with

the data [101]: a presence_ratio_minimum of 0.9 to filter out data corrupted by elec-

trode drift, and an isi_violations_maximum of 0.5 to filter out units that contain inter-

spike-intervals that violate a plausible refractory period. While these are the default values

from the AllenSDK, we used an amplitude_cutoff_maximum of 0.01 (the AllenSDK

default is 0.1) to ensure that most spikes are included. The number of sorted units after each

filtering stage is shown in S1 Fig.

Estimation of correlation timescale

The correlation timescale τC was estimated as the exponential decay rate of the autocorrelation

single neuron spike trains [26, 32, 102]. Spike trains were obtained by binning spiking activity

in bins of Δt = 5 ms, yielding a series of binary activations at, where at = 0 if there was no spike,

and at = 1 if there was one or more spikes in the time interval [t, t + Δt). The autocorrelation

for time lags T was then computed as

CðTÞ ¼
hatat� Tit � hati

2

t

ha2
t it � hati

2

t

; ð1Þ

where h�it is the average over all times t = T, T + Δt, . . ., Trec − Δt, and Trec is the total recording

time. From this, the correlation timescale τC was obtained by fitting an exponential decay

CðTÞ / exp � T
tC

� �
to the empirical autocorrelation function. Although [102] report that such

a naive exponential fit can lead to biased estimates for short recordings, the long recording

times Trec of roughly 20 minutes in the analyzed experiment were deemed sufficiently long for

an unbiased estimation.

Moreover, the assumption of an exponentially decaying autocorrelation function is met for

a branching process [61], and was found to be a good match for most of the neurons in the

data (S9 Fig). However, we often observed an additional, slow decrease in the autocorrelation

function for very long lags T, possibly reflecting scale-free fluctuations that might be induced
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by sensory inputs with scale-free temporal correlations [103], or behavioral states [33]. To still

estimate an correlation timescale τC we thus fitted the measured autocorrelation with a func-

tion consisting of two exponential terms

f ðTÞ ¼ A1 exp �
T
t1

� �

þ A2 exp �
T
t2

� �

: ð2Þ

Here, we defined the timescale with the larger coefficient Ai as the intrinsic (dominant) time-

scale τC = τi, whereas the other coefficient Aj6¼i corresponds to a secondary timescale τsec = τj
that accounted for complementary effects like slow stimulus variables. Note that for� 80% of

units τsec was larger than τC, i.e., it mainly accounted for an additional, slow decay (see S6 Fig

for a distribution of the fitted timescales). That slow stimulus variables have a smaller contri-

bution to the autocorrelation is also in line with evidence for efficient coding, where neural

representations were found to be strikingly invariant and adapt to slow stimulus variables

through scale-free adaptation [104–106].

Fitting an additional decay made the analysis of the correlation timescale much more robust

to the exact choice of the fitting range. In particular, the two-timescale fit yielded consistent

estimates of τC when varying the maximum time lag Tmax considered for fitting. In contrast,

when fitting a single timescale function with offset f ðTÞ ¼ A exp � T
tC

� �
þ O, the fitted τC

increased monotonously with Tmax, because considering larger and larger lags T biases esti-

mates towards the slow (possibly scale-free) decay of the autocorrelation (S5 Fig). Yet, we

found that considering these large time lags during fitting is crucial because a smaller fitting

range (e.g., Tmin = 500 ms) biases estimates towards much shorter timescales (S5 Fig), and

does not reveal a gradient of timescales along the anatomical hierarchy (S7 Fig). For the analy-

sis of experimental data, we therefore used a two-timescale fit with Tmax = 10 s.

In addition, we found that the correlation timescale from a two-timescale fit was also less

sensitive to deviations from an exponential decaying autocorrelation for small time lags. In

particular, such deviations consisted of both, negative autocorrelation due to refractoriness

and adaptation, or high initial autocorrelation, possibly indicating bursty firing or other short-

term facilitating effects (S9 Fig). To exclude such short-term effects, we excluded autocorrela-

tion coefficients C(T) for short time lags T< Tmin during the fit. Here, Tmin = 30ms was cho-

sen, which gave the best fitting results for most neurons. An alternative approach to deal with

such short-term effects is to fit an additional shorter timescale as in [26, 102], but this assumes

an exponential decay for these short-term effects, which might not be the case in general.

Moreover, whereas results from the single-timescale analysis were sensitive to the choice of

Tmin, we found that results from the two-timescale fit did not crucially depend on Tmin (S5 and

S8 Figs). Thus, the overall impact of short-term effects on our results is comparably weak,

which is also a result of the large fitting range (i.e., Tmax = 10 s) considered here.

To conclude, the hypothesis underlying this analysis is that between short and long time-

scales (in a range roughly between 20 to 1000 ms), there exists a decay that is characteristic for

a unit’s temporal processing, e.g., due to recurrent activity propagation in a network [15, 25,

26]. Here, we used a two-timescale fit that enables to extract such a characteristic timescale

from the empirical autocorrelation function of individual units in a way that is robust to exact

fitting parameters.

Estimation of predictability and information timescale

To not only assess the timescale of time-lagged dependence, but also how predictable spiking

is, we estimate a neuron’s predictability as the relative spiking information R(T) that can be
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predicted from past spiking in a past range T (Fig 1B) [52]. Since more past information can

only increase predictability, R(T) increases monotonously with T until it reaches some value

Rtot, the total predictability of a spike train. From this analysis we also obtain an information
timescale τR, which gives something similar to a rise time of the predictability, and indicates a

typical timescale on which past information is informative, i.e. adds to the predictability of cur-

rent spiking. Details on the measures and their estimation can be found in [52].

Here, we optimized d = 5 past bins for the estimation of predictability R(T) for past ranges

T 2 [Tmin, Tmax], with Tmin = 30 ms and Tmax = 5 s. The minimum past range of Tmin = 30 ms

was chosen so that the timescale τR only reflects past information beyond short-term effects

due to a neuron’s intrinsic spiking dynamics, similar to the exclusion of short time lags for the

correlation timescale analysis (S10 Fig for a comparison of different Tmin). For the maximum

past range Tmax = 5 s, we found that for all the analyzed units the estimated R(T) reached the

maximum value, which is required for the analysis of Rtot.

Hierarchical Bayesian model for area differences

We used a hierarchical Bayesian analysis to investigate whether there are systematic area dif-

ferences in the estimated timescales or predictability. This analysis enables to consider record-

ings for each mouse separately, while also incorporating effects that are shared among mice.

The model assumes that the respective measure yi,j 2 {τC, τR, Rtot} for each unit i that was

recorded in mouse j is distributed according to a log-normal distribution, i.e. log Yi,j is nor-

mally distributed

log Yi;j � N ðmi;j; �Þ: ð3Þ

Here, μi,j indicates the mean of the log measure (or exp(μi,j) the median of Yi,j) and contains

information about the unit i and mouse j, whereas �2 accounts for the unexplained variance.

For the timescales we found that the distribution of log values was negatively skewed (S19 Fig),

which cannot be accounted for by a normal distribution. Therefore we used a skew normal dis-

tribution for the timescales, with

log Yi;j � SkewNormalðmi;j; �; aÞ; ð4Þ

where the additional shape parameter α controls the skewness of the distribution: α> 0 gives a

positively skewed, α< 0 a negatively skewed, and α = 0 recovers a normal distribution. An

important property of this distribution is that, although mean and variance are not the same as

for the normal distribution, the scale � and shape α only add a constant to the mean. Therefore,

differences in the log mean are still governed by μi,j. For both models, the log mean

mi;j ¼ ylog n log ni;norm þ yrfTrf;i þ fjðareaiÞ ð5Þ

is the sum of a predictor based on the unit’s normalized log firing rate log νi,norm, a predictor

θrf for visual responsiveness that is added if the unit has a significant receptive field on screen

(Trf,i = 1, Trf,i = 0 otherwise), and a term fj(areai) that models the dependence of the measure

on the unit’s area, and is specific for each mouse j (see below). Here, we included the firing

rate and the existence of a receptive field in the model, because they were found to be corre-

lated with some of the measures (S3 Fig), thus potentially improving the predictive power of

the model. Moreover, not including them might lead to effects that are caused by, e.g., trivial

differences in firing rate between different areas. Note that we use the logarithm of the firing

rate ν divided by two standard deviations as regression input, so that its regression coefficient

is comparable to the binary ones [107]. Hence, a difference of 1 in log νi,norm (as between the

two states of a binary variable) thus covers 2 standard deviations, e.g. the mean ±1 standard
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deviation. As a prior, the standard normal distribution N ð0; 1Þ was chosen for α, θν and θrf,

whereas for the scale � > 0 a Half-Chauchy prior distribution HalfCauchy(0, β) was chosen

with scale parameter β = 10.

We used this approach to test (i) whether there are systematic differences in median time-

scales and predictability between primary visual cortex (V1) and higher cortical areas (LM,

AL, RL, AM, PM), and (ii) whether median timescales and predictability are linearly correlated

with the anatomical hierarchy score of cortical areas, indicating a hierarchy of temporal pro-

cessing. Note that because an area’s median is related to the area’s log mean via exp(μ), the

area specific term fj(areai) is chosen as the logarithm of the assumed relation between an area

and its median. Therefore, we built the following two models:

(i). A cortical groups model that incorporates an offset θhc,j of the median for units from

higher cortical areas, while the intercept θ0,j governs the median for units from V1:

fjðareaiÞ ¼ logðy0;j þ yhc;j1hcðareaiÞÞ; ð6Þ

(ii). A cortical hierarchy model that assumes a linear relation between an area’s median and

the anatomical hierarchy score of a unit’s area HS(areai), with intercept θ0,j and slope θhs,j:

fjðareaiÞ ¼ logðy0;j þ yhs;jHSðareaiÞÞ: ð7Þ

Note that we shifted the hierarchy score to attain zero for V1 so that the intercept θ0,j

again reflects the median for units from V1.

All these parameters are modelled hierarchically, where for each mouse there is a parameter

set θj, and each parameter θk,j of that set is drawn from a normal parent distribution with

mean myk and variance myk . This type of modelling respects that data are collected from differ-

ent mice, but still allows to draw general conclusions based on the means myk of the parent dis-

tributions. As a prior for the means a standard normal distribution was assumed as a prior

myk � N ð0; 1Þ, whereas for the standard deviation a Half-Cauchy prior distribution was cho-

sen syk � HalfCauchyð0; bÞ with location 0 and scale parameter β = 1. We performed poste-

rior predictive checks for both models and found that they were both well calibrated for the

predictability and information timescale, whereas we found systematic deviations between the

observed and modelled distribution of correlation timescales (S19 Fig). However, we do not

expect this to have a significant effect on the present analysis, since the purpose is not to accu-

rately describe the variability for individual data points, but to make statements about medians

and average effects of specific predictors.

Branching network model and simulations

To investigate how correlation timescale and predictability of single neurons depends on

recurrent amplification, we employ a basic branching network that allows us to individually

control external and recurrent activation. The network consists of N = 1000 binary units with

state si = {0, 1} on a random, sparse, directed, and weighted graph with mean degree k = 10

and connection weights wij drawn randomly from [0, 1). At discrete time steps (Δt = 5 ms),

each unit can be activated (si(t)! 1) recurrently and externally, and we define the population

activity as A(t) = ∑i si(t). The probability to activate unit i recurrently at time t is

pi;recðtÞ ¼
X

j

wij sjðt � 1Þ: ð8Þ
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To control the mean number of recurrent activations, and to ensure that each unit on average

activates the same amount of other units, wij is normalized such that ∑i wij = m, where m 2 [0,

1) is the neural efficacy. Next to recurrent activations, the probability that unit i is activated

externally is given by a sigmoidal function

pi;extðtÞ ¼ 1þ e�
xiðtÞ
s � g

h i � 1

; ð9Þ

where xi(t) 2 (−1, +1) is a time-dependent external drive, σ sets the sensitivity to the external

drive, and γ is an offset adjusted to match the desired neural firing rate. To create temporally

correlated input, we model xi(t) as an Ornstein–Uhlenbeck process with a timescale τext = 30

ms; to create uncorrelated input, we set xi(t) = 0. To match the average neural firing rate to the

experimentally observed value ν*� 3.5 Hz (which corresponds to a population activity of A* =

Nν* Δt), we initialize g ¼ ln 1� ma
1� a � 1
� �

(the mean-field solution for xi(t) = 0) and homeostati-

cally regulate a global γ parameter in each time step as

tgDg ¼ Dt½A∗ � AðtÞ�=N; ð10Þ

where τγ = 60 s is a slow time scale such that γ changes very little during the recording.

To estimate the mean and statistical error of correlation timescales and predictability, we

generate 20 random network realizations for each m. For each realization, the simulation is

first equilibrated for 20 minutes to ensure stationary dynamics, before we record for another

20 minutes spiking activity from n = 20 randomly selected neurons. From the spiking activity,

τC, τR and Rtot are calculated for each neuron using the same tools as for the experimental data.

The only differences are that (i) we removed the lower bound of the fit ranges (starting at Tmin

= 1 time step) and (ii) for fitting C(T) we used a simple exponential with offset (only featuring

one timescale) since no separate fast and slow timescales needed to be distinguished in this

simple model (see Discussion).

Supporting information

S1 Fig. Number of available units for the analysis for the Functional Connectivity data set.

(A) Sorted units available for analysis after spike sorting process (“valid wave-forms”), after

applying filters of the AllenSDK (“quality metrics”), after selecting only units of the “Func-

tional Connectivity set” and after ensuring that the recordings of the selected “stimuli” for

each unit are long enough and do not include invalid spike times (Materials and methods). (B)

Numbers of units for each session and for each area available for analysis after filtering.

(PDF)

S2 Fig. Relation between correlation and information timescales, as well as predictability

across all sorted units. Histograms of the correlation timescale τC, the information timescale τR
and the predictability Rtot (diagonal), as well as scatter plots of one measure against the other (y-

axes refer to scatter plots, no axes shown for histograms) for all analyzed units. Scatter plots are

overlaid with kernel density estimations, where lines indicate regions of equal probability. Cor-

relation and information timescales are shown in log scale. Timescales are positively correlated

(Pearson correlation), whereas predictability is weakly negatively correlated with the timescales.

(PDF)

S3 Fig. Relation of correlation and information timescales, as well as predictability to com-

mon firing statistics. Scatter plots of a measure of timescale or predictability versus common

firing statistics such as the average firing rate, median inter-spike-interval (ISI) and coefficient

of variation (CV) for all analyzed units. Scatter plots are overlaid with kernel density
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estimations, where lines indicate regions of equal probability. Correlation and information

timescales, as well as median ISIs are shown in log scale. The firing rate is mainly positively

correlated with the correlation timescale, and negatively correlated with the predictability

(Pearson correlation). The median ISI is mainly correlated with the information timescale,

whereas the CV is strongly correlated with the predictability.

(PDF)

S4 Fig. Correlation between single neuron firing statistics and hierarchy score for natural

movie stimulation in the Functional Connectivity data set. Firing rate and median inter-

spike-interval (ISI) of sorted units tend to increase with hierarchy score, but have lower Pear-

son correlation coefficients rP (with higher p-values PP), as well as Spearman correlation

coefficients rS, compared to timescales or predictability on the same data set in Fig 2. The coef-

ficient of variation (CV), in contrast, is not correlated with the hierarchy score.

(PDF)

S5 Fig. For single timescale fit, median correlation timescale and hierarchy score correla-

tion are sensitive to the maximum time lag used for fitting. (A) For a single timescale fit, the

median estimated timescale (over all cortical units) increases monotonously with maximum

lag Tmax, independent of the minimum time lag Tmin used for fitting (light and dark blue

lines). In contrast, when using a two-timescale fit, the median estimated correlation timescale

remains consistent for sufficiently large max lags Tmax > 1000 ms, for both, Tmin = 5 ms and

Tmin = 30 ms (light and dark green lines). However, timescales are larger for Tmin = 5 ms,

because often fits are flattened by negative autocorrelation for short time lags, which are mostly

excluded with Tmin = 30 ms. (B) The Pearson correlation coefficient rP between an area’s

median correlation timescale and anatomical hierarchy score (c.f. Fig 2D) is consistently high

if Tmax is chosen sufficiently high. (C) Similarly, for sufficiently large Tmax, the p-value of the

fit is consistently below 0.05. For all plots, red dot indicates the Tmax = 10s used for the main

analyses. Timescales were estimated for the natural movie condition of the Functional Connec-
tivity data set.

(PDF)

S6 Fig. Distribution of fitted timescales for the single and two-timescales fit. To assess how

estimated correlation timescales differ for the single and two-timescale fits, we here show the

distribution of fitted timescales for the single timescale fit (blue), and the two fitted timescales

for the two-timescale fit (orange). For the latter, we show both, the selected timescale (see

Materials and methods), which yields the estimate of the correlation timescale, and the rejected

timescale. The single timescale is generally larger than the selected timescale of the two-time-

scale fit, because it also accounts for a potential slow decay of autocorrelation on long time-

scales. For the two-timescale fit, in contrast, it is mostly the rejected timescale that accounts for

the long timescales, since the rejected timescales are generally much larger.

(PDF)

S7 Fig. No hierarchy of correlation timescales is found for a small fitting range. To demon-

strate the effect of the fitting range on the inferred hierarchy of correlation timescales τC, we

repeated the same analysis from Fig 2D for a smaller maximum time lag Tmax = 500 ms, and

different minimum time lags Tmin. For this choice of Tmax, no hierarchy is found, and median

values of τC are in general much lower (dots, bars indicate bootstrapping confidence intervals

on median). This is found for all choices of Tmin, indicating that this is primarily caused by

omitting larger time lags T> Tmax during fitting. Here, correlation timescales were computed

for spiking activity under natural movie stimulation in the Functional Connectivity data set.

Moreover, τC was obtained from a single timescale fit to enable a comparison to previous
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analyses (c.f. Extended Data Fig 9 in [32]), but we obtained a similar result also for the two-

timescale fit, although this approach is generally much more robust to the choice of fitting

range (c.f. S5 Fig).

(PDF)

S8 Fig. For a sufficiently large fitting range, the hierarchy of timescales is found indepen-

dent of the exclusion of small time lags during fitting. For a large fitting range with Tmax =

10 s, we consistently find a hierarchy of correlation timescales τC, whereas Tmin only slightly

affects the exact layout of the hierarchy, and the median values of τC (c.f. S5 Fig). Here, correla-

tion timescales were computed for spiking activity under natural movie stimulation in the

Functional Connectivity data set. Moreover, timescales where obtained using the two-timescale

fitting procedure (Materials and methods), because this is the analysis used for all main results

obtained in this paper.

(PDF)

S9 Fig. Randomly selected examples of autocorrelation functions and single and two-time-

scale fits for different fitting ranges. Measured autocorrelation functions (grey line) for units

in the Functional Connectivity data set under natural movie stimulation. Black dots and green

lines indicate single and two-timescale fits, respectively, with the inferred timescale stated in

the corresponding color.

(PDF)

S10 Fig. Hierarchy of information timescale relies on excluding small past ranges from the

analysis. Similar to the correlation timescale, we excluded past ranges smaller than some Tmin

when computing the information timescale τR to exclude short-term effects like refractoriness

and tonic firing (Materials and methods). Here, we show median information timescales for

cortical areas, each time for a different choice of minimal past range Tmin. Notably, differences

between higher cortical areas (LM, AL, PM, AM) are only visible when excluding past ranges

smaller than Tmin = 30 ms. Information timescales were computed for spiking activity under

natural movie stimulation in the Functional Connectivity data set.

(PDF)

S11 Fig. Timescale and predictability of different brain areas under natural movie stimula-

tion in the Brain Observatory 1.1 data set. (A–C) As for recorded activity in the Functional
Connectivity data set, the medians of all measures differ significantly for different structural

groups (thalamus, primary visual cortex and higher cortical), with the same ordering as before.

Black boxes indicate the median over sorted units of the different structural groups, whereas

coloured dots indicate the median for individual areas. Bars indicate standard deviation on the

median obtained from bootstrapping. (D–F) Measures across the cortical hierarchy show the

same general increase as for the Functional Connectivity data set. However, median correlation

and information timescales show higher variability, and thus we find smaller correlation coef-

ficients (dashed line, Pearson and Spearman correlation coefficients and corresponding p-val-

ues shown below).

(PDF)

S12 Fig. Timescales and predictability of different brain areas for spontaneous activity in

the Functional Connectivity data set. (A–C) As for recorded activity under natural stimula-

tion, the medians of correlation and information timescales differ significantly between differ-

ent structural groups (thalamus, primary visual cortex and higher cortical), with the same

ordering as before. However, the difference in median predictability between V1 and higher

cortical areas is not significant for spontaneous activity. Black boxes indicate the median over
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sorted units of the different structural groups, whereas coloured dots indicate the median for

individual areas. Bars indicate standard deviation on the median obtained from bootstrapping.

(D–F) Measures across the cortical hierarchy show the same general trend as for natural

movie stimulation. However, in general, measures for different areas are more similar, leading

to smaller correlation values with the hierarchy score and higher p-values (dashed line, Pear-

son and Spearman correlation coefficients and corresponding p-values shown below).

(PDF)

S13 Fig. Posterior distributions of the hierarchy score slope reveal a significant increase in

timescales and decrease in predictability with hierarchy score. To assess whether timescales

and predictability relate to the anatomical cortical hierarchy, a linear relationship between an

area’s median and anatomical hierarchy score was modelled with slope θhs. (A) (Top) For the

correlation timescale, the 95% posterior credible interval of the mean hierarchy score slope

myhs across all mice is positive (black bar, red dot indicates median), indicating that there is an

increase in median correlation timescales with the hierarchy score. (Bottom) On the level of

individual mice, posteriors indicate the same effect, but are more diverse (colors indicate dif-

ferent mice). In particular, for some mice the posteriors also attribute probability to zero or

negative slopes, which could be either due to increased uncertainty due to the smaller sampling

size, or an incomplete sampling of the areas for individual mice. (B) For the information time-

scale τR, the posterior credible interval of the mean slope is also positive. (C) For predictability,

in contrast, the credible interval is negative, indicating a credible decrease in predictability

with hierarchy score. (D–F) Very similar results are obtained for the Brain Observatory data

set. (G) For spontaneous activity and the correlation timescale, the posterior of the mean slope

is very similar to the natural movie conditions, but variability across mice is larger. (H) For the

information timescale, in contrast, the posterior indicates a smaller slope. (I) For predictabil-

ity, the credible interval even contains a zero slope, indicating that predictability does not nec-

essarily decrease along the anatomical hierarchy for spontaneous activity.

(PDF)

S14 Fig. Posterior distributions of intercepts in the cortical hierarchy model. Overall, pos-

teriors over intercepts of the cortical hierarchy model reveal a high diversity among mice,

whereas slopes are more similar between different mice (S13 Fig). (A) (Top) Posterior distri-

butions of the mean my0
and standard deviation sy0

of the model intercept θ0 for the correlation

timescale. (Bottom) Posterior distributions of θ0 for individual mice (colors indicate different

mice). (B,C) Same as A, but for information timescale and predictability. (D–F) Same as A–C,

but for the Brain Observatory data set. (G–I) Same as A–C, but for spontaneous activity in the

Functional Connectivity data set. (I) For predictability, intercepts are much more similar

between mice, because the slope is much closer to 0 (S13 Fig), and thus may partially account

for differences in median predictability between mice. For all panels red dots and black bars

indicate the median and 95% highest-density-interval of the posterior distribution.

(PDF)

S15 Fig. Posterior distributions of the higher cortical offset reveal a significant increase in

timescales and decrease in predictability for higher cortical areas. To assess the difference

in temporal processing between higher cortical areas and V1, the median timescales and

predictability in higher cortical areas were modelled with an offset θhc. (A) (Top) For the cor-

relation timescale, the 95% posterior credible interval of the mean offset myhc across all mice is

positive (black bar, red dot indicates median), indicating a credible increase in timescales for

higher cortical areas. (Bottom) On the level of individual mice, posteriors indicate the same

effect, but are more diverse (colors indicate different mice). In particular, for some mice the

PLOS COMPUTATIONAL BIOLOGY Hierarchical temporal processing in mouse visual cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012355 August 22, 2024 22 / 31

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012355.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012355.s014
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012355.s015
https://doi.org/10.1371/journal.pcbi.1012355


posteriors also attribute probability to zero or negative offsets, which could be either due to

increased uncertainty due to the smaller sampling size, or an incomplete sampling of the areas

for individual mice. (B) For the information timescale the posterior credible interval of the

mean offset is also positive. (C) For predictability, in contrast, the credible interval is negative,

indicating a credible decrease in predictability for higher cortical areas. (D–F) Very similar

results are obtained for the Brain Observatory data set. (G) For spontaneous activity and the

correlation timescale, the posterior of the mean offset is very similar to the natural movie con-

ditions, but variability across mice is larger. (H) For the information timescale, in contrast, the

posterior indicates a smaller offset. (I) For predictability the credible interval even contains a

zero offset, indicating that predictability under spontaneous activity is not necessarily smaller

in higher cortical areas when compared to V1.

(PDF)

S16 Fig. Posterior distributions of intercepts in the cortical groups model. Overall, posteri-

ors over intercepts of the cortical groups model reveal a high diversity among mice, whereas

offsets are more similar between different mice (S15 Fig). (A) (Top) Posterior distributions of

the mean my0
and standard deviation sy0

of the model intercept θ0 for the correlation timescale.

(Bottom) Posterior distributions of θ0 for individual mice (colors indicate different mice). (B,

C) Same as A, but for information timescale and predictability. (D–F) Same as A–C, but for

the Brain Observatory data set. (G–I) Same as A–C, but for spontaneous activity in the Func-
tional Connectivity data set. (I) For predictability, intercepts are much more similar between

mice, because the higher cortical offset is much closer to 0 (S15 Fig), and thus may partially

account for differences in median predictability between mice. For all panels red dots and

black bars indicate the median and 95% highest-density-interval of the posterior distribution.

(PDF)

S17 Fig. Posteriors for non-hierarchical parameters of the cortical hierarchy model. (A)

Posterior density function of non-hierarchical parameters for the Functional Connectivity data

set (red dot indicates median and black bar the 95% highest density interval). The highest den-

sity interval (HDI) for the receptive field predictor θrf is negative for the timescales for all stim-

ulus conditions (A–C), hence units with a significant receptive field tend to have smaller

timescales. In contrast, the HDI is positive for predictability for the movie conditions (A,B)

and negative for spontaneous activity (C), indicating that units with a receptive field have

higher predictability when driven with a stimulus with temporal correlations, in line with the

idea that predictability is induced by visual stimuli. The HDI for the log firing rate predictor

θlog ν is positive for the correlation timescale and negative for the information measures, thus

units with higher firing rate tend to have longer correlation timescales but smaller predictabil-

ity. The posterior of the shape parameter α is concentrated on negative values, indicating a

negatively skewed distribution of log correlation and information timescales. (B, C) Apart

from posteriors of the receptive field predictor for predictability, the posteriors for the natural

movie condition in the Brain Observatory 1.1 data set (B) and spontaneous activity in the Func-
tional Connectivity data set (C) are overall very similar to the posteriors in (A).

(PDF)

S18 Fig. Posteriors for non-hierarchical parameters of the cortical groups model. Posterior

densities for non-hierarchical parameters of the cortical groups model are very similar to the

hierarchy score model (c.f. S17 Fig).

(PDF)

S19 Fig. Posterior predictive checks of the different Bayesian models applied to the natural
movie condition in the Functional Connectivity data set. (A) To test whether the cortical
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hierarchy model is well calibrated, we compared the posterior predictive likelihood of the

model (blue line) with the observed likelihood of timescales and predictability (black line),

which overall show a good agreement. Note the skewness in the distribution of log timescales,

which led us to use a skew normal distribution to model the residual variability in the timescale

data. To obtain a better check for the conditional probabilities of individual data points, and

not only the pooled data, we performed LOO cross-validated probability integral transform

(PIT) posterior predictive checks [108]. In LOO-PIT, the model is fitted for each datum yi to

all data except yi, here denoted as y−i. Prðymodel
i � yijy� iÞ then represents the probability that a

value ymodel
i simulated from the fitted model is less or equal to yi. If the model and data distribu-

tions are the same, then the distribution of these probabilities over all data points yi (thick blue

line) should be uniform [108], hence we compare it to 100 simulated data sets from a uniform

distribution (thin blue lines). The model appears well calibrated for the predictability, whereas

for the timescales the model tends to under-represent intermediate values, and to over-repre-

sent small and high values. (B) Same as A, but for the cortical groups model. Notably, the mod-

els appear to be equally well calibrated, hence we do not expect the differences in their

predictive power to be caused by a sub-optimal calibration of the models.

(PDF)

S20 Fig. Posterior predictive checks of the different hierarchical models applied to the nat-

ural movie condition in the Brain Observatory data set. Same as S19 Fig, but for the natural

movie condition in the Brain Observatory 1.1 data set. For these data, the model is slightly

worse calibrated for the correlation timescale.

(PDF)

S21 Fig. Posterior predictive checks of the different hierarchical models applied to sponta-
neous activity in the Functional Connectivity data set. Same as S19 Fig, but for spontaneous

activity in the Functional Connectivity data set. For these data, the model is slightly worse cali-

brated, in particular for the correlation timescale and predictability.

(PDF)

S22 Fig. Area-wise comparison of timescales and predictability between natural movie and

spontaneous activity in the Functional Connectivity data set. We compared across areas to

determine if there was a systematic difference in timescales and predictability between stimula-

tion with a natural movie and spontaneous activity under grey screen illumination. While

median correlation timescales do not systematically differ between stimulus conditions, the

median information timescale is significantly larger under spontaneous activity for most areas,

whereas median predictability is significantly smaller (p-values were obtained using Wilcoxon

signed-rank tests, where only significant p-values after Bonferroni correction are reported).

Moreover, the relative median difference Δ between conditions is higher for predictability,

indicating a stronger overall effect.

(PDF)

S23 Fig. Relation of timescales and predictability to direction selectivity for different visual

areas. For some cortical visual areas the direction selectivity of individual units (measured

on drifting gratings shown in 8 different directions [32]) is negatively correlated with the

correlation and information timescale and for all areas positively correlated with predictabil-

ity. Dots show values for each unit and lines show the linear regression with Pearson correla-

tion coefficient r and corresponding two sided p-value p. Regression lines are only shown for

areas with significant correlations after Bonferroni multiple comparison correction. For cor-

tical areas V1 and LM, information timescales are also negatively correlated with direction
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selectivity.

(PDF)

S24 Fig. Relation of timescales and predictability to image selectivity of individual units

for all cortical areas. (A) Correlation timescales τC of individual cortical units (dots) under

stimulation with a natural movie in the Brain Observatory 1.1 data set versus the image selec-

tivity index (measured for different static images shown to the mice [32]). Timescales τC show

a weak negative correlation with image selectivity index (line shows linear regression, r gives

Pearson correlation coefficient with corresponding two sided p-value). (B) Information time-

scales τR are very weakly negatively correlated with image selectivity index. (C) In contrast, the

predictability Rtot is positively correlated with the image selectivity index.

(PDF)

S25 Fig. Relation of timescales and predictability to image selectivity for different visual

areas. For cortical visual areas the image selectivity of individual units (measured for different

static images shown to the mice [32]) is negatively correlated with the correlation timescale

and positively correlated with predictability. For some areas, also information timescales are

negatively correlated with image selectivity. Dots show values for each unit and lines show the

linear regression with Pearson correlation coefficient r and corresponding two sided p-value p.

Regression lines are only shown for areas with significant correlations after Bonferroni multi-

ple comparison correction.

(PDF)

S26 Fig. Timescales and predictability in a plastic recurrent LIF network implemented on

neuromorphic hardware. To compare results from the branching network with a more realis-

tic recurrent network, we consider an implementation of a network of N = 512 leaky integrate-

and-fire neurons with synaptic plasticity on neuromorphic hardware (BrainScaleS-2) [63, 75].

In this implementation, the recurrent amplification (expressed via neural efficacy m=1-h/a)

cannot be set directly, but is tuned via plasticity, which adapts to the number of input synapses

kin from which each unit receives Poisson input. In particular, it has been shown that for less

external input, the spike-timing-dependent plasticity tunes the network towards configura-

tions with stronger recurrent coupling, and better integration for complex tasks [63]. To quan-

tify the effective strength of recurrent coupling, we estimated the neural efficacy m via

autoregression of the activity time series. As in the branching network, an increase in recur-

rence (here expressed through m, and shown for a smaller range) increases τC and τR, but

decreases Rtot. Notably, in this model the source of single-neuron predictability besides recur-

rence is not provided through temporal correlations in the input, but by the membrane

dynamics, effectively causing single-unit memory and predictability, which then gets dimin-

ished by increasing recurrence. Small dots show median values for individual network realiza-

tions, and big dots indicate median values over all network realizations for a given kin.

(PDF)
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