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ABSTRACT: The recent improvement in experimental capabilities
for interrogating and controlling molecular systems with ultrafast
coherent light sources calls for the development of theoretical
approaches that can accurately and efficiently treat electronic
coherence. However, the most popular and practical nonadiabatic
molecular dynamics techniques, Tully’s fewest-switches surface
hopping and Ehrenfest mean-field dynamics, are unable to describe
the dynamics proceeding from an initial electronic coherence. While
such issues are not encountered with the analogous coupled-
trajectory algorithms or numerically exact quantum dynamics
methods, applying such techniques necessarily comes with a higher
computational cost. Here we show that a correct description of
initial electronic coherence can indeed be achieved using
independent-trajectory methods derived from the semiclassical mapping formalism. The key is the introduction of an initial
sampling over the electronic phase space and a means of incorporating phase interference between trajectories, both of which are
naturally achieved when working within the semiclassical mapping framework.

The development and application of coherent light sources
for probing and controlling the properties of matter

provide substantial motivation for including the effects of the
light source in computational simulations.1 For example, when
simulating ultrafast laser-driven photochemical dynamics, one
would like to describe the photoexcitation step on the same
footing as the subsequent nonadiabatic relaxation processes. In
other words, the molecular system should be initialized in the
ground state, and the excitation of the system should be
simulated in real time through an explicit description of the
pulse. It is, however, known that the most commonly used
independent-trajectory approaches for simulating nonadiabatic
dynamics in chemistry, Ehrenfest dynamics2,3 and fewest-
switches surface hopping (FSSH),4,5 can fail to capture the
correct light-induced coherent dynamics.6,7

As a result, most simulations indirectly take the effect of the
pulse into account by initializing the system in an incoherent
mixture of the photoaccessible excited electronic states,8,9 with
the nuclei still in their ground-state distribution. This is
underpinned by two assumptions, which may or may not be
valid in real photochemical scenarios. First, the electromagnetic
pulse is assumed to be short on the time scale of the nuclear
motion, so that the nuclear wavepacket is not substantially
altered by the pulse.10 Second, decoherence is assumed to be
fast, so that the resulting wavepackets on different electronic
surfaces will decohere before any conical intersections are
reached.11 To go beyond this commonly used computational
protocol, a natural first step is to relax the second assumption

and initialize simulations in the physically relevant electronic
coherence.
Even this simple extension provides a serious challenge for the

most commonly used independent-trajectory techniques.12 For
example, it has been recently shown that Ehrenfest and FSSH
cannot describe the initial decoherence of a pair of coherent
wavepackets or the subsequent electronic population dynamics
on passing through an avoided crossing.13 As these methods are
perhaps the most practical for treating nonadiabatic dynamics in
molecular systems, there is a serious need to develop equally
practical methods that can describe this situation correctly.
One possibility is to utilize wave function based approaches

that calculate time-evolved observables, B t( ) , according to

=B t t B tq q q q( ) d d ( , ) ( , ) (1)

where |ψ(q, t)⟩ = ∑λcλ(q, t)|ψλ(q)⟩|q⟩ is the time-evolved wave
function, expressed in terms of an eigenstate of the nuclear
position operator, |q⟩, and the adiabatic electronic states,
|ψλ(q)⟩. Such a representation encompasses approximate
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Gaussian wavepacket techniques14−17 and coupled semi-
classical-trajectory approaches,18−21 derived, for example, via
the exact factorization.22 A recent paper13 has shown that
coupled trajectories can indeed alleviate the problems associated
with Ehrenfest and FSSH when starting in an initial electronic
coherence, albeit at a higher computational cost.
Here we assess the applicability of the semiclassical mapping

formalism23−28 to this problem. The mapping formalism
provides a way of going beyond the standard approaches of
Ehrenfest and FSSH, without the need to invoke coupled-
trajectory simulation algorithms. Within this formalism,
independent-trajectory approaches can be derived by making
approximations to real-time correlation functions of the form

= [ ]B t B tq p q p q p( ) d d tr ( , ) ( , , )W W

(2)

where B q p( , )
W

is the partial Wigner transform29 of the
operator B̂ with respect to the nuclear degrees of freedom and
tr[...] denotes a quantum trace over the electronic degrees of
freedom. Additionally, the initial state of the system is expressed
i n t e r m s o f t h e d e n s i t y m a t r i x ,

= | |q q q qd d ( , 0) ( , 0) . This provides an additional
framework through which nonadiabatic dynamics and decoher-
ence phenomena can be understood.
To better understand the difficulty in describing the dynamics

of an initial electronic coherence, it is instructive to first consider
what the correct dynamics should look like. In panel 1 of Figure
1, we illustrate a typical photochemical scenario, in which an
ultrashort laser pulse has promoted a small fraction of a stable
ground-state wavepacket (blue Gaussian) to the excited Born−
Oppenheimer electronic surface (red Gaussian). Crucially,
because the Born−Oppenheimer surfaces are typically far
apart at the Franck−Condon geometry in photochemical
systems, the initial dynamics can be decomposed into
independent motions associated with each component of the
electronic reduced density matrix.a In the classical-nuclear limit,
the electronic populations (corresponding to the blue and red
Gaussians in Figure 1) evolve on their associated Born−
Oppenheimer surface, while the electronic coherences (corre-
sponding to the pink Gaussian in Figure 1) evolve on the average
of the surfaces30−32 (given by the dashed pink line in Figure 1).

Applying this to the scenario illustrated in Figure 1, we see
that the ground-state population will remain stationary in its
potential well, while the excited-state population and the
coherences will initially experience a force toward the right. As
the excited- and ground-state wavepackets separate, the two will
decohere, resulting in a decay of the initial electronic coherence
(panel 2 of Figure 1). Later, when the excited-state wavepacket
reaches the coupling region at q = 0, a nonadiabatic transition
will then promote part of this wavepacket onto the ground-state
surface, momentarily recreating electronic coherence (panel 3 of
Figure 1). Further nonadiabatic transitions occur whenever
wavepackets recross the coupling region, which can also lead to
“recoherence” events as previously decohered wavepackets on
different surfaces re-overlap.
To describe all aspects of these dynamics with independent

trajectories, the following two minimal criteria must be satisfied.
First, to describe the initial independent motion of the red and
blue wavepackets, trajectories must initially feel the force of
either the ground- or excited-state surface, with a ratio that
matches the associated electronic populations. Second, to
describe the initial dynamics of the electronic coherence, some
trajectories must also propagate on the average surface.
The problem with Ehrenfest and FSSH is that they do not

simultaneously fulfill both of these criteria. While the mean-field
force used in Ehrenfest dynamics is suitable for describing the
dynamics of the electronic coherence, it fails to correctly
propagate the electronic populations on single Born−
Oppenheimer surfaces. In contrast, while the surface-hopping
force of FSSH guarantees that the electronic populations are
correctly propagated on single Born−Oppenheimer surfaces,
the electronic coherences are no longer propagated on the
average surface. FSSH additionally suffers from a so-called
“inconsistency error”,5 which arises from the fact that the active
propagation surface can become inconsistent with the under-
lying electronic wave function during the dynamics. While
decoherence corrections33−41 have been introduced to alleviate
the inconsistency error in FSSH, they are not guaranteed to fix
the problem.
One way to resolve these issues is to utilize semiclassical

mapping approaches. While several different mappings have
been suggested,24,42,43 in this paper we focus on methods
derived within the spin-mapping formalism.28,44 This maps a
two-state electronic subsystem onto a spin-1/2 particle and

Figure 1. Schematic illustrating certain aspects of the dynamics generated from an initially coherent wavepacket between the ground (blue) and excited
(red) Born−Oppenheimer surfaces. The different components of the initial electronic reduced density matrix are represented by the Gaussians in
panel 1, with the arrows showing their instantaneous motion. The red and blue Gaussians correspond to the associated adiabatic populations, and the
pinkGaussian corresponds to the electronic coherence. Panel 2 illustrates the decoherence of the initially coherent wavepacket, and panel 3 illustrates a
nonadiabatic transition, occurring when the excited-state wavepacket passes through the coupling region. The Born−Oppenheimer surfaces in each
panel correspond to the same model that is considered in refs 13 and 20.
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represents any two-state electronic wave function by a spin
vector, S, on the three-dimensional Bloch sphere. For example,
the north and south poles of the Bloch sphere (Sz = ±1, and Sx =
Sy = 0) correspond to the excited- and ground-state adiabats,
respectively, and the spin vector corresponding to the initial
coherent wavepacket shown in panel 1 of Figure 1 is given by the
left column of Figure 2.
As with other mapping approaches, the spin-mapping

framework has enabled the development of more accurate
independent-trajectory approaches that go beyond Ehrenfest
and FSSH.28,45,46 We briefly introduce these approaches here,
although more details are given in the Supporting Information.
Spin mapping was first used to develop a more accurate mean-
field approach, called spin-LSC,28 which utilizes a larger spin
sphere of S3 to reproduce the correct spin magnitude of a
quantum spin-1/2 particle. On this larger sphere, the spin vectors
that represent the two adiabatic states (i.e., = ±S3 1z ) lie on
the two polar circles, as illustrated in the top middle panel of
Figure 2. These polar circles constitute the initial sampling
regions for the spin-LSC approach. By sampling from the polar
circles with the correct weighting, each spin-LSC trajectory has
an initial force that corresponds to a single Born−Oppenheimer
surface, introducing an essential feature lacking in Ehrenfest
dynamics. An initial electronic coherence can also be
simultaneously described, because any point on the polar circles
generally has a non-zero value for Sx and Sy.
Most recently, the spin-mapping framework was used to

develop a more accurate surface-hopping approach, called the
mapping approach to surface hopping (MASH).46−48 The main
difference between FSSH and MASH is how the active surface
for the propagation of the nuclei is determined. While the active
surface in FSSH is switched stochastically according to the time
evolution of the underlying electronic wave function, in MASH
the active surface is instead chosen according to the spin
hemisphere in which the spin vector currently resides, as

illustrated in the bottom middle panel of Figure 2. Physically,
this corresponds to setting the active surface as the adiabat for
which the electronic wave function has the highest associated
probability. As a result, MASH has purely deterministic
dynamics, where the active surface changes whenever the spin
vector crosses the equator. This guarantees that the MASH
active surface is always consistent with the electronic wave
function, thereby avoiding the inconsistency error of FSSH that
is known to significantly degrade its accuracy.5

So far, we have considered only fully linearized mapping-
based approaches,31,49,50 which contain a single set of electronic
mapping variables and are generally able to describe the
dynamics associated with the electronic populations. To
correctly describe the dynamics of the coherences, partially
linearized approaches are generally needed.51,52 These ap-
proaches use two sets of mapping variables, with each describing
the electronic dynamics generated by the forward or backward
propagator.45,53,54 The partially linearized version of spin-LSC is
called spin-PLDM.45,55 Each set of spin-mapping variables in
spin-PLDM is sampled independently from the same polar
circles as in spin-LSC, such that the average of the two sets is
distributed according to the top right panel of Figure 2. In
particular, spin-PLDM trajectories can now be initialized with a
force corresponding to the average of the two Born−
Oppenheimer surfaces (pink region), which occurs whenever
the two sets of spin-mapping variables are initialized on different
polar circles. While a partially linearized version of MASH could
be formulated in principle, this has yet to be developed.
To assess the ability of the different semiclassical mapping

approaches to describe the nonadiabatic dynamics of an initial
electronic coherence, we consider a typical photochemical
scenario using the one-dimensional model system employed in
refs 13 and 20. The Born−Oppenheimer surfaces and the initial
coherent electronic wavepacket are depicted in panel 1 of Figure
1. The initial state has ∼80% of its weight on the lower adiabat,

Figure 2. Schematic illustrating the phase-space regions from which the electronic spin-mapping variables are initialized for various independent-
trajectory approaches. The red and blue shading signifies regions for which the trajectories would initially feel a force corresponding to the upper and
lower adiabatic surfaces, respectively, and the pink shading signifies an initial force that is an average of the two surfaces. For spin-PLDM, the initial
distribution of the average of the two sets of spin-mapping variables is given. See the Supporting Information for more details.
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and its Gaussian profile corresponds to the ground vibrational
eigenstate of the potential well located at q ≈ −2, all within the
harmonic approximation. More details about the model are
given in the Supporting Information.
We first consider the time evolution of the excited electronic-

state population, which can be expressed as a single real-time
correlation function of the form of eq 2, with = +B P q( ). This
means that the semiclassical mapping approaches can be used to
calculate this quantity directly, with the results given in Figure 3.
From the potentials shown in Figure 1, the wavepacket in the
excited adiabatic state should oscillate about the coupling region
at q = 0. As the parameters for this model are close to the Born−
Oppenheimer limit, only a small amount of population is
transferred at each crossing, giving rise to the step-like behavior
of the exact population dynamics in Figure 3, which were
computed using a split-operator approach.56

In agreement with previous work,13 the left panel of Figure 3
shows that both Ehrenfest and FSSH are unable to describe the
population dynamics originating from such an initial coherent

electronic state. The composition of the initial state means that
the major contribution to the Ehrenfest mean-field force comes
from the ground-state surface so that those Ehrenfest trajectories
that do reach the coupling region have relatively small nuclear
velocities. As a result, the effective nonadiabatic coupling
experienced by Ehrenfest trajectories at the coupling region is
also small, explaining why Ehrenfest gives rise to negligible
population transfer in this case. While FSSH does propagate the
right fraction of trajectories on the excited-state surface, many of
the trajectories nevertheless have an inconsistent electronic
wave function (again due to the composition of the initial
coherent state), which leads to the large error seen in the
populations. Utilizing a decoherence correction (dFSSH)
significantly reduces this error, but the corrected populations
are still substantially different from the exact result.
As was shown in previous work on this model,13 one way to

significantly improve the accuracy of the Ehrenfest and FSSH
populations in this model is to initialize the system in an
incoherent mixture of the two adiabatic states, which comes at
the cost of neglecting a real-time description of the initial

Figure 3. Population of the upper adiabatic electronic state as a function of time, calculated with a range of different independent-trajectory techniques.
To compare with the most accurate FSSH algorithm, the associated electronic populations are always computed from the active surface and results
using the energy-based decoherence correction36,57 with a decoherence parameter of 0.1 Hartree (dFSSH) are also included. Our Ehrenfest, FSSH,
and dFSSH results match those presented in ref 13. We also encourage the reader to compare our results with the FSSH populations calculated using
the electronic coefficients presented in ref 13.

Figure 4. Time evolution of the total nuclear coordinate density, normalized so that ∫ dqt ρnuc(qt, t) = 1. Regions where the density exceeds a value of
0.8 are colored white, while those with an unphysical negative density are colored black.
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decoherence process. While such an approximate treatment may
be suitable for systems giving rise to relatively fast decoherence,
it is unlikely to be sufficient for systems exhibiting long-lived
coherence or those driven by long laser pulses.
In contrast, all of the spin-mapping approaches closely match

the exact result without needing to invoke approximate
incoherent initial conditions. This improvement stems from
the initial sampling introduced over the electronic spin-mapping
variables. For the mean-field methods of spin-LSC and spin-
PLDM, the initial sampling over the polar circles (Figure 2)
leads to the correct fraction of trajectories experiencing the
excited-state force. For MASH, the trajectories that propagate
on the upper surface are those that are initialized with spin-
mapping variables in the upper hemisphere, so that the
electronic wave function is consistent with the nuclear
propagation surface. The small differences in the electronic
populations produced by the various spin-mapping methods can
be better understood by considering the time-dependent nuclear
density given in Figure 4. This quantity can also be expressed as a
single-time correlation function with = | |B q q , where |q⟩ is
an eigenstate of the nuclear position operator with eigenvalue q
and is the electronic identity operator. For the independent-
trajectory approaches, the observable operator |q⟩⟨q| can be
treated by histogramming the trajectories (see the Supporting
Information for more details). Here we see that MASH captures
the bifurication of the nuclear density on passing through the
coupling region with essentially quantitative accuracy, while the
mean-field methods in contrast lead to an incorrect “smearing
out” of the density. One can thus also understand why MASH
most accurately reproduces the step-like behavior of the exact
populations at longer times in Figure 3 based on the underlying
accuracy in the time evolution of the nuclear coordinate
distribution. While dFSSH is also seen to reproduce the time-
dependent nuclear density relatively well, we note that MASH
achieves this without needing ad hoc decoherence corrections.

We now consider the time evolution of the electronic
coherences. One simple measure of the magnitude of the
electronic coherence between two adiabatic states is obtained
from the associated off-diagonal element of the electronic
reduced density matrix, ρ−+(t). Unlike the electronic population
and the nuclear density observables considered above, |ρ−+(t)|
cannot be expressed as a single real-time correlation function.
Therefore, to calculate this quantity with semiclassical mapping
approaches, it must first be re-expressed in terms of correlation
functions of the form of eq 2, which for a two-state system can be
achieved as follows

| | = ++ t t tq q( )
1
2

( , ) ( , )x y
2 2

(3)

where σ̂(q) is the Pauli spin matrices expressed in the adiabatic
basis. Hence, any ensemble of independent trajectories should
first be used to compute the correlation functions tq( , )x and

tq( , )y , and these quantities can subsequently be inserted into
eq 3 to obtain the coherence measure.
The top panels of Figure 5 give this coherence measure

computed for the same model. These panels show that all of the
independent-trajectory approaches can describe this initial
decoherence behavior correctly. This is not so surprising, as
the initial decay of |ρ−+(t)| is also captured in the limit of static
nuclei and must therefore be dominated by pure dephasing.61,62

This is consistent with related findings for other model systems
such as conjugated polymers.63

While |ρ−+(t)| is useful due to its close connection with linear
spectroscopic signatures,52 it nevertheless does not offer the
most rigorous definition of electronic coherence. To see this,
|ρ−+(t)| can be expressed in terms of the time-dependent wave
function coefficients, cj(qt, t), as

| | = *
+ +t c t c tq q q( ) d ( , ) ( , )t t t (4)

Figure 5. Two different electronic coherence measures, |ρ−+(t)| and + t( ), calculated with a range of different independent-trajectory techniques.
The mathematical expressions for these measures are given by eqs 3 and 5, respectively. Our + t( ) measure is strongly related to that used in refs 13
and 58−60.
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which are themselves defined by the expression for the wave
function appearing in eq 1. Because the coefficients are not
positive functions of qt, |ρ−+(t)| can in principle be zero even if
the coefficients on different surfaces are spatially overlapping. To
resolve this issue, the order of the integral and the magnitude in
eq 4 can be interchanged to give13,58−60

= | * |

= +

+ +t c t c t

t t

q q q

q

( ) d ( , ) ( , )

1
2

d ( ) ( )

t t t

t x y
q q( ) 2 ( ) 2t t

(5)

where = | |q q q( )j j
q( ) is a product of a Pauli spin matrix and a

projector onto the specific eigenstate of the nuclear position
operator, |q⟩. Another advantage of the + t( ) measure is that
the pure dephasing contribution to the initial decoherence is
completely removed, so that decoherence effects arising from
the nuclear motion can be more easily investigated.
We proceed by considering the initial dynamics of this

coherence measure, shown in the bottom panels of Figure 5. All
of the independent-trajectory approaches give some initial decay
of the + t( ) measure, demonstrating that they all capture
aspects of decoherence beyond the pure dephasing limit. This
may seem surprising given that individual trajectories are known
to remain “overcoherent” after a nonadiabatic transition.64−66

Indeed, if eq 5 was calculated using just a single trajectory,
+ t( )would be essentially constant as a function of time and no

decoherence would be observed. Decoherence therefore arises
as a result of ensemble averaging. While the contribution to

t( )x
q( )t and t( )y

q( )t from each trajectory is in general non-
zero, the sign can vary, leading to phase cancellation61 among
trajectories such that the ensemble-averaged values can be zero.
This also introduces effects beyond pure dephasing as phase
cancellation can also occur between trajectories that begin with
different nuclear configurations but end up with the same
configuration at some later time, t. This highlights an important
philosophical point underpinning most trajectory-based ap-
proaches: physical meaning can only be ascribed to average
quantities derived from the trajectory ensemble, and not to the
individual trajectories themselves.67 While individual trajecto-
ries do remain unphysically overcoherent after a nonadiabatic
transition, Figure 5 highlights that the trajectory ensemble
displays the correct decoherence behavior for a wide range of
methods. This is also true for the FSSH results, for which no
decoherence correction was applied.b

However, not all of the independent-trajectory approaches
can exactly describe the decay of this measure. The approaches
that can (i.e., Ehrenfest and spin-PLDM) are those that initially
propagate at least some of their trajectories on the average
surface. This highlights one of the major advantages of partially
linearized approaches, like spin-PLDM, which can simulta-
neously describe the population and coherence dynamics
relatively accurately by initially propagating trajectories on
both single and average Born−Oppenheimer surfaces.
For all of the independent-trajectory approaches, the ability to

describe the longer-time coherence dynamics for both measures
is mixed.We first consider the smaller transient coherence peaks,
which originate in the exact dynamics from nonadiabatic
transitions (see panel 3 of Figure 1). The first such peak is
well captured by all of the mapping-based approaches, and
subsequent peaks are almost perfectly captured by dFSSH and
MASH.

Notably, none of the methods can reproduce the large
recoherence peak at ≈100 fs, which arises from the re-overlap of
the excited-state wavepacket with the stationary ground-state
wavepacket at q ≈ −2. Additionally, most of the independent-
trajectory approaches show several spurious recoherence peaks
in the + t( ) measure, which have no analogue in the exact
dynamics. To better understand the source of these discrep-
ancies, we also consider the coherence dynamics in the Born−
Oppenheimer limit, with the results given in Figure S1. Note
that the recoherence behavior of all of the independent-
trajectory methods in the Born−Oppenheimer limit largely
matches their behavior in the full system. In particular, spin-
PLDM reduces to the so-called Wigner-averaged classical limit
(WACL)30−32 in the Born−Oppenheimer limit.52 Given that
WACL only differs from the exact Born−Oppenheimer
dynamics as a result of its classical-nuclear approximation, this
suggests that the classical-nuclear approximation is the main
reason behind why the recoherences are difficult to describe with
independent trajectories.
Finally, to further establish the relevance of these findings for

the coherent photoexcited dynamics of a real molecule, we
consider the bis(methylene) adamantyl cation (BMA) using a
two-dimensional linear vibronic model that includes a conical
intersection.69 The dynamics is initialized in an electronic
coherence, exactly as in the previously considered model, and
the time-dependent excited-state populations are shown in
Figure 6. The BMA model gives rise to relatively weak diabatic

coupling, in contrast to the relatively weak nonadiabatic
coupling of the first model, meaning that the dynamics exhibited
by the two systems are quantitatively quite different. Never-
theless, there are still clear qualitative similarities in how well the
different methods describe the dynamics proceeding from an
initial electronic coherence. As was observed for the one-
dimensional model considered previously, both Ehrenfest and
FSSH exhibit large errors in the dynamics originating from the
coherent initial conditions, while all of the spin-mapping
approaches offer significant improvements over the original
methods, giving results in close agreement with the exact
population dynamics. Interestingly, applying a decoherence

Figure 6. Time evolution of the population of the upper adiabatic state
in the bis(methylene) adamantyl cation (BMA), calculated using a two-
dimensional linear vibronic coupling model containing a conical
intersection.
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correction offers almost no improvement to the FSSH result in
this case, illustrating that such corrections cannot always be
relied upon to fix the inconsistency error in the FSSH results.
In conclusion, we have assessed the ability of a range of

independent-trajectory nonadiabatic dynamics approaches to
describe the dynamics proceeding from a coherent electronic
state using models relevant for photochemical systems. The
ability to treat these initial conditions provides a first step toward
a more accurate description of the effects of tailored electro-
magnetic pulses within nonadiabatic simulations, which is a
crucial step for providing a more direct connection with cutting-
edge experiments.
To correctly describe an initial electronic coherence with

independent-trajectory approaches, we have found that it is
important to introduce an initial sampling over the electronic
phase space, as is naturally incorporated within the semiclassical
mapping framework. In particular, we considered all possible
flavors of the spin-mapping approach, all of which were found to
lead to the right fraction of trajectories being initialized on each
adiabatic surface, as required to reproduce the correct
population dynamics. MASH was particularly successful for
this model, where the surface-hopping force meant that the
approach could accurately describe the nonadiabatic transitions
associated with multiple crossings of the localized coupling
region. However, all of the spin-mapping methods were seen to
be a significant upgrade on the more commonly used Ehrenfest,
FSSH, and dFSSH approaches, which in contrast failed to
correctly reproduce these aspects of the dynamics. All of the
spin-mapping approaches considered here have multistate
extensions, so similar improvements in accuracy would be
expected from these methods in systems containing more than
two electronic states. While we have exclusively focused on the
spin-mapping formalism here, our conclusions would have been
identical for the majority of other mapping representations.
We also showed that independent-trajectory approaches can

reproduce the correct decoherence behavior. Even though the
individual trajectories of these approaches remain overcoherent,
decoherence is nevertheless included via phase cancellation
between them through ensemble averaging in the construction
of the relevant correlation functions. However, not every
independent-trajectory approach was able to perfectly describe
all aspects of the coherence measures. In particular, for the more
stringent + t( ) measure, it was necessary to propagate at least
some trajectories on the average Born−Oppenheimer surface to
completely capture the initial decay. This illustrates one of the
advantages of partially linearized approaches over their fully
linearized counterparts.51 Similar findings were also found in
previous work when calculating real-time dipole−dipole
correlation functions for optical spectra, where partially
linearized approaches also offered a significant advantage.52

Given the advantages of describing the electronic population
dynamics in photochemical simulations with MASH over
analogous mean-field approaches, it is expected that similar
advantages would also arise from a partially linearized version of
MASH for computing optical spectra in such systems. Obtaining
such a method will be one aspect of future work.
Another aspect of future work will be to develop mapping-

based approaches that can couple an explicit electromagnetic
pulse. For mean-field approaches, this extension is straightfor-
ward and has already been achieved for fully and partially
linearized mapping approaches such as PBME and FBTS,70 as
well as spin-LSC.71 We are currently working on the necessary

developments of the algorithm to include this effect correctly for
surface-hopping methods like MASH.
Finally, the classical-nuclear approximation is observed to lead

to the absence of recoherence phenomena in the dynamics of
independent-trajectory approaches. In the majority of realistic
(high-dimensional) systems, recoherence phenomena are sup-
pressed, and one may expect that this deficiency will not be a
major problem. However, the classical-nuclear approximation is
also known to “wash out” other coherence-related phenomena,
such as contributions to dipole−dipole correlation functions
that give rise to vibronic progressions in optical spectra.72−74 For
this application, it would therefore be useful to develop
extensions of nonequilibrium trajectory-based approaches that
go beyond the classical-nuclear approximation. While a number
of ring-polymer extensions to nonadiabatic trajectory-based
approaches have been developed for simulating equilibrium
dynamics,75−81 to the best of our knowledge there are currently
no established methods for tackling the nonequilibrium regime.
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bHowever, we also clarify that this does not mean that
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well-known cases in which decoherence corrections are required
to even ensure the trajectory ensemble is physically correct.68
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