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Hamiltonian and Initial Density Matrix

For any system consisting of two diabatic electronic states coupled to a set of nuclear degrees of

freedom, the associated Hamiltonian can be expressed in atomic units as

Ĥ =
N∑
j=1

p2j
2m

+ V̄ (q)Î +∆(q)σ̂diabx + κ(q)σ̂diabz , (S1)

where q and p are the nuclear positions and momenta of dimension N , expressed in mass-weighted

coordinates so that each degree of freedom has the same mass, m. In addition, σ̂diab are the

standard Pauli spin matrices expressed in the diabatic basis

σ̂diabx = |ψ1⟩ ⟨ψ2|+ |ψ2⟩ ⟨ψ1| , (S2a)

σ̂diaby = i(|ψ1⟩ ⟨ψ2| − |ψ2⟩ ⟨ψ1|), (S2b)

σ̂diabz = |ψ2⟩ ⟨ψ2| − |ψ1⟩ ⟨ψ1| , (S2c)

which along with the identity operator, Î, form a complete set of Hermitian operators for two-state

systems. Finally, the sign of κ(q) is chosen so that κ(q̄) > 0, where q̄ is the average nuclear

S1

jonathan.mannouch@mpsd.mpg.de
aaron.kelly@mpsd.mpg.de


position of the initial quantum state. This means that |ψ2⟩ is the highest-energy diabat at this

nuclear geometry.

The adiabatic states associated with this Hamiltonian are given by

|ψ+(q)⟩ = eiθ(q)/2 (cos (θ(q)/2) |ψ2⟩+ sin (θ(q)/2) |ψ1⟩) , (S3a)

|ψ−(q)⟩ = eiθ(q)/2 (− sin (θ(q)/2) |ψ2⟩+ cos (θ(q)/2) |ψ1⟩) , (S3b)

where tan θ(q) = ∆(q)/κ(q) with −π < θ(q) ≤ π and the + and − indices refer to the upper and

lower states. From these expressions, the adiabatic potential energies, V±(q), and the nonadiabatic

coupling vector (NACV), dj(q), can be expressed as

Vz(q) =
√

∆(q)2 + κ(q)2, (S4a)

dj(q) =

〈
ψ+(q)

∣∣∣∣ ∂ψ−(q)
∂qj

〉
=

∆(q)∂κ(q)∂qj
− κ(q)∂∆(q)

∂qj

2(∆(q)2 + κ(q)2)
, (S4b)

where V±(q) = V̄ (q)± Vz(q).

As in Ref. S1, the dynamics is initialized in a product state corresponding to the electronic

wavefunction, |ψ⟩ =
√

1
2(1−∆P ) |ψ2⟩ +

√
1
2(1 + ∆P ) |ψ1⟩, and the nuclear ground state of the

diabatic potential, V1(q) = V̄ (q)−κ(q). The partial Wigner transform of the initial density matrix

is then

ρ̂W(q,p) = ρ̂el ρnuc(q,p), (S5a)

ρ̂el = |ψ⟩ ⟨ψ| = 1
2

[
Î −∆Pσ̂diabz +

√
1−∆P 2 σ̂diabx

]
, (S5b)

ρnuc(q,p) =

N∏
j=1

1

π
e
− kj(qj−q̄j)

2

ωj e
−

p2j
mωj , (S5c)

where ∆P = 0.6 is the electronic population difference between the lower and upper diabatic states

and ωj =
√
kj/m is the harmonic frequency associated with mode j.
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The initial electronic density matrix, ρ̂el, can also be expressed in the adiabatic basis

ρ̂el =
1
2

[
Î +Az(q)σ̂z(q) +Ax(q)σ̂x(q)

]
, (S6a)

Ax(q) =
(κ(q)

√
1−∆P 2 +∆(q)∆P )

Vz(q)
, (S6b)

Az(q) =
(∆(q)

√
1−∆P 2 − κ(q)∆P )

Vz(q)
. (S6c)

where σ̂(q) are the Pauli spin matrices defined in the adiabatic basis, which are related to σ̂diab

by a unitary transformation.S2

Quasiclassical Trajectory Techniques

In this section, we define the equations of motion and observables associated with all of the

quasiclassical-trajectory techniques used in the main paper. The electronic spin-mapping vari-

ables, which specify the electronic state of the system, are related to the electronic wavefunction

coefficents for two-state systems as follows

Sx = 2Re[c∗+c−], (S7a)

Sy = 2Im[c∗+c−], (S7b)

Sz = |c+|2 − |c−|2. (S7c)

The spin-mapping phase space that corresponds to correctly normalized electronic wavefunctions

is the surface of the Bloch sphere, which satisfies |S| =
√
S2
x + S2

y + S2
z = 1. We therefore specify

the following phase-space averages over the electronic and nuclear variables

⟨· · ·⟩FL =
1

2π

∫
dq

∫
dp

∫
dS δ(|S| − 1) · · · , (S8a)

⟨· · ·⟩PL =
1

(2π)2

∫
dq

∫
dp

∫
dS(f)

∫
dS(b) δ

(
|S(f)| − 1

)
δ
(
|S(b)| − 1

)
· · · , (S8b)

which are appropriate for both fully-linearized (FL) and partially-linearized (PL) approaches, con-

taining one and two sets of spin-mapping variables respectively. Additionally, δ(x) is the Dirac

delta function.
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Surface-Hopping Approaches

Surface-hopping approaches are based on the adiabatic electronic representation and therefore it is

convenient to propagate the electronic degrees of freedom in this representationS3,S4

Ṡx =
2arcsin (O(q))

δt
Sz − 2Vz(q)Sy, (S9a)

Ṡy = 2Vz(q)Sx, (S9b)

Ṡz = −2 arcsin (O(q))

δt
Sx, (S9c)

q̇j =
pj
m
, (S9d)

ṗj = FSH
j (q,S), (S9e)

where O(q(t)) = ⟨ψ+(q(t))|ψ−(q(t+ δt))⟩ is the off-diagonal element of the 2 × 2 overlap matrix

and δt is the timestep. The advantage of using the overlap matrix rather than the NACVs for

the electronic propagation is that trivial crossings between two adiabatic states are much better

accounted for in the former.

Surface-hopping approaches propagate the nuclei on a single adiabatic surface at any given time.

The propagation surface, nact, is referred to as the ‘active surface’ and for the two-state system

considered here, we refer to nact = 1 as the upper surface and nact = −1 as the lower. The nuclear

force for surface-hopping approaches is therefore given by

FSH
j (q,S) = −∂V̄ (q)

∂qj
− ∂Vz(q)

∂qj
nact. (S10)

In order to describe nonadiabatic transitions, the active surface must be dynamically altered in

a way that mimics the dynamics of the underlying electronic wavefunction. How this is achieved

depends on the specifics of the method.

The most accurate way of measuring electronic observables with a surface-hopping approach is to

determine the electronic coherences with the electronic wavefunction and the adiabatic populations
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using the active surface

σSHj (S, nact) =


Sj for j ̸= z,

nact for j = z,

(S11a)

ISH(S, nact) = 1, (S11b)

which corresponds to the density matrix approach for calculating dynamical observables.S5,S6

Fewest-Switches Surface Hopping (FSSH)

Fewest-switches surface hopping (FSSH)S6,S7 approximates the correlation function associated with

the initial density matrix ρ̂ [Eq. S5] and the observable B̂ at time t as

Tr
[
ρ̂eiĤtB̂e−iĤt

]
≈

∑
nact=±1

pnact

〈
ρnuc(q,p)Pρel(S)B

SH(S(t), nact(t))
〉
FL
, (S12)

where ρnuc(q,p) is the Wigner distribution of the initial nuclear density [Eq. S5c] and Pρel(S) is a

projector onto a single point of the Bloch sphere that corresponds to the initial electronic density

matrix, ρ̂el

Pρel(S) = δ(Sx −Ax(q)) δ(Sy) δ(Sz −Az(q)) . (S13)

This Bloch sphere point is shown schematically in the bottom-left panel of Fig. 2 of the main

paper. Additionally, the initial active surface for each trajectory is determined stochastically from

the initial electronic wavefunction probabilities, p± = 1
2(1±Az(q)).

In order to describe nonadiabatic transitions, the active surface is changed stochastically along

the trajectory with a ‘hopping probability’ given by the rate of change of the underlying electronic

wavefunction

P±→∓ = ±2O(q)Sx

1± Sz
, (S14)

where negative probabilities are set to zero and the time-step, δt, is chosen to be small enough

so that the probabilities are never greater than one. In the case of a successful hop, the nuclear

momentum is rescaled along the nonadiabatic coupling vector (NACV) in order to conserve energy

and reflected in the case of a frustrated hop.
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The Mapping Approach to Surface Hopping (MASH)

The mapping approach to surface hopping (MASH)S2 combines the best of both worlds of FSSH

and mapping-based approaches. Unlike other mapping-based approaches, MASH has a surface-

hopping force akin to FSSH. The active surface in MASH is not an additional parameter within

the theory, but it is determined uniquely from the spin-mapping variables. For two-state systems

nact = sgn(Sz). (S15)

This means that MASH has deterministic dynamics for which the electronic wavefunction and the

active surface remain consistent throughout the dynamics. ‘Hops’ therefore occur in MASH every

time the spin vector evolves from one hemisphere to the other. One additional advantage of MASH

over FSSH is that the underlying theory uniquely prescribes how the momentum rescaling should

be applied at a hop, which corresponds to rescaling along the NACV and reflecting in the case of

a frustrated hop.

In order for the ‘hopping times’ to differ for each trajectory, the initial spin-mapping vari-

ables must be sampled. To describe an initial electronic coherence, the spin-mapping variables are

sampled over the entire Bloch sphere, weighted according to

Tr
[
ρ̂eiĤtB̂e−iĤt

]
≈ 1

2

〈
ρnuc(q,p) [WPB(S) (1 +Az(q) sgn(Sz)) +WCB(S)Ax(q)Sx]B

SH(S(t))
〉
FL
,

(S16)

The weighting factors, WAB(S), are determined so that MASH both reproduces the short-time

limit of exact quantum dynamics and the Landau-Zener transition rate in the fast nuclei limit

WAB(S) =


3 whenA = B = C,

2 whenA = P, B = C orA = C, B = P

2|Sz| whenA = B = P.

(S17)

where C refers to a coherence operator (i.e., σ̂x(q) and σ̂y(q)) and P to a population operator (i.e.,

Î, σ̂z(q), or the adiabatic population operators themselves).
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Mean-Field Approaches

For mean-field approaches, the form of the equations of motion are invariant to the electronic

representation used. However, it is often convenient to propagate the electronic degrees of freedom

directly in the diabatic representation. This can be achieved by first transforming the initial

adiabatic spin-mapping variables into the diabatic basis

Sdiab
x =

κ(q)Sx +∆(q)Sz
Vz(q)

, (S18a)

Sdiab
y = Sy, (S18b)

Sdiab
z =

−∆(q)Sx + κ(q)Sz
Vz(q)

. (S18c)

Then the diabatic spin variables can be propagated using the appropriate equations of motion

Ṡdiab
x = −2κ(q)Sdiab

y , (S19a)

Ṡdiab
y = 2κ(q)Sdiab

x − 2∆(q)Sdiab
z , (S19b)

Ṡdiab
z = 2∆(q)Sdiab

y , (S19c)

q̇j =
pj
m
, (S19d)

ṗj = FMF
j (q,Sdiab). (S19e)

When required, the diabatic spin-mapping variables can then be transformed back into the adiabatic

basis

Sx =
κ(q)Sdiab

x −∆(q)Sdiab
z

Vz(q)
, (S20a)

Sy = Sdiab
y , (S20b)

Sz =
∆(q)Sdiab

x + κ(q)Sdiab
z

Vz(q)
, (S20c)

as would be convenient for calculating electronic observables expressed using the adiabatic repre-

sentation, for example.

For mean-field approaches, the nuclei are propagated according to the mean-field force, which

corresponds to the expectation value of the nuclear force operator with respect to the electronic
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wavefunction. In the diabatic basis, this corresponds to

FMF
j (q,Sdiab) = −∂V̄ (q)

∂qj
− rs

[
∂κ(q)

∂qj
Sdiab
z +

∂∆(q)

∂qj
Sdiab
x

]
, (S21)

where rs is the radius of the spin sphere.

The mean-field representation of the adiabatic Pauli spin matrices for constructing electronic

observables are given in terms of the adiabatic spin-mapping variables as

σMF
j (S) = rsSj . (S22)

In addition, for Ehrenfest dynamics and spin-LSC, I(S) = 1, while for spin-PLDM, I(S) = Iobs,

which is defined in Eq. S30 below.

Ehrenfest

In Ehrenfest dynamics,S7 the electronic spin-mapping variables are initialized on the same point

on the Bloch sphere (rs = 1) as in FSSH

Tr
[
ρ̂eiĤtB̂e−iĤt

]
≈

〈
ρnuc(q,p)Pρel(S)B

MF(S(t))
〉
FL
, (S23)

where Pρel(S) is given by Eq. (S13).

Spin-LSC

In spin-LSC,S8,S9 the improved accuracy over Ehrenfest dynamics arises from introducing an initial

sampling over the spin sphere, even when the dynamics correspond to starting in a pure electronic

state. This is achieved by using a larger spin sphere (rs =
√
3), so that

Tr
[
ρ̂eiĤtB̂e−iĤt

]
≈

〈
ρnuc(q,p)PLSC(S)

[
1 +

√
3Az(q)Sz +

√
3Ax(q)Sx

]
BMF(S(t))

〉
FL
. (S24)

The spin-LSC representation of the correlation function has the same structure as that for Ehrenfest

dynamics [Eq. S23], because 1
2Pρel(S) [1 +Az(q)Sz +Ax(q)Sx] = Pρel(S).

Within spin-LSC, there are different options for the initial sampling of the spin-mapping vari-

S8



ables. We choose to use so-called focused initial conditions, which sample the spin-mapping vari-

ables from the polar circles associated with the upper and lower hemispheres

PLSC(S) =
1

2

[
δ

(
Sz −

1√
3

)
+ δ

(
Sz +

1√
3

)]
. (S25)

These polar circles are shown schematically by the upper-middle panel of Fig. 2 of the main paper.

By using such focused initial conditions, spin-LSC is guaranteed to reproduce the correct classical

nuclear dynamics on a single surface in the Born-Oppenheimer limit while also incorporating the

correct description of the quantum uncertainty between the spin degrees of freedom.

Spin-PLDM

All of the methods introduced so far are so-called fully-linearized approaches,S10,S11 which use a

single set of spin-mapping variables to represent the single-time correlation function. Another class

of quasiclassical methods, referred to as partially-linearized approaches,S12–S15 use separate spin-

mapping variables to represent the forward and backward time propagators within the correlation

function. The partially linearized version of spin-LSC is spin-PLDM,S16,S17 which represents the

correlation function as follows

Tr
[
ρ̂eiĤtB̂e−iĤt

]
≈

〈
ρnuc(q,p)PLSC(S

(f))PLSC(S
(b))BMF(Sobs(t))

〉
PL
, (S26)

where S(f) and S(b) are the spin-mapping variables for the forward and backward propagation

respectively. These mapping variables are sampled from the same polar circles as in spin-LSC

(Eq. S25), which means that the centroid, S = 1
2(S

(f)+S(b)) is distributed according to the upper-

right panel of Fig. 2 of the main paper. In spin-PLDM, the centroid is the dynamical variable that

determines the nuclear force (via Eqs. (S9) and (S21) in the diabatic basis with rs =
√
3).

In addition, the observables in spin-PLDM are determined by another set of spin-mapping

variables, Sobs, related to S(f) and S(b) by

Sobs
j (t) =

4√
3
Re

[
tr
[
ρ̂elŵ

(
S(b)

)
Û †(t)σ̂j(q(t))Û(t)ŵ

(
S(f)

)]]
. (S27)

Here tr[· · ·] refers to the quantum trace over the electronic degrees of freedom, Û is the time-ordered
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electronic propagator along the nuclear path and ŵ(S) is the Stratonovich-Weyl kernel given by

ŵ(S) =
1

2

[
Î +

√
3S · σ̂(q)

]
. (S28)

While Eq. (S27) is in principle sufficient for calculating Sobs(t), we propose an easier scheme in

practice for propagating these spin-mapping variables along the trajectory. Firstly from Eq. (S27),

the t = 0 values of Sobs can be determined as follows

Sobs
x (0) =

(
S(f)
x + S(b)

x

)
+
√
3Az(q)

(
S(f)
z S(b)

x + S(b)
z S(f)

x

)
+
√
3Ax(q)

(
2S(f)

x S(b)
x +

1

3
− S(f) · S(b)

)
,

(S29a)

Sobs
y (0) =

(
S(f)
y + S(b)

y

)
+
√
3Az(q)

(
S(f)
z S(b)

y + S(b)
z S(f)

y

)
+
√
3Ax(q)

(
S(f)
x S(b)

y + S(b)
x S(f)

y

)
,

(S29b)

Sobs
z (0) =

(
S(f)
z + S(b)

z

)
+
√
3Az(q)

(
2S(f)

z S(b)
z +

1

3
− S(f) · S(b)

)
+
√
3Ax(q)

(
S(f)
x S(b)

z + S(b)
x S(f)

z

)
.

(S29c)

The initial values of the observable spin-mapping variables, Sobs(0), can be transformed into the

diabatic basis using Eq. (S18) and then propagated according to Eqs. (S19a), (S19b) and (S19c)

along the original nuclear trajectory. At each timestep, the observable spin-mapping variables in

the diabatic basis could also be transformed back to the adiabatic basis with Eq. (S20) if desired.

Finally, noting that Û †(t)Û(t) = Î, the spin-PLDM representation of the identity operator is

given by

Iobs = 4Re
[
tr
[
ρ̂elŵ

(
S(b)

)
ŵ
(
S(f)

)]]
=

(
1 + 3S(f) · S(b)

)
+
√
3Az(q)

(
S(f)
z + S(b)

z

)
+
√
3Ax(q)

(
S(f)
x + S(b)

x

)
.

(S30)

Evaluation of the Coherence Measures

In order to evaluate the coherence measures introduced in the main paper with quasiclassical

trajectory approaches, the trajectories are first used to compute the correlation functions associated

with B̂ = σ̂x(q), σ̂y(q), σ̂x(q) |q⟩⟨q| and σ̂y(q) |q⟩⟨q|. The coherence measures are then constructed

in terms of the correlation functions using the formulas provided in the main paper.
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In order to calculate the correlation functions involving the nuclear projection operator, P̂q =

|q⟩⟨q|, we note that the Wigner transform of this quantity is

PW
q (q′(t),p′(t)) = δ(q − q′(t)). (S31)

This can be evaluated by histogramming the trajectories.

For the numerical simulations, 106 trajectories were used with a timestep of 0.1 fs. All trajec-

tories of the mapping-based approaches were repeated once with the initial conditions switched as

follows: Sx → −Sx and Sy → −Sy. For spin-PLDM, this replacement was performed independently

for S(b) and S(f), meaning that the trajectories were actually repeated four times in this case. The

C−+(t) coherence measure and the nuclear coordinate density were computed using equally spaced

bins of width ∆q = 0.005 between q = −7 and q = 7. A large number of trajectories were used

to make sure that the C−+(t) coherence measure was sufficiently converged for such a fine grid.

Far fewer trajectories would have been needed to compute the other observables, as well as this

coherence measure on a coarser grid.

The Models

One-Dimensional Model

We consider the same one-dimensional model used in Refs. S1,S18. This is the main model con-

sidered throughout the main paper. The diabatic Hamiltonian parameters in atomic units are

V̄ (q) = 1
2kq

2, (S32a)

∆(q) = be
−a

(
q− ϵ

2kq̄

)2

, (S32b)

κ(q) = kq̄q − 1
2ϵ, (S32c)

where k = 0.02, b = 0.01, a = 3, q̄ = −2 and ϵ = 0.01. The quantities used here are related to

those used in Refs. S1,S18 by: q = R− 1
2(R1 +R2) and q̄ =

1
2(R2 −R1). Additionally, m = 20000.

Figure S1 gives the coherence measures calculated for this model in the Born-Oppenheimer
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Figure S1: The Born-Oppenheimer limit of the coherence measures shown in Fig. 5 of the main
paper.

limit (the same quantities associated with the full nonadiabatic dynamics are given in Fig. 5 of the

main paper). The Born-Oppenheimer limit corresponds to setting the NACV (and the off-diagonal

element of the overlap matrix) in the equations of motion to zero.

BMA Model

In order to give a more realistic description of photoexcited processes in molecules we also consider

the bis(methylene) adamantyl cation (BMA), using a two-dimensional conical intersection model.S19
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The form of this conical intersection model is given in atomic units by

V̄ (q) = 1
2

(
ω2
xq

2
x + ω2

yq
2
y

)
, (S33a)

∆(q) = cqy, (S33b)

κ(q) =
1

2
ω2
xaqx, (S33c)

where ωx = 7.743 × 10−3 and ωy = 6.68 × 10−3 are the vibrational frequencies of the two nuclear

modes given in mass-weighted coordinates (so that effectively m = 1), such that the corresponding

spring constants are given by kj = ω2
j . Additionally, a = 31.05 and c = 8.092 × 10−5. Finally,

the initial Gaussian wavepacket is centered at the ground-state equilibrium geometry of the cation,

given by q̄x = a
2 = 15.525 and q̄y = 0.
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