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ARTICLE INFO ABSTRACT

MSC: Optimal transport (OT) based data analysis is often faced with the issue that the underlying
primary 60B12 cost function is (partially) unknown. This is addressed in this paper with the derivation of
60F05 distributional limits for the empirical OT value when the cost function and the measures are
Zggzl(? estimated from data. For statistical inference purposes, but also from the viewpoint of a stability
62F40 analysis, understanding the fluctuation of such quantities is paramount. Our results find direct
secondary 90C08 application in the problem of goodness-of-fit testing for group families, in machine learning
90C31 applications where invariant transport costs arise, in the problem of estimating the distance
Keywords: between mixtures of distributions, and for the analysis of empirical sliced OT quantities.
Optimal transport The established distributional limits assume either weak convergence of the cost process in
Central limit theorem uniform norm or that the cost is determined by an optimization problem of the OT value over a
Stability analysis fixed parameter space. For the first setting we rely on careful lower and upper bounds for the OT
Curse of dimensionality value in terms of the measures and the cost in conjunction with a Skorokhod representation.
Empirical process The second setting is based on a functional delta method for the OT value process over the
Bootstrap parameter space. The proof techniques might be of independent interest.

1. Introduction

Statistically sound methods for data analysis relying on the optimal transport (OT) theory (see e.g, Rachev and Riischendorf
[1], Santambrogio [2], Villani [3]) have won acclaim in recent years. Exemplarily, we mention fitting of generative adversarial
networks [4], novel notions of multivariate quantiles [5,6] and dependence [7-9] or tools for causal inference [10].

Recall that for Polish spaces X and Y and a continuous cost function ¢ : X XY — R, the OT value between two (Borel) probability
measures u € P(X) and v € P()) is defined as

OT (u,v,c) ;= inf / c(x, y)dz(x, y), @™
nell(u,v) xxY

where IT(u,v) denotes the set of couplings of u and v. Under mild assumptions (1) also admits a dual formulation (see,
e.g., Santambrogio [2]),

fecx

OT(u,v,c) = sup )/Xf“(X)dM(XH/yf”(y)d\/(y), (2
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where C(X) stands for the set of real-valued, continuous functions on X. Further, denote by f¢(y) := inf cyc(x,y) — f(x) and
fe€(x) :=inf gy c(x, ) - f¢(y) the cost-transformations of f and f¢ under c, respectively; also often referred to as c-transformations.

If X = Y and the cost function ¢ = d{’{, is the pth power (p > 1) of a metric d, on X the OT value gives rise to the p-Wasserstein
distance

. 1
W, (1, v) = (OT (u, v, d5))'/?,

which defines a metric on the space of probability measures with p-th moments [3, Chapter 6]. This metric is particularly useful for
many data analysis tasks due to its potential awareness of the “inner geometry” of X. For instance, interpreting (normalized) images,
or more precisely the corresponding pixel locations and intensities, as probability measures, it has been argued that the distance
induced by OT corresponds to the natural expectations of what appears close or far away for the human eye [11]. Meanwhile, there
is a plenitude of real world showcases where OT based distances (and their associated transport plans) prove useful for applications
e.g., in cell biology [12,13], genetics [14,15], protein structure analysis [16,17] or fingerprint analysis [18], to mention but a few.
In these works, the cost function is selected by the practitioner and tailored to the concrete application, e.g., a tree distance on the
space of phylogenetic trees as in [14] or the Euclidean distance as in [13].

However, there are various instances where the underlying cost naturally depends on the measures. Examples include,
e.g., Wasserstein based goodness-of-fit testing under group families [19] or Wasserstein Procrustes analysis [20], where it is central
that the underlying OT problem is invariant with respect to certain transformations. Moreover, for sliced OT [21] or projection robust
OT [22,23], the Wasserstein distance between multiple low-dimensional projections of measures is computed. Taking the maximum
of all one-dimensional (resp. low-dimensional) projections gives rise to the max-sliced Wasserstein distance [24] (resp. projection
robust OT cost [22]) which induces a measure-dependent cost since maximizing directions are determined by the underlying
measures. Since the underlying measures are generally unknown and have to be estimated from data, the cost function has to
be estimated as well. The interest of learning the cost function from observations has also gained interest in economics to model
migration flows [25,26] and in the machine learning community for geodesic flows of probability measures [27]. Finally, let us
note for completeness that the problem of identifiability of the cost function from OT values, transport plans, or potentials has only
recently been analyzed [28].

Motivated by these considerations, we provide in this work a general framework for the statistical analysis for empirical OT
under costs that are dependent on the underlying measures. Adopting a statistical point of view, we assume that we do not have
access to the measures y and v but only to independent samples { X i};’:] ~ u®" and {, };": L~ v®" with n,m € N. Upon defining the
empirical measures y, = % U] x, and v, 1= % h 8y, and given a random cost function' ¢, ,, such that OT(u,, v,,.c,,,,) estimates
the quantity OT (u, v, ¢), our main focus is on characterizing for n,m — oo with m/(n+ m) - A € (0, 1) the limit distribution of

nm

(OT(ﬂn, Vs €pm) — OT (1, v, c)). 3)

n+m

This is of particular interest for asymptotic tests about the relation between u and v for unknown ¢ based on the OT value. Further,
this enables the derivation of confidence intervals for the OT value OT(u, v, c). As it is practically more relevant, we mainly focus
on the scenario where both measures y and v are unknown. However, we stress that our theory also provides distributional limits
for the one-sample case, i.e., when only yx is estimated from data while v is assumed to be known and vice versa (see Remarks 4 and
9). Moreover, although we mostly focus on empirical measures to estimate the underlying measures, our theory also enables the
derivation of distributional limits for alternative measure estimators (see, e.g., [29]), provided that the corresponding distributional
limits for the measures can be determined.

For a fixed cost function, ie., for ¢, ,, = ¢ for some ¢ € C(¥ x V), already various works derived limit distribution results for
the empirical OT quantity in (3). A specific situation arises for probability measures on R with c,(x,y) = |x — y|? for p > 1 [30-34]
where the OT plan can be represented via a quantile coupling. For this setting, quantile process theory [35] in combination with
integrability conditions on the underlying densities have been exploited to derive distributional limits.

Moreover, on general Euclidean spaces R? with d > 1 and pth power costs ¢,(x,y) = |lx = yl|” with p > 1 it has been shown
by del Barrio et al.[36,37] for probability measures p,v with connected support and finite 2p-th moments for n,m — oo with
m/(n+m) — 4 € (0,1) that

nm
e (OT Gt Vins €)= E [OT Gy vy ¢,)] ) > N O, or ) @)
where aﬁ,v > 0 if and only if 4 # v. Here and throughout, “~” denotes weak convergence in the sense of Hoffman-Jgrgensen

(see van der Vaart and Wellner [38, Chapter 1.3]). Their proof is based on an L?-linearization technique of the OT value and
relies on the Efron-Stein inequality. In general, the centering quantity E[OT (u,, v,,,c,)] in (4) cannot be replaced by its population
quantity OT'(u,v,c,) which hinders further statistical inference purposes. Indeed, for identical absolutely continuous probability
measures u = v on R with sufficiently many moments it follows for d > 2p by Fournier and Guillin [39],Weed and Bach [40] that

E [OT (4. V. )] < min(n, m)=?/4.
1 Here, ¢

is either a direct estimator for ¢ or chosen via an OT-related optimization problem over a parameter class.

nm
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Moreover, for different measures 4 # v on R? which are absolutely continuous and sub-Weibull it has been shown for d > 5
by Manole and Niles-Weed [41] that

E [OT (4. V- )| = OT (w1, v, c,)) < min(n, m)~™n¢2/4,

These rates are also minimax optimal (up to logarithmic factors) over appropriate collections of identical measures y = v [42]
as well as different measures y # v [41]. In particular, this demonstrates that estimation of the OT value suffers from the curse of
dimensionality and showcases that it is in general for d > 5, due to the dominance of the bias, not possible to replace E[OT (4, vy, ¢,)]
with OT (u, v, cp) in (4).

Nevertheless, according to the recently discovered lower complexity adaptation principle for empirical OT [43], fast convergence
rates are still achieved if one of the population measures, y or v, is supported on a sufficiently low dimensional domain. Based on
this observation, Hundrieser et al. [44] proved for compactly supported y,v on R?, with u supported on a finite set or a smooth
submanifold of dimension d < 2 min(p, 2) using the functional delta method [45],

nm
n+m

(OT Gty vse) = OT (o vic)) ) = sup  VAGH(F%0) + V1= 26" (f), ®)
€S, ()

where Scp(,u, v) is the set of optimizers of (2) and G#,G" denote u-, v-Brownian bridges, i.e., centered Gaussian processes with

covariance structure characterized by

COV[G“(f),G"(g)]=/fgdﬂ—/fd/4/gdﬂ for f,g € C(X) (6)

and likewise for G". The asymptotic theory laid out in (5) also provides a unified framework for distributional limits of the empirical
OT value under discrete population measures [18,46] and the semi-discrete setting [47].

The central contribution of this work is to extend such distributional limits from (5) to settings where the cost function is not
fixed and additionally may depend on the underlying measures. We focus on the following two special instances.

(A) The cost estimator c,,,, centered by its population counterpart ¢ and suitably rescaled, weakly converges in C(X X Y) to a
tight limit, i.e.,

nm
n+m

(epm—c¢) = G in C(XXD).

(B) There exists a collection {cy}yeo Of costs such that for any u € P(X),v € P(Y) the corresponding cost function c,,, := ¢y is
selected according to an optimization problem of the OT value over 0, i.e., either

0 € argmax OT (4, v, or He: in OT (u, v, cp).
arg max (v, ¢p) arg min (v, ¢p)

These two settings are natural and treat a wide spectrum of problems. Furthermore, they are strongly related. It is noteworthy
that setting (B) could be treated in the framework of (A) by estimating the optimal §. However, this approach requires the existence
of a unique population cost function and weak convergence of the cost process as a random element in C(X x Y). Since we are only
interested in the empirical infimal or supremal OT value it is instead more natural to rely on an alternative approach which does
not require uniqueness of the population cost function or weak convergence of the cost process.

For setting (A) we allow the cost function to be estimated from the given data and thus capture the asymptotic dependency
between the cost estimator and the empirical measures. In particular, this enables an analysis of the empirical OT cost when the
cost estimator is parametrized by a plug-in estimator, e.g., a maximum likelihood procedure. Notably, setting (A) also allows the cost
function to be estimated from independent data. Overall, this setting covers many scenarios with “extrinsically estimated costs”. We
refer to Sections 4.1 and 4.3 for examples. For setting (B) the motivation slightly differs. Here, the selected cost function depends
on the OT problem itself and often brings invariance of the OT problem with respect to a class of transformation parametrized by
O. One could describe this as OT with “intrinsically estimated costs”. Examples of this setting are provided in Sections 4.2 and 4.4.

Under suitable assumptions we show in Theorem 2 for setting (A) that

nm
n+m

(OT(ﬂn, Vs &) — OT (s, v,c)) w inf 2@+ sup  VAGH(C) + V11— G (fO),

’ €M} (1,v) SES (uv)
where HC*(M, v) represents the set of optimizers for (1) for y, v with costs ¢ and z(G) := f G*dx. For setting (B) we only state below
the distributional limit for supremal costs; a similar distributional limit also occurs for infimal costs (Theorem 6). Upon defining
the set .S, (0, u,v) = argmax,cg OT (i, v, ¢y) of maximizers we show in Theorem 7 that

Y (sup OT (1. Vi ¢g) = sup OT (u, v,c9)> w  sup sup  VAGH(S) + V1= 2G¥ ().
6O

) 0€S,.(O.1.v) €Sy (V)

In addition to these distributional limits we show for both settings (A) and (B) consistency of a bootstrap principle. This is of
practical importance since quantiles of the respective distributional limits are difficult to express explicitly due to their dependency
on the collection of primal and dual optimizers for population measures and cost.

Our proof technique for the distributional limit under setting (A) differs from previous approaches and might be of interest in its
own right. More precisely, due to the estimation of the cost function, we cannot rely on any of the techniques from the references
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mentioned above. Instead, we derive certain lower and upper bounds on the OT value which fulfill appropriate (semi-)continuity
properties. In conjunction with a Skorokhod representation for the empirical process jointly with the cost process, this enables us to
prove that the law of the empirical OT value with estimated costs is asymptotically stochastically dominated from above and below
by the asserted limit distribution.

For the analysis of setting (B) we show under suitable assumptions on the cost family {c,}sco and the underlying probability
measures, that the empirical OT process \/;(OT(;;H, Vs €g) — OT (1, v, ¢p))gco Weakly converges in C(O) to a tight random variable.
We prove this result by invoking the functional delta method in conjunction with a general result on Hadamard directional
differentiability for extremal-type functionals uniformly over a compact parameter space (see Appendix A). The latter can be viewed
as an extension of Fang and Santos [48, Lemma S.4.9] to processes over © and relies on Dini’s theorem [49, Corollary 1]. Central
for this differentiability result is a certain continuity condition among the sets of maximizing elements for varying parameter. For
the OT process it is fulfilled, e.g, if for every 6§ € O the set of dual optimizer ch(y, v) is unique (up to constant shift). A similar
assumption has been imposed by Xi and Niles-Weed [50] for weak convergence of the empirical sliced OT process, which can be
viewed as a special instance of our results for general OT processes, see Section 4.4. The distributional limits for the empirical
infimal and supremal OT value over § € © then follow by another application of the functional delta method.

Outline. We begin our exposition by deriving in Section 2.1 an appropriate dual formulation of the OT value which proves useful
for our subsequent considerations. We then proceed with our main contributions, distributional limits for the empirical OT value
under weakly converging costs in Section 2.2 as well as for the empirical OT value under extremal-type costs in Section 2.3.
These asymptotic results are complemented with consistency results of bootstrap resampling schemes in Section 2.4. We discuss
our assumptions for the distributional limits and the bootstrap principles in Section 3 and provide sufficient conditions for their
validity. Statistical applications of our theory are provided in Section 4, where we also derive a deterministic (first-order) stability
result for the OT cost under joint perturbations of measures and cost function. In Section 5 we explicitly construct functionals which
enables us to “elevate” the regularity of cost estimators to that of their population counterparts. We employ them in the proofs of
our main results which are stated in Section 6. All remaining proofs as well as auxiliary results and lemmata are relegated to the
Appendices. For ease of reading the technical discussion of Section 3 can be skipped for a first reading and one may forward from
Section 2 immediately to Section 4 on applications which provides an entry point to those readers who would like to apply our
results to a particular setting of their own.

Notation and technical prerequisites. Given a set T' denote by #*(T’) the Banach space of bounded functionals on T' equipped with
uniform norm ||@|| := sup,cr |@(t)|. Moreover, if T is equipped with a topology = denote by C(T') the Banach space of real valued,
bounded, continuous functions on T' equipped with uniform norm. If d; denotes a metric on T, then we define by C,(T, d;), or C,(T)
when the metric d; is clear from context, the space of real-valued, bounded, uniformly continuous functions on (7', d). Endowed
with the uniform norm, it is a Banach space as well. A real-valued function class 7 on X is always be equipped with uniform norm.
This specifies the Banach space C,(F) which is a closed subset of the Banach space £%(F). Moreover, for ¢ > 0 the covering number
N'(g,T,d) denotes the minimal number of sets with diameter 2¢ to cover T, and we write x < y when there exists a constant C > 0
with x < Cy. For a topological space X the set P(X) denotes the collection of Borel probability measures on X. Integration [ fdu
of a real-valued Borel measurable function f: X — R with respect to u € P(X) is abbreviated by u(f) or uf. Further, we denote
by f4u the pushforward of 4 under f. We define all random variables on the same probability space (£2, A, P). We further assume a
product structure of that space to define samples and the random weights of the bootstrap, i.e., 2 = Q,x 2, x--- and P =P, ®P; x -
so that the samples only depend on (£, P;), the weights of the first bootstrap replicate on (£2;,P,) and so on. The law of a random
variable X is denoted by £(X). We finally assume that there exist infinite sequences of measurable maps X, X,, ... from (£, P,) to
X, respectively, and that samples of cardinality »n are obtained from the infinite sequence by projection of the first n coordinates.
Outer probability measures are denoted by P* (see [38, Chapter 1.2]). Denoting by BL,; the set of real-valued functions on a metric
space (T, dy) which are bounded by one in uniform norm and such that |f(x) — f(y)| < dp(x,y) for any x,y € T, we define the
bounded Lipschitz metric between two probability measures p,v as dg; (4, v) 1= supsepr, |u(f) — v(f)|. For a set A and a function
f, we write f(A) := {f(a) | a € A}. For two subsets A, B of a vector space, A+ B :={a+b|a € A,b € B}. The set of symmetric
(resp. symmetric positive definite) matrices in R*? is denoted by S(d) (resp. SPD(d)).

2. Main results
2.1. Preliminaries

For our theory on distributional limits for the empirical OT value under estimated cost functions we consider throughout compact
Polish spaces X and Y. Given a continuous cost function ¢ € C(X x ) and probability measures y € P(X),v € P(Y) there always

exist optimizers to both primal and dual problem [3, Theorems 4.1 and 5.10].
According to Villani [51, Remark 1.13], dual optimizers can always be selected from the function class

H, = {h X SR 38 Y = [=lelleo s el AC) = yilelgc(‘,y) —g(y)}, (@]
which yields for any u € P(X),v € P(Y) the alternative dual representation of the OT value,
OT (u,v,c) = sup u(h®)+ v(h°). ®
heH,
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The function class H, is uniformly bounded, and each element exhibits the same modulus of continuity as ¢, hence it is compact in
C(X) by the Theorem of Arzela-Ascoli. Formula (8) was exploited by Hundrieser et al. [44] for distributional limits of the empirical
OT value under a fixed cost function.

For our purposes, we require a dual formulation over a fixed function class which holds for more than a single cost function
and to circumvent potential measurability issues we seek a function class which is compact in C(X) (cf. Lemma 45). To this end, let
B > 0 and consider a concave modulus of continuity w: R, — R,. Then, for a continuous metric d, on X we define the compact
function class F (B, w) C C(X),

F(B,w) = {f ‘X >R ‘ I1flle < 2B, 1£(x) = F(x)] < w(dy(x,x")) for all x,x" € X}, ©)

which will be utilized for a dual representation of the OT value under suitable costs.

Lemma 1 (Dual formulation). Let ¢ € C(X X Y) with ||c||, < B and |c(x,y) —c(x',y)| S w (dX(x, x’)) forall x,x' € X,y € Y. Then, for
F := F(B,w) the following inclusions hold

M, CFCH, +[-2B,2B] and HM°CF°CH +[-2B,2B]
Further, for arbitrary probability measures u € P(X) and v € P(Y) it follows that
OT (p, v, c) = sup u(f“) +v(f°) (10
fer

and the set of dual optimizers S,(u, v) of (10), referred to as Kantorovich potentials, is non-empty.

The proof of Lemma 1 is deferred to Section 6.1. Overall, Lemma 1 justifies the use of the function class ¥ = F(B, w) for a dual
OT formulation and enables us to state conditions of distributional limits in terms of 7 instead of potentially varying collections of
functions.

2.2. Distributional limits under weakly converging costs

For the distributional limits in all the statements below, we consider independent and identically distributed random variables
(X, ~ u®" and independent {Y, YL~ Vo defined on the probability space put forward in the introduction. Based on these
samples, we define empirical measures u, = - Z iz 0x, and v, = = ZL | &y, All the subsequent asymptotic results are to be
understood for n,m — oo with m/(n+m) - A € (0 1), which we do not recall each time for space considerations.

Our main result on the limit law for the empirical OT value under weakly converging costs is given as follows for the two-sample

case. The one-sample case is discussed in Remark 4(ii).

Theorem 2 (OT under weakly converging costs). Let ¢ € C(X x Y) and consider an estimator c, ,, € C(X x Y) for ¢ such that c, ,(x,y)
is measurable for each (x,y) € X x Y. Let w: R, — R, be a concave modulus of continuity for ¢ with w(é) > 0 for 6 > 0 such that
le(x,y) — c(x', y)| < wdy(x,x")) for dll x,x' € X,y € Y. Assume for u € P(X),v € P(Y) the following.

(W) For the function class F = F(2||c||,, + 1,2w) from (9) joint weak convergence occurs,

poon ﬂn—u Vi GH
,/1_ G| I PFC)XEPF) X CX XY),

n+m
C,

nm — €
where (G*,GY,G*) is a tight random variable and G*,G" have covariance as in (6).
Further, suppose either one of the following two assumptions.

(OP) There exists a unique OT plan z € I} (u,v) between u and v for the cost function c.
pr
(Sup) The empirical processes G! := \/;:(/4,, - ) and G), = ﬁ(vm — v) fulfill the convergence sup sy GH(fenmenm — fe€y—s 0 and
-
supser G, (fmm — f€)— 0.

Then, it follows that

1/n+m(0T(,4n, Vs Cnm) = OT (1, v, c)) inf 2(GH+ sup  VAGH()+ V1= 2GS

zEIF (1) fES(uv)

A key insight of Theorem 2 is that the limit distribution for the estimated OT value can be decomposed into two terms: the
fluctuation of the cost estimators evaluated at the collection of OT plans and the Kantorovich potentials evaluated at the limit of
the empirical process. Under uniqueness of primal and dual optimizers for the population OT problem we obtain the following.

Corollary 3 (OT under weakly converging costs and uniqueness). In the setting of Theorem 2 assume (JW)and (OP), and suppose that
the set of Kantorovich potentials S.(u,v) for u,v with cost function c is unique (up to a constant shift).> Then, for = € II}(u,v) and

2 By this we mean, for any f,g € S.(u,v) the difference f — g is constant on supp(u).
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f € S.(u,v), it follows that
nm
n+m

In particular, if (G*,GY,G*) is a jointly centered Gaussian process in £ (F) X £®°(F¢) x C(X x Y), the weak limit in (11) is centered
normal.

(OT Gty Vi ) = OT (.00 ) = 2(G) + VAGH (/) + VT = 4G (1), an

The proof of Theorem 2 is deferred to Section 6.2.1 and relies on careful lower and upper bounds for the empirical OT value
due to the primal (1) and dual formulation (10), as well as arguments from empirical process theory. In the course of this, a key
argument is the application of Lemma 1 for ¢, ,, and c. Notably, we do not demand that the cost estimator ¢, ,, is suitably bounded
or exhibits a similar modulus of continuity as c itself. Instead, we construct by Corollary 39 an alternative cost estimator ¢, ,, such
that the conditions, ||c, ,ll, < 2llcll, + 1 as well as [¢,,,(x,y) — ¢, ,,(x", Y| < 2w(dy(x,x")) for all x,x" € X,y € Y, are fulfilled

P
deterministically and +/nm/(n + m)|[c,, ,, — ¢, mlle — 0. The latter implies by Lemma 43 that

nm - [ nm P
ntm <OT(/"W Vmﬁcn,m) - OT(”ns Vm’cn,m)) < nt+m ”Cn,m - cn,m”oo - 0.

It thus suffices to show the assertion for ¢, ,, where the dual formulation from Lemma 1 involving the function class (2 [|c||, +1.2w)
is available. We call ¢, ,, a regularity elevation of c, ,; details on different kinds of regularity elevations are given in Section 5. The
notion of regularity elevations also proves to be useful for showing the validity of (Sup) as outlined in Section 3.3.

Remark 4. We like to comment on a few aspects of the derived distributional limits.

(i) The assumptions of Theorem 2 and sufficient conditions for their validity are discussed in Sections 3.1-3.3. Effectively, (JW)
delimits the theory to settings of low dimensionality. In such settings (Sup) is often also valid as long as the population cost
is sufficiently regular.

(i) Our proof technique for Theorem 2 and Corollary 3 also asserts distributional limits for the one-sample setting, i.e., when u
is estimated by u, and v is assumed to be known. For this setting, (JW) reduces to the condition

NG (”n - ”> . <g‘> in £°(F€)x C(X X V).

c,— ¢
-
Moreover, in (Sup) we only require that sup ;e G}, (f % — f¢)— 0. Then,

V(0T Gy v,c) = OT(uovi0)) = inf  #(G)+ sup  GH(S).

rEIT} (u,v) fEeS.(1v)
In case of a fixed cost function, i.e., when selecting c, = ¢, List (Sup) is trivially met and the conditions of Theorem 2 reduce
to F¢¢ being u-Donsker and 7¢ being v-Donsker. Further, by Lemma 1 this is equivalent to 7, and H¢ being Donsker for 4 and
v [38, Theorem 2.10.1 and Example 2.10.7], respectively, matching the Donsker conditions of Theorem 2.2 under bounded,
continuous costs on compact domains in Hundrieser et al. [44] (in this setting Assumptions (C), (E), and (P) are all met)
which imply that

nm
n+m

(OT (s ) = OT (v, ) = sup VIAGH() + V1= 26" (£).

fES (u,v)

(iii) Our proof technique also yields distributional limits for the estimated OT value when instead of empirical measures y, and
v,, one considers measurable estimators fi, € P(X), v,, € P(}), respectively, that fulfill ji, -~ u and ¥,, w v in probability.
This would mean to replace the empirical measures y, and v,, in Assumptions (JW) and (Sup) by /, and v,,, respectively. In
addition, instead of the scaling rate /nm/(n + m) our proof technique theory also permits a different scaling rate a, ,, which
diverges to infinity for n,m — co.

(iv) In Proposition 34 we prove that the OT value is Gateaux differentiable in all three entries (u, v, ¢) for admissible directions
(4%, AV, A°) € (P(X) — u) X (P(Y) — v) X C(X x Y) with derivative,

A", 4", 4 —»  inf  m(A)+ sup  AH(fC)+ AY(fO).
rEIF (p,v) fES:(u.v)
Hence, the asymptotic distribution described in Theorem 2 may also be interpreted as a derivative of the OT value with
respect to the triple (u,v,c) evaluated at the limit process. Proving Theorem 2 via an application of the functional delta
method would amount to showing Hadamard directional differentiability of the OT value [45]. However, this turns out be a
challenging issue without imposing additional assumptions on the measure and cost estimators, see Remark 35.
(v) In case of a centered normal limit in (11) the limit variance is given by

Var (7(G)) + AVary_, (/X)) + (1 = A) Vary_, (f°(V)) + 2\/EcOv(n(GC),G”(f“)) +2V1 = ACov(z(G°), G'(f°)),

where we used that the random variables X, ..., X, and Y}, ..., Y, are independent. In particular, the limit law degenerates
if both Kantorovich potentials (f, f¢) are (u.v)-almost surely constant and c,, converges to ¢ with a faster rate than
(nm/(n + m))~'/2, uniformly on the support of the OT plan . For a sharp characterization of the occurrence of almost surely
constant Kantorovich potentials we refer to Section 4 of Hundrieser et al. [44] where the authors showcase that for most cost
functions of practical interest a.s. constancy typically does not occur if the underlying measures are different.
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2.3. Distributional limits under extremal-type costs

As noted in the introduction, could the empirical infimal or supremal OT value over a fixed collection of cost functions also be
analyzed using the previously described framework. However, as part of this approach, we would require the existence of a single
underlying population cost function as well as weak convergence of the cost estimator. To broaden the scope of our theory, we
follow in this subsection a different route to derive limiting distributions where such conditions are not required. More precisely,
we first prove a uniform distributional limit for the empirical OT process indexed over the collection of cost functions before relying
on a delta method to characterize the distributional limits for the respective infimal and supremal statistics.

For the subsequent assertions we again adhere to the sampling convention provided at the beginning of Section 2.2. The
one-sample case is discussed in Remark 9(iii).

Theorem 5 (OT process uniformly over compact ©). Let © be a compact Polish space and consider a continuous map c: © - C(X X Y),
0 cy. Let w: R, — R, be a modulus of continuity such that supyeg lcy(x, y) — cg(x, y)| < w(dy(x,x")) for all x,x’ € X,y € Y. Assume
for u € P(X),v € P(Y) the following.

(Don) For the function class F = F(supyeg ||¢p||o, » w) from (9) the collection | Jyeo F0¢ is u-Donsker and | Jyeq F*¢ is v-Donsker.

(KP) For any 6 € O, the set of Kantorovich potentials S, (u,v) C F for the OT problem between u and v and cost c, is unique (up to a
constant shift).

Then, upon selecting f, € Sey (V) for any 6 € 6, it follows that

nm
n+m

(0T G v = OTuvicp)) =~ (VAG £+ VI=aGH ) inC@).

oe

The proof of Theorem 5 is based on Hadamard directional differentiability of the OT cost process, which follows from a
general sensitivity analysis for extremal-type functions uniformly over a compact parameter space Appendix A. The assertion for
the empirical OT process then follows by invoking the functional delta method [45]; the proof is deferred to Section 6.3.1.

From the above result, given any functional @ : C(®) — R that is Hadamard directionally differentiable at the function
OT(u,v,c(-)) € C(O), Theorem 5 yields by another application of the functional delta method, the distributional limit

\ /—n’f:”m (d&((oT(Mn, Vo € )pco ) — @((OT (v, cg))9€@)> - ng’v‘c(,))d&((\/ZG“(fgf*cf’) +V1-2 V(fgc"))gee).

Here, ng« ven® denotes the directional Hadamard derivative of @. This enables the derivation of the limit distribution for the

infimal mapping using Fang and Santos [48, Lemma S.4.9] (see also Carcamo et al. [52, Corollary 2.3]).

Theorem 6 (OT infimum over compact ©). Consider the setting of Theorem 5. Then, upon selecting f, € S, (u,v) for any 6 € O, it follows
that

nm . . . CoC C
vz - (mf OT (Vs ) = inf OT (v, c9)> - inf )\/EGﬂ(fgo )+ VI=AGY(f),

6O 0eS_(O,u,v

where S_(0, u,v) = argming.g OT (i, v, cy) denotes the set of minimizers of OT (u, v, cy) over O.

In case only (Don) holds, one can still infer the limit law for the empirical supremal OT value.

Theorem 7 (OT supremum over compact ©). Consider the setting of Theorem 5 and only assume (Don). Then, it follows that

N (sup OT (. Vs ¢9) — SUD OT(M,v,Ce)> w sup VAGH() + VT = AGU (),
n+m \geco 66 0ES4(O.v)
f6€Scy (U

where S (0, u,v) = argmax,cq OT (1, v, cy) denotes the set of maximizers of OT (u, v, cy) over O.

The proofs of Theorems 6 and 7 are documented in Sections 6.3.2 and 6.3.3, respectively. Moreover, in some contexts the
compactness assumption on © might be too restrictive. The following result provides an extension to non-compact spaces @ and
focuses on the infimal statistic; an analogue statement also holds for the supremal statistic. Its proof is deferred to Section 6.3.4.

Proposition 8 (OT infimum over general ©). Let © be a Polish space and consider a continuous map c: ©® — C(X x Y). Consider again
two measures u € P(X),v € P(Y) and suppose there is a compact set K C O such that S_(0, u,v) C K, there is a sequence of minimizers
0,.m € S_(O, uy, vy,) with lim,, , . P*(,,, & K) =0, and that the assumptions of Theorem 6 hold with © replaced by K. Then, the assertion
of Theorem 6 on the empirical infimal OT value over © remains valid.

Remark 9. A few comments are in order concerning the weak limits for the empirical OT cost process as well as the respective
infimal and supremal statistic.
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(i) In the setting of Theorem 5 the parameter space O is compact and ¢ : © — C(X X Y) is continuous, therefore the range ¢(©)
is also compact in C(X x Y). In particular, by the Theorem of Arzela-Ascoli, we conclude that supycg ||¢p]|,, < o and there
exists a suitable modulus of continuity for all cost functions uniformly on 6.

(ii) Both assumptions of Theorem 5 and sufficient conditions are discussed in Sections 3.4 and 3.5. Assumption (Don) appears
natural in order to control the empirical OT process uniformly over ©, whereas (KP) is to ensure that the limit process is
supported in C(0) and stays tight. Our proof technique suggests that (KP) can be slightly lifted, but not much. For instance,
one could demand that Kantorovich potentials S, (u,v) which attain the supremum in the derivative can be approximated
by Kantorovich potentials S"o’ (u,v) for ¢ in the immediate vicinity of 6 (as required in Lemma 53(i) in Appendix A). In
particular, if @ := {0, ...,0} is a finite set equipped with discrete topology, then (KP) can be omitted.

(iii) The results also extend to the one-sample setting, i.e., when y is estimated by u, and v is assumed to be known. For the
one-sample version of Theorem 5 it suffices to assume in (Don) that the function class UgcoF“ is u-Donsker in conjunction
with (KP). Upon selecting fy € S, (u,v) for any 6 € O, the limit distribution is then given for n — co by

\/;(OT(ﬂn,v,Cg)—OT(M,V,CQ)) w (GH(/D) e in C(O).

6o
Under identical assumptions, the one-sample analogue of Theorem 6 is available. For the validity of the one-sample result in
Theorem 7 it suffices that UyegF % is y-Donsker.

(iv) rem:NormalityDegeneracyhe obtained weak limits highlight an intimate dependency of limit distributions to the collection of
Kantorovich potentials. In Theorem 5 the limit process is centered Gaussian due to Assumption List (KP). For fixed 6 € © the
limiting random variables degenerates to a Dirac measure at zero if the respective Kantorovich potentials are (u, v)-almost
surely constant. Moreover, the limit distribution in Theorem 6 is also centered normal if Kantorovich potentials (f0¢, f<)
for u,v and ¢, coincide (up to a constant shift) on supp(u) X supp(v) for any 6 € S_(O, u, v). Under analogous assumptions for
0 € S,(6, u,v) the limit distribution in Theorem 7 is centered normal. In particular, assuming (KP), this condition is fulfilled if
S_(0, u,v) or S, (0O, u,v) consist of a singleton. The resulting limit distributions degenerate if Kantorovich potentials are (u, v)-
almost surely constant. A sharp characterization of almost surely constant potentials is detailed in Section 4 of Hundrieser
et al. [44].

2.4. Bootstrap principle for optimal transport costs

Since the limit distributions in Theorems 2, 6 and 7 involve the set of Kantorovich potentials (and OT plans), under non-unique
optimizers there is little hope for an explicit, closed-form description of the quantiles for these distributions, which is required for
further practical purposes. To circumvent this issue we suggest the use of a k-out-of-n bootstrap procedure with k& = o(n) whose
consistency is shown in this subsection.

For simplicity, we state the subsequent results for equal sample sizes, i.e., n = m as well as bootstrap samples of equal size k = o(n).
Under differing sample sizes n # m one would select bootstrap samples of size k = o(n),/ = o(m) such that //(I + k) ~ m/(n + m).
Below, we always consider the same bootstrap approach that we now introduce. For the two sequences of i.i.d. random variables
{(Xih, ~ un, v, ~ v®" with respective empirical measures y,,v,, consider another sequence of i.i.d. bootstrap random

b Lk
5xlb and Vok T > 5Yib.

variables {X' ’?’};‘:] ~ pu®k, {Y,."}"_‘:1 ~ v® and define the bootstrap empirical measures ;45 = sk © Zicl

k i=1
Moreover, we write in the subsequent statement c, for the cost estimator and cﬁ . for the bootstrap cost estimator.

Proposition 10 (Bootstrap for OT under weakly converging costs). In the setting of Theorem 2, assume (JW) and either (OP) or (Sup).
Let cf L ECXXY) be the bootstrap cost estimator such that cf () s measurable for all (x,y) € X x Y. Further, assume the following.

(JW)* The bootstrap empirical processes are conditionally on X, ..., X,.,Y},... Y, consistent in the space £®(F) x £°(F°) x C(X x Y)
for n,k — oo with k = o(n), ie.,

b
g = Hn Hn = H))| o+
dpr || VE| Ve = v [IX1s o X Y Y 2| Vi v = v [ | — 0.
Cb —C c,—¢C
nk n n

In case of setting (Sup) additionally assume the following.
(Sup)* The unconditional bootstrap empirical processes G::k = \/E(ﬂ:' (—HWand GY = \/E(vi’ ¢ — V) fulfill the conditions
cb b p* b p*
sup G¥ (fmknk — f<)— 0 and sup G (fm — f€)—> O for n, k — o0, k = o(n).
fEF ” fEF ’
Then, it follows for n,k — oo with k = o(n) that

dp, ( c (ﬁ (OT(uz_k, v ch) = OT(h,, v,,,c,,)) IXps s X, Y ,Y,,) L (\/Z(OT(y,,, Vp,) — OT (i, v, c))) )L 0.

Despite not relying on the functional delta method for the derivation of the limit distribution of the empirical OT value under
weakly converging costs, we obtain a similar bootstrap principle as Diimbgen [53, Proposition 2] by employing an equivalent
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formulation for bootstrap consistency [54] in conjunction with the use of a Skorokhod representation. The full proof is provided in
Section 6.2.2.

Remark 11. When employing the functional delta method, the n-out-of-n bootstrap is not consistent if the Hadamard directional
derivative is not linear [53, Proposition 1]. Although Proposition 10 does not build on a differentiability result, we show in
Section 4.5 that the OT functional is Gateaux directional differentiability with a derivative that is non-linear if primal or dual
optimizers are non-unique. Since Gateaux directional differentiability is implied by Hadamard directional differentiability, this
suggests in the regime of non-unique optimizers the inconsistency of the naive n-out-of-n bootstrap for the empirical OT cost under
weakly converging costs.

Verification of the bootstrap consistency in the settings of Theorems 5-7 is straightforward. It is a direct consequence of
consistency of the k-out-of-n bootstrap empirical processes with k = o(n) [38, Theorem 3.6.13] and the functional delta method
for the bootstrap [53, Proposition 2]. Hence, we omit the proof of the following proposition.

Proposition 12 (Bootstrap for OT process, supremum, and infimum). Let X, be compact Polish spaces and © a compact topological
space. Consider a continuous map c: © - C(X X Y),0 + ¢, let y € P(X),v € P(Y) and assume (Don).

(i) (OT process in C(O)) Then, under (KP), it follows for n,k — oo with k < n that

dy, ( c (ﬁ (OT(#Z’,{, Vo) - OT(,un,v,,,ce))ge@ Xy X, Yy yn) ,

p*

L (\/; (OT (Vs c9) — OT (1, v, ¢p)) )He@ ) — 0.
(ii) (OT infimum over ©) Then, under (KP), it follows for n,k — oo with k < o(n) that

dy, ( c (ﬁ(gggm(ﬂg,k,v;k,%) - inf OT(ﬂn,vn,cg)) X X, Y, Y) ,

. . P
£ (Vi (jnf OT Gty v c) = inf OT (i, vicy) ) ) ) —0.
(iii) (OT supremum over ©) Then, it follows for n,k — oo with k = o(n) that

dp; ( c (\/Z (sup OT (! V2 1 cg) = sup OT (u,. v,,,ce)> X1 X0 Y Yn> ,
6o =)

*

P
L (\/; <sup OT (uy,, vy, cg) — sup OT (u, v, c9)>> ) — 0.
[Z=C) =2

Notably, we also obtain consistency of the n-out-of-n bootstrap for setting (i) since (KP) implies linearity of the Hadamard
directional derivative.

3. Discussion of the assumptions

In this section we discuss the assumptions on the distributional limits and the bootstrap consistency. We also provide sufficient
conditions for their validity. All the proofs are deferred to Appendix B.

3.1. Assumptions (JW) and (JW)*: Joint weak convergence

For the empirical OT value under estimated costs we demand in (JW) and (JW)* weak convergence of the empirical processes
in £°(F¢) and £*(F°), where F = F(2 |||, + 1,2w) is selected as in Theorem 2. This requires 7 and F¢ to be u- and v-Donsker,
respectively. Moreover, we demand weak convergence of the estimated cost function in C(X x Y) to ensure that any sequence of OT
plans for y,,v,, and c,, tends towards an OT plan in IT(u,v). Finally, we stress the necessity of joint weak convergence in (JW)
and (JW)* as the limit distribution is determined by the random variable (G*, G", G¢) and thus characterized by their dependency.

Even though apparently unavoidable, these conditions are somewhat restrictive and delimit the theory to low dimensional
settings. This is to be expected as estimation of the OT value (under population costs) suffers from the curse of dimensionality [41],
leading to slow convergence rates when both population measures u, v exhibit high-dimensional support. However, in view of the
recently discovered lower complexity adaptation principle [43], it suffices that one measure, y or v, is supported on a low dimensional
space. The following proposition provides bounds on the covering numbers (see the notation section for a definition) of 7¢ and F¢¢
under uniform norm which leads to a universal Donsker property for both function classes.

Proposition 13 (Universal Donsker property). Let ¢ € C(X X Y) be a continuous cost function with ||c||, < 1. Assume one of the three
settings.

(i) X ={xy,...,xy} is a finite space (and no additional assumption on c).
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(ii) There exists a pseudo metric* d on X such that N'(e,X,dy) S €77 for € > 0 sufficiently small and some § € (0,2) and c(-,y) is
1-Lipschitz under d for all y € Y.

(iii) X = Ule &(U;) for T € N compact, convex subsets U; C RY, d; < 3 with non-empty interior and maps ¢; : U; — X such that for
each i € {1,...,1} the function c(¢,(+),y) is (y;, 1)-Holder" on U; for some y; € (d;/2,2] for all y € Y.

Let B > 0 and consider a modulus of continuity w: R, — R, with respect to a metric d, on X. Then, for each setting there exists some
a < 2 such that for € > 0 sufficiently small,

log N'(e, F, I lloo) = log N'(e, F“, ||l o) S €7 for F = F(B,w),

where the hidden constant depends for (i) on N, for (ii) on N'(e, X, dy), and for (iii) on (¢;, ‘lf[)l_’=1. In particular, the function classes F¢
and F*°¢ are universal Donsker.

The bounds for the covering numbers stated in the above proposition are essential for the weak convergence of the empirical
processes \/;(,u,, — u) and \/E(vm —v) and represent an important tool for verifying (JW). In order to clarify the assumptions of
Proposition 13, we rephrase them in the example below. We additionally refer to [44, Section 5] and [43, Section 3] for more
illustrative examples of similar type.

Example 14. Below we list a few cases for which Proposition 13 is applicable and asserts that the function classes 7 and F¢ are
universal Donsker.

1. Both measures are supported on finitely many points and the cost function is real-valued. This includes measures on finite
trees and a tree metric as the cost function (see, e.g., [14] for an application in genetics).

2. Only one measure is supported on finitely many points and the cost function is bounded (see, e.g., [55] for an application in
resource allocation).

3. The cost function ¢: R x R — R is locally Lipschitz and both measures u,v € P(R) are compactly supported. In particular,
this setting is met for the cost function c,(x, y) = |x — y|? of the p-Wasserstein distance on the real line if p > 1 (see, e.g, [34]
for an application in clinical trials).

4. Under d < 3, the cost function c: R x R? — R is twice continuously differentiable and both measures u,v € P(R?) are
compactly supported. This setting captures the cost function c,(x,y) = |[x — y||” of the Wasserstein distance on Euclidean
spaces for dimension d (see, e.g., [13] for an application in cell biology).

5. On general Euclidean spaces, similar conditions can be stated if the minimum intrinsic dimension of both measures is
sufficiently small. For locally Lipschitz costs ¢ : R x RY — R we require that one measure is concentrated on a compact
polygonal path or a Lipschitz curve. In case of twice continuously differentiable costs it suffices that one measure is
concentrated on a compact smooth submanifold X of dimension at most three.

To state sufficient conditions for (JW) and (JW)* we assume that the population cost as well as the empirical and bootstrap
estimators are determined by the underlying measures via a Hadamard directionally differentiable functional. For simplicity, we
consider in the subsequent proposition random variables {X;}_ =~ udn, vy, ~ v®" of identical sample size n with empirical
measures ,, v,, and bootstrap samples {X?}*  ~ u®, {Y}¥  ~ v® of size k = k(n) = o(n) with corresponding bootstrap empirical
measures yﬁ o vf X
Proposition 15 (Joint weak convergence). Let Fy, Fy be bounded function classes on X and Y, respectively, and assume there is a
functional @, : P(X) X P(Y) C £°(Fy) x £*(Fy) = C(X X Y) such that, for all n,k € N,

c=D(u,V), ¢, =Dy v,), and b =Dl VD).
If @, is Hadamard directionally differentiable at (u, v) tangentially to P(X)xP(Y), and if F, UF ¢ is u-Donsker while F, UF* is v-Donsker,
then both (JW) and (JW)* are fulfilled.

Remark 16. We like to point out that if the functional @, is additionally continuous with respect to the topology induced by weak
convergence on P(X) x P(Y), it follows that ¢,(x, y) and cf ((x. ) are measurable for each (x,y) € X x Y and, due to compactness of
X and Y, measurable in C(X x ).

3.2. Assumption (OP) : Uniqueness of optimal transport plans

The subject of uniqueness of OT plans between probability measures and a given cost function is of long-standing interest and has
been addressed by various authors. General conditions for continuous settings were derived by Gangbo and McCann [56] and Levin

3 A non-negative function d : M x M — R, on a set M is a pseudo-metric if the three conditions d(x,x) =0, d(x,y) = d(y,x) and d(x,y) < d(x,z) +d(z,y) are
fulfilled for any x,y,z € M.

4 A function f: U — R on a convex set U C RY with non-empty interior is (y,A)-Holder with modulus A > 0 and y € (0,1] if ||f]l, < A and
|fxX) = f| £ Allx=y|” for any x,y € U'. Further, f is called (y, A)-Holder for y € (1,2] if every partial derivative of f is (y — 1, A)-Holder. If U is not
open, we assume the existence of an extension f of f onto an open convex set containing U" such that f is (y, A)-Holder theorem, cf. Hundrieser et al. [43].

10
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[57], building on previous works. The subject has since been covered in depth in Chapters 9 and 10 of the reference textbook
by Villani [3]; further advances have been made since.

To guarantee the uniqueness of the OT plan, many works resort to the so-called Twist condition which demands for differentiable
costs the injectivity of the map y — V,c(x,y) for all x € X. The following proposition formalizes a uniqueness criterion based on
this condition and should fulfill the reader’s needs for many practical applications. The result can be deduced from Theorem 10.28
and Remark 10.33 in Villani [3].

Proposition 17. Assume that X,y are compact Polish spaces where X C RY is a Euclidean subset with non-empty interior and yu is
absolutely continuous with respect to the Lebesgue measure. Further, assume that c is locally Lipschitz on X x Y, that c(-, ) is differentiable
on int(X) for each y € ¥ and that y — V,c(x, y) is injective for each x € X. Then, the OT plan is unique.

Even though in certain cases weaker conditions can yield uniqueness [58], these more general conditions are typically
considerably more difficult to verify. Nevertheless, unless the cost function exhibits some kind of symmetry or is constant in some
region, uniqueness of OT plans is often to be expected. Indeed, for fixed measures there is a residual set of cost functions such that
for any such costs the OT plan is unique [59].

In finite discrete settings, i.e., when both underlying measures are supported on finitely many points, results on the uniqueness
of OT plans are mostly based on the theory of finite-dimensional linear programs, and we refer to Klatt et al. [60, Section 6] for
a detailed account. Among others, they provide sufficient conditions for uniqueness of OT plans which solely depend on the cost
function and the support points but are independent of the weights of the measures. For Euclidean-based costs their condition is
fulfilled for Lebesgue-almost every arrangement of support points of 4 and v, it is however violated if the support points obey some
regular or repetitive pattern.

3.3. Assumptions (Sup) and (Sup)*: Control of supremum over empirical processes

Our assumptions on the suprema of the empirical processes ensure that the fluctuation on the set of feasible dual potentials
caused by estimation of the cost function is asymptotically negligible. Let us also point out that the suprema in (Sup) and (Sup)*
are (Borel) measurable by Lemmas 45 and 46. This implies that the convergence in outer probability occurs, in fact, in probability.
Indeed, following along the proof of Lemma 46 and due to measurability of c, ,, it follows for fixed f € F = FQ2|lc|l, + 1.2w)
that both maps w ~ G4(f°) and @ ~ G/(fm“m) are measurable. In conjunction with G ((-)¢¢), G} ((-)nmam) € C(F,|I‘lle) by
Lemma 45 and compactness of (F,||||,,) the measurability of the G/ ((-)¢ — (-)mm) as well as its supremum follow.

In the following, we derive sufficient conditions for the validity of Assumption (Sup) (as well as Assumption (Sup)*). Based on
empirical process theory, in order to suitably control the suprema

sup G (fnmmm — f¢€) and  sup G (f»m — f€)

feF feFr
a canonical route would be to impose metric entropy bounds for Fn.mnm yFc¢ and Fm U F¢. Such bounds, however, would impose
certain regularity requirements on the cost estimator ¢, ,,. Hence, in order not to narrow our scope concerning cost estimators,
we employ the same ideas as in Section 2.2 and approximate the cost estimator c,, by a more regular cost estimator ¢, ,,. The
subsequent result formalizes these considerations for our context. Its proof relies on techniques developed by van der Vaart and
Wellner [61] for empirical processes indexed over estimated function classes.

Proposition 18. Let X,Y be compact Polish spaces and consider a continuous cost function c.

P
(i) Assume (JW) for random elements c,,, € C(X X Y). Take random elements ¢, ,, € C(X X Y) with \/nm/(n+m)lic, ,, — Ey il = O
for n,m = m(n) - oo and m/(n+ m) — A € (0,1) such that for € > 0 sufficiently small,
log N'(e, F, ||-|loo) + sup log N'(g, Férmum ||| ) S €%  with a < 2. (12)
neN

Then Assumption (Sup) is fulfilled. .
(ii) Assume (JW) and (JW)* for random elements c”:k € C(XxY) and let 531( € C(XxY) be random elements with \/E||c3k —Ejk loo—0

for n,k = k(n) > o and k = o(n) such that for ¢ > 0 sufficiently small,
log N (e, F¢, [1-Il.o) + sup log N (e, Fomknk || 0) S €™ with a < 2. (13)
neN
Then Assumption (Sup)* is fulfilled.

As a straightforward corollary of Proposition 18 we find that (Sup) and (Sup)* are fulfilled if the cost estimators c, ,, and cﬁ’ . fulfill
certain deterministic regularity conditions once n,m, k are sufficiently large. In the large sample regime we then choose ¢, ,, :=¢,,
and & :=c), .
Corollary 19. Let X, Y be compact Polish spaces, consider a continuous cost function c. Assume (JW) for ¢, (and (JW)* for ¢? c, ) and
that ¢, ¢, (and c® ¢, ) each fulfill one of the three conditions of Proposition 13 for n > N, k > K with random variables N,K € N Then,
(Sup) (and (Sup) ) hold.

11
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Hence, if the population cost ¢ and the estimators c,,c, , are determined by some parameter § € © and estimators 6,6, ,, such
that the regularity properties of Proposition 13 are met uniformly in an open neighborhood of 6 and if the estimators are consistent,
then Corollary 19 asserts the validity of Assumptions (Sup) and (Sup)*.

Moreover, under mild additional assumptions on the space X and the cost function ¢, we can define ¥ : C(X x V) - C(X X ),
a functional such that ¢, := ¥(c,) fulfills the entropy bound (12) while satisfying /x ||¢,,, — el 2.0 for n — co. We call such a
functional ¥ a regularity elevation functional since it lifts the degree of regularity of the cost estimator. Details on regularity elevations
are deferred to Section 5.

Corollary 20. Let X,Y be compact Polish spaces and consider a continuous cost. Assume (JW) (and (JW)*). Suppose that c fulfills one
of the three conditions of Proposition 13. Under (ii) or (iii) further assume the subsequent condition (ii)’ or (iii)’, respectively.

(i)’ The weak limit G¢ is almost surely continuous with respect to (X, d. ) X .

(iii)’ For each i € {1,... I} the set U; C R% is convex and compact, the map ¢;: U; — ¢;(U;) is a homeomorphism, and the function
¢ 1= ¢(&(),)): Uy x Y — R is continuously differentiable in u € U; on U; X Y, i.e., the derivative V¢, : int(U;) x ¥ — R¢ can be
continuously extended to U; X Y. Further, there exists a continuous partition of unity® {n;} ,.’:l on X with supp(n;) C ¢&;(U)).

Then, Assumption (Sup) (and (Sup)*) is fulfilled.

Recall that the assumptions in Proposition 13 are all met in the settings described in Example 14. The additional assumptions
in Corollary 20 are fairly mild. For instance, Assumption (i)’ on G° is always met if d, metrizes the topology on X. Further,
Assumption (iii)’ holds if X = Y C R with d < 3 are convex, compact sets and c is a twice continuously differentiable cost function
on R x R?. Assumption (iii)’ is also fulfilled for general d € N if X C R? is a compact submanifold of dimension at most three
while Y C R? is bounded subset and ¢ : R x R? — R is twice continuously differentiable. This way, thanks to compactness of X, a
partition of unity always exists and up to potentially choosing an atlas of smaller charts (¢;, V;) for &, the continuous extendability
of V¢, : int(V;) x ¥ — R? can always be ensured.

3.4. Assumption (Don): Donsker property uniformly over ©

For the distributional limits by Hundrieser et al. [44] on the empirical OT value under a fixed cost function ¢, the authors
effectively assume that the function classes ¢ and F¢ are u- and v-Donsker, respectively (Remark 4(i)). Hence, for the uniform
convergence result from Theorem 5 it is natural that we demand the u- and v-Donsker property for the unions UycoF 0 and UycgoF
for F = F(supyep liclls » w). The validity of this condition can be ensured under assumptions on the domain & in conjunction with
regularity conditions imposed on the cost function.

Proposition 21 (Universal Donsker property over ©). Let X,Y be compact Polish spaces and let (©,dg) be a metric space such that
log N'(£,0,dg) S € for a < 2. Suppose that c : (0,dg) > C(X X Y),0 — c, is 1-Lipschitz and assume supycg ||cy||,, < 1. Consider one of
the three settings.

(i) X ={xy,...,xy} is a finite space (and no additional assumption on c).
(ii) For any ¢ € O there exists a pseudo metric dy » on X such that supyeg N (e, X, dy ) S €7 for p <2 and cy(-, y) is 1-Lipschitz under
dyy fordllye .
(i) X = ,.’= L Gy for I € N compact, convex subsets U; € R%, d; < 3 with non-empty interior and maps ¢; : U; — X so that for each
i €{l1,...,1} the function cy(¢;(-), y) is (y;, 1)-Holder on U; (recall footnote (iii)) for some y; € (d;/2,2] forall ye Y, 6 € 6.

Then, for each setting, there exists some a < 2 such that
log N'(€,Upeo T, II'll) S €™ and  log N'(e, Upeo P, II*lloo) S €7

In particular, UygcgF 0%, UpeoF ¢ are universal Donsker, and Assumption (Don) is fulfilled.

The proof of Proposition 21 is a simple consequence of Proposition 13 in combination with the subsequent lemma whose proof
is deferred to Appendix B.6.

Lemma 22. Let X,Y be compact Polish spaces and let (0, dg) be a metric space. Suppose ¢ : (0,dg) = C(X X ¥),0 > cg is 1-Lipschitz.
Then, it follows for any € > 0 that

max (A7 (6. UpeoP Il ). A (€, Upco 70, I11) ) S N (5. 0.0 ) sup " (5.7 1, )

5 A collection {, }’,’=I is a continuous partition of unity if 5, € C(X), n, > 0 for each i and Zle n; =1 on X.
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3.5. Assumption (KP): Uniqueness of Kantorovich potentials

The uniform weak limit of the empirical OT process from Theorem 5 demonstrates a close relation to the collection of Kantorovich
potentials. In particular, for the limit to be supported on C(6) a certain continuity property on the Kantorovich potentials S, (u, v)
with respect to 6 is required. Assumption (KP) on the uniqueness of Kantorovich potentials represents a sufficient condition to ensure
this property.

The recent work by Staudt et al. [62] thoroughly analyzes the topic of uniqueness in Kantorovich potentials and highlights that
it is often expected. More precisely, for differentiable costs and assuming that one probability measure is supported on the closure of
a connected open set on a smooth manifold, Kantorovich potentials are unique. As Example 3 in their work showcases, uniqueness
also occurs under continuous costs if one measure is discrete while the other has connected support. In case both measures have
disconnected support, then uniqueness can still be guaranteed if potentials on restricted OT sub-problems are unique and if there
exists, in the language of Staudt et al., a non-degenerate OT plan, meaning that all connected components of both measures are linked
via that OT plan. The existence of such OT plans can be guaranteed under mild conditions on the underlying measures (see (14))
and intuitively demands that the OT problem cannot be divided into distinct sub-problems.

The following statement is a direct consequence of Staudt et al. [62], which we have included for ease of reference.

Proposition 23. Let ¢ : R x R? — R be a differentiable cost function. Consider probability measures u,v € P(R?) with compact support
and suppose supp(#) = U;e; &; and supp(v) = U;c; V; for finitely many disjoint sets. Assume each set X; is either (i) the closure of a
connected open set, (ii) the closure of a connected open set in a smooth compact submanifold of R, or (iii) a single point. Further, if
min(|11,|J|) > 2, suppose for all non-empty, proper I' C I and J' C J that

D uX)#E YY), a4)

iel’ jeJ’!
Then, Kantorovich potentials for u,v and ¢ are unique (up to a constant shift).

The proposition follows by verifying the conditions of Theorem 1 in Staudt et al. [62]. Indeed, continuity of Kantorovich
potentials on supp(v) follows due to the compactness assumption and continuity of the cost function, uniqueness of Kantorovich
potentials on sub-problems follows from the assumptions on the cost and the sets X; [62, Corollary 2], and existence of
non-degenerate plans follows via [62, Lemma 6] due to (14).

4. Applications

In this section we employ our theory from Section 2 to obtain novel insights about various OT-related concepts and applications.
All proofs for this section are deferred to Appendix C.

4.1. Optimal transport-based one-sample goodness-of-fit-testing

Hallin et al. [19] proposed to use the Wasserstein distance between a sample measure and a reference measure for goodness-of-
fit testing under group actions. In the following, we briefly recall the setting for compactly supported measures. Let v, € P(R?) be
compactly supported, define Y as the convex hull of supp(vy), and let Gg = {gy : 9 € O} be a group of measurable transformations
g9 : R? — R that is parametrized by 8 € ©® C R for k € N. Further, assume that the map x ~ gy(x) is continuous for every § € @
and that the mappings 9 — gy and gy — (gy)sV, are bijective (this implies the identifiability of the model parameter). Hallin et al.
[19] consider the subsequent testing problem:

Let Gg be a group and define M = {gy,v; : gy € Gg}. Given an i.i.d. sample { X, i};'zl from some unknown u € P(X)
with X c RY compact, the aim is to test

Hg I uEM against Hf TuEM. (15)

Note that the parameter 9* under H,,, such that (gy-)sv, = y, is unknown. To construct a test for the above hypothesis, which is for
instance of particular interest in the analysis of location-scale families, the authors propose to rely on the (2-)Wasserstein distance,
i.e., Hallin et al. [19] propose a test based on an empirical version of

or (w0 ') = it [ et gt

For this purpose, the unknown measure  is replaced by s, and the cost function c¢(x,y) = llg5! (x) — ylI* by ¢,(x,) = llg; ' x) = ¥II%,
where 9, € © denotes a suitable estimator for 9*. Thus, the proposed test statistic is given as "

sto=") = ot [ [t -] st ae)
n vo) n

n€Il(py,

oT </4,,,v0,|

which amounts to solving an OT problem with an estimated cost function. Hence, we can apply our theory to derive the limiting
distribution of

Vi (o1 (oo fezio =) ~or (s s )

13
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under the null hypothesis H(;‘ in (15) (see Remark 27 for a discussion). In addition, we are able to extend this to testing whether Hg
holds approximately, which is often preferable in practice (see, e.g., [34,63,64]). For this purpose, we fix an estimation procedure
for 9%, i.e., we choose a specific estimator 9, (taking values in ©) for estimating 9* and denote its population quantity by 9° € ©
(under H;; we assume 9* = 9°). Then, we consider the subsequent testing problem:

Let Gg be a group. Given an iid. sample {X;}!_, from some unknown p € P(X) with X C R? compact, the aim is to
test for some prespecified A > 0 the hypothesis

Hy : Wal(gg)utt vo) < 4 against My 2 Wa((85 )i, vo) > A (18)

In order to construct a test for the above problem, we have to derive the distributional limits of (17) under the assumption that
u & M. To this end, we employ the theory from Sections 2 and 3. The first step for the derivation of distributional limits of (17) is
to establish Holder regularity (cf. footnote (iii)) for costs induced by Cg : @ - C(X X Y),9 - ((x,y) ~ || g;l(x) —y|I?) near 9°.

Lemma 24. Let X, C RY be compact and denote by C(X,R?) the space of continuous functions from X to R?. Assume that
Ko : © CRF - CA,RY, 9 (x — ggl(x)) is continuous near 9°. Then, there is an open (w.r.t. relative topology) neighborhood
U C O of 9° and some A > 0 such that for any x € X and 9 € U the cost function Cg(9)(x, ) := ||g§1(x) —-||? is (2, A)-Hélder on .

Next, we verify that Hadamard differentiability of Ky at 9° implies Hadamard differentiability of the cost parametrizing map
Co 10— CXXDP), 9 ((x,y) + llgy'(x) - ylI*) at 9°. To this end, we additionally impose the following assumption.

(G) For & there exists myg, > 0 such that for all 9’ € © in some neighborhood of 9°,

g5 0 - &5 0
sup ——— <
xeR! 14 ”g,;o'(x)”

<mgo |9 9.

This condition is fulfilled, e.g., for location-scale families and affine transformations. A global version of the above assumption,
i.e., where the condition is to be fulfilled for any 9 and not only §°, has been used by Hallin et al. [19] to ensure the consistency of
their goodness-of-fit test described above.

Lemma 25. Assume that the function K¢ : © - C(X,R?), 9~ (x — g;l(x)) is Hadamard differentiable at 9° tangentially to 6, i.e., for
any sequence (9° +1,h,,),en C O such thatt, \,0 and h, —» h € RF as n — oo,

Ko(®° +1,h,) — Kg(8°
@( n n) @( )_DH K@(}’l)‘

80
1, I

lim

n—oo

=0,
o

where Dga Kg(h): X — R? is a continuous function. Then, if Assumption (G) is satisfied, C, is Hadamard differentiable at §° tangentially

to © with derivative Dga Co(h) € C(X x Y) given by

DL Com): XxY =R, (x,3) = 2 DI Ko(i(x), 5 (x) - ).
Moreover, if \/Z(é),, — 8°) w G* for n — oo, we obtain for ¢, := Co(9,) and ¢ := Cg(9) that
—c)w G = H 9 -1 _ .
Vi, =) 6 1= (A DY Ko@0. g5l =) i C@x D). (19)

Under the conditions in the proposition above, our main result from Theorem 2 yields a (typically) non-degenerate limiting
distributions for the statistic OT (s, v, c,) under the assumption that 4 ¢ M. In particular, this allows us to construct an asymptotic
level a test for the null hypotheses given in (18) (see [34] for the precise construction).

Proposition 26. Let v, € P(RY) for d < 3 be compactly supported and define Y as the convex hull of supp(vy), and let X C R? be compact.
Assume that (G) holds, and suppose that Kg : @ — C(X,RY), 8 = (x gl;l(x)) is continuous near 8° and Hadamard differentiable at 9°.
Define for A > 0 from Lemma 25 the function class

P {7y =R | Iflle A+ 117G = 70D <24y = | forall y.y € ¥},

Then, the function class F€o®®) on X is universal Donsker. Moreover, for i.i.d. random variables {X i}lf'=1 ~ u®" consider a measurable
estimator 9, and suppose for n — oo joint weak convergence,

Hn — H GH . © 9°
AE)(5) meonen
Then, for c, := Cg(9,) and ¢ := Cyx(9) and by denoting the limit from (19) as G, it follows that

\/; (OT (pyvpscy) = OT (,vg,¢)) » inf  z(GHY+ sup  GH(f),
ne€Il (uvp) FES(uvp)

where S.(u, V) represents the set of optimizers for sup rep u(f€) + vo(f ).
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Remark 27. A few comments on the distributional limits are in order.

(i) Given that the function class 7o) is universal Donsker and thus u-Donsker, and assuming that \/2(19,, — 9°) converges in
distribution, the requirement of joint convergence as required in (20) is very mild. Indeed, if \/2(19,, — 9°) can be expressed
asymptotically in terms of a suitable linear functional of an empirical process, i.e., if it admits an asymptotic influence function
w € L?(u) (cf. van der Vaart [65, p. 58]), joint convergence follows since the union 7¢¢ U {y} is u-Donsker.

(ii) We like to point out that Proposition 26 also remains valid if 4 € M. However, under this assumption it follows that
(g‘ga1 )apt = vy which implies that the corresponding OT plan between x and v is given by z = (Id, g;v'(-))#ﬂ. Hence, by (19)
the process G¢ vanishes along the support of z and the first term in the limit degenerates. Further, if the support of v is
connected then Kantorovich potentials are unique up to a constant shift [62, Corollary 2] and v-a.s. constant [44, Corollary
4.6(i)]. Consequently, for this setting the corresponding limit distribution is degenerate. In contrast, if v, has disconnected
support, non-constant Kantorovich potentials exist [62, Lemma 11] which results in a non-degenerate limit distribution.

(iii) The elements presented for the one-sample case can also be generalized to the case where both empirical measures undergo
a transformation, either separately or jointly. One might think of choosing the Mahalanobis distance (x — )" Z~!(x — y) as
a cost function where X! has to be estimated and could, e.g., be a diagonal matrix. As the OT value is not invariant with
respect to affine transformations, rescaling the variables would ensure that no component has an overwhelming impact on
the cost function compared to the other components.

Let us now exhibit the use of Proposition 26 with the following example.

zero and covariance equal to the identity matrix, consider the location scale family M = {gguv,: 9 € O := RY x SPD(d)} where
g29(x) = Z'/2x + m for 9 = (m, X) € O. In consequence, the measure 894 has mean m and covariance X. Given i.i.d. sample {X; Y
from some unknown u € P(X) for X C RY compact, we pose the question of how close u is to the family M or alternatively how
close (g;,,l )ui is to v, where 9° = (m,, X;) with m, and X, denoting the mean and covariance of u, respectively. To this end, we
employ the empirical estimators for the mean and covariance m, := % Yo, X, and X, := % Y, X, X[, define 9, := (m,, Z,), and
consider the test statistic \/n (OT (4,, vp. ¢, ) — 4) where ¢,(x,») = || g';n‘ (x) — y||> and 4 > 0 is some positive threshold (recall testing
problem (18)). To apply Proposition 26 two types of conditions are required. The first concerns the regularity and differentiability
of the parametrized cost functions, and the second addresses joint weak convergence (20). For the latter we note that the function
class FCe@) y {x = x; | i € {1,...,d}} U {x = x; -x; | i,j € {1,...,d}} is Donsker, being a finite union of Donsker classes, which
ensures the validity of (20) according to Remark 27(i). For the first type of conditions, we note that condition (G) is fulfilled, hence
it suffices to confirm continuity and Hadamard differentiability of

Example 28 (Location-scale family). For a compactly supported probability measure v, € P(R?), d < 3, that has mean equal to

Kg:0 - CX,RY, 9=(m X))+~ (x - g;'(x) = Z_l/z(x - m))
at 9° = (my, X,)). Based on Fréchet differentiability of the inverse matrix root (see Lemma 29 below) and with compactness of X it
follows that this condition is met, with derivative given by

1 _1 _1
DGUK@ ‘R % Sd) » CX,RY), h=H"HY) ~ <x =X PHY S N (x—my) - X 2h’”> ,

where H* € R¥*? denotes the unique solution to the (continuous-time) Lyapunov equation Zé/ X+ X 2(;/ 2 = HZ. Proposition 26
now details the asymptotic distribution of the optimal transport based test statistic. In particular, under uniqueness of OT plan
and potentials, it will be centered normal with a variance that could be estimated via plug-in estimators for 7 € I1*(u,v) and
G¢ as well as G* and f € S.(u,vy). A potential difficulty to take into account is the dependency of G° and G*, which however
could be sidestepped by splitting samples (one for estimation of mean and covariance, one for estimation of ). Alternatively, since
Proposition 10 is applicable here and thanks to the explicit choice of the cost estimators, the quantiles for the test statistic could be
estimated via a bootstrap k-out-of-n resampling scheme with k = o(n) even without imposing uniqueness of OT plans and potentials.

Lemma 29. The inverse matrix root J% : SPD(d) — SPD(d), ¥ — X~!/2 defined on the set of symmetric positive definite matrices is
Fréchet differentiable and thus also Hadamard directionally differentiable. The corresponding Fréchet derivative at an element X, € SPD(d)
is given by

Dys, IR : SW) - S@), Hw -5'PA5", @1

where H € R% represents the unique solution to the (continuous-time) Lyapunov equation 2(;/ X+ X Zé/ = H.
4.2. Optimal transport with embedded invariances

In a similar spirit as to the previous section, another strand of the literature [20,66] aims at making OT invariant to a class of
transformation 7, with 7 : RY — R continuously differentiable for each z € 7, by considering

inf OT -—z()|I?) = inf  inf - 2d . 22
inf (v, I - =TOI?) Tlrelne#m,v)/xxy”x )2z (x, y) (22)
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This distance is useful in many contexts, among which the word embedding problem or protein alignment. If the class of
transformations considered is the set of rotations, analyses relying on that distance is coined Wasserstein—Procrustes Analysis [20,67].
Theorem 6 provides the required tools for statistical inference for the empirical version of the optimization problem in (22). We
stress that the following proposition is the first result of its kind for empirical optimal transport under embedded invariances.

Corollary 30. Consider a set of transformations (T, d) that is a compact metric space with log N'(e, T, dy) S €@ fora < 2. Let X,y C R?
be compact subsets and assume that the functional ¢ : (T,dy) - C(X X ¥),7 = c,, with ¢,(x,y) = ||x — 7(»)||?, is L-Lipschitz for some
L > 0. Further, assume for X and {c,},c; any of the settings from Proposition 21 and take u € P(X),v € P(Y) such that the support of
u or v is the closure of a connected open set in R?. Then, for {X ,-}l'.’:] ~ u®" and {)’i};": L~ VO™ respectively, with n,m — oo such that
m/(n+m) — 4 € (0,1), it holds that

nm (inf OT (1. vy ) = inf OT (v, cr)) w inf )\/E GHE) + V1 = 2 GV (),

n+m\zeT T€S_(T,u,v

where f, € S, (1, v) denotes a Kantorovich potential between u, v and cost c, for t € S_(T , u,v).

The above result details that for settings of dimension d < 3 the OT value under embedded invariances can be well-approximated
by replacing population measures by empirical counterparts. Insofar, our results mathematically justifies randomized computational
schemes for (22) while providing statistical guarantees. Moreover, we like to point out that the assumption on the class of
transformations 7 captures many compact finite dimensional classes (e.g., orthogonal or bounded linear transformations) but also
permits non-parametric ones (e.g., via sufficiently regular autoencoders) as long as their metric entropy does not grow to large.
As previously noted, one can relax the requirement that 7 is compact to the assumption that the sequence of estimated optimal
transformation 7z, is contained within a compact set with probability tending to one (Proposition 8). In the setting of 7 consisting
of diffeomorphisms we have by Lemma 1 of [8]

inf OT (u,v, Il - =2 OI?) = inf OT (u,zyv. || - =+ I?) = inf W (. 4v),

for which convergence of empirical minimizers 7, can be verified for various settings using results by Bernton et al. [68].

Remark 31 (Wasserstein—Procrustes). The above proposition can be applied under mild regularity assumptions on the measures to
the special orthogonal group 7 := SO(d) for d < 3. Indeed, upon choosing X,) as compact, convex sets of RY setting (iii) of
Proposition 21 is fulfilled, asserting (Don). Moreover, if the support of u or v is the closure of a connected open set in R?, then (KP)
holds and the distributional limits of Theorem 6 follow.

4.3. Sketched Wasserstein distance for mixture distributions

Recently, Bing et al. [69] and Delon and Desolneux [70] investigated a distance between (Gaussian) mixture distributions. These
distributions are ubiquitous in statistics and machine learning, see McLachlan et al. [71] and the references therein. One way
of understanding that distance is to start from the Wasserstein distance between discrete measures but instead of using a cost
function between points, one replaces the points by distributions and one must thus choose a cost between distributions. Before
formally defining that concept, recall that, for a set of distributions A := (A}, ..., Ag) of finite cardinality K, a mixture r is a convex
combination of components from A given by a vector a € Ak, ie., r = Z,’i | @;A;, where A is the probability simplex in RX. Given
a distance d : A X A - R, between mixture components of A, the aforementioned authors define the sketched Wasserstein distance
between two mixture distributions with weights a and g as

K
W(a,p,d) := inf d(Ay, Ap),
@p.d):= inf Y med(ApAp)
k=1
where the infimum is taken over elements of the set of couplings

S ms =, forallke(l,... K} }

H(a,p)=< 7€
@) { K ek 2, =8, forallze(l, ... K)

Understanding the fluctuations of a plug-in estimator for this distance can be achieved using our proof technique for Theorem 2
and is formalized in the following proposition.

Proposition 32. Let (a,,p,, d,) € Agx X Ax X sz be measurable estimators for a, f, d, respectively. Further, for a positive sequence
(a,)en With lim,_,  a, = oo, assume for n — oo that

a, —a (@, — ak)/If:l G* 2
a,| B, —B|=a, Bug — BOK, o -
d
d,—d @A A —dAc AN ) \C

where (G%, G, G?) represents a tight (possibly non-Gaussian) random variable on R2K+K?, Then,

ay(W@bod) =W pd)) » _inf (nG)+ sup (f9,6%)+(f9,6).
7€My (a.p) fE€Sy(a.p)
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The proof follows along the same approach as for showing Theorem 2 and is therefore omitted, see Remark 4 (iii). In this context,
the requirement of weak convergence for the measure estimators (a,, f,) - (a, f) in probability follows from our assumption in (23)
since the population measures and its estimators are supported on finitely many points.

For comparison, Bing et al. [69, Proposition 1] obtain a distributional limit in the case where the asymptotic fluctuation of
the cost is negligible compared to that of the estimated measures. Their result is captured by Proposition 32, which in addition
covers the setting where the cost is estimated on the same data and converges at the same rate. Insofar, our analysis more explicitly
characterizes how the additional uncertainty caused by the cost estimation affects the asymptotic fluctuation of the estimated OT
value.

Finally, we stress that Proposition 32 enables potentially statistical inference in the context of parameter estimation for finite
mixture models, most notably Gaussian mixtures. Mathematically, the mixing measure is described by u = Z,il a8y, with Z,’;l a =1
and @, >0 and 6,,...,0, € R for all k € {1,...,K} and the mixture distribution, which describes the distribution of the data, has
a density on RY given by f(x | u) := Zszl a, f(x,0,) where f(x,0) denotes a suitable family of probability densities. Within the last
decade, the convergence rates of various parameter estimators i, for 4 with respect to the Wasserstein distance have been analyzed,
including maximum likelihood estimators [72-75], moment-based estimators [76,77] and Bayesian estimators [78,79]. As part of
Proposition 32, to obtain a distributional limit for W (j,, u) where f, is a finitely supported measure estimator it is necessary to
derive distributional limits for the mass assigned to each point of i, as well as the respective locations. So far, such an analysis is
still open and would be an interest venue for future research.

4.4. Sliced optimal transport

Our theory from Section 2.3 also enables the analysis of sliced OT quantities and complement or extend available results from
the literature [50,80-82]. In the following, we formalize this statement. For two Borel probability measures u,v € P(RY) the
average-sliced and max-sliced Wasserstein distances of order 1 < p < oo are defined, respectively, as

» — 1
W (uv) i= < / OT (pu, pyv, | ~—~|")do(9)>” and W,(u,v) i= max (OT(pgu.p4v.|-—-1")7,
sd-1 0esd-1

where p? : RY — R is the projection map x +— 67x and o represents the uniform distribution on the unit sphere S¢~!. Note by
Lemma 1 in Nies et al. [8] for any 6 € S?~! that

OT (o p, piv. | - = 1P) = OT (u, v, [p°() — p? ()",

which enables to view the sliced Wasserstein quantities in the framework of Section 2.3 and asserts by Theorems 5-7 the following
result.

Corollary 33. Let p > 1, d > 2, and define for 6 € S%! the cost ¢, : RY xRY = R, (x,y) ~ [p?() —p?()|". Further, take

compactly supported probability measures u,v € P(R?) with empirical measures u,, v,,, respectively. For all assertions, we let n,m — co with
m/(n+m) - A€ (0,1).

(i) Assume that the set of Kantorovich potentials S, (u,v) is unique (up to a constant shift) for any 6 € S-1. Then, it follows upon
selecting f, € S, (u,v) for any 6 € S4-1 that

nm
n+m

(0T Gy veco) = OTGuvep)) = (VG + V=38 (1)) in C(s'™")

fesd-1
(ii) Assume the same as in (i). Then, it follows that

_hm_ (EZ(M"’ Vi) —Ei(ﬂ,v)) w /Sd,l \/Z(Gl‘(fge“e) +V1- A(G,v(fge)dé’

n+m

(iii) Without imposing the assumption on uniqueness of Kantorovich potentials, it follows that

nm
n+m

(W va) = W) > sup VAGHA) + VI= 26 ().
0es, (41 vy
S9€Sey (1)

Comparing Corollary 33 to the literature for p > 1, results in Goldfeld et al. [80] and Xi and Niles-Weed [50] are recovered under
slightly weaker assumptions. For the analysis of both types of empirical sliced Wasserstein distances Goldfeld et al. [80] require the
underlying measures to have compact, convex support. Moreover, for the uniform central limit theorem by Xi and Niles-Weed [50]
of the sliced OT process, they assume for each u € S?~! that one of the projected measures has compact, connected support. These
conditions are sufficient for the uniqueness of Kantorovich potentials, but it can also be guaranteed for measures with disconnected
support (cf. Proposition 23 and more generally Staudt et al. [62]). Corollary 33(ii) also complements results by Manole et al. [81] on
the trimmed sliced Wasserstein distance as we do not require the existence of a density but the underlying measures to be compactly
supported.

For the special case p = 1, unlike in our results, distributional limits by Goldfeld et al. [80],Xu and Huang [82] for the average-
and max-sliced Wasserstein distance do not require uniqueness of the Kantorovich potentials. Further, their theory remains valid for
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non-compactly supported measures by imposing suitable moment-conditions. Crucial to their approach is the special characterization
of the 1-Wasserstein distance as an integral probability metric over Lipschitz functions [3, Remark 6.5], a property which we do
not exploit in our general theory. Still, under uniqueness of Kantorovich potentials, which occurs, e.g., if one measure is discrete
while the other has connected support and is absolutely continuous [62, Example 3], Corollary 33(i) asserts weak convergence for
the sliced OT process in C(S*~1).

As potential extensions we like to mention that our theory can also naturally be adapted to more general projection operations,
as exemplified in the context of generalized sliced OT [83], or when considering more non-Euclidean data but which involve a
projection onto a one-dimensional domain, e.g., for sliced OT on the sphere [84], on hyperbolic spaces [85], or on the space of
symmetric positive definite matrices [86]. In all these cases our results provide statistical guarantees for randomized computation
schemes of sliced OT quantities.

4.5. Stability analysis of optimal transport

In addition to statistical applications, our theory for the empirical OT value under weakly converging costs enables a deterministic
stability analysis of the OT problem (1) under joint perturbations of the costs and the measures, which may be of independent
interest, e.g., from the viewpoint of optimization. More precisely, we prove in the following Gateaux differentiability of the OT
value in (u,v,c) € P(X) x P(Y) x C(X x Y) for all admissible directions. This extends previous a sensitivity result for the OT value
which was limited to the setting of finitely supported measures, and as based on the theory of finite-dimensional linear programs [87,
Theorem 3.1]. In particular, relevant to ongoing progress on the domain of identifying and learning appropriate cost functions in a
data-driven manner [27,28], the following result provides an additional insight on the robustness of the OT value.

Proposition 34. Let y € P(X), ve P(Y) and ¢ € C(X x D) be fixed. Define for t > 0 sufficiently small the quantities u, = p + tA* and
v, = v+ 14", where A* € (P(X) — pu) and A € (P(Y) — v), respectively. Further, let ¢, = ¢ + tA° for some A° € C(X x X). Then, it follows
that

lim S (OT(y,vic) = OT(uv,0)) = inf  7(4)+ sup  AM(F)+ A(f).
N0 t rEIF (u,v) feS.(uv)

Remark 35 (On Hadamard directional differentiability). Since the set of admissible directions (P(X)— u) X (P(Y)—v)xC(XxY) is not a
normed vector space, we are in general unable to infer Hadamard directional differentiability by additionally proving Lipschitzianity
of the OT problem with respect to the measures y, v and the cost function c.

Invoking the same proof strategy as in Proposition 34 would require us to show for any 7, \, 0 and any sequence of measures and
cost (p,, Vs ¢,) = (H+1,40, v+ 1, 4", c+1,4°) € P(X)X P(Y) X C(X x V) with (Aff,A;, A%) — (4F, 4V, A°) in £°(F) X € (F)x C(X X DY)
that

sup [44(fren — 1<)+ A3(fP = £)] = 0. 24)
feF

Showing this remains a challenge and would enable us to omit conditions (Sup) and (Sup)* in the formulations of Theorem 2 and
Proposition 10, respectively. Another challenge in such an attempt is that any such sequence (y,,v,) does not necessarily converge
weakly for n — o to (u,v), which is relevant for our proof, since the topology induced by £ (F) x £*°(F¢) may be too weak.

Though it is likely possible to show Hadamard directional differentiability of the OT problem jointly in the measures and the cost
by selecting a sufficiently strong norm that metrizes weak convergence of measures, the functional delta method would inevitably
require the empirical process to weakly converge in this norm and impose additional conditions. A similar trade-off for the choice
of the norm is natural and known in the literature (cf. Dudley [88, p.76] and Jourdain and Tse [89]).

5. Regularity elevation functionals

In this section, we construct regularity elevation maps, i.e., continuous maps ¥ : C(X x ) — C(X x ) such that for measurable
estimators ¢, with \/Z(c,, —¢) w G for n — oo, it follows that

0 \/ﬁ (c,, - ’P(c,,)) —P> 0 and (ii) Y(c,) fulfills certain regularity properties. (25)

Based on Lipschitzianity of the OT value with respect to the cost function (Lemma 43), condition (i) allows us to substitute a cost
estimator with one that enjoys certain regularity properties, effectively “elevating” its level of regularity. Such maps prove useful
in our work at two particular instances. For one, it enables us to assume in the proof of Theorem 2 that cost estimators are suitably
bounded and exhibit the same modulus of continuity as the population cost function (cf. Corollary 39). This represents an important
step to rely on Lemma 1. Moreover, the notion of regularity elevations also represents a useful tool to prove Corollary 20, for which
we employ Proposition 18 and set ¢, := ¥(c,) for a suitable regularity elevation map. Insofar, these maps serve as an effective tool
for the theoretical analysis of distributional limits.

The subsequent result provides a first set of conditions to ensure condition (i) of (25). Its proof as well as the proof of all
subsequent results of this section are detailed in Appendix D.
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Proposition 36. Let X, Y be compact Polish spaces and let ¢, € C(XxY) be a (Borel measurable) random sequence such that a,(c,—c) ~ L
in C(X xY) for some c € C(X¥ x Y) and (a,),cy such that a, — oo for n - 0. Let U C C(X x Y) be a linear subspace such that L is a.s.
contained in U. Then, if ¥ : C(X x Y) —» C(X x Y) is continuous near ¢, Hadamard directionally differentiable at f with a derivative such
that D), =1dy and ¥(c) = c, it follows for n — co that

P
a,(c, =¥(c,))—>0 forn— co.

Notably, in case ¥ is Hadamard differentiable with D;’ ¥ = Idcvxy), one may select U = C(X x Y) and the condition on the
limit £ becomes vacuous.

To conclude various types of useful regularity properties, as required in (ii) of (25), we thus define in the following subsections
various maps such that the conditions of Proposition 36 are met. Additionally, we provide suitable metric entropy bounds for
FY@O¥@ independent of ¢ € C(X X Y).

5.1. Regularity elevation to deterministic boundedness

Consider compact Polish spaces X, and let ¢ € C(X x Y) be a continuous cost function such that |c|]|,, < 1. We define the
regularity elevation functional for boundedness as

Prgg: CAXY) = CXXY), & ((x, ¥) > max(min@(x, ), 2), —2)).

Proposition 37. For the above setting, ¥ = Wpqq fulfills ¥(c) = ¢, is continuous, and it is Hadamard differentiable at ¢ with
DHy = Idcxxy)- In particular, if X is a finite space, we obtain for any uniformly bounded function class G on Y that

le
sup log N'(e,6" 9, |Ill) $ [log(e)]-
ceC(XxY)
Hence, for our analysis of the empirical OT value under estimated cost functions we can assume without loss of generality that
cost estimators are deterministically bounded by a constant that depends on the population cost. In the following we prove a similar
insight for the modulus of continuity for cost estimators on compact (pseudo-)metric spaces.

5.2. Regularity elevation to concave modulus of continuity and lipschitzianity

Consider compact Polish spaces X, and let dy be a continuous (pseudo-) metric on X. Denote by X the space X equipped
with the topology induced by d, which is also compact (Lemma 57) but potentially does not satisfy the Hausdorff property. Let
¢ € C(XxY) be a cost function such that ||c||, < | and consider a concave modulus w: R, — R, with w(8) > 0 for § > 0 such that

le(x,y) — c(x', »)| < w(dy(x,x")) for any x,x' € X,y € Y. (26)
If ¢(-, y) is 1-Lipschitz under dy, then select w(r) := ¢ and if c(-, y) is (v, 1)-Holder for y € (0, 1] (recall footnote (iii)), choose w(f) := ¢".
The regularity elevation functional for wod) is then given by

Pl (XX V) > CERXY). & <(x, ) infx e’ y) + 2w(dy(x, x’))>
x'e

mod

Proposition 38. For the above setting, ¥ = W::;ZX oWpqaq fulfills ¥(c) = ¢, it is continuous near ¢, and it is Hadamard directionally
differentiable at ¢ with D‘Fc’ ¥|cwxy) = ldcexy). Further, for any uniformly bounded function class G on Y it holds that

sup  log N'(€,67 O, |l o) S N (e/8, X, wody)| log(e)|.
FEC(XXY)

An appealing consequence of the above considerations is that they allow us to construct a regularity elevated estimator ¢, ,, from
Com Such that H, —C Féunam, for F = F(2|ic||, + 1,2w) defined in (9), holds deterministically.

Corollary 39. Letc € C(X X)), set B := ||c|l, +1/2 and let w: R, — R, be a concave modulus with w(6) > 0 for § > 0 such that
(26) holds for a metric dy on X. Assume for a random sequence ¢, € C(X X Y) that a,(c, — c) ~ G° in C(X x V) with a, — oo. Then, the
random sequence

= ._ p.gWwedx/B
¢, =B-¥_

o¥pqad(c,/B) € C(X X DY)

P
satisfies a, ||c, —¢,||l, — 0 for n — oo and deterministically fulfills ||c,||,, < 2B = 2licllo, + 1, relation (26), and the inclusion
Hy CFatn(2lcllg + 1. 20).

5.3. Regularity elevation to Hélder functions of order y € (1,2]
Since we are able to leverage for convergence rates of the empirical OT value (recall Proposition 13(i)) the regularity of the
underlying cost function up to Holder degree y < 2, we provide in this subsection a corresponding regularity elevation map. As the

setting for y < 1 can be treated using the theory from previous subsection, we only focus on the regime of y € (1,2].
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Consider a convex, compact set X C RY with non-empty interior. Let ¢ € C(X x V) be a cost function such that ||c||,, < I and
assume c is continuously differentiable in x, i.e., suppose that V.c : int(X)x Y — R? can be continuously extended to X x Y. Further,
suppose that c(-, y) is (y, 1)-Holder for each y € Y for y € (1,2]. We define the regularity elevation map for Holder functions of order
y € (1,2] by

‘P:I‘gl TCXXY) > CXXY),ém ((x, y) int{‘v e, y) + (Ve y),x = x') + 2v/d [|x - x’||y>
x'e

Notably, it is crucial that the scalar product term involves the partial derivative of the respective (population) cost function c.
Moreover, we like to point out that the image under Y’I;’gl does not necessarily lead to (y, 1)-Holder functions but nonetheless ensures
suitable metric entropy bounds.

Proposition 40. For the above setting with X C R? convex and compact, ¥ = Tg’;loﬁl’bdd fulfills ¥(c) = ¢, it is continuous near ¢, and it

is Hadamard differentiable at ¢ with DI‘Z ¥ = Idc(yxy)- Further, for any uniformly bounded function class G on Y we obtain that

sup  log N(e, 6¥ O, |- ll0) S €77,
ZeC(XXY)

5.4. Combination of regularity elevations

Finally, we also outline a constructive way to combine regularity elevation maps defined on different spaces. This is important
since it enables to leverage regularity properties of the population cost function for different regions of the domain.

Hence, let X, Y be compact Polish spaces and assume existence of a collection of homeomorphisms ¢;: U; - {;U;) for 1 <i<T
such that X = UL] £;(U;). Further, assume there exists a partition on unity {z; }il=l on X with supp(n;) C ¢;(V;). Consider a continuous
cost function ¢ : ¥xY —» Rand let¢; : U; xY - R, (u,y) = ¢({;(u), y). Assume there exist maps ¥, : C(U; x ¥) — C(U; x V) such that
¥,(c;) = ¢; and where ¥, is continuous near ¢; and Hadamard differentiable at ¢; with derivative DI‘:[,- ¥; = Id. Using these maps we
define the combination of regularity elevations as

I
Yoo : CXX V) = CXXY), & <<x, = Y (E660.0)E @, y>> :
i=1

Indeed, by continuity of the partition of one #; as well as the functionals ¥; and ¢, (i‘l for each i € {1,...,1} it follows that the
range of this functional is indeed contained in C(X x Y).

Proposition 41. For the above setting, ¥ = ¥, fulfills ¥(c) = ¢, it is continuous near ¢, and it is Hadamard differentiable at ¢ with
Dy = Idcxxy)- Further, for any uniformly bounded function class G on Y we obtain

le

1
sup log N'(e. 6", |-l < ) sup log N(e, G" GO 1),
FEC(XXY) =1 cec(xxy)

6. Proofs of main results

In this section, we provide the full proofs of Lemma 1 for the dual representation of the OT value, Theorem 2 and Proposition 10
for the distributional limit of the empirical OT value under weakly converging costs, as well as Theorems 5-7 and Proposition 8 for
empirical OT with extremal-type costs. Proofs for all auxiliary results of this section are deferred to Appendix E.

6.1. Proof of Lemma 1: Dual representation of optimal transport value

The subsequent auxiliary lemma establishes an important property of cost-transformations which is essential throughout this
section.

Lemma 42 (Lipschitz Property of Cost-Transformation). For arbitrary functions f, f : X — R and cost functions c,é: XxY — R, it follows
that || £¢ = f¢|| < |If = flle+lc = €l In particular, upon selecting the constant functions f,é = 0, it follows that || /|l < I|.f lleo+]l¢llco-

Proof of Lemma 1. For any h € H, there exists g: Y — [ l¢|l » llclls] With 2 = g€, and hence
= llelle = sup g(») < A(x) = inf c(x,y) — g(») < llelle — sup g().
yey yey yey

< 2B. Further, for arbitrary x,x’ € X and € > 0, consider y/ € Y such that

In consequence, we find that ||A], < 2|lc|lo

h(x") > c(x',y") — g(3/) — e. Then, it follows that
h(x) — h(x') = [inf c(x,y) — g(Y)] - [inf c(x',y) - g()’)]
yeY yeY
S y) —g() —e(x, YN +e0) +¢
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< w(dy(x,x")) +e.

Since € > 0 can be chosen arbitrarily small, we obtain that |A(x) — A(x")| < w(dy(x,x")). This yields H, C F and thus H C Fe.

Further, by Santambrogio [2, Proposition 1.34] we infer H, = H:¢ C F¢°. To show the remaining inclusions note for f € F that
—llellee = sup f(x) < f€ < llelle — sup f(x).
x€X x€X
Hence, the function g := f¢ + sup, ¢ f(x) fulfills ||g||,, < |lcll, and since || f||,, < 2B, we find that
F00) = (f9) = (&) + sup f(x) € H, +[-2B,2B],
xXEX

which yields 7¢¢ C M, + [-2B,2B] as well as ¢ = 7 C H¢ + [-2B,2B]. To show representation (10), we combine the inclusions
H, € F € C(X) with the alternative dual representations (2) and (8). For the final claim, take a maximizing sequence { f, },cy for
(10) which admits by compactness of F a converging subsequence { f,, };ey with uniform limit f € 7. Then by Lemma 42 it follows
that {f' ,fk Jren and {f ,fk” }ren also uniformly converge to f¢ and f<¢, respectively. We thus obtain that

U+ () = lim u(f,) +v(f, ) =0T (u,v.c)

which shows that f € F is a maximizing element hence the set of optimizers S,(y, v) for (10) is non-empty. []

6.2. Proofs for distributional limits under weakly converging costs

6.2.1. Proof of Theorem 2

For the proof of Theorem 2 the following auxiliary results are crucial. We start with lower and upper bound on the difference
between OT values for varying costs and probability measures which are a consequence of the OT problem having a representation
in terms of an infimum over feasible couplings as well as a supremum over feasible potentials.

Lemma 43 (Lower and upper bounds). Define for B > 0 and a concave modulus of continuity w: R, — R, the collection
CB,w) :={ceCExY) | lello, < B, |2(x,y) — &', y)| < w(dyp(x,x") for all x,x' € X,y € Y} .
Then, for costs c,é € C(B,w) and probability measures u, ji € P(X),v,v € P(Y) it holds that

inf  7@-c)+ sup (Ai—pfC+@T-Vf°
€I} (i,7) fES (V)
< OT(f,v,¢6) — OT (u, v, c)

5min< inf  #z(@—-c)+ sup (A—wfC+@-v)f°,
nell} (f.9) SES(fiV)

inf  z2(@—c)+ sup (A= WS+ T =W+ sup(a—w(fC~ )+ T~ f ”>->
rEITX (1) feS:(iv) fer

In particular, for fixed measures or fixed costs it follows that
0T (. v,8) = OT(u, v, )| < 1€ = ellgys 10T (i, ¥.¢) = OT (v, )| < sup | = wf |+ sup |7 =wf -
feFee feFe

To employ the lower and upper bounds of Lemma 43 for the proof of Theorem 2 we additionally require a number of continuity
and measurability properties which are captured in the following lemma. Notably, we equip P(X)xP(Y) with the bounded Lipschitz
norm, which turns it into a Polish metric space and metrizes weak convergence of measures.

Lemma 44 (Continuity and measurability).Let y € P(X),v € P(Y), and ¢ € C(X x V). Take a concave modulus of continuity
w:R, - R, for c and set C := C2||c|l,, + 1,2w) (for the definition of C(2||c|l, + 1,2w) see Lemma 43). Further, recall the function
class F = F(2||cll + 1,2w) introduced in (9) and define the functions

T, P(X)XPY)XC = R, W'V, oTW vV, ¢,
T, : PX)XPP)XxCXxC(XXY) >R, W'V, h)~ inf  x(h,),
7[6]7;()4’,\/)
T;: P(X) X P(Y) X C X C,(F)* > R, WV, hy,h) = sup k() + k()
fESa (W V)
T,:C,(P)* - R, (R by, ) - sup R, (f) = R, () + b, (f) = B (f).
€

Then, T, and T, are continuous, T, is lower semi-continuous, and T is upper semi-continuous. If H:,(;/ ,V') is unique, T, is continuous at
(u',V', ¢, h,). Moreover, for fixed (u',v',c") the map T, is continuous in h, while Ty is continuous in (h,, h,). In particular, each function
T; for 1 <i <4 is Borel measurable.
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The previous two assertions fully deal with deterministic statements on the OT functional and related terms that arise from
corresponding bounds. The following two results provide the relevant tools to control the stochastic aspects. More precisely, for our
proof of Theorem 2 we consider a Skorokhod representation of the random sequence detailed in (JW) which additionally fulfills the
property that u, and v, weakly converge to x and v, respectively. For this purpose, we state the following measurability assertions
and joint weak convergence statements.

Lemma 45 (Measurability of empirical process). For a Polish space X consider a totally bounded function class G C C(X) under uniform
norm. Then, the following assertions hold.

(D) Any probability measure u € P(X) defines via evaluation a uniformly continuous functional on G, i.e., u € C,(G).
(i) A map w » p(w) € P(X) C C,(G) is Borel measurable if and only if for any g € G the evaluation map w — u(w)(g) is Borel
measurable.
(iii) The empirical process \/Z(y,, — ) and the bootstrap empirical process \/E(sz « — My) are both Borel measurable random variables in
C.(O.

Lemma 46 (Joint Weak Convergence).For the setting of Theorem 2, assume (JW). Then, for n,m — oo, weak convergence in the Polish
space C,(F)? x C(X x ) x P(X) x P(Y) to a tight limit occurs

((Gz‘(f“),wff)) feF,Gﬁ,m,umvm) - ((G"(f“), G'U9), Gk ) : 27)
If (Sup) of Theorem 2 is also valid, then, for n,m — co, it follows in the Polish space C,(F)* x C(X X Y) x P(X) x P(Y) that
<(GZ(f“)’Gﬁ(fc”'mc”"”),G,Vn(fc),G,Vn(fc”"")) ’Gflm’”n’vn’> -~ ((G”(f“), G”(f“),GV(fc),GV(fc)> .G, V> . (28)
feF ’ feF

Each sequence element for (27) and (28) as well as the weak limit are Borel measurable.

Remark 47 (Skorokhod Representation). When dealing with weak convergence of empirical processes in non-separable spaces, special
care is required due to potential measurability issues. However, since the different maps of interest are defined between Polish spaces
and measurable, we circumvent such issues. In particular, since the random variables from Lemma 46 converge weakly to a tight
limit with separable support, the conditions of Billingsley [90, Theorem 6.7] are met and a (measurable) Skorokhod representation
exists.

With these tools at our disposal, we now proceed with the proof of Theorem 2.
Proof of Theorem 2. Invoking Corollary 39, as \/nm/(n + m)(c,,, —c) =: G, ~ G° in the space C(X x }), there exists ¢, ,, such
that the inclusion H; € Fénmnm (recall the function classes from Section 2.1) holds deterministically for 7 = F(2 llell + 1,2w)

P
and \/Z(c,,ym —C,.m) — 0. The latter implies by Lemma 43 that

nm
n+m

_ P
(OT(Mm V> cn,m) = OT (uy, Vi Cn,m)) = 0.

Hence, to prove the assertion it suffices by Slutzky’s lemma to show that

nm
n+m

(OT Gty Vs E) = OT v, ) ) o _inf 2@+ sup  VAGH(S) + VI = 4G (/). (29)
)

€M} (u,v) feSc(uv

Without loss of generality, we may therefore assume ¢, ,, = ¢, . Further, set 4, := m/(n + m). Then, by Lemma 43, the subsequent
lower and upper bounds follow,

inf  x(GS,)+ sup VA, GH(fC)+ /1= 4, GL(f°)
’ )

7€, | (HyVi) fES (v
<\ == OT (Vs €)= OT (1, v, ) ©o
n+m ’
< min< inf  7(G, )+  sup V4, G+ 1= 14, G/
Tl ) " ES )
inf 2GS, )+  sup VA, GHF)+ /12, L)
rE€I X (u,v) ’ SE€Se, py HnsVm)
" ;ug Vi, (GHE(fermenmy —GHE (<)) + /1= 4, (G (frm)— G,V,,(fc)))
€

For each setting (OP) and (Sup) we show that the upper and lower bounds asymptotically converge in distribution to the limit
in (29), which then asserts that the empirical OT value also tends to this limit. To this end, we take for the random variables
of Lemma 46 a Skorokhod representation on a probability space (2, A, P) [90, p. 70] which is well-defined by Remark 47. More
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precisely, under (OP) we take the Skorokhod representation such that

((@Z(f“), GorO) G vm> R <(G“(f“), G() _Gn v) 31)
fer w fer
in C,(F)? x C(X x Y) X P(X) X P(Y), whereas under (Sup) we choose it such that
<(G5<f“), G (romenm), G (fUCUI™) GG i vm) = ((G“(f“x GHreE U6 U) LGk v) (32)
fer = fer

in C,(F)* X C(X x Y) X P(X) X P(Y). We also set Com ‘=C+ @Z,m/w/"m/(" + m) which a.s. converges to c.

For the subsequent argument recall the functions T}, T,, T3, T, from Lemma 44 and their (semi-) continuity properties. Further-
more, note that an application of Lemma 42 in combination with the arguments of the proof of Lemma 45 (i) yields that the maps
F - R,

f e GLU), o GR(fonam), [ G (f), [ G (fomm)

are uniformly continuous, i.e., elements in C,(F). For both settings (OP) and (Sup) it follows by measurability of the maps 7,75, T3
for each n,m € N that

nm d nm U
v/ T (OT (ty> Vs € ) = OT (1, v, 0)) = 4 | P (OT (fiys Vs € ) — OT (u, v, ),

inf 2GE )+ sup VA GESY+T= 4, GL(O S inf m@E, )+ sup v GE) + VT = 4, GO,
: ot : )

w€I | (fsVm) fES(uw) n€lly (V) €S (uv

Under (OP) we also notice that
inf 2GS )+ sup VA GES) VT =4, GL( S it 2@ )+ sup A, GAO) + VT = 4, GO,
”En:(”n’vm) : TES(UpsVim) 7€ c* Fin>Vm) ’ TES: (V)
whereas under (Sup) we additionally employ measurability of 7, to infer for each n € N that

inf  7(GS, )+  sup VA, GH)+ /1=, GL(f)
’ )

€I (V) FES ey HnsVim

+ sup V4, (GH(f) = GH(formenm)) +\/T= 2, (GY(f) =G, (frm))

feF

inf 7@, )+  sup A, GES)+VI- 4, GO

7€M} () TE€Se, 1 GinsTm)
+sup Vi, (GA() = Gl + /1= 2, (G (f) = G} (f%m)) .
€

Hence, it suffices to work with the Skorokhod representation to obtain the weak limit for the empirical OT value. Invoking Lemma 43,
identical lower and upper bounds on the quantity of interest, \/nm/(n + m)(OT (i, V> €, ,,)—OT (u, v, ¢)), as for (30) can be concluded.

To obtain a suitable bound on the limit inferior of /nm/(n+ m)(OT (i, V,,,¢,,,) — OT (u, v, ¢)) take for both (OP) and (Sup) a
measurable set A € A of full measure such that the convergence from (31) and (32) is fulfilled thereon, respectively. Then, for each
w € A it follows by lower semi-continuity of 7, jointly with continuity of 75 under fixed (u, v, ¢) that

liminf inf 2GS, )+ sup VA, GE(S)+ /1= 4, GL(O)

M= e lE (V) 1ES, ()
> inf 2@+ sup VAGH)+ V1= AG(O).
€} (u,v) fES ()

Under (OP), we find for each o € A by continuity of T, at (u,v,c,G, ) as a consequence of (OP) and upper semi-continuity of
T that
limsup  inf )n(@fhm) +  sup VA, GH(f + /1= 4, G (f9)

nm—oco mEIT (fiy.Vy €S, (fiy: V)

< G+ sup VAGHFO) + V1= 2 GO

fESe(uv)

= inf 2@+ sup VAGHS)+VI- GO

€I () fES(1v)

Under (Sup), we note for each @ € A by continuity of T, in h, for fixed (u,v, ), upper semi-continuity of T; and continuity of
T, that

limsup inf #(GS )+  sup A, G+ 1- 4, GL(FO)
nm—oco €I (V) ’ FESe, V)

+ ;ug \/,1_" (G‘;(f“) _ G;{(fcn,mcn,m)) + M (G:n(fc) _ G:"(fc”'“))
e

< inf 2@+ sup VAGH)+ V1= A8V

7€} (u.v) fES(uv)
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+sup VA (GH(Fe) = GH(f)) + V1- 4 (G (%) - G*(f9))

fer
= inf 2@+ sup VAGHTFO) + V-GV
neﬂc* (u,v) fes (u,v)

As the lower bound and the upper bounds for \/nm/(n + m)(OT (i, V,,, €, ,,) — OT (u, v, ¢)) asymptotically match for all w € 4, it
follows under both (OP) and (Sup) that

nmm,/ (OT(M,,, o Cum) = OT(,v,0)) = inf  2(G)+ sup VAGH(ee) + V1 = A GY (o).

TEMF (1) JES (v

As the set A has full measure we obtain that

’Z”m (OT (fiys Vs Epp) — OT (v, ) — inf 2@+ sup  VAGH() + V118V (f),

€I} (4,v) SES(uv)

where the limit has by measurability of T, and T; the same Borel law as the limit in the assertion, which finishes the proof. []

6.2.2. Proof of Proposition 10

Before turning to the proof of the bootstrap consistency, i.e., Proposition 10, we state an important result on the convergence of
the bootstrap empirical measure.

Lemma 48. For a Polish space X let u € P(X). Consider ii.d. random variables {X; Yo~ u®" and define the empirical measure
u, = n7! Z" Sx,- Further, consider k(n) i.i.d. random variables (X3 ”}" ;4,, ®kn) ¢4 srmllarly define the bootstrap empirical measure
/4”: KT T ('”) k(") 6 xb- Then, provided that k(n) — oo as n — oo, it follows under n — oo that ;4 f weakly converges to p, in probability.

The above lemma is a corollary of Theorem 2 in [91] and was added to ease further referencing. We can now prove Proposition 10
on bootstrap consistency under weakly converging costs.

Proof of Proposition 10. By Assumptions (JW) and (JW)*, and by measurability of the empirical and bootstrap empirical

processes (Lemma 45) we infer using Lemma 2.2(c) = (a) in Biicher and Kojadinovic [54] for two bootstrap versions (;45,]2, ;1,1 (1))’

(u ;22 52}1 (2)) based on independent bootstrap samples {X“)} hp {X(2)} k, ~u® and {Y(l)}, " {1/1.(2)}1,=1 ~ V8 for n,k — co, k = o(n)
that
Mo — M GH
\/; Vp—V GV
¢, — ¢ Ge
W=m) | |geno
o _ 10)
v e o0
U c, (1
Cok —Cn =12 G i=1,2

Hy— H Gl GH
\/ﬁ V, =V Gy, Qv
c,—c¢ G¢ Ge
e
\/z V(f) —v GV’(i) GV
to pac GelD)
Cnke ™€ )izin Gn,k i=12 =12

Herein, the triples (G*,G,G¢), (G*#1,G%(D,GW), and (G*?P,G"?,G?) are independent and have identical law. Notably,
invoking Corollary 39 we may assume without loss of generality that the empirical and bootstrap cost function ¢, and c(i) for
i € {1,2} deterministically satisfy the relation F; C F°, ¢ € {c,, c } Moreover by Varadarajan [92] we know that y, » u,v, » v
a.s. for n - oo, and by Lemma 48 we infer for i € {1,2} that "‘(13{ -V, k ~ v in probability for n,k — oo, k = o(n). Hence, Slutzky’s
lemma asserts that

T
(Gh.G}. G Vi) (6", GY, G, u,v)"

- ) ) ) T (33)
(fo)’Gv B e <:) v(') ) . (G,,,U),Gv,(,)’Gc,m’”’V)’_:

nk > nk’ nk’ 1,2

24



S. Hundrieser et al. Stochastic Processes and their Applications 178 (2024) 104462

in (CM(F“) XC(FOXCAXXY)XP(X)X P(_’)?))S. Moreover, using an analogous argument as for the proof of Lemma 46 we conclude
that

((Gﬁ’(f“» G;(f“))feF,G;,un,vn)T <(G“(f“'),Gv(f”))fep,G",u,vy

T - T B4
Gﬂs(i) ce ,GV»(i) ¢ ,GC’(i), (i), (i) GHD)( fee ,GV‘(i) ¢ ,GC‘(i), ,
(( 1O(fee), GO ))feF k) (Gr0ree) 6 0 ))feF v

i=1,2
in the Polish space (CM(P)2 X C(X x Y) X P(X) X P(y))3, and we use under Assumption (OP) a Skorokhod representation for the
process in (34).

Under Assumptions (Sup) and (Sup)*, by measurability of ¢, and ¢, , as maps to C(XxY), Lipschitzianity under c-transformation
(Lemma 42) and Slutzky’s lemma we conclude weak convergence of the random variables

T
<(Gz(f“>,Gf:(ffnfn),G;(f”).G;(ffn)) ,(G,‘,,ﬂ,,,vn>
fer

) 0! ; ) o N\T
<(G;‘;,i‘)(f“), ElU G LUO.CLU) Gl VE‘,Z) »
e,
((Gﬂ(f“»@ﬂ(f“‘),GV(ff»GV(fC)) ,G",u,v>
fEF
T (35)

>

<(G”"(i)(fw), Gu,(i)(fcc), Gv,(i)(fc), Gv,(i)(fc)) 7_,’ (Gc,(i)7 u, V)

fe =12

in the Polish space (CM(F)“XC(Xxy)xP(X)XP(J?))3. For the random variables from (35) we now take a Skorokhod representation.

To denote the random elements from the Skorokhod representation, we equip to the respective random variable with a tilde,
e.g., we write ji, for the representation of y,. Following the same proof technique as Theorem 2 we thus conclude with Lemma 43
and Lemma 44 that

V(0T iy, 9,6,) = OT (v, )
V(0T @ 7 - 0Tevee))
as. inf 2 7% o) (G + SUP res, (u.v) GH(fee)+ GV(f©)
= ((inf,;en:<;4,v) 2(GO0) 4 sup e, o) GO + @v,(i)(fC)>i_1,2>
Consequently, we infer for the original random variables and using that k = o(n) that

V(0T (s v,v6) = OT (v, )
V(0T G ) = OT Gy vic))
inf pe 7y (G) +SUD s, () GH(S) + GH(f)
(iﬂfnen:(y,v) 2(GEO) 4 sup e, ) GHOF) + GMU(fC));:

Since the three components in the limit have identical distributions and are independent, the assertion follows at once from Biicher
and Kojadinovic [54, Lemma 2.2 (a) = (¢)]. [

6.3. Proofs for distributional limits under extremal-type costs

Before we proceed with the proofs for the results from Section 2.3 which rely on an application of the functional delta method,
we provide a simple result on the support of the limiting processes. Its proof is deferred to Appendix E.6.

Lemma 49. For a Polish space X let u € P(X) and take a bounded, measurable function class ¥ on X. Then, the following assertions
hold.

(i) The contingent cone of P(X) at u is given by T, P(X) = Cl{ ”’T_"h > 0,4’ € P(X)} CEX(F).
(i) For any A € T, P(X) and f.f' € F with f — f' =« for some k € R it holds that A(f) = A(f").
(i) If F is u-Donsker, then the tight limit G* of the empirical process \/Z(y,, — p) in £*°(F) is a.s. contained in T,P(X).

6.3.1. Proof of Theorem 5

The result follows by an application of the functional delta method [45]. Without loss of generality, we assume that X = supp(u)
and Y = supp(v). This ensures that Kantorovich potentials are by (KP) unique on the full domains X and Y. Assumption (Don) in
conjunction with independence of the underlying random variables from y and v ensure by van der Vaart and Wellner [38, Example
1.4.6] that the joint process \/nm/n + m(u, — u, v,, — v) weakly converge in £ (UycgF00) X £®(UpegF?). Further, by Lemma 49 the
limit is a.s. contained in T,,P(X) x T, P(Y). It remains to show that the map

(OT(-, -, cp)geo : P(X) X P(Y) C % UgegFO0) X £®(UgeoF?) — C(O),
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(H,v) = (9 = sup u(f0) + V(fc9)>
feF

is Hadamard directionally differentiable at (u, v) tangentially to P(X) X P(Y). In the language of Theorem 52, take F and O as they
are and set

V 1= 0% (UpeoF ) X €% (Ugeo FO), U :=PX)XPQ),  E((u,v), f,0) 1= p(f00) + v(f°).

Then, Assumption (EC) follows from Lemma 42, while (Lip) and (Lin) are simple to verify by definition of V and E. Moreover, by
Assumption List (KP) the condition of point (i) in Lemma 53 holds, since the evaluations of E in f with (4%, 4") € T,P(X)x T, P(Y)
are invariant under constant shifts (Lemma 49), and since Kantorovich potentials are unique on X and Y up to a constant shift. This
establishes (DC), and the proof is complete. []

6.3.2. Proof of Theorem 6
Since O is a compact Polish space, it follows by Fang and Santos [48, Lemma S.4.9] (see also Carcamo et al. [52, Corollary 2.3])
that the infimal mapping,

I1:C(O)—>R, hw inf h(09),
0co
is Hadamard directionally differentiable at OT (u, v, ¢()) € C(0) with derivative given by

H . h i h
DOT(y,v,c(-))I . C(Q) - R’ 4% Gesir(l(g,u,v)A (9)

Hence, applying the functional delta method [45] for the infimal mapping I onto the uniform weak limit for the empirical OT
process from Theorem 5 asserts the claim. []

6.3.3. Proof of Theorem 7
From the dual formulation (10) the supremal OT value over O is given by

sup OT (-, -, ¢p) : P(X) X P(Y) C £ (Upeg FO) X £ (Upeo F) — R,
=2

(u,v) > sup  p(fO0) + v(f).
(f0)EFXO

The results of Appendix A readily apply, with the choices for V, U, and E as in the proof of Theorem 5; the only difference being
that the supremum is taken over 7 x © instead of F. In particular, (EC), (Lip), and (Lin) are valid, whereas (DC) is now trivially
fulfilled. Overall, Theorem 52 asserts that supycg OT(:, -, cy) is Hadamard directionally differentiable tangentially to P(X) x P(Y)
with derivative
D, sup OT (-, cp) : T,PX)XT,P(Y) = R, (4,4 > sup A (f7) + 4 (f,").
[2=C] 0€S4 (O.u.v)
J9€Scy (u:v)

Combined with weak convergence of \/nm/n+ m(u, — p,v,, — v) in £®°(Ugeg F) X £*°(UyeeF ) by (Don) in conjunction with the
independence of the underlying samples [38, Example 1.4.6], and the inclusion of the limit in 7, P(X) x T, P(¥) by Lemma 49, the
functional delta method [45] implies the claim. []

Remark 50. In addition to the proof presented above, it is also possible to show Theorem 7 with similar arguments to those found
in the proof of Fang and Santos [48, Lemma S.4.9] or Carcamo et al. [52, Corollary 2.3]. However, their statements only provide
sufficient conditions for Hadamard directional differentiability for tangentially to the space C(UycgF )X C(UgeoF“?), whereas the
supremal OT value is defined only on the strict subset P(X) x P(}).

6.3.4. Proof of Proposition 8
Define A(u,, v,,, K) = infyeg OT (U, V. ¢p) — inf g OT (p,y, Vs ¢p). Then,
P* (A(py: Vi K) # 0) < P*({ Aty v, K) 0} 0 {0,,,, € K}) +P*(0,,,, & K),

and as the first summand in the above display is null while lim,_, , P*(8,,, € K) = 0, the right-hand side converges to zero. Hence,
invoking Slutzky’s Lemma [38, Example 1.4.7] it follows from Theorem 6 that

nm . .
Ve (s OT om0~ pf 0T vec)
nm nm . .
=V 2 K0 (J 0T v )~ o OT v )

nf )\/IG”(f;""’") +V1I-2GY ().

i
0eS_(K,u,v

w0+
The claim now follows at once after observing that S_(K, u,v) = S_(O, u,v). [
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Appendix A. Uniform Hadamard differentiability of extremal-type functionals

A number of results in this work rely on the notion of Hadamard directional differentiability and the functional delta method.
More precisely, both the result on the weak convergence of the empirical OT process from Section 2.3 and the formulation of
regularity elevation functionals from Section 5 rely on this approach. Although, these two findings are conceptually rather unrelated,
their proof techniques are based on a more general insight which we lay out in this section.

Let (V, ||-|ly) be a normed vector space and consider sets 7 and ©. Additionally, consider a real-valued function E : VXFXx6 — R
which assigns each triple (v, f,6) to a some objective value E(v, f,6). We are interested in sensitivity results for extremal-type
functionals

Y() = (sup E(v,f,6)> and P(v) = (inf E(u,f,9)>
6co Jer

feF 2C)

Herein, © provides the collection of feasible parameters which affect the optimization problem, while 7 represents the collection of
feasible solutions. The space V' denotes another set of parameters that determine the optimization problem and exhibit a vector space
structure. Overall, these optimization problems characterize the general structure of processes indexed over ©® which are pointwise
defined as the supremum or infimum over a collection 7 and depend on some parameter in V with an additive structure.

For our sensitivity analysis under perturbations of v it suffices to focus only on ¥ since

inf E(v, f,0) = —sup —E(v, f,0) for any (v,0) € V x 6.
feF fer

In the following, we first establish sufficient conditions in terms of E for the continuity properties of ¥ and the underlying sets of
optimizers.

Lemma 51 (Continuity). Let (V,||-|l;;) be a normed vector space, consider compact topological spaces F and © whose topologies are
generated by (pseudo-)metrics dr and dg, respectively, and assume that E : V X F X © — R satisfies the following.

(EC) For any v € V the functional E(v,-,-): F X © — R is continuous.
(Lip) There exists some L > 0 such that for any (f,0) € F x O the functional E(-, f,0): V — R is L-Lipschitz with respect to ||-||, .

Then, Range(¥) C C(O) and the functional ¥ : V. — C(O) is L-Lipschitz. Further, for any (v,0) € V x O the set of optimizers
S(,0) :={f € Flsupyper E(v, f'.0) = E(v, f,0)} is non-empty, and for fixed v € V the set-valued map

0,)€OXR, — SW,0;1) = {fef" sup E(u,f’,H)sE(u,f,9)+t}
f'er

is upper semi-continuous in terms of inclusion, i.e., for 6, — 6 and t, — t any sequence f, € S(v,0,;t,) admits a converging subsequence
(Fw ke in F with limit f € S, 0;1).

Proof of Lemma 51. By Assumption (EC) and compactness of © x F it follows for any v € V that E(v, -, -) is uniformly continuous,
hence the function

wg, R, >R, t— sup |E(u,f,0)—EQ,f.0)|
’ do(0,6M)<t
dp(f. SNt

is finite for all + > 0 and fulfills lim, o w ,(t) = 0. For 6,6’ € © we thus find that

sup E(v, f,0) — sup E(v, f,0")
feF feF

which implies for v € V' that ¥(v) € C(0) and therefore Range(¥) C C(O). For the Lipschitzianity of ¥, note by Assumption (Lip)
for any v,v’ € V that

< sup |E(v, f,0) = E(, f,0")| < wg ,(dg(8,6")),
feFr

[#(0) =¥ ()| o) = Sup |sup E(v, £.6) - sup E(W', f.6)
0e6 |rer

feF
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<sup |[E(v, f,0)— E(W, f,0)| < L|v-"1], .
0€6
feF

To see that S(v, ) # @, note that the function E(v,-,0): F — R is continuous for any (v,0) € V x 0; hence, by compactness of F
the supremum over F is attained.

It remains to prove the assertion on upper semi-continuity. Consider converging sequences t, — ¢ > 0 and 6, —» 6 € © and take
a sequence f, € S(v,6,;1,). By compactness of 7 a converging subsequence (f,, )ien €xists with limit f € . Hence, by Assumption
(EC) and since super E(v, f,-) = ¥(v)(-) € C(O) we obtain that f € S(v,6;1) since

E(, f,0)+t= lim E(v, f, ,6, )+1t, > lim sup E(v, f,0, )= sup E(v, f,6). [
ko0 k> Mk k= k—eo fer k rer
With these tools at our disposal, we can state our general sensitivity result.

Theorem 52 (Differentiability). Assume in the setting of Lemma 51 Assumptions (EC) and (Lip). Let v € V and consider a convex set
U c V. Denote by T;U := Cl{ ? |#>0,0€ U} CV its contingent cone at v. Further, assume the following.

(Lin) For any (f,0) € F x O the function AGEC, f,0):V = Rue E@+v, f,0) - E(@, f,0) is linear.

(DC) For any h € T;U the function 0 € © = sup s 0) A E(h, f,0) is lower semi-continuous.
Then, the functional

Y:V->CO), ve <sup E(u,f,O))
rer 0co

is Hadamard directionally differentiable at v tangentially to U with derivative given by

Dlg'y' (U - CO), he < sup A|UE(h,f,9)> .
fes@o) 0co

Theorem 52 can be viewed as an extension of Fang and Santos [48, Lemma S.4.9] to a uniform perturbation result over the
parameter space ©. Additionally, our result does not require regularity properties on the full domain V' but only a convex set U, an
appealing property which we exploit in the context of our analysis for the OT process (where we choose U = P(X) x P(})) as well
as regularity elevations (see proof of Proposition 38).

Assumptions (EC), (Lip), and (Lin) are fairly straightforward and often simple to verify. The first two conditions also appear to be
necessary to infer that Range(¥) C C(0) and Lipschitzianity of ¥ : V' — C(0©). Assumption (DC) is more technical and requires some
knowledge on the set of optimizers S(v, 8). As the proof of Theorem 52 reveals, is the functional § € © ~ sup res@o) Eh, f.0) under
the assumptions of Lemma 51 always upper semi-continuous. Hence, the sole purpose of (DC) is to ensure Range(Dllé ¥) C C(O).
Sufficient conditions for its validity are stated as follows.

Lemma 53. Assume the setting of Lemma 51 and Theorem 52. Then under either of the following conditions Assumption (DC) of
Theorem 52 is fulfilled.

(i) For any 6 € O and h € T;U there exists f € S(v,0) With sup y1c s gy Aspers E(hs f',0) = AGE(h, f,0) such that any converging
sequence 0, — ¢ admits a sub-sequence (6,, ) and a converging sequence f, € S(,6, ) with f, — finF.

(i) For any 0 € © and h € T;U it holds that AGE(h, f,0) = AgE(h, f',0) forany f, f' € S@,0).

Proof of Lemma 53. Let 6, — 6 and consider an element f € S(v,0) such that AzE(h, f,0) = sup yresio) ApEh, f,0). For setting
(i) take an arbitrary subsequence O, and take another subsequence Gnk[ such that f,,k[ € S(v, Gnk[) converges to f for I — co. Then,
by (EQ),

lim AgE(h. f,, .6, )=A4gE(h.f.0)= sup AgE(h. 7'.6).

- f1€S@®,0)
This implies by monotonicity of the limit inferior and Lemma 56 that

liminf sup AgE(h, f',6,) > liminf AzE(h, £,.6,) > sup AgE(h, f.0),

n—oo f/ES(E,b‘) n—o0o f/ES(E,H)
which asserts the validity of Assumption (DC) of Theorem 52. For setting (ii) take f, € S(v,6,) and consider by Lemma 51 a
converging subsequence S with limit f € S(v,6). Hence, it holds that AzE(h, f,0) = suppesio A EM, f ’,6) and the assertion
follows from (i). [

Proof of Theorem 52. The proof strategy is inspired by Rémisch [45] who performs a sensitivity analysis for when © is a singleton.
To extend the claim for a compact topological space © we employ the subsequent version of Dini’s theorem.

Lemma 54 (Dini’s theorem, [49, Corollary 1]). Let © be a compact topological space and consider a decreasing f,: © — R sequence
(ie., f, > fn41 for dl n € N) of upper semi-continuous functions. Further, assume that f, pointwise converges to a (lower semi-)continuous

function f: ©® — R. Then, f, converges to f uniformly on O.
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Take a positive null sequence 7, \, 0 with #, > 0 for all » € N and let 4 € T;U. Further, take a sequence h, € V such that
v, :=v+t,h, €U foralln e Nand h, — hin V. For any 6 € 0, we then observe by (Lin) and (Lip) for any » € N the lower bound

¥(v,)(0) —¥(@©)0) = sup E(v,, f,0)— sup E(, f,0)
feF feFr

> sup E(,, f.0)—EQ@,f,0)
fE€S@.0)

2 sup A|EE(tnhns fae)
SES©.0)

>1, sup AgE(h, f,0)=2t,L||h—h,|, . (A1)
7€S@.9)

Analogously, we obtain the upper bound
¥ (0,)(0) — ¥ (0)(0) = sup E(v,, f,0) — sup E(, f.,0)
fEF feF

< sup E(,. f.0)-E@.f.0)
£ESW,.0)

<t, sup AgE(h, f,0)+21,L ||h - h,,||V . (A.2)
feS(,.0)

Note that S(v,,0) € S(@,0;2L|v, — v|,,) since any f* € S(v,,0) fulfills by (Lip) the bound
E(, f*,6) 2 E(v,, f*,0) — L v, —v||,,
= sup E(v,, f,0)— L v, - |,
fer

> sup E(v, f,0) - 2L ||v, —v||, -
fer

Hence, it follows from (A.2) upon defining ¢, := sup;, 2L ||v, — v||,, that

Y(,)0)-P@)0) L1, sup AgE(h, f,0)+2t,L ||h - hn||V
feS@0:2L||v,—v||})
<t, sup  AgEM, f,0)+2t,L|h-h,|, . (A3)
feS@,0:¢,)

Combining (A.1) and (A.3) we thus obtain for any 6 € O that

wg sup  AgE(h, f,0)+2L||h—h,|, -

sup AgE(h, f,0) =2L||h=h,], <
: 1eS@.05e,)

fes@o
To conclude the claim we show that the lower and upper bound uniformly converge on © for n — oo to the Dllgﬁl’. Since
|h, — R, — oo, it suffices to prove for the functions

®:=DIV:0-R 0 sup AgEMhf.6). @,:0-R 0 sup AgE(h[.0),

1€S@.0) feS@..,)
that lim,_,, ||® — @, ||, = 0. For this purpose, we employ Dini’s theorem (Lemma 54).
In this context note, since (¢,),¢y is a decreasing null-sequence, for all » € N and any 6 € O that S(v,0) € S@©,0;¢,,1) € S@©,0;¢,)

and consequently

D) < D,,,(0) < D,(0) < 2sup sup E(h, £,0) < oo, (A.4)
0€6 feF

where the upper bound is finite due to Assumption (EC) and compactness of F x O.

Further, let us show for any 6 € O that lim,_, ,, ®,(0) = @(). Take a sequence f, € S(v,0;¢,) such that @,(0) < Az E(h, f,,0)+1/n.
Consider a converging subsequence ( S keN with limit f, € S(v,6). Then, by (EC) it follows that

limsup @, () < lim AE(h, f, .0)+ 1/n, = AgE(h, fo,,0) < sup AGE(v, f,0) = &(6).
k—oco0 k—oo fes@.0)
Recalling (A.4), it thus follows that lim,_, ., @,(0) = ®(6).

To conclude the assertion with Dini’s theorem it remains to show upper-continuity of @, and of @; recall by Assumption (DC)
that @ is already lower semi-continuous. To this end, let ¢ > 0 and consider a converging sequence 6, — 6. Select f, € S(v,0,,¢)
such that supses@g,.0) AEM f,0,) < AgE(h, f,,0,) + 1/n. Take a subsequence f, and select by Lemma 51 another converging
subsequence f,, " with limit £, € S(v,0; ). Using Assumption (EC) it thus follows that

Jim AE(h. f,, .6, )+1/n, = AgE(h. f.0) < sup  AgE(h. [.6)
feS(,05¢)
Invoking monotonicity of the limit superior and Lemma 56 we thus obtain that

limsup  sup A‘;E(h,f,e) < lim sup A|5E(h,f,,,6,,) +1/n< sup AWE(h, f,0),
n—oo  feS(0,0,:€) IS fES(0.0:¢)
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Hence, by Lemma 56 we conclude that @, is upper semi-continuous and that @ is continuous. Dini’s theorem (Lemma 54) thus
implies lim,_, , ||® - @, ||, = 0, asserting the Hadamard directional differentiability of ¥ at v tangentially to U. Finally, note that
the range of Dlif ¥ is indeed contained in C(©). [

Appendix B. Proofs for Section 3: Sufficient criteria for assumptions

B.1. Proof of Proposition 13

By Lemma 1 it follows that 7¢ C H¢ +[-2B,2B] and F¢¢ C H, + [-2B,2B] with H, defined in (7). Invoking Hundrieser et al.
[43, Lemma 2.1] and Santambrogio [2, Proposition 1.34] we obtain for any £ > 0 that

NEF ) = N @ T Il < [ 22 W2 Il = [22] M2 e o)

For the function class H,, the asserted uniform metric entropy bounds are available in Section 3.1 and Appendix A of Hundrieser
et al. [43]. Note by uniform boundedness of the cost function that X, and H¢ are uniformly bounded. The assertion on the universal
Donsker property then follows from van der Vaart and Wellner [38, Theorem 2.5.6]. []

B.2. Proof of Proposition 15

By assumption the functional
EC TPX)XPY) = CC(FOXEP(FHOXCAX X))
u,v) = (U, v, @ (p,v)),
where the domain is viewed as a subset of £ (Fy UF*)x£®(FyUF*), is Hadamard differentiable at (x4, v) tangentially to P(X)xP(Y).
Moreover, since F U F¢ is u-Donsker it follows that \/n/2(u, — u) w G* in £°(F, U F*°). Likewise, since Fy U F¢ is v-Donsker it
follows that 1/n/2(v, — v) » G in £®(Fy, U F°). Further, by independence of the random variables {X i}?=1 and {Y,-}lf’=1 it follows
from [38, Theorem 1.4.6] that the joint empirical processes /n/2(u, — u. v, — v) weakly converge in £°(Fy UF) X £*(Fy UF*) to
(G*,G"), contained in T,P(X) x T, P(¥) by Lemma 49. We thus conclude by the functional delta method [45] for @, that (JW) is
fulfilled.

Moreover, by the Donsker property and independence of the random variables, we also infer by van der Vaart and Wellner [38,
Theorem 3.6.13] in the space £*(Fy U F¢) X £*(Fy, U F°) that

bo_ N\ pr
dgr (o Vi e T )X XLy, ,c<gv> .
Vn’k—\/n

Hence, by the functional delta method for conditionally weakly converging random variables Diimbgen [53] for ¥, we infer that

b
”n,k_ll’l Hyp— H p*
b
dg || VK|V =v [1X1, XYY | e Vv = v ||| — 0. O
C:,k_cn c,—¢

B.3. Proof of Proposition 18
Before, we start to prove Proposition 18, we establish an auxiliary lemma.

Lemma 55. Let X and Y be compact Polish spaces and consider ¢ € C(X X V).

(i) For any function g : X — R and any constant «, it holds that (g + k) = g° — k.
(ii) Let B > 0. Then, for any g : X — R and A° € C(X x Y) with ||g|lo, + 2 |lc + 4°||, < B it holds that glc+4)c+4c ¢ J 4+ [—B, B].

The proof of the above lemma can be found in Appendix E.7.

Proof of Proposition 18. The proof is strongly inspired by van der Vaart and Wellner [61, Theorem 2.3] and employs standard
empirical process arguments. In order to simplify the notation, we only consider the case n = m and write c, instead of ¢, ,. Note
that the claim for n # m follows by the analogous arguments.

To show (i) first note by triangle inequality and using Lemma 42 that

sup |G (fnn — £)| < sup |G (frn = f&)] + sup |GL(f & — <)
J€F JeF feF

<4y/nlle, = &l + sup IG (S = £). (B.1)
fEF
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The first term converges by assumption for n — oo in probability to zero. For the latter term note by (JW) and the assumption
on ¢, that 1/n/2(¢, — ¢) - G°. By tightness of the law of G* there exists for any ¢ > 0 a compact set K C C(X x V) such that
P(G¢ € K) > 1 — ¢; thus for any 6 > 0 the set K® of elements in C(X x ) with distance less than § > 0 to K fulfills

lim inf P (\/n/Z(E,, —oe K5> > PG € K9 > 1 —e. (B.2)

By compactness of K there exists a finite §/2-covering {A,,...,h,} which implies that K%/2 U,»p:] B(h;, 6), where B(h, ) denotes
the open ball of radius 6 around 4 in the space C(X x Y). We thus obtain

p
{\/n/z(e,, —oe K5/2} c U {é, € Be+217'n,,8)} .

Moreover, by Santambrogio [2, Proposition 1.34] it follows for any f € F and ¢ € C(X x D) that f¢¢ = f%¢¢ Therefore, by triangle
inequality,

sup G/ — £€)] = sup [GA(/ 5 — <)
fer fer
< sup |Gs(fc~"5"6"€” _ fc',,f‘,,CC)l + sup |G£'4(f€‘,,c',lcc _ fL‘CcC)l
fer fer

< sup  [GE(fE% — £+ sup |GH( Ot — feece)). (B.3)
fEFntn fEF

Assuming 1/n/2(é, — ¢) € K%/2, it follows for the first term in (B.3) that

sup [GA(FH® — f) < sup  max sup [GA(FEIMVIERMVD _ peey)

feFtnin feFtntn i=1,....p ”h_hi“m<‘s

< sup  max sup |G,;(f(c+2h/\/ﬁ)<c+2h/ﬁ) _ f(c+2h,/ﬁ)(c+2h,-/ﬁ))|
feFEnEn i=1,....p ||h h; ” <5

+ sup max |G;4(f(c+2h i/ M(e+2h /\/n) _ £

fEFC"C" i=l,...,
<8+ sup max |G;4(f(c+2h /A (e+2hi //n) _ £y (B.4)
fEFntn i=l,...,

Here, we used in the last inequality Lemma 42 to infer

”f(c+2h/\/5)(c+2h/ﬁ) _ f<e+2h,/\/ﬁ)<c+2hi/\/ﬁ) <4|h —h||, /\/;l < 45/\/;

in conjunction with G (g) = \/ﬁ(yn —u)(g) < Zﬁ llgll for any measurable function g on X. Now, define for 1< i < p the function
class

g; . éil(hi) = {f(c+2h[/ﬁ)(c+2h[/\/;) _fee

f € Fnln } )
For each 1 <i < p and any £ > 0 we then observe that
log N(e, G, Ille) <log N (e, FarencH2hu/ ViXer2h/\ 1| ) + log N (e, Frence, ||-],)
<2log N(e, Fu, ||-llos)

where the last step follows by Lemma 2.1 in [43]. In consequence, it follows by Dudley’s entropy integral (see, e.g.,[93, Chapter 5])
that

sup |G*(g)]
g€C,

b iy _
/ Viog (M e, Pore 1)) de

feFmnn ! i=l,...

i=1

E [ sup max G/l(f(c+2h [V (e+2h; [\/n) _ 1)

E:

N

A
Mﬁ i Mﬁ ﬁM

n oo/ n
oV,

IIh lleo / V)72,

where by assumption the hidden constants do not depend on n. We thus infer conditionally on the event 1/n/2(¢, — ¢) € K%/? for
n — oo that

sup  max Gu(f(chZh [V/m(c+2h; [\/n) _ <9 _) 0. (B.5)

I €Fnn i=l,.
For the second term in (B.3) we assume /n/2(¢, — ¢) € K%/? and obtain by similar arguments,

sup |G;r:(ff,,c"ncc — fEC) < 86 + sup max |Gi"(f(""‘z’li/ﬁ)("+2hi/ﬁ)c” — feeey). (B.6)
feF feF i=1,....p
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Upon defining the function class

g’"n = Gn(hl’ . h ) = {f(c+2h,-/\/ﬁ)(¢'+2h,-/\/;)cc _ fcctc

fe r} (B.7)

we note again by Lemma 42 that any g € G, fulfills ||g|l, < max,_; 4|4 /+/n. Further, for n sufficiently large there exists a
constant B > 0 such that Lemma 55 is applicable for any f € F, and we obtain

f(c+2hi/ﬁ)(c+2hi/\/2>cc € H, +[-B. B].
Hence, for sufficiently large n, it follows by Lemma 1 for any ¢ > 0 that
N e 2
N, Cy(hy, .. 1), ) < (N(&, F +[-B, Bl |Ill)) -

Again invoking, Dudley’s entropy integral asserts such for » that
maxizi..p 41 ill oo/ V1 -
5/ log (N (&, Gy Il o)) de
0
maxi_y,..p 41 Al oo/ V1
< / Vlog (N(e. Fe< + =B, BL.I1.))de
0
maxizy_p4||hi]l o /1
5/ e 2de
0

1-a/2
< (o Il i)
i=1,....,p

E |:sup max Gu(f(c+2h JA/m(c+2h; [\/m)ce _ feeeey

feri=l

sup IGZ(M]
f€6,

This implies conditionally on the event 1/n/2(¢, — ¢) € K%/ for n — oo that

sup max |Gu(f(c+2h /\[)(c+2h /\f)cc _ fcccc)l _} 0. (B.S)
feri=l...,

Concluding, for any & > 0 it follows for § :=¢/32 > 0 from (B.2)-(B.8) that

n—oco

lim sup <1P> (sup IGH(fn — f¢)| > £,4/n/2(E, — ¢) € KW) +P (\/n/Z(E,, -0 ¢ K5/2)>
feF

n—oo

lim sup P <sup |GH(fnln — )] > e>
feFr

IA

IA

limsup P Sup |G“(fC"C" fOl > €e,v/n/2E, —¢) € K5/2> +e

n—oco

IA

limsup P

n—oo

fEFntn

sup |GH(fn — )] > €/2,4/n/2(E, — ¢) € K’S/z)

n—oco

< limsupP

n—oo EFentn =1

+limsup P <§up |GH(fonnee — feecc)| > ¢/2,4/n/2(E, — c) € K%/?
< sup max |G”(f(‘+2h [/me+2hi /Ny _ F >e/4,\/nf2(E,—c) € K'S/z)

+11msupIP’<sup max |GH(flethi i/ \lex2hi/ e _ peceey) > e/4,y/n/2(, —c)eK§/2> +e=c¢,

n—co fEF i=

which shows the convergence in probability of sup .y |G} (/%% — f°)| to zero. We thus conclude the convergence in probability for

P
both terms of (B.1). An analogous argument yields the convergence sup ser |G} (f“* — f€)| — 0 for n — co, where we apply Lemma
2.1 of [43] to obtain

suplog N'(e, F UF, ||l ) < sup (log N'(&, Fu, [I-ll o) + log N'(e, F<, I+l o))

neN

= sup (log N'(e, F%n |||l o) + log N'(e, F, || ll))
ne

< sup2log N(e, F&nen UF, ||-l) S €% fora<2,
neN

which overall verifies (Sup) of Theorem 2.
For (ii) note by Biicher and Kojadinovic [54] and since k = k(n) = o(n) for n — oo that

Vi@, - )= Vi@, - e )+ Vi, ¢, + \/g\/;(cn —¢)w GE.
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Likewise, it follows for n — oo that ﬁ(#fi_k — ) » GH in £ (F¢°), \/%(vrfk —v) » GY in £°(F¢). This means that we can pursue a
similar proof strategy as for (i). Define GZ L= \/Z(yz ) and Gy, = \/Z(vs L) Then, we infer from Lemma 42 that

b b b b b b b b
sup |G} (f wnk = 9O < sup |G (fwnk = forrEui)] + sup |G (f mink — f9))
ser " fer ™ fer ™
b b
<av|eh, =, ||+ sup 1GE, (e = ey, (3.9)
’ Hlleo fep ™
where the first term converges for n — o in probability to zero. By Santambrogio [2, Proposition 1.34] we obtain that

b ~b b b b b
sup Gy (f e — OIS sup G (Fnk — fEO] + sup |G (f e — peecoy]
fer 7 b d ’ rer "

fEF nk nk

Moreover, by analogous arguments to those for (i) we obtain with probability at least 1 — ¢ for n sufficiently large that

gb &b
sup [GF (fkne - ) <85+ sup  max [GF (fErmIVIERmVI _ pecy) ®.10)
b b mk b b i=lep nk
fEF nk nk fer nkn,ke
as well as
sup [GH (Fmkee = pecce)| < 86 4 sup max |GF (fri/ Vs /Vioee _ peccey) B.11)
fEF nk fEF i=1,..., ] nk

Next, we verify that the suprema on the right-hand sides of (B.10) and (B.11) converge (unconditionally with respect to the y, but
conditionally on the set with probability at least 1 — ¢) to zero. We note by Dudley’s entropy integral for the bootstrap empirical
process \/Z(yz « — Hn) and the empirical process \/E(M,, — u) as well as our previous considerations that

fEF nk nk
)4
— ZEun Eu,’jk Sﬂ,p_,, |\/E(”Z,k _ ”n)(f(wzh,./\/k)(”zh,./\/%) 7N uy
i=1 ’ fercn.kcn,k
+ \/E]E - |G:14(f(c+2h,v/\/;)(£+2h,-/\/;) — %)
b b
fepcn,kcn,k

4|h ]l o/ Ve b b k 4|n ]| o/ Vi b b
SZE/‘”/O \/log (N-(s,rcn,kcn,k’||.||°°))d£+ \/;/0 \/log (.f\/‘(s,;oq,,f,hk,||.||m))dg

» 41l o/ Vi L -a
521<1+\/E>/0 g-a/z[ks;(u\/§>(||h,-||w/\/z)1 3

which tends to zero for n — oo with k = k(n) = o(n) since the hidden constants do not depend on n, k. Recalling the definition of the
function class ék in (B.7) with n replaced by k, we obtain
<E [sup max |Gﬂk(f(0+2h,-/\/;)(t‘+2h,-/\/z)t‘c _ fCCCC)l] =E | sup ‘(Gllk(f)‘ .
feri=lo.p ™ reg ' "

Hence, Dudley’s entropy integral in combination with our previous considerations yields

”H + \/EE [sup IGZ(f)I]
n feGk
max;y,p 4|l o / VK
< <1+\/§)/ b \/log(/\f(e,?""+[—B,B], lI-leo)) de

0

1-a/2
S <1 + \/%) <i;?,§¥,pllhillw/ﬁ> ,

which goes to zero for n, k(n) - oo with k(n) = o(n) (the hidden constants are independent of n, k).
Using the same arguments as in (i), we conclude that

E

sup )ng(f)ﬂ <E, |:]Eub [sup Wk, = )l
reG’ k| recy ’

b b P
sup |GH | (f nknk — f)] = 0.
fEF ’

Cb P .
Finally, analogous arguments yield that sup ey |G, ,(f "+ — f€)| — 0, thus showing (ii). [
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B.4. Proof of Corollary 19

Define the random variables

5 ¢ ifn<N, " c if n< N or k<K,
¢, 1= and ¢, = b

c ifn>N, c if n> N and k > K.

n nk

By Proposition 13 the cost estimators ¢, and ES . satisfy the entropy bounds in (12) and (13). Tightness of N and K implies that

P P
V&, = cull, — 0 and \/E||c"5k —¢c? Il = 0 for n,k — oo, which asserts the claim by Proposition 18. []
B.5. Proof of Corollary 20

By Assumption List (JW) it follows that \/nm/(n + m)(c, ,, — ¢) ~ G, whereas under (JW)* we infer from Biicher and Kojadinovic
[54] and k = o(n) that \/E(Cﬁ,k — ¢) » G° unconditionally. In what follows we state the arguments for (Sup); for (Sup)* a similar
proof strategy applies by replacing the empirical costs process by the bootstrap cost process.

First, assume without loss of generality that the population cost function fulfills ||c||,, < 1. Then, for all three settings of
Proposition 13 it follows that log N (g, F¢, ||| ) S €™* with @ < 2.

For setting (i) we set ¢, ,, := Ppqd(c, ), for Ppqq defined in Section 5.1. Since ||¢, ,|lo, <2 and F = F(2 ||c|l, + 1, 2w) is uniformly
bounded by 6, we obtain that 7% is uniformly bounded by 8. By Propositions 36 and 37 both conditions of Proposition 18(i) are
met, asserting (Sup). ) )

For setting (ii) we take ¢, ,, := Tg;: 4°Pbad(Cym) for Tri‘z 4 from Section 5.2. Then, [|¢,, |l <2 and Fém is uniformly bounded by

P
8. Moreover, by Assumption (ii)’ it follows with Propositions 36 and 38 that \/nm/(n + m)||¢,,, — ¢, nll — 0 and that

sup log N'(g, Formtnm |||l ) S N'(e/8, X, dy)| log(e)| S 7’| log(e)| S e~ 2+CP/2,

neN
where we used the covering number assumption on X. (Sup) then follows from Proposition 18(i).

For setting (iif) define ¢; € C(U; x D) as ¢;(u, y) := c({;(), y). We consider ¢, ,, := Yo (c, ) where ¥, denotes the combination

(Section 5.4) of regularity elevation functionals ¥; : C(U;xY) — C(U; xY) defined by ¥; = ‘PMS‘ o 44 from Section 5.2 if y; € (0, 1],
and ?; = Tﬁ’g" o¥pqq from Section 5.3 if y; € (1,2], where we replace X by U;. Then, by Propositions 38, 40, and 41 the functional

P
¥ fulfills the assumptions of Proposition 36 and therefore \/nm/(n+ m)||¢,,, — ¢, nllc — 0. Moreover, since for any ¢ € C(X x ) it
holds that [|¥(&)||, < C for a deterministic constant C > 0 that only depends on the functions ¢; and the spaces U;, it follows that
F¥® is uniformly bounded by C + 6 and therefore

I
sup log N (e, Fénnfum ||-[| o) S 2 sup  log N'(e, Fon®i@ ||| )< max e~/
nelN i=1 GEC;xY) i=1,....I

where we use for the first inequality Proposition 41, and for the second we employ the bounds from Proposition 38 with
NEV,|I-II") S 4/t for 0 < y; < 1 and Proposition 40 for 1 < y; < 2. The assertion then follows by an application of
Proposition 18(i). [

B.6. Proof of Lemma 22

For ¢ > 0 suppose that the right-hand side is finite since otherwise the claim is vacuous. Set k = MN(e/4,0,dy) and let

{6,,....6,} be a minimal ¢/4-covering of ©. Further, for each i = 1,...,k let {f{, ,f,i‘} be a minimal £/2-covering of F¢ii,
ie, k; = N (/2,F% |||l ). Once we show that Fy(e) := Uf.;l{f{, ’f/i,} is an e-covering for (Jyeo F% and that Fy(e) :=
Uf;l {(fli)”"i Yeers (fli )} is an e-covering for Jyco F the claim follows, since

Py < 1Pl = X (57 ) <N (5.6.do) sup N (5. P00 |1l ).
i=1

[I=C]

Hence, let 9 € @ and f € F%°, and choose f € F with f = f%%. Select 6, with dy(6,6;) < /4 and choose f ; € Fy(e) such that
p fi = f@]| <e/2. Now, by Lipschitzianity of the cost in 6 and Lemma 42 we infer || /%% — f%|| < 2dg(6,6,) < ¢/2, and it
ollows that
R T I S R A

which verifies that Fy(¢) is an e-covering of UgcgF 0.
Moreover, for any f € F there exists f € F with f = f% and by Santambrogio [2, Proposition 1.34] it follows that f = f<co,
Hence, upon selecting f I‘ € Fy(e) as above, we find by Lemma 42 that

lerier = 7

| = “(f; )0i — fC0i0;o;
™ i

ol
<l

‘oo <g/2.
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Again invoking Lemma 42 yields ||/ — fe|| , < d(6,6,) < &/4. Consequently, we find that

oo = 7| = s = 7eo|| < ||crie = 7o

which proves that 7y, (¢) is an e-covering of UycoF* and finishes the proof. [

o< 2 <

Appendix C. Proofs for Section 4: Applications

C.1. Proof of Lemma 24

Select U as the pre-image of {§ € C(X,RY): || — g;ol |l <1} under Ko, which is open (relative) in © due to continuity. Hence,
by compactness of X, the collection { g‘;] }9ey is uniformly bounded on X. Invoking the Cauchy-Schwarz inequality and, due to
compactness of Y, we infer that {Cq(9)(x, )} gey xex 18 also uniformly bounded on Y. Further, since V,Co(9)(x, y) = 2(g§' (x)—y) for
y € int(Y) the collection {V,Cq(9)(x,-)} is bounded on Y uniformly over § € U,x € X. Finally, note that Hess Cq(9)(x,y) = —2Id,
independent of 9 € U, x € X. Combining these observations, we conclude the existence of A > 0 such that the (2, A)-Holder regularity
is met. [

C.2. Proof of Lemma 25

To establish the Hadamard differentiability of Cg at 9° note that

Col® +1,h,) = Co®) " o
t 19
n [se]
1/ _ _ _ _ _
= s (gl 00 6510850, , 00+ 850 0 = 20) = 2 DI Koo £5 ) = »)|
(x»eXxy | Iy i i
< s 21(—1 -l —DHK.(h 1y 1y RS PN
< sup g5l 0 (0= 851 (0) = DE Ko, g5/ 0 = ) + = |lg5, , 00— g5l || ) -
(x.)EXXY Iy nin In i

For n — oo, the first term tends to zero by Hadamard differentiability of Ky whereas the second term tends to zero by (G). Hence,
Cy is Hadamard differentiable at 9°. The second assertion follows from the functional delta method for Hadamard differentiable
functionals [45]. [J

C.3. Proof of Proposition 26

First note that, in comparison to Sections 2 and 3, the roles of X and Y are interchanged. The universal Donsker property of
FCe¥) follows from Proposition 13(iii) since d < 3 and Cg(9°)(x,-) is (2, A)-H6lder for some A > 0 uniformly in x € X (Lemma 24).
Moreover, note by measurability of 9, and continuity of Cg near 9° that ¢, is also measurable. By joint weak convergence (20) we
infer from Hadamard differentiability of Cy at 9° (Lemma 25) using the functional delta method that the one-sample version of
(JW) (recall Remark 4(ii)) is fulfilled. Further, since 9, —P> 9°, as n tends to infinity, we infer from Corollary 20 and Lemma 24 that
the one-sample version of (Sup) is also met. The assertion now follows at once from Theorem 2. []

C.4. Proof of Lemma 29

First note that the matrix root operation % : SPD(d) - SPD(d), X ~— X'/2 [94, p. 134] is Fréchet differentiable with derivative
given by D xR S(d) - S@),H ~ H, and that the inverse operation J: SPD(d) — SPD(d),X +~ X! is also Fréchet
differentiable [95, Theorem 8.3] with derivative given by D, 203 : S(d) - S(d), H » —XyH %,,. The assertion now follows at once
from the chain rule [95, Theorem 5.12] for compositions of Fréchet differentiable functions. []

C.5. Proof of Corollary 30

Note that by assumption, (7,d;) and c fulfill the requirements of Theorem 6. Furthermore, note that Assumption (Don) can be
established via Proposition 21 and Assumption List (KP) is implied by the assumptions on the support of x4 and v [62, Corollary 2].
Hence, the statement follows from Theorem 6. []

C.6. Proof of Corollary 33

Select X C R? as a compact set which contains the supports of x and v. Note that S?~! is a compact Polish space and consider
the Lipschitz map cga-1 : (S?71,[|]) = C(X X X), 0 = c4|yxx Whose modulus depends on X and p. By compactness of X and S%~!
it thus follows from the Theorem of Arzela-Ascoli that {cg|yyy}gese-1 is uniformly bounded and equicontinuous with a uniform
modulus. Therefore, upon choosing the function class 7 as in Theorem 5, Assertion (i) follows by Theorem 5 once we verify that
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Assumption (Don) is fulfilled. To this end, note that log N(e,S~!, ||-|l) S |log(¢)|. Moreover, define for # € S?~! the pseudo metric
dy x(x,y) = 16Tx — 67 y| on & which fulfills supyeca1 N'(€,X,dy ») S €' and for any x,x,y € X,

eg(x, ) — co(x’, y)| < pdiam(py(X))P~ 107 x — 6Tx'| < pdiam(X)*~'dj p(x, x").

Since the upper bound for the Lipschitz modulus does not depend on 6, Proposition 21(ii) is applicable, and we conclude that
Upesa—1 Fo and | Jyega-1 F¢ are universal Donsker. By applying the continuous mapping theorem [38, Theorem 1.11.1] for the
integration operator over S?~! we obtain Assertion (ii). Finally, Assertion (iii) follows from Theorem 7. []

C.7. Proof of Proposition 34

Since X x Y is compact and by continuity of ¢ and 4° there exists a common modulus of continuity w for {¢,(-, »)},ey e0.1-
Hence, for any ¢ € [0, 1] we have ¢, ¢, € C(||¢|lo + |4°|| + 1, w) (see Lemma 43 for the definition of C(-,-)). Consequently, we infer
by Lemma 43 the inequalities,

0 inf 20a9+ sup 44 (Fe) +14"(79)
T\ melll(u.v) SES (1v)
1
57(0T(u,, Vis¢) = OT (p, v, )
< it mGAY+ sup A+ AN+ sup 1A ) 1AV~ £9) ).
t \ el (uy) FESe, (hgsvi) fer

Next, we observe that 4# = ji — u for some ji € P(X). This yields using Lipschitzianity under cost transformations with respect to
the cost function (Lemma 42) that

-0
sup |4#(f4t = f) = sup [(F— w)(f45 = [ < 4|le, — ¢, =4 ||AC||oot—’ 0.
feFr fer

Likewise, it follows that |sup,cr 4"(f% — f€)| — 0 for + — 0. Finally, since the pair (y,,v,) weakly converges for 7 \, 0 to (u,v) it
follows by Lemma 44 that

liminf  inf  z(A°)+ sup A*(f)+4Y(f°)

N0 zeI (v feS.(uv)
> inf  z(A)+ sup  AF(fC) + AY(fO)
A€M (u,v) feS.(uv)
as well as
limsup inf #(A)+ sup  AM(FC)+ AY(fO)
N0 TEIE () FESe, (upsvp)
< inf  7(A)4+  sup  A(f) + AY(fO),
€I} (1,v) FES (V)

which yields the claim. []

Appendix D. Proofs for Section 5: Regularity elevation functionals

D.1. Proof of Proposition 36

By the functional delta method [45] and the assumptions on ¥ and £ it follows that

a<(f”_f)>-> £ i<£> for n — oo
"\ - D77’(£) L '

The continuous mapping theorem [38, Theorem 1.11.1] in combination with measurability of the random elements f, and ¥(f,)
(due to continuity ¥ near f) thus asserts

P
a,(P(f) = f,) =0 forn—oo. [
D.2. Proof of Proposition 37

First note that ¥(¢) € C(XxY) for any ¢ € C(X¥x D) as a concatenation of continuous functions and under ||¢]|,, < 2 that ¥(¢) = ¢,
which yields ¥(c) = c. In particular, this shows that ¥ : C(X x ¥) — C(X x D) is continuous near ¢. For Hadamard differentiability
at ¢ consider a positive sequence 7, \, 0 and take a converging sequence (h,),cy € C(X x ¥) with limit 4. Since h is bounded and
llelle <1, for n sufficiently large we have ||c +1,h, ||, <2 and therefore ¥(c +t,h,) = ¢ +t,h,. We then obtain

H Y(c+1,h,)—¥() _

: h” = |l — A, — .
o

n
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Finally, since for any ¢ € C(X x Y) it holds that ||g¥©||,, < B +2 where B := sup,; llgll,, we find for a finite space X that

sup  log N(€, 6", |Ill o) < [X|(log(B +2) + | log(e)]) S |log(e)l. O
ceC(XxY)

D.3. Proof of Proposition 38

By condition (26) it follows for x, x" € X with dy(x, x") = 0 that c(x, y) = ¢(x’, y), whereas under d(x,x’) > 0 we have by w(6) > 0
for 6 > 0 that

c(x,y) < e(x, ) + w(dy(x,x)) < c(x, y) + 2w(dx(x, x)).
This asserts for any (x,y) € X x Y that

S(e, (x,y) :=argminc(x’, y) + 2w (dy(x,x)) = {x" € X | d(x,x") =0},
x'ex
and overall yields by ||c||, < 1 that ¥(c) = c.

For the second and third claim, recall from Proposition 37 that ¥,44 : C(X X V) - C(X x Y) is continuous near ¢ and Hadamard
differentiable at ¢ with derivative Idc(yyy,. Hence, it suffices to verify that T{':ZZX is continuous near ¢ and Hadamard directionally
differentiable~ with D‘fcI ¥|c@xy) = ldcxy) for which we rely on Lemma 51 and Theorem 52. Define the spaces V' := C(X x ),
F =&, ©=2XxY and the functional

E2 VX FXO=CXXMXXX(E@XV) >R, (@ x,(x, 1) —&x,y) — 2w(dp(x, x)).

For any ¢ € C(X x Y) the function E wody (€)X X (® x ¥) — R is continuous as a sum of continuous functions. Further, for any
(x', (x,y)) € X X (¥ x V) note that the function E%°%x(-,x’,(x,y)) : C(X x ¥) = R is 1-Lipschitz under uniform norm and that

A E“Ix (X (x,) 1= B (@ 4 ¢, X, (x, ) — E“°% (e, X', (x,)) = —E(x, y)
is linear in ¢ € C(X x ). Hence, by Lemma 51 we obtain continuity of the functional

Pl o x V) - C(F X V),

mod

N <(x, y) e inf &', y) + 2w(dp(x, x')) = — sup E¥°9x (&, %', (x, y))) .
x'eX Xex

Consider the closed sub-vector space U := C(¥xY) C C(X xY), cf. Lemma 57. It remains to show Assumption (DC) of Theorem 52.
To this end, note for h € C(X x ) that

h(X, y) + 2w(dy(X, x)) = hx', y) + 2w(dy (X', x"))  for any X, X' € S(c, (x,y))

since d (X, X') = 0. This implies by Lemma 53 that (DC) is fulfilled. Theorem 52 thus asserts that Tr':;j*’ is Hadamard directionally
differentiable at ¢ with derivative given by

pHp . C(XXY) - C(EXY),

le ¥ mod

h ((x, e inf  h(X',y)=— sup —ACE'”"‘iX (h,x', (x, y))) .
x'idy(

X’ x)=0 X' 1 dyp(x! x)=0

. il 70({ . . Od~
Hence, if h € C(X x Y), then DfZ'P;Od“’(h) = h, which yields Dllc{Tn":od’V lecixy) = 1de@x)-

For the last claim note that any ¢ € C(X x Y) fulfills for (x,y) € X x Y that

" ody N N
— el < WLt @)(x, ) < E(x,y) < el »

and hence || (¢)|, = [Eaes

nod. ©Fbdd(©lle < 2. Further, for any x,x" € X,y € ¥ we have

wody , ~ wody
¥ ood O y)—W 4

@G, ) < dnf e, )+ 2u(dp (", x) = e, ) = 2u(dp (", X))
< 2w(dy(x, X)), (®.1)

where we used the reverse triangle inequality since wod, defines a (pseudo-)metric on X. We thus conclude for any ¢ € C(X x )
and a bounded function class ¢ with B := sup,c l|gllo < o from [¥(&)||, < 2 and (D.1) that the elements of ¢*© are bounded by
B +2 and 2-Lipschitz under wod,, as an infimum over such 2-Lipschitz functions. Hence, G*© C BL g, ,(X, wod,) where for the
latter class uniform metric entropy bounds are available by Kolmogorov and Tikhomirov [96, Section 9], asserting for any £ > 0

N(EyBL(B+2)$2(X’ LUOLZTX), M) = ,/\f(g/Z, BL(B+2)/2,1(X, w°d~x)s Ileo)
S N(e/8,X, wody)|log(e)l. [
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D.4. Proof of Corollary 39

We infer from Proposition 38 that ¥ := B - podx/B

nod . °Pbdd(-/B) is continuous near ¢ and Hadamard differentiable at ¢ with

P
derivative DIIZ ¥ = Idc(xxy)- Hence, invoking Proposition 36 it follows that a,(c, — c,) = 0 for n - co. Moreover, by definition of

w/B.dy
l”bdd and I{Imod

from Lemma 1. [

it follows that ||c,||, < 2B and that ¢, fulfills (26) with w replaced by 2w. The inclusion now follows at once

D.5. Proof of Proposition 40

Since c is (y, 1)-Holder it follows for any x,x’ € X and y € Y as in Lemma A.4 of Hundrieser et al. [43] by convexity of X that

c(x,y) =c(x', ) +(Vye(x',y),x = x')+ Ry(x) with |Ry(x)|< \/E Ix=x|".

and consequently, for x # x’ we obtain
c(x,y) < e(x,y) + (Ve y), x = x'y + 2\/2 ||x - x'||7 .
This asserts for any (x,y) € X x Y that
S(e (x.y) = argmin e, )+ (Ve ) x = X'y +2Vd ||x = X' = {x}
x'e

and yields by |¢||, < 1 that P(c) =c.

To show the claim on continuity and Hadamard differentiability it suffices to verify that ¥y, is continuous near ¢ and that is
Hadamard differentiable at ¢ with derivative Dﬁ[ Phot = Idc(xxy) for which we rely on Lemma 51 and Theorem 52. Set V' := C(XxY),
F :=X and @ := X x Y and define the functional

Efqol : VXFXO=CXXP)XXX(XXY) =R,
@ x',(x, )~ — (E(x', Y +{(V,e(x,y),x —x') + 2\/3 [lx - x'”y) .

For any ¢ € C(X x ) the functional Eyy(é,-,-): X X (X X ¥) — R is continuous by continuity of V,c(-,-) and for any (x/, (x,y)) €
X X (X x ) the functional Eyy (-, X', (x,y)) : C(X X Y) — R is 1-Lipschitz under uniform norm while

A By (@, X', (x, ) = By (@ + ¢, X', (x, ) = Egoi(c, X', (x, ) = —&(x', )
is linear in ¢ € C(X x Y). Finally, condition (DC) follows by Lemma 53 since S(c, (x,y)) = {x} is a singleton. Hence, by Lemma 51
and Theorem 52 the functional

Yol : C(X X Y) = C(X X Y), <(x, y) = = sup Eyq (&X', (x, y))>

x'eX

is continuous near ¢ and Hadamard differentiable at ¢ with derivative

DY, CAXY) = CEXXY), he ((x, Y h(x,y) = —A, Eggy(h, X', (x, y))).

le

For the claim on the uniform metric entropy bound let ¢ € C(X x ¥), and assume (after application of ¥44) that ||¢]|,, < 2.
Define the collection of functions (£, ,)cx yey With

Ey,: X >R, xp &, y)+ (Ve p),x—x")+ 2v/d Ix=x|",

which is (y,2)-Holder on X. Hence, by Hundrieser et al. [43, Lemma A.5] there exists another collection (E)‘:, ¥ ex yey.oe0.l] of
smooth functions on X such that '

sup ||[E,s , — E° | < K¢’ and sup ||E° ” < Ko'72, (D.2)
e 15 ™ Byl e 5yl
yey yey

for all ¢ > 0 and some independent K > 0. Here, the C%(X)-norm of a twice continuously differentiable function g : X c R - R is
defined as

llgll 2y = ﬁllasé”DﬁgHoo’ where Dﬂg:alﬁlg/ax‘f‘ ---xz” for p e N2

Note that a function with |Igllc2xy < I for I' > 0 is absolutely bounded by I', it is I'-Lipschitz, and dI'-semi-concave (for a
formal definition see [97] or [43]), since the Eigenvalues of its Hessian are bounded by d - I'. Upon defining ¢(x, y) := ¥(é)(x,y) =
infey EX/,y(x) and ¢’(x,y) :=infycy E;’,’y(x) we thus obtain from (D.2) that ||c —¢°||_, < Ko’ and that ¢ is semi-concave of order
I'(6) := dKo?~2. Hence, following along the lines the proofs of Lemma A.4 in [43] we obtain for any & > 0 and o(e) := (¢/4K)!/7
that

20© —-d/2
z 2O e ¢ . _ £ —d/
N, & llee) < N(e/2,65 I IIW)—N<2F(U(E)),2F(0(6)),|I ||m>s<zr(a(£))> Sedr,
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=0(€)

Here, we used in the second inequality that G¢  /2I'(c(¢)) is contained in the collection of functions on X which are absolutely
bounded by B > 0, Lipschitz with modulus L > 0 and 1-semi-concave, where B depends on G and L depends on X, in conjunction
with uniform metric entropy bounds by Bronshtein [98],Guntuboyina and Sen [99] for convex functions. In particular, since the
hidden constants do not depend on ¢, the claim follows. []

D.6. Proof of Proposition 41

For the first claim note that ¥(c;) = ¢; for each i € {1, ..., I} and consequently, it follows for x € {;(V;) that ’I’i(ci)(C’._l(x), y) =
c(x, y). Hence, since Z,-I=1 n;(x) = 1 it follows that ¥(c) = c.

The claim on continuity of ¥ near ¢ follows by continuity of the functionals ¥; : C(U; xY) - C(U;xY) near ¢; foreach 1 <i < I.

For the claim on Hadamard differentiability of ¥ define for each i € {1, ..., I} the functionals

Plom:  CXXY) > CU; x V), & (W y) = &G, ),
PO X Y) = CGU) X D), e () = 8T . )

com,i

where both maps assign to the respective spaces of continuous functions since g“‘.‘] and ¢{; are both continuous. Further, note for
any ¢ € C(X x Y) that ¥(¢) = Z{z i p2 ool (). Both functionals ¥'! and Y2 are Hadamard differentiable at ¢; with

com,i com,i com,i com,i
derivative
DI Wom;t CXXY) = CW;x V). b ((wy) = h(GW).y).

DHW2 i CWxP) = CELWN XYY, h ((x,9) = &0, 0).

com,i

By assumption on ¥; and chain rule we infer that ¥ is Hadamard differentiable at ¢ with derivative

DI :C(XxY) - C(XxY),

T T
h <(x, »e D RGN, v = Y m(oOh(x, ) = hx, y))
i=1 i=1

and conclude that DIT¥ = Idcxxy)-

Finally, the bound on the covering numbers is a consequence of Lemma 3.1 and Lemma A.1 in [43] as they assert for arbitrary
¢ e C(X xY) that

1
log N (£, 6" @, ||-ll0) < Y log (e, 6" @ s 1Nl o)

i=1

IA

I
Z log N'(e, 6" @0l || lloo)

i=1

I
Y log N(e. G40, |11 OO

i=1

Appendix E. Proofs for Section 6: Lemmata of distributional limits

E.1. Proof of Lemma 42

Assume || f — fllo, + Ilc — €|l < oo since otherwise the claim is vacuous. For f and ¢ there exists for y € ¥ and € > 0 some x’ € X
such that f¢(y) > &', y) — f(x') — . Hence,

ffo-rm= [;relf\) e(x,y) = f(X)] - [;gg; éx,y) = f(X)]
Se, ) - =&+ F() +e
< |f = Fllo + lle =l + .
As € > 0 can be chosen arbitrarily small, we obtain for any y € Y the inequality
FD=FOD | = Fllg+ lle = llo -

Repeating the argument for f and c asserts the converse inequality and proves the claim. []
E.2. Proof of Lemma 43

Let us start by splitting the problem in two different ways,

OT (ji,V,¢) — OT (u,v,c) = (OT(ji,V,¢) — OT (ji, V,c)) + (OT (fi, V,c) — OT (u, v, c))
= (0T (i, v,¢) — OT (u,v,€)) + (OT (u,v,¢) — OT (u, v, c)).
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Since ¢,é € C2||c|| + 1,2w), we can employ the dual representation of the OT value from Lemma 1 with 7 = F(2 ||¢c|l, + 1,2w).
Hence, for each bracket in the display above, one can choose to plug-in a feasible plan in the primal formulation or a potential from
F in the dual formulation to obtain upper and lower bounds. Doing so, we obtain

inf  7(¢—-c¢)<OT(,v,é)—OT(ji,v,c) < inf #(¢—c),
Tl (V) rEIX (fi.0)

sup (A—-pf“+T-f<OT(,V,¢)—OT(u,v,e) < sup (A—p)f“+{T-vfe,
SES(u,v) SES(f1,V)
OoT(u,v,¢) — OT(u,v,c) < inf 7z(¢—c),
nEﬂ,_.* (u,v)
OT(f1,7,8) = OT(u,v,&) < sup (ji= W f + (@ =v)f°.
feSH(Y)
In particular, for the last upper bound we further note that
sup (A—pfC+@T-fC< sup (A—pf+T—vf+sup(ii — (= )+ T = - O
SES:(i,V) SeS:(f.v) feF
which overall yields the lower and upper bounds for the OT cost under varying measures and costs.
Finally, the bound under fixed measures yu,v it follows by Holder’s inequality for any = € II(u,v) that |z(¢ —¢)| < || — ¢|l»
whereas under a fixed cost function ¢ we have

sup (=W +@-0fe| < sup |a = wree
€

+ sup ‘(\7 — v)fc|
FES (@IS (uv) feF

= sup |- wf|+ swp [0-ws| O
feFee feFe

E.3. Proof of Lemma 44

The continuity of T} is a consequence of Villani [3, Theorem 5.20]. Indeed, any converging sequence (4,,v,,c,) with limit
(Mos Veo» €x0) admits a sequence of OT plans 7, € IT} (u,,v,) which converges weakly along a subsequence, say (7, )ien, to an
OT plan 7, € IT} (4, V). Hence,

Limsup [Ty (> Vi > €n) = T1(Hoos Voo Coo)| = 1imsup [OT (py, , Vi, > €5, ) = OT (Hegs Vo s Coo)
k=00 k—o0

= limsup |7, (¢, ) — Too (o)
k— o0

< Tim sup (7, — 7o )(eo)| +

k— o0

Cp — CooHoo =0.

Since this holds for any sequence of converging OT plans, continuity of T; follows from Lemma 56.
For the lower semi-continuity of 7, take a sequence (4, ,),cy With limit 4, ., and consider OT plans z, € IT (u,,v,) such that

inf  x(he,) 2 7y(he,) — 1/n.

7EI (Vi)
Then, by Villani [3, Theorem 5.20] a converging subsequence (z, ke with limit 7z, € IT} (4, vs,) exists, and it follows that

llmgf Ty (> v,

o Cnghep) =liminf —inf (k)

(N
k=00 2€l1Z, (i )
> liminf 7, (h,, )~ 1/n,
k—o0 k Mk

h.o —h

> liminf 7, (h, ) = |Pc.co = Pen
k— o0 k ’ ’ Mk

= 1/n

oo
= 7o (Pe.00) Z To(Heos Veos Coor e 00)-

Consequently, by Lemma 56, lower semi-continuity of T, follows. To infer upper semi-continuity of 7,, and thus continuity, at
(Heo» Voos Coo» Me.oo) Under the assumption of a unique OT plan z* € I} (4y,,v,,) Note by Villani [3, Theorem 5.20] that for any
sequence of OT plans z, € IT* (4,, v,) there exists a weakly converging subsequence z, which tends to z* for k — co. Hence, we

conclude that
limsup Ty (4 > Vi, s Cny > e ) = limsup . inf z(hey,)
k—o0 k=00 ”enfnk (M"k ,vnk)

<limsupr, (hc,,)
k— o0 ’

h.o—h

<lim sup ”nk (hc,oo) - c,00 c,ny

k—oc0

©
= ”oc(hc,oo) = TZ(Moo’ Veosr Coo hc,oo)'

This implies by Lemma 56 the upper semi-continuity of T,. Moreover, for fixed (4’,V/,¢’) the map T, is continuous in A, since for
any h, it holds that

Ty, v, ¢, h) = Ty(u, v, e, Bl < [l = Bl -
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To show upper semi-continuity of T; take a sequence (h,, . h, ,),ey With limit (h,, o, h, o). Further, by definition of C, it follows
from Lemma 1 that any ¢, € C fulfills %, C F C F. Take a sequence f, € S, (4,.v,) € F such that

T3ty Vis € Py By ) < B, (F) + () + 1/n

By compactness of F there exists a uniformly converging subsequence, say (f,, )ien, With limit f, € 7. Next, we demonstrate that
foo € Se_ (Moo Vo). To this end, we note

OT (Heor Veor Con) = Hoo(for ™) + Vo (fo)
= Jim gy, (fo5) + v (£

. Eny Cn n Coo €, Cny n
>l ™) vy, () = [ 155 = k™
k— oo

_ Coo _ fc"k
© ny
) )

C, n,
foooo - fnkk
o0

. Cp, €
fcoccoo Oy
o

= Jim OT Gty vy, = 15 = 1]

o
= OT(MM, Voo» Coo)s
where the last equality follows by continuity of 7;. Hence, we get f, € S, (Heo» Veo)-

By continuity of 4, and h, on 7 and upon denoting the norm on C,(F) by |||z, we infer that

lim sup T3> Vi oCny s Py s o) = lim sup sup Ry () + 1y ()
k—o0 k=00 feS(,nk (g Vi)

< liin sup hy, () + By, (Fo) + 1/
—00

+
F

h,o—h

v,00 v,ny

< T SUp iy () + o) + ”hmo ~ Ry,

t 1/ny
= hy,oc(foo) + hv,oo(foo) < T’i(”oo’ Veos Coo» hﬂ,oo’ hv,oo)

and consequently, by Lemma 56, upper semi-continuity of T; follows. Further, for fixed (4, V', ¢’) the map Tj is continuous in (2
since for another (%, h,) it holds that

h,)

H

[T5(u, v, ¢, hy,

h) =Ty v, by, b))l < By = R,

pec + ”;lv - il\«”Ff :
Finally, for T, take (h,,,hy . by . Ry ,), (By by by By ) € C(F)* and note that
I TyChy o By By By ) = TaCg o By s oy g )
= “hl,u - hZ,MHP + ”;’I,M - 7’2,;4”7: + ”hl,v - hZ,v“r + ”hl,v - h2,vnr >

which asserts continuity. []
E.4. Proof of Lemma 45

For (i) take f,g € G, then |u(f) — u(g)| < ||f — ¢ll, and hence x: G — R defines a Lipschitz map under uniform norm which
asserts y € C,(G). Assertion (ii) follows from Giné and Nickl [100, p. 17]. Finally, (iii) follows from (ii) since for any g € G the
evaluations y,(g) = n~! Y, g(X;) and yz_k(g) = k! Z;‘:] g(X?) are Borel measurable. []

E.5. Proof of Lemma 46

We first prove that Assumption List (JW) implies for n,m — co with m/(n+ m) — A € (0, 1) that

Vi =) (err) | [(erwe) .,
\/Z((Vm _ V)(fc))fep — (Gyn(fc))fep ~> (Gv(fC))fEF (E.1)
’:L_mm(cn‘m -0 (Gfl’m Ge

in the Polish space C,(F) x C,(F) x C(X x Y). To this end, consider the map
Y:C,(F)XC(F)YXCXXY) - C(F)XC,(F)XCX XD),
@ 8.7 = ((a(F)) pps (BU) eyt )

This map is well-defined (i.e., its range is correct) since for any («,f) € C,(F*) x C,(F¢) there exist moduli of continuity
W, wy Ry —> R, such that for f, f € F it follows by Lemma 42 that

[a(f<) = a(f) < wo (|| £ = F|l ) < wo(| f = Fll)-
1Bf) = BUFON < wy(|| £ = Flo) < wp(||f = Flleo)-
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which assert that (a(f°)) rer, (B(f)) rer» 1) € C,(F) X C,(F) X C(X x ¥). Moreover, for any (a, §). (@, f) € C,(F¢) x C,(F°) we have
sup |a(f) = &(f)| = sup la(H)—a(H)l and sup |B(F) = B(f)| = sup |B(f)— Bl
JEF ferFee feF feFe
hence the map ¥ is continuous. Consequently, Assumption List (JW) and the continuous mapping theorem [38, Theorem 1.11.1]
assert weak convergence (E.1).

Moreover, by Varadarajan [92] the empirical measures (y,, v,) weakly converge a.s. in P(X)XP(Y) to (4, v). Note that P(X)xP(Y)
is by compactness of X and ) a separable, complete metric space [101]. Invoking Slutzky’s lemma [38, Example 1.4.7] in conjunction
with (E.1) we thus obtain the first claim. In particular, by measurability of ¢, ,, and Lemma 45, all involved quantities are Borel
measurable.

For the second claim note by Lemma 42 that any realization of y,,v,, and c,,, leads the processes G/ (fnnnn) and G (fnn) to
be Zﬁ-Lipschitz and Zﬁ-Lipschitz in f, respectively. Thus, they are uniformly continuous in f. Moreover, for fixed f € F we
can show that the function

G PA)XC@XY) =R, (f,0) = V(i = (/%)

is upper semi-continuous (i.e., in particular measurable). Indeed, for ji; ~ /i in P(X) and ¢, — ¢ in C(X¥'xY) it follows by Lemma 42,
upper semi-continuity of f¢¢ and the Portmanteau Theorem [38, Theorem 1.3.4] that

lim sup v/n(fy, — p)(f%%) < lim sup Vi = () +24/n || £5% = £ < V(@ = w(F).

k—o00
Hence, by Lemma 45(ii) we conclude that (G (fnm¢nm)) rer 18 Borel measurable. Likewise, we conclude (G} (f“*m)) rer 18 Borel
measurable.
Consequently, by (Sup) we infer, for n,m — oo, that
P .
(GHU*) =G, GO = G =~ 0,00 in G,

The claim now follows by a combination of Slutzky’s lemma and the continuous mapping theorem [38, Example 1.4.7, Theorem
1.11.11. O

E.6. Proof of Lemma 49

The first claim follows by an observation in Romisch [45] since the set of probability measures P(X) is convex. For additional
insights see Aubin and Frankowska [102, Proposition 4.2.1]

For the second claim consider a sequence 4, = (f,—u)/1, with t, > 0 and ji, € P(X) such that ||4, — A||z = sup ;e |4,(f) — A())]| =
0. Then, it follows from triangle inequality that

|ACf) = AU = |4,() — A,(f) + (A= A)(f) + (A - A)(f)
<[4, = Ol +2]|4- 4,7

Herein, the first term vanishes since 4,(f — /) = (i, — u)(x)/t, = 0, whereas the second term converges for n - o to zero. Hence,
A(f) = Af).

The third claim relies on Portemanteau’s theorem [38, Lemma 1.3.4] which asserts using the notion of outer probabilities P*
that

P (G* € T,P(X)) > limsup P* (\/Z(H" —we T”P(X)) =-1. O

n—oo

E.7. Proof of Lemma 55

We start by proving (i). Note for x € R that
(f +0)°) = inf cCx.y) = f() =k = D) =~ x.

which yields the claim. To show assertion (ii), observe by Lemma 42 that

Further, we find that

g(C+AC)(c+A”)

o Sligll +2le + A%l < B. (E.2)

c C c C C c
— llellg = sup gH4H(x) < g HANHAI () < e, — sup T4V (). (E.3)
xeX X€X

Using part (i) of this lemma, we obtain

c

C 4 C 4 ¢ C C C C

gleHAN A e ((g(£+A Ye+A )) + sup glerANe+a )(x)> + sup geHANCHA) ().
xEX XEX

Combining (E.2) and (E.3) with the above equation demonstrates that g(¢+4)X(¢+49¢¢ ¢ 37 4 [—B, B] and hence yields the claim. []

42



S. Hundrieser et al. Stochastic Processes and their Applications 178 (2024) 104462

Appendix F. Elementary analytical results

Lemma 56. Consider a real-valued sequence (a,),cy and let K € R.

(D If for any subsequence (a,, )iey there exists a subsequence (a,,kl )ien With limsup,_,  a, < K, then it follows that limsup,_,, a, <

K
nk[
(i) If for any subsequence (a,, )i there exists a subsequence (a”kr )jen With liminf,_, A, 2 K, then it follows that liminf,_,  a, > K.

(it) If for any subsequence (a,, )ien there exists a subsequence (ank, ey With lim;_,  a,, = K, then it follows that lim, a, =K.

K n— oo

Proof. We only prove (i) and note that (i) and (iii) can be shown analogously. Assume that limsup,,_,, a, = inf,cn(sup,,, a,,) > K+¢
for some & > 0. Since (Sup,,», 4,),en i decreasing in n, this would imply that sup,, a,, > K + ¢ for all n € N. Hence, there would
exist a subsequence of (a,),cy; say (a, )y, With a, > K +¢/2 for all | € N. However, this would assert liminf,_,, a, > K+¢/2 > K,
contradicting the assumption. Thus, limsup,_ a, < K. [

Lemma 57. Let (X,dy) be a compact metric space and consider a continuous (pseudo-)metric dy on X. Then, (X,dy) is a compact
(pseudo-)metric space. Moreover, given a Polish space Y it follows that C((X,dy) X V) C C((X,dy) X V).

Proof. The (pseudo-)metric properties are clearly fulfilled for (X,dy). By continuity of d, under d, the canonical inclusion
1:1(X,dy) > (X, d ¥),x — x is continuous. As the image of a compactum under a continuous map is again compact the first claim
follows. For the second claim, take 4 € C((X,dy) X ¥). Then, the composition map X x ¥ — R, (x,y) = h(i(x), y) is continuous and
therefore the canonical embedding /0(:,Idy) of 4 is included in C((X,dy) x ¥). [
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