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A B S T R A C T

Optimal transport (OT) based data analysis is often faced with the issue that the underlying
cost function is (partially) unknown. This is addressed in this paper with the derivation of
distributional limits for the empirical OT value when the cost function and the measures are
estimated from data. For statistical inference purposes, but also from the viewpoint of a stability
analysis, understanding the fluctuation of such quantities is paramount. Our results find direct
application in the problem of goodness-of-fit testing for group families, in machine learning
applications where invariant transport costs arise, in the problem of estimating the distance
between mixtures of distributions, and for the analysis of empirical sliced OT quantities.

The established distributional limits assume either weak convergence of the cost process in
uniform norm or that the cost is determined by an optimization problem of the OT value over a
fixed parameter space. For the first setting we rely on careful lower and upper bounds for the OT
value in terms of the measures and the cost in conjunction with a Skorokhod representation.
The second setting is based on a functional delta method for the OT value process over the
parameter space. The proof techniques might be of independent interest.

1. Introduction

Statistically sound methods for data analysis relying on the optimal transport (OT) theory (see e.g., Rachev and Rüschendorf
[1], Santambrogio [2], Villani [3]) have won acclaim in recent years. Exemplarily, we mention fitting of generative adversarial
networks [4], novel notions of multivariate quantiles [5,6] and dependence [7–9] or tools for causal inference [10].

Recall that for Polish spaces  and  and a continuous cost function 𝑐 ∶× → R, the OT value between two (Borel) probability
measures 𝜇 ∈ () and 𝜈 ∈ () is defined as

𝑂𝑇 (𝜇, 𝜈, 𝑐) ∶= inf
𝜋∈𝛱(𝜇,𝜈)∫×

𝑐(𝑥, 𝑦) d𝜋(𝑥, 𝑦), (1)

where 𝛱(𝜇, 𝜈) denotes the set of couplings of 𝜇 and 𝜈. Under mild assumptions (1) also admits a dual formulation (see,
e.g., Santambrogio [2]),

𝑂𝑇 (𝜇, 𝜈, 𝑐) = sup
𝑓∈𝐶()∫

𝑓 𝑐𝑐 (𝑥) d𝜇(𝑥) + ∫
𝑓 𝑐 (𝑦) d𝜈(𝑦), (2)
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where 𝐶() stands for the set of real-valued, continuous functions on  . Further, denote by 𝑓 𝑐 (𝑦) ∶= inf𝑥∈ 𝑐(𝑥, 𝑦) − 𝑓 (𝑥) and
𝑐𝑐 (𝑥) ∶= inf𝑦∈ 𝑐(𝑥, 𝑦)−𝑓 𝑐 (𝑦) the cost-transformations of 𝑓 and 𝑓 𝑐 under 𝑐, respectively; also often referred to as 𝑐-transformations.

If  =  and the cost function 𝑐 = 𝑑𝑝 is the 𝑝th power (𝑝 ≥ 1) of a metric 𝑑 on  the OT value gives rise to the 𝑝-Wasserstein
istance

𝑊𝑝(𝜇, 𝜈) ∶= (𝑂𝑇 (𝜇, 𝜈, 𝑑𝑝 ))
1∕𝑝,

hich defines a metric on the space of probability measures with 𝑝-th moments [3, Chapter 6]. This metric is particularly useful for
any data analysis tasks due to its potential awareness of the ‘‘inner geometry’’ of  . For instance, interpreting (normalized) images,

r more precisely the corresponding pixel locations and intensities, as probability measures, it has been argued that the distance
nduced by OT corresponds to the natural expectations of what appears close or far away for the human eye [11]. Meanwhile, there
s a plenitude of real world showcases where OT based distances (and their associated transport plans) prove useful for applications
.g., in cell biology [12,13], genetics [14,15], protein structure analysis [16,17] or fingerprint analysis [18], to mention but a few.
n these works, the cost function is selected by the practitioner and tailored to the concrete application, e.g., a tree distance on the
pace of phylogenetic trees as in [14] or the Euclidean distance as in [13].

However, there are various instances where the underlying cost naturally depends on the measures. Examples include,
.g., Wasserstein based goodness-of-fit testing under group families [19] or Wasserstein Procrustes analysis [20], where it is central
hat the underlying OT problem is invariant with respect to certain transformations. Moreover, for sliced OT [21] or projection robust
T [22,23], the Wasserstein distance between multiple low-dimensional projections of measures is computed. Taking the maximum
f all one-dimensional (resp. low-dimensional) projections gives rise to the max-sliced Wasserstein distance [24] (resp. projection
obust OT cost [22]) which induces a measure-dependent cost since maximizing directions are determined by the underlying
easures. Since the underlying measures are generally unknown and have to be estimated from data, the cost function has to

e estimated as well. The interest of learning the cost function from observations has also gained interest in economics to model
igration flows [25,26] and in the machine learning community for geodesic flows of probability measures [27]. Finally, let us
ote for completeness that the problem of identifiability of the cost function from OT values, transport plans, or potentials has only
ecently been analyzed [28].

Motivated by these considerations, we provide in this work a general framework for the statistical analysis for empirical OT
nder costs that are dependent on the underlying measures. Adopting a statistical point of view, we assume that we do not have
ccess to the measures 𝜇 and 𝜈 but only to independent samples {𝑋𝑖}𝑛𝑖=1 ∼ 𝜇⊗𝑛 and {𝑌𝑖}𝑚𝑖=1 ∼ 𝜈⊗𝑚 with 𝑛, 𝑚 ∈ N. Upon defining the
mpirical measures 𝜇𝑛 ∶=

1
𝑛
∑𝑛
𝑖=1 𝛿𝑋𝑖 and 𝜈𝑚 ∶= 1

𝑚
∑𝑚
𝑖=1 𝛿𝑌𝑖 and given a random cost function1 𝑐𝑛,𝑚 such that 𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚) estimates

the quantity 𝑂𝑇 (𝜇, 𝜈, 𝑐), our main focus is on characterizing for 𝑛, 𝑚→ ∞ with 𝑚∕(𝑛 + 𝑚) → 𝜆 ∈ (0, 1) the limit distribution of
√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

. (3)

This is of particular interest for asymptotic tests about the relation between 𝜇 and 𝜈 for unknown 𝑐 based on the OT value. Further,
this enables the derivation of confidence intervals for the OT value 𝑂𝑇 (𝜇, 𝜈, 𝑐). As it is practically more relevant, we mainly focus
on the scenario where both measures 𝜇 and 𝜈 are unknown. However, we stress that our theory also provides distributional limits
or the one-sample case, i.e., when only 𝜇 is estimated from data while 𝜈 is assumed to be known and vice versa (see Remarks 4 and
). Moreover, although we mostly focus on empirical measures to estimate the underlying measures, our theory also enables the
erivation of distributional limits for alternative measure estimators (see, e.g., [29]), provided that the corresponding distributional
imits for the measures can be determined.

For a fixed cost function, i.e., for 𝑐𝑛,𝑚 ≡ 𝑐 for some 𝑐 ∈ 𝐶( × ), already various works derived limit distribution results for
he empirical OT quantity in (3). A specific situation arises for probability measures on R with 𝑐𝑝(𝑥, 𝑦) = |𝑥 − 𝑦|𝑝 for 𝑝 ≥ 1 [30–34]
here the OT plan can be represented via a quantile coupling. For this setting, quantile process theory [35] in combination with

ntegrability conditions on the underlying densities have been exploited to derive distributional limits.
Moreover, on general Euclidean spaces R𝑑 with 𝑑 ≥ 1 and 𝑝th power costs 𝑐𝑝(𝑥, 𝑦) = ‖𝑥 − 𝑦‖𝑝 with 𝑝 > 1 it has been shown

y del Barrio et al.[36,37] for probability measures 𝜇, 𝜈 with connected support and finite 2𝑝-th moments for 𝑛, 𝑚 → ∞ with
∕(𝑛 + 𝑚) → 𝜆 ∈ (0, 1) that

√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑝) − E
[

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑝)
])

⇝  (0, 𝜎2𝜇,𝜈 ), (4)

where 𝜎2𝜇,𝜈 > 0 if and only if 𝜇 ≠ 𝜈. Here and throughout, ‘‘⇝’’ denotes weak convergence in the sense of Hoffman-Jørgensen
(see van der Vaart and Wellner [38, Chapter 1.3]). Their proof is based on an 𝐿2-linearization technique of the OT value and
relies on the Efron-Stein inequality. In general, the centering quantity E[𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑝)] in (4) cannot be replaced by its population
uantity 𝑂𝑇 (𝜇, 𝜈, 𝑐𝑝) which hinders further statistical inference purposes. Indeed, for identical absolutely continuous probability
easures 𝜇 = 𝜈 on R𝑑 with sufficiently many moments it follows for 𝑑 > 2𝑝 by Fournier and Guillin [39],Weed and Bach [40] that

E
[

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑝)
]

≍ min(𝑛, 𝑚)−𝑝∕𝑑 .

1 Here, 𝑐 is either a direct estimator for 𝑐 or chosen via an OT-related optimization problem over a parameter class.
2

𝑛,𝑚
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Moreover, for different measures 𝜇 ≠ 𝜈 on R𝑑 which are absolutely continuous and sub-Weibull it has been shown for 𝑑 ≥ 5
by Manole and Niles-Weed [41] that

E
[

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑝)
]

− 𝑂𝑇 (𝜇, 𝜈, 𝑐𝑝) ≍ min(𝑛, 𝑚)−min(𝑝,2)∕𝑑 .

These rates are also minimax optimal (up to logarithmic factors) over appropriate collections of identical measures 𝜇 = 𝜈 [42]
s well as different measures 𝜇 ≠ 𝜈 [41]. In particular, this demonstrates that estimation of the OT value suffers from the curse of
imensionality and showcases that it is in general for 𝑑 ≥ 5, due to the dominance of the bias, not possible to replace E[𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑝)]
ith 𝑂𝑇 (𝜇, 𝜈, 𝑐𝑝) in (4).

Nevertheless, according to the recently discovered lower complexity adaptation principle for empirical OT [43], fast convergence
ates are still achieved if one of the population measures, 𝜇 or 𝜈, is supported on a sufficiently low dimensional domain. Based on
his observation, Hundrieser et al. [44] proved for compactly supported 𝜇, 𝜈 on R𝑑 , with 𝜇 supported on a finite set or a smooth
ubmanifold of dimension 𝑑 < 2min(𝑝, 2) using the functional delta method [45],

√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑝) − 𝑂𝑇 (𝜇, 𝜈, 𝑐𝑝)
)

⇝ sup
𝑓∈𝑆𝑐𝑝 (𝜇,𝜈)

√

𝜆G𝜇(𝑓 𝑐𝑝𝑐𝑝 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐𝑝 ), (5)

where 𝑆𝑐𝑝 (𝜇, 𝜈) is the set of optimizers of (2) and G𝜇 ,G𝜈 denote 𝜇-, 𝜈-Brownian bridges, i.e., centered Gaussian processes with
covariance structure characterized by

Cov[G𝜇(𝑓 ),G𝜇(𝑔)] = ∫ 𝑓𝑔 d𝜇 − ∫ 𝑓 d𝜇 ∫ 𝑔 d𝜇 for 𝑓, 𝑔 ∈ 𝐶() (6)

and likewise for G𝜈 . The asymptotic theory laid out in (5) also provides a unified framework for distributional limits of the empirical
OT value under discrete population measures [18,46] and the semi-discrete setting [47].

The central contribution of this work is to extend such distributional limits from (5) to settings where the cost function is not
fixed and additionally may depend on the underlying measures. We focus on the following two special instances.

(A) The cost estimator 𝑐𝑛,𝑚, centered by its population counterpart 𝑐 and suitably rescaled, weakly converges in 𝐶( × ) to a
tight limit, i.e.,

√

𝑛𝑚
𝑛 + 𝑚

(

𝑐𝑛,𝑚 − 𝑐
)

⇝ G𝑐 in 𝐶( × ).

(B) There exists a collection {𝑐𝜃}𝜃∈𝛩 of costs such that for any 𝜇 ∈ (), 𝜈 ∈ () the corresponding cost function 𝑐𝜇,𝜈 ∶= 𝑐𝜃 is
selected according to an optimization problem of the OT value over 𝛩, i.e., either

𝜃 ∈ argmax
𝜃∈𝛩

𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃) or 𝜃 ∈ argmin
𝜃∈𝛩

𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃).

These two settings are natural and treat a wide spectrum of problems. Furthermore, they are strongly related. It is noteworthy
that setting (B) could be treated in the framework of (A) by estimating the optimal 𝜃. However, this approach requires the existence
of a unique population cost function and weak convergence of the cost process as a random element in 𝐶( ×). Since we are only
interested in the empirical infimal or supremal OT value it is instead more natural to rely on an alternative approach which does
not require uniqueness of the population cost function or weak convergence of the cost process.

For setting (A) we allow the cost function to be estimated from the given data and thus capture the asymptotic dependency
between the cost estimator and the empirical measures. In particular, this enables an analysis of the empirical OT cost when the
cost estimator is parametrized by a plug-in estimator, e.g., a maximum likelihood procedure. Notably, setting (A) also allows the cost
function to be estimated from independent data. Overall, this setting covers many scenarios with ‘‘extrinsically estimated costs’’. We
refer to Sections 4.1 and 4.3 for examples. For setting (B) the motivation slightly differs. Here, the selected cost function depends
on the OT problem itself and often brings invariance of the OT problem with respect to a class of transformation parametrized by
𝛩. One could describe this as OT with ‘‘intrinsically estimated costs’’. Examples of this setting are provided in Sections 4.2 and 4.4.

Under suitable assumptions we show in Theorem 2 for setting (A) that
√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

⇝ inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆G𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐 ),

where 𝛱⋆
𝑐 (𝜇, 𝜈) represents the set of optimizers for (1) for 𝜇, 𝜈 with costs 𝑐 and 𝜋(G𝑐 ) ∶= ∫ G𝑐d𝜋. For setting (B) we only state below

he distributional limit for supremal costs; a similar distributional limit also occurs for infimal costs (Theorem 6). Upon defining
he set 𝑆+(𝛩, 𝜇, 𝜈) = argmax𝜃∈𝛩 𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃) of maximizers we show in Theorem 7 that

√

𝑛𝑚
𝑛 + 𝑚

(

sup
𝜃∈𝛩

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜃) − sup
𝜃∈𝛩

𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
)

⇝ sup
𝜃∈𝑆+(𝛩,𝜇,𝜈)

sup
𝑓𝜃∈𝑆𝑐𝜃 (𝜇,𝜈)

√

𝜆G𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐𝜃𝜃 ).

In addition to these distributional limits we show for both settings (A) and (B) consistency of a bootstrap principle. This is of
practical importance since quantiles of the respective distributional limits are difficult to express explicitly due to their dependency
on the collection of primal and dual optimizers for population measures and cost.

Our proof technique for the distributional limit under setting (A) differs from previous approaches and might be of interest in its
3

own right. More precisely, due to the estimation of the cost function, we cannot rely on any of the techniques from the references
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mentioned above. Instead, we derive certain lower and upper bounds on the OT value which fulfill appropriate (semi-)continuity
properties. In conjunction with a Skorokhod representation for the empirical process jointly with the cost process, this enables us to
prove that the law of the empirical OT value with estimated costs is asymptotically stochastically dominated from above and below
by the asserted limit distribution.

For the analysis of setting (B) we show under suitable assumptions on the cost family {𝑐𝜃}𝜃∈𝛩 and the underlying probability
measures, that the empirical OT process

√

𝑛(𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜃) − 𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃))𝜃∈𝛩 weakly converges in 𝐶(𝛩) to a tight random variable.
We prove this result by invoking the functional delta method in conjunction with a general result on Hadamard directional
differentiability for extremal-type functionals uniformly over a compact parameter space (see Appendix A). The latter can be viewed
as an extension of Fang and Santos [48, Lemma S.4.9] to processes over 𝛩 and relies on Dini’s theorem [49, Corollary 1]. Central
or this differentiability result is a certain continuity condition among the sets of maximizing elements for varying parameter. For
he OT process it is fulfilled, e.g., if for every 𝜃 ∈ 𝛩 the set of dual optimizer 𝑆𝑐𝜃 (𝜇, 𝜈) is unique (up to constant shift). A similar
ssumption has been imposed by Xi and Niles-Weed [50] for weak convergence of the empirical sliced OT process, which can be
iewed as a special instance of our results for general OT processes, see Section 4.4. The distributional limits for the empirical
nfimal and supremal OT value over 𝜃 ∈ 𝛩 then follow by another application of the functional delta method.

utline. We begin our exposition by deriving in Section 2.1 an appropriate dual formulation of the OT value which proves useful
or our subsequent considerations. We then proceed with our main contributions, distributional limits for the empirical OT value
nder weakly converging costs in Section 2.2 as well as for the empirical OT value under extremal-type costs in Section 2.3.
hese asymptotic results are complemented with consistency results of bootstrap resampling schemes in Section 2.4. We discuss
ur assumptions for the distributional limits and the bootstrap principles in Section 3 and provide sufficient conditions for their
alidity. Statistical applications of our theory are provided in Section 4, where we also derive a deterministic (first-order) stability
esult for the OT cost under joint perturbations of measures and cost function. In Section 5 we explicitly construct functionals which
nables us to ‘‘elevate’’ the regularity of cost estimators to that of their population counterparts. We employ them in the proofs of
ur main results which are stated in Section 6. All remaining proofs as well as auxiliary results and lemmata are relegated to the
ppendices. For ease of reading the technical discussion of Section 3 can be skipped for a first reading and one may forward from
ection 2 immediately to Section 4 on applications which provides an entry point to those readers who would like to apply our
esults to a particular setting of their own.

otation and technical prerequisites. Given a set 𝑇 denote by 𝓁∞(𝑇 ) the Banach space of bounded functionals on 𝑇 equipped with
niform norm ‖𝜑‖ ∶= sup𝑡∈𝑇 |𝜑(𝑡)|. Moreover, if 𝑇 is equipped with a topology 𝜏 denote by 𝐶(𝑇 ) the Banach space of real valued,
ounded, continuous functions on 𝑇 equipped with uniform norm. If 𝑑𝑇 denotes a metric on 𝑇 , then we define by 𝐶𝑢(𝑇 , 𝑑𝑇 ), or 𝐶𝑢(𝑇 )
hen the metric 𝑑𝑇 is clear from context, the space of real-valued, bounded, uniformly continuous functions on (𝑇 , 𝑑). Endowed
ith the uniform norm, it is a Banach space as well. A real-valued function class  on  is always be equipped with uniform norm.
his specifies the Banach space 𝐶𝑢( ) which is a closed subset of the Banach space 𝓁∞( ). Moreover, for 𝜀 > 0 the covering number
(𝜀, 𝑇 , 𝑑) denotes the minimal number of sets with diameter 2𝜀 to cover 𝑇 , and we write 𝑥 ≲ 𝑦 when there exists a constant 𝐶 > 0

ith 𝑥 ≤ 𝐶𝑦. For a topological space  the set () denotes the collection of Borel probability measures on  . Integration ∫ 𝑓d𝜇
f a real-valued Borel measurable function 𝑓 ∶ → R with respect to 𝜇 ∈ () is abbreviated by 𝜇(𝑓 ) or 𝜇𝑓 . Further, we denote
y 𝑓#𝜇 the pushforward of 𝜇 under 𝑓 . We define all random variables on the same probability space (𝛺,,P). We further assume a
roduct structure of that space to define samples and the random weights of the bootstrap, i.e., 𝛺 = 𝛺0×𝛺1×⋯ and P = P0⊗P1×⋯
o that the samples only depend on (𝛺0,P0), the weights of the first bootstrap replicate on (𝛺1,P1) and so on. The law of a random
ariable 𝑋 is denoted by (𝑋). We finally assume that there exist infinite sequences of measurable maps 𝑋1, 𝑋2,… from (𝛺0,P0) to
, respectively, and that samples of cardinality 𝑛 are obtained from the infinite sequence by projection of the first 𝑛 coordinates.
uter probability measures are denoted by P∗ (see [38, Chapter 1.2]). Denoting by BL1 the set of real-valued functions on a metric

pace (𝑇 , 𝑑𝑇 ) which are bounded by one in uniform norm and such that |𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝑑𝑇 (𝑥, 𝑦) for any 𝑥, 𝑦 ∈ 𝑇 , we define the
ounded Lipschitz metric between two probability measures 𝜇, 𝜈 as 𝑑𝐵𝐿(𝜇, 𝜈) ∶= sup𝑓∈BL1 |𝜇(𝑓 ) − 𝜈(𝑓 )|. For a set 𝐴 and a function
, we write 𝑓 (𝐀) ∶= {𝑓 (𝑎) | 𝑎 ∈ 𝐴}. For two subsets 𝐴,𝐵 of a vector space, 𝐴 + 𝐵 ∶= {𝑎 + 𝑏 ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. The set of symmetric

resp. symmetric positive definite) matrices in R𝑑×𝑑 is denoted by S(𝑑) (resp. SPD(𝑑)).

. Main results

.1. Preliminaries

For our theory on distributional limits for the empirical OT value under estimated cost functions we consider throughout compact
olish spaces  and  . Given a continuous cost function 𝑐 ∈ 𝐶( × ) and probability measures 𝜇 ∈ (), 𝜈 ∈ () there always
xist optimizers to both primal and dual problem [3, Theorems 4.1 and 5.10].

According to Villani [51, Remark 1.13], dual optimizers can always be selected from the function class

𝑐 ∶=
{

ℎ ∶  → R |

|

|

∃𝑔∶ → [− ‖𝑐‖∞ , ‖𝑐‖∞], ℎ(⋅) = inf
𝑦∈

𝑐(⋅, 𝑦) − 𝑔(𝑦)
}

, (7)

hich yields for any 𝜇 ∈ (), 𝜈 ∈ () the alternative dual representation of the OT value,

𝑂𝑇 (𝜇, 𝜈, 𝑐) = sup 𝜇(ℎ𝑐𝑐 ) + 𝜈(ℎ𝑐 ). (8)
4
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𝐵

The function class 𝑐 is uniformly bounded, and each element exhibits the same modulus of continuity as 𝑐, hence it is compact in
𝐶() by the Theorem of Arzelà-Ascoli. Formula (8) was exploited by Hundrieser et al. [44] for distributional limits of the empirical
OT value under a fixed cost function.

For our purposes, we require a dual formulation over a fixed function class which holds for more than a single cost function
and to circumvent potential measurability issues we seek a function class which is compact in 𝐶() (cf. Lemma 45). To this end, let
> 0 and consider a concave modulus of continuity 𝑤∶R+ → R+. Then, for a continuous metric 𝑑 on  we define the compact

function class  (𝐵,𝑤) ⊆ 𝐶(),

 (𝐵,𝑤) ∶=
{

𝑓 ∶ → R |

|

|

‖𝑓‖∞ ≤ 2𝐵, |𝑓 (𝑥) − 𝑓 (𝑥′)| ≤ 𝑤(𝑑 (𝑥, 𝑥′)) for all 𝑥, 𝑥′ ∈ 
}

, (9)

which will be utilized for a dual representation of the OT value under suitable costs.

Lemma 1 (Dual formulation). Let 𝑐 ∈ 𝐶( ×) with ‖𝑐‖∞ ≤ 𝐵 and |𝑐(𝑥, 𝑦) − 𝑐(𝑥′, 𝑦)| ≤ 𝑤
(

𝑑 (𝑥, 𝑥′)
)

for all 𝑥, 𝑥′ ∈  , 𝑦 ∈  . Then, for
 ∶=  (𝐵,𝑤) the following inclusions hold

𝑐 ⊆  𝑐𝑐 ⊆ 𝑐 + [−2𝐵, 2𝐵] and 𝑐
𝑐 ⊆  𝑐 ⊆ 𝑐

𝑐 + [−2𝐵, 2𝐵].

Further, for arbitrary probability measures 𝜇 ∈ () and 𝜈 ∈ () it follows that

𝑂𝑇 (𝜇, 𝜈, 𝑐) = sup
𝑓∈

𝜇(𝑓 𝑐𝑐 ) + 𝜈(𝑓 𝑐 ) (10)

and the set of dual optimizers 𝑆𝑐 (𝜇, 𝜈) of (10), referred to as Kantorovich potentials, is non-empty.
The proof of Lemma 1 is deferred to Section 6.1. Overall, Lemma 1 justifies the use of the function class  =  (𝐵,𝑤) for a dual

OT formulation and enables us to state conditions of distributional limits in terms of  instead of potentially varying collections of
functions.

2.2. Distributional limits under weakly converging costs

For the distributional limits in all the statements below, we consider independent and identically distributed random variables
{𝑋𝑖}𝑛𝑖=1 ∼ 𝜇⊗𝑛 and independent {𝑌𝑖}𝑚𝑖=1 ∼ 𝜈⊗𝑚 defined on the probability space put forward in the introduction. Based on these
samples, we define empirical measures 𝜇𝑛 ∶= 1

𝑛
∑𝑛
𝑖=1 𝛿𝑋𝑖 and 𝜈𝑚 ∶= 1

𝑚
∑𝑚
𝑖=1 𝛿𝑌𝑖 . All the subsequent asymptotic results are to be

understood for 𝑛, 𝑚→ ∞ with 𝑚∕(𝑛 + 𝑚) → 𝜆 ∈ (0, 1), which we do not recall each time for space considerations.
Our main result on the limit law for the empirical OT value under weakly converging costs is given as follows for the two-sample

case. The one-sample case is discussed in Remark 4(ii).

Theorem 2 (OT under weakly converging costs). Let 𝑐 ∈ 𝐶( × ) and consider an estimator 𝑐𝑛,𝑚 ∈ 𝐶( × ) for 𝑐 such that 𝑐𝑛,𝑚(𝑥, 𝑦)
is measurable for each (𝑥, 𝑦) ∈  ×  . Let 𝑤∶R+ → R+ be a concave modulus of continuity for 𝑐 with 𝑤(𝛿) > 0 for 𝛿 > 0 such that
|𝑐(𝑥, 𝑦) − 𝑐(𝑥′, 𝑦)| ≤ 𝑤(𝑑 (𝑥, 𝑥′)) for all 𝑥, 𝑥′ ∈  , 𝑦 ∈  . Assume for 𝜇 ∈ (), 𝜈 ∈ () the following.

(JW) For the function class  =  (2 ‖𝑐‖∞ + 1, 2𝑤) from (9) joint weak convergence occurs,

√

𝑛𝑚
𝑛 + 𝑚

⎛

⎜

⎜

⎝

𝜇𝑛 − 𝜇
𝜈𝑚 − 𝜈
𝑐𝑛,𝑚 − 𝑐

⎞

⎟

⎟

⎠

⇝

⎛

⎜

⎜

⎜

⎝

√

𝜆 G𝜇
√

1 − 𝜆 G𝜈

G𝑐

⎞

⎟

⎟

⎟

⎠

in 𝓁∞( 𝑐𝑐 ) × 𝓁∞( 𝑐 ) × 𝐶( × ),

where (G𝜇 ,G𝜈 ,G𝑐 ) is a tight random variable and G𝜇 ,G𝜈 have covariance as in (6).

Further, suppose either one of the following two assumptions.

(OP) There exists a unique OT plan 𝜋 ∈ 𝛱⋆
𝑐 (𝜇, 𝜈) between 𝜇 and 𝜈 for the cost function 𝑐.

(Sup) The empirical processes G𝜇
𝑛 ∶=

√

𝑛(𝜇𝑛 − 𝜇) and G𝜈
𝑚 ∶=

√

𝑚(𝜈𝑚 − 𝜈) fulfill the convergence sup𝑓∈ G𝜇
𝑛 (𝑓 𝑐𝑛,𝑚𝑐𝑛,𝑚 − 𝑓 𝑐𝑐 )

P∗
←←←←←←←←←←←→ 0 and

sup𝑓∈ G𝜈
𝑚(𝑓

𝑐𝑛,𝑚 − 𝑓 𝑐 )
P∗
←←←←←←←←←←←→ 0.

Then, it follows that
√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

⇝ inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆 G𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆 G𝜈 (𝑓 𝑐 ).

A key insight of Theorem 2 is that the limit distribution for the estimated OT value can be decomposed into two terms: the
fluctuation of the cost estimators evaluated at the collection of OT plans and the Kantorovich potentials evaluated at the limit of
the empirical process. Under uniqueness of primal and dual optimizers for the population OT problem we obtain the following.

Corollary 3 (OT under weakly converging costs and uniqueness). In the setting of Theorem 2 assume (JW)and (OP), and suppose that
the set of Kantorovich potentials 𝑆𝑐 (𝜇, 𝜈) for 𝜇, 𝜈 with cost function 𝑐 is unique (up to a constant shift).2 Then, for 𝜋 ∈ 𝛱⋆

𝑐 (𝜇, 𝜈) and

2 By this we mean, for any 𝑓, 𝑔 ∈ 𝑆 (𝜇, 𝜈) the difference 𝑓 − 𝑔 is constant on supp(𝜇).
5
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d

I
i

𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈), it follows that
√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

⇝ 𝜋(G𝑐 ) +
√

𝜆G𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐 ). (11)

In particular, if (G𝜇 ,G𝜈 ,G𝑐 ) is a jointly centered Gaussian process in 𝓁∞( 𝑐𝑐 ) × 𝓁∞( 𝑐 ) × 𝐶( × ), the weak limit in (11) is centered
normal.

The proof of Theorem 2 is deferred to Section 6.2.1 and relies on careful lower and upper bounds for the empirical OT value
due to the primal (1) and dual formulation (10), as well as arguments from empirical process theory. In the course of this, a key
argument is the application of Lemma 1 for 𝑐𝑛,𝑚 and 𝑐. Notably, we do not demand that the cost estimator 𝑐𝑛,𝑚 is suitably bounded
or exhibits a similar modulus of continuity as 𝑐 itself. Instead, we construct by Corollary 39 an alternative cost estimator 𝑐𝑛,𝑚 such
that the conditions, ‖𝑐𝑛,𝑚‖∞ ≤ 2 ‖𝑐‖∞ + 1 as well as |𝑐𝑛,𝑚(𝑥, 𝑦) − 𝑐𝑛,𝑚(𝑥′, 𝑦)| ≤ 2𝑤(𝑑 (𝑥, 𝑥′)) for all 𝑥, 𝑥′ ∈  , 𝑦 ∈  , are fulfilled
eterministically and

√

𝑛𝑚∕(𝑛 + 𝑚)‖𝑐𝑛,𝑚 − 𝑐𝑛,𝑚‖∞
P
→ 0. The latter implies by Lemma 43 that

√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚)
)

≤
√

𝑛𝑚
𝑛 + 𝑚

‖𝑐𝑛,𝑚 − 𝑐𝑛,𝑚‖∞
P
→ 0.

t thus suffices to show the assertion for 𝑐𝑛,𝑚 where the dual formulation from Lemma 1 involving the function class  (2 ‖𝑐‖∞+1, 2𝑤)
s available. We call 𝑐𝑛,𝑚 a regularity elevation of 𝑐𝑛,𝑚; details on different kinds of regularity elevations are given in Section 5. The

notion of regularity elevations also proves to be useful for showing the validity of (Sup) as outlined in Section 3.3.

Remark 4. We like to comment on a few aspects of the derived distributional limits.

(i) The assumptions of Theorem 2 and sufficient conditions for their validity are discussed in Sections 3.1–3.3. Effectively, (JW)
delimits the theory to settings of low dimensionality. In such settings (Sup) is often also valid as long as the population cost
is sufficiently regular.

(ii) Our proof technique for Theorem 2 and Corollary 3 also asserts distributional limits for the one-sample setting, i.e., when 𝜇
is estimated by 𝜇𝑛 and 𝜈 is assumed to be known. For this setting, (JW) reduces to the condition

√

𝑛
(

𝜇𝑛 − 𝜇
𝑐𝑛 − 𝑐

)

⇝

(

G𝜇

G𝑐

)

in 𝓁∞( 𝑐𝑐 ) × 𝐶( × ).

Moreover, in (Sup) we only require that sup𝑓∈ G𝜇
𝑛 (𝑓 𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )

P∗
←←←←←←←←←←←→ 0. Then,

√

𝑛
(

𝑂𝑇 (𝜇𝑛, 𝜈, 𝑐𝑛) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

⇝ inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)
G𝜇(𝑓 𝑐𝑐 ).

In case of a fixed cost function, i.e., when selecting 𝑐𝑛 = 𝑐, List (Sup) is trivially met and the conditions of Theorem 2 reduce
to  𝑐𝑐 being 𝜇-Donsker and  𝑐 being 𝜈-Donsker. Further, by Lemma 1 this is equivalent to 𝑐 and 𝑐

𝑐 being Donsker for 𝜇 and
𝜈 [38, Theorem 2.10.1 and Example 2.10.7], respectively, matching the Donsker conditions of Theorem 2.2 under bounded,
continuous costs on compact domains in Hundrieser et al. [44] (in this setting Assumptions (C), (E), and (P) are all met)
which imply that

√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

⇝ sup
𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆G𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐 ).

(iii) Our proof technique also yields distributional limits for the estimated OT value when instead of empirical measures 𝜇𝑛 and
𝜈𝑚 one considers measurable estimators 𝜇̃𝑛 ∈ (), 𝜈̃𝑚 ∈ (), respectively, that fulfill 𝜇̃𝑛 ⇝ 𝜇 and 𝜈̃𝑚 ⇝ 𝜈 in probability.
This would mean to replace the empirical measures 𝜇𝑛 and 𝜈𝑚 in Assumptions (JW) and (Sup) by 𝜇̃𝑛 and 𝜈̃𝑚, respectively. In
addition, instead of the scaling rate

√

𝑛𝑚∕(𝑛 + 𝑚) our proof technique theory also permits a different scaling rate 𝑎𝑛,𝑚 which
diverges to infinity for 𝑛, 𝑚→ ∞.

(iv) In Proposition 34 we prove that the OT value is Gateaux differentiable in all three entries (𝜇, 𝜈, 𝑐) for admissible directions
(𝛥𝜇 , 𝛥𝜈 , 𝛥𝑐 ) ∈ (() − 𝜇) × (() − 𝜈) × 𝐶( × ) with derivative,

(𝛥𝜇 , 𝛥𝜈 , 𝛥𝑐 ) ↦ inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(𝛥𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)
𝛥𝜇(𝑓 𝑐𝑐 ) + 𝛥𝜈 (𝑓 𝑐 ).

Hence, the asymptotic distribution described in Theorem 2 may also be interpreted as a derivative of the OT value with
respect to the triple (𝜇, 𝜈, 𝑐) evaluated at the limit process. Proving Theorem 2 via an application of the functional delta
method would amount to showing Hadamard directional differentiability of the OT value [45]. However, this turns out be a
challenging issue without imposing additional assumptions on the measure and cost estimators, see Remark 35.

(v) In case of a centered normal limit in (11) the limit variance is given by

Var
(

𝜋(G𝑐 )
)

+ 𝜆Var𝑋∼𝜇
(

𝑓 𝑐𝑐 (𝑋)
)

+ (1 − 𝜆) Var𝑌∼𝜇
(

𝑓 𝑐 (𝑌 )
)

+ 2
√

𝜆Cov
(

𝜋(G𝑐 ),G𝜇(𝑓 𝑐𝑐 )
)

+ 2
√

1 − 𝜆Cov
(

𝜋(G𝑐 ),G𝜈 (𝑓 𝑐 )
)

,

where we used that the random variables 𝑋1,… , 𝑋𝑛 and 𝑌1,… , 𝑌𝑛 are independent. In particular, the limit law degenerates
if both Kantorovich potentials (𝑓 𝑐𝑐 , 𝑓 𝑐 ) are (𝜇, 𝜈)-almost surely constant and 𝑐𝑛,𝑚 converges to 𝑐 with a faster rate than
(𝑛𝑚∕(𝑛 + 𝑚))−1∕2, uniformly on the support of the OT plan 𝜋. For a sharp characterization of the occurrence of almost surely
constant Kantorovich potentials we refer to Section 4 of Hundrieser et al. [44] where the authors showcase that for most cost
6
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2.3. Distributional limits under extremal-type costs

As noted in the introduction, could the empirical infimal or supremal OT value over a fixed collection of cost functions also be
nalyzed using the previously described framework. However, as part of this approach, we would require the existence of a single
nderlying population cost function as well as weak convergence of the cost estimator. To broaden the scope of our theory, we
ollow in this subsection a different route to derive limiting distributions where such conditions are not required. More precisely,
e first prove a uniform distributional limit for the empirical OT process indexed over the collection of cost functions before relying
n a delta method to characterize the distributional limits for the respective infimal and supremal statistics.

For the subsequent assertions we again adhere to the sampling convention provided at the beginning of Section 2.2. The
ne-sample case is discussed in Remark 9(iii).

heorem 5 (OT process uniformly over compact 𝛩). Let 𝛩 be a compact Polish space and consider a continuous map 𝑐 ∶𝛩 → 𝐶( × ),
↦ 𝑐𝜃 . Let 𝑤∶R+ → R+ be a modulus of continuity such that sup𝜃∈𝛩 |𝑐𝜃(𝑥, 𝑦) − 𝑐𝜃(𝑥′, 𝑦)| ≤ 𝑤(𝑑 (𝑥, 𝑥′)) for all 𝑥, 𝑥′ ∈  , 𝑦 ∈  . Assume

or 𝜇 ∈ (), 𝜈 ∈ () the following.

Don) For the function class  =  (sup𝜃∈𝛩 ‖

‖

𝑐𝜃‖‖∞ , 𝑤) from (9) the collection ⋃

𝜃∈𝛩  𝑐𝜃𝑐𝜃 is 𝜇-Donsker and ⋃

𝜃∈𝛩  𝑐𝜃 is 𝜈-Donsker.

KP) For any 𝜃 ∈ 𝛩, the set of Kantorovich potentials 𝑆𝑐𝜃 (𝜇, 𝜈) ⊆  for the OT problem between 𝜇 and 𝜈 and cost 𝑐𝜃 is unique (up to a
constant shift).

hen, upon selecting 𝑓𝜃 ∈ 𝑆𝑐𝜃 (𝜇, 𝜈) for any 𝜃 ∈ 𝛩, it follows that
√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜃) − 𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
)

𝜃∈𝛩
⇝

(
√

𝜆G𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 ) +
√

1 − 𝜆G𝜈(𝑓 𝑐𝜃𝜃 )
)

𝜃∈𝛩
in 𝐶(𝛩).

The proof of Theorem 5 is based on Hadamard directional differentiability of the OT cost process, which follows from a
eneral sensitivity analysis for extremal-type functions uniformly over a compact parameter space Appendix A. The assertion for
he empirical OT process then follows by invoking the functional delta method [45]; the proof is deferred to Section 6.3.1.

From the above result, given any functional 𝛷∶ 𝐶(𝛩) → R that is Hadamard directionally differentiable at the function
𝑇 (𝜇, 𝜈, 𝑐(⋅)) ∈ 𝐶(𝛩), Theorem 5 yields by another application of the functional delta method, the distributional limit

√

𝑛𝑚
𝑛 + 𝑚

(

𝛷
(

(𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜃))𝜃∈𝛩
)

−𝛷
(

(𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃))𝜃∈𝛩
)

)

⇝ 𝐷𝐻
𝑂𝑇 (𝜇,𝜈,𝑐(⋅))𝛷

(

(

√

𝜆G𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐𝜃𝜃 )
)

𝜃∈𝛩

)

.

ere, 𝐷𝐻
𝑂𝑇 (𝜇,𝜈,𝑐(⋅))𝛷 denotes the directional Hadamard derivative of 𝛷. This enables the derivation of the limit distribution for the

nfimal mapping using Fang and Santos [48, Lemma S.4.9] (see also Cárcamo et al. [52, Corollary 2.3]).

heorem 6 (OT infimum over compact 𝛩). Consider the setting of Theorem 5. Then, upon selecting 𝑓𝜃 ∈ 𝑆𝑐𝜃 (𝜇, 𝜈) for any 𝜃 ∈ 𝛩, it follows
that

√

𝑛𝑚
𝑛 + 𝑚

(

inf
𝜃∈𝛩

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜃) − inf
𝜃∈𝛩

𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
)

⇝ inf
𝜃∈𝑆−(𝛩,𝜇,𝜈)

√

𝜆G𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐𝜃𝜃 ),

where 𝑆−(𝛩, 𝜇, 𝜈) = argmin𝜃∈𝛩 𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃) denotes the set of minimizers of 𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃) over 𝛩.

In case only (Don) holds, one can still infer the limit law for the empirical supremal OT value.

Theorem 7 (OT supremum over compact 𝛩). Consider the setting of Theorem 5 and only assume (Don). Then, it follows that
√

𝑛𝑚
𝑛 + 𝑚

(

sup
𝜃∈𝛩

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜃) − sup
𝜃∈𝛩

𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
)

⇝ sup
𝜃∈𝑆+(𝛩,𝜇,𝜈)
𝑓𝜃∈𝑆𝑐𝜃 (𝜇,𝜈)

√

𝜆G𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐𝜃𝜃 ),

here 𝑆+(𝛩, 𝜇, 𝜈) = argmax𝜃∈𝛩 𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃) denotes the set of maximizers of 𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃) over 𝛩.

The proofs of Theorems 6 and 7 are documented in Sections 6.3.2 and 6.3.3, respectively. Moreover, in some contexts the
compactness assumption on 𝛩 might be too restrictive. The following result provides an extension to non-compact spaces 𝛩 and
focuses on the infimal statistic; an analogue statement also holds for the supremal statistic. Its proof is deferred to Section 6.3.4.

Proposition 8 (OT infimum over general 𝛩). Let 𝛩 be a Polish space and consider a continuous map 𝑐 ∶𝛩 → 𝐶( × ). Consider again
two measures 𝜇 ∈ (), 𝜈 ∈ () and suppose there is a compact set 𝐾 ⊆ 𝛩 such that 𝑆−(𝛩, 𝜇, 𝜈) ⊆ 𝐾, there is a sequence of minimizers
𝜃𝑛,𝑚 ∈ 𝑆−(𝛩, 𝜇𝑛, 𝜈𝑚) with lim𝑛,𝑚→∞ P∗(𝜃𝑛,𝑚 ∉ 𝐾) = 0, and that the assumptions of Theorem 6 hold with 𝛩 replaced by 𝐾. Then, the assertion
of Theorem 6 on the empirical infimal OT value over 𝛩 remains valid.

Remark 9. A few comments are in order concerning the weak limits for the empirical OT cost process as well as the respective
infimal and supremal statistic.
7
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(i) In the setting of Theorem 5 the parameter space 𝛩 is compact and 𝑐 ∶𝛩 → 𝐶( × ) is continuous, therefore the range 𝑐(𝛩)
is also compact in 𝐶( × ). In particular, by the Theorem of Arzelà-Ascoli, we conclude that sup𝜃∈𝛩 ‖

‖

𝑐𝜃‖‖∞ < ∞ and there
exists a suitable modulus of continuity for all cost functions uniformly on 𝛩.

(ii) Both assumptions of Theorem 5 and sufficient conditions are discussed in Sections 3.4 and 3.5. Assumption (Don) appears
natural in order to control the empirical OT process uniformly over 𝛩, whereas (KP) is to ensure that the limit process is
supported in 𝐶(𝛩) and stays tight. Our proof technique suggests that (KP) can be slightly lifted, but not much. For instance,
one could demand that Kantorovich potentials 𝑆𝑐𝜃 (𝜇, 𝜈) which attain the supremum in the derivative can be approximated
by Kantorovich potentials 𝑆𝑐𝜃′ (𝜇, 𝜈) for 𝜃′ in the immediate vicinity of 𝜃 (as required in Lemma 53(i) in Appendix A). In
particular, if 𝛩 ∶= {𝜃1,… , 𝜃𝐾} is a finite set equipped with discrete topology, then (KP) can be omitted.

(iii) The results also extend to the one-sample setting, i.e., when 𝜇 is estimated by 𝜇𝑛 and 𝜈 is assumed to be known. For the
one-sample version of Theorem 5 it suffices to assume in (Don) that the function class ∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 is 𝜇-Donsker in conjunction
with (KP). Upon selecting 𝑓𝜃 ∈ 𝑆𝑐𝜃 (𝜇, 𝜈) for any 𝜃 ∈ 𝛩, the limit distribution is then given for 𝑛→ ∞ by

√

𝑛
(

𝑂𝑇 (𝜇𝑛, 𝜈, 𝑐𝜃) − 𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
)

𝜃∈𝛩
⇝

(

G𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 )
)

𝜃∈𝛩 in 𝐶(𝛩).

Under identical assumptions, the one-sample analogue of Theorem 6 is available. For the validity of the one-sample result in
Theorem 7 it suffices that ∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 is 𝜇-Donsker.

(iv) rem:NormalityDegeneracyhe obtained weak limits highlight an intimate dependency of limit distributions to the collection of
Kantorovich potentials. In Theorem 5 the limit process is centered Gaussian due to Assumption List (KP). For fixed 𝜃 ∈ 𝛩 the
limiting random variables degenerates to a Dirac measure at zero if the respective Kantorovich potentials are (𝜇, 𝜈)-almost
surely constant. Moreover, the limit distribution in Theorem 6 is also centered normal if Kantorovich potentials (𝑓 𝑐𝜃𝑐𝜃 , 𝑓 𝑐𝜃 )
for 𝜇, 𝜈 and 𝑐𝜃 coincide (up to a constant shift) on supp(𝜇) × supp(𝜈) for any 𝜃 ∈ 𝑆−(𝛩, 𝜇, 𝜈). Under analogous assumptions for
𝜃 ∈ 𝑆+(𝛩, 𝜇, 𝜈) the limit distribution in Theorem 7 is centered normal. In particular, assuming (KP), this condition is fulfilled if
𝑆−(𝛩, 𝜇, 𝜈) or 𝑆+(𝛩, 𝜇, 𝜈) consist of a singleton. The resulting limit distributions degenerate if Kantorovich potentials are (𝜇, 𝜈)-
almost surely constant. A sharp characterization of almost surely constant potentials is detailed in Section 4 of Hundrieser
et al. [44].

.4. Bootstrap principle for optimal transport costs

Since the limit distributions in Theorems 2, 6 and 7 involve the set of Kantorovich potentials (and OT plans), under non-unique
ptimizers there is little hope for an explicit, closed-form description of the quantiles for these distributions, which is required for
urther practical purposes. To circumvent this issue we suggest the use of a 𝑘-out-of-𝑛 bootstrap procedure with 𝑘 = o(𝑛) whose
onsistency is shown in this subsection.

For simplicity, we state the subsequent results for equal sample sizes, i.e., 𝑛 = 𝑚 as well as bootstrap samples of equal size 𝑘 = o(𝑛).
nder differing sample sizes 𝑛 ≠ 𝑚 one would select bootstrap samples of size 𝑘 = o(𝑛), 𝑙 = o(𝑚) such that 𝑙∕(𝑙 + 𝑘) ≈ 𝑚∕(𝑛 + 𝑚).
elow, we always consider the same bootstrap approach that we now introduce. For the two sequences of i.i.d. random variables
𝑋𝑖}𝑛𝑖=1 ∼ 𝜇⊗𝑛, {𝑌𝑖}𝑛𝑖=1 ∼ 𝜈⊗𝑛, with respective empirical measures 𝜇𝑛, 𝜈𝑛, consider another sequence of i.i.d. bootstrap random
ariables {𝑋𝑏

𝑖 }
𝑘
𝑖=1 ∼ 𝜇⊗𝑘𝑛 , {𝑌 𝑏𝑖 }

𝑘
𝑖=1 ∼ 𝜈⊗𝑘𝑛 and define the bootstrap empirical measures 𝜇𝑏𝑛,𝑘 ∶= 1

𝑘
∑𝑘
𝑖=1 𝛿𝑋𝑏𝑖 and 𝜈𝑏𝑛,𝑘 ∶= 1

𝑘
∑𝑘
𝑖=1 𝛿𝑌 𝑏𝑖 .

Moreover, we write in the subsequent statement 𝑐𝑛 for the cost estimator and 𝑐𝑏𝑛,𝑘 for the bootstrap cost estimator.

Proposition 10 (Bootstrap for OT under weakly converging costs). In the setting of Theorem 2, assume (JW) and either (OP) or (Sup).
Let 𝑐𝑏𝑛,𝑘 ∈ 𝐶( × ) be the bootstrap cost estimator such that 𝑐𝑏𝑛,𝑘(𝑥, 𝑦) is measurable for all (𝑥, 𝑦) ∈  ×  . Further, assume the following.

(JW)* The bootstrap empirical processes are conditionally on 𝑋1,… , 𝑋𝑛, 𝑌1,… 𝑌𝑛 consistent in the space 𝓁∞( 𝑐𝑐 ) × 𝓁∞( 𝑐 ) × 𝐶( × )
for 𝑛, 𝑘→ ∞ with 𝑘 = o(𝑛), i.e.,

𝑑𝐵𝐿

⎛

⎜

⎜

⎜

⎝


⎛

⎜

⎜

⎜

⎝

√

𝑘

⎛

⎜

⎜

⎜

⎝

𝜇𝑏𝑛,𝑘 − 𝜇𝑛
𝜈𝑏𝑛,𝑘 − 𝜈𝑛
𝑐𝑏𝑛,𝑘 − 𝑐𝑛

⎞

⎟

⎟

⎟

⎠

|𝑋1,… , 𝑋𝑛, 𝑌1,… 𝑌𝑛

⎞

⎟

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

√

𝑛
⎛

⎜

⎜

⎝

𝜇𝑛 − 𝜇
𝜈𝑛 − 𝜈
𝑐𝑛 − 𝑐

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

P∗
←←←←←←←←←←←→ 0.

n case of setting (Sup) additionally assume the following.

Sup)* The unconditional bootstrap empirical processes G𝜇
𝑛,𝑘 ∶=

√

𝑘(𝜇𝑏𝑛,𝑘 − 𝜇) and G𝜈
𝑛,𝑘 ∶=

√

𝑘(𝜈𝑏𝑛,𝑘 − 𝜈) fulfill the conditions

sup
𝑓∈

G𝜇
𝑛,𝑘(𝑓

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘 − 𝑓 𝑐𝑐 )

P∗
←←←←←←←←←←←→ 0 and sup

𝑓∈
G𝜈
𝑛,𝑘(𝑓

𝑐𝑏𝑛,𝑘 − 𝑓 𝑐 )
P∗
←←←←←←←←←←←→ 0 for 𝑛, 𝑘→ ∞, 𝑘 = o(𝑛).

Then, it follows for 𝑛, 𝑘→ ∞ with 𝑘 = o(𝑛) that

𝑑𝐵𝐿
(


(
√

𝑘
(

𝑂𝑇 (𝜇𝑏𝑛,𝑘, 𝜈
𝑏
𝑛,𝑘, 𝑐

𝑏
𝑛,𝑘) − 𝑂𝑇 (𝜇𝑛, 𝜈𝑛, 𝑐𝑛)

)

|𝑋1,… , 𝑋𝑛, 𝑌1,… , 𝑌𝑛
)

,
(

√

𝑛
(

𝑂𝑇 (𝜇𝑛, 𝜈𝑛, 𝑐𝑛) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

) ) P∗
←←←←←←←←←←←→ 0.

Despite not relying on the functional delta method for the derivation of the limit distribution of the empirical OT value under
eakly converging costs, we obtain a similar bootstrap principle as Dümbgen [53, Proposition 2] by employing an equivalent
8
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formulation for bootstrap consistency [54] in conjunction with the use of a Skorokhod representation. The full proof is provided in
Section 6.2.2.

Remark 11. When employing the functional delta method, the 𝑛-out-of-𝑛 bootstrap is not consistent if the Hadamard directional
derivative is not linear [53, Proposition 1]. Although Proposition 10 does not build on a differentiability result, we show in
Section 4.5 that the OT functional is Gateaux directional differentiability with a derivative that is non-linear if primal or dual
optimizers are non-unique. Since Gateaux directional differentiability is implied by Hadamard directional differentiability, this
suggests in the regime of non-unique optimizers the inconsistency of the naive 𝑛-out-of-𝑛 bootstrap for the empirical OT cost under
weakly converging costs.

Verification of the bootstrap consistency in the settings of Theorems 5–7 is straightforward. It is a direct consequence of
consistency of the 𝑘-out-of-𝑛 bootstrap empirical processes with 𝑘 = o(𝑛) [38, Theorem 3.6.13] and the functional delta method
for the bootstrap [53, Proposition 2]. Hence, we omit the proof of the following proposition.

Proposition 12 (Bootstrap for OT process, supremum, and infimum). Let  , be compact Polish spaces and 𝛩 a compact topological
space. Consider a continuous map 𝑐 ∶𝛩 → 𝐶( × ), 𝜃 ↦ 𝑐𝜃 , let 𝜇 ∈ (), 𝜈 ∈ () and assume (Don).

(i) (OT process in 𝐶(𝛩)) Then, under (KP), it follows for 𝑛, 𝑘→ ∞ with 𝑘 ≤ 𝑛 that

𝑑𝐵𝐿

(


(
√

𝑘
(

𝑂𝑇 (𝜇𝑏𝑛,𝑘, 𝜈
𝑏
𝑛,𝑘, 𝑐𝜃) − 𝑂𝑇 (𝜇𝑛, 𝜈𝑛, 𝑐𝜃)

)

𝜃∈𝛩
|𝑋1,… , 𝑋𝑛, 𝑌1,… , 𝑌𝑛

)

,


(

√

𝑛
(

𝑂𝑇 (𝜇𝑛, 𝜈𝑛, 𝑐𝜃) − 𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
)

)

𝜃∈𝛩

)

P∗
←←←←←←←←←←←→ 0.

(ii) (OT infimum over 𝛩) Then, under (KP), it follows for 𝑛, 𝑘→ ∞ with 𝑘 ≤ o(𝑛) that

𝑑𝐵𝐿

(


(
√

𝑘
(

inf
𝜃∈𝛩

𝑂𝑇 (𝜇𝑏𝑛,𝑘, 𝜈
𝑏
𝑛,𝑘, 𝑐𝜃) − inf

𝜃∈𝛩
𝑂𝑇 (𝜇𝑛, 𝜈𝑛, 𝑐𝜃)

)

|𝑋1,… , 𝑋𝑛, 𝑌1,… , 𝑌𝑛
)

,


(

√

𝑛
(

inf
𝜃∈𝛩

𝑂𝑇 (𝜇𝑛, 𝜈𝑛, 𝑐𝜃) − inf
𝜃∈𝛩

𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
))

)

P∗
←←←←←←←←←←←→ 0.

(iii) (OT supremum over 𝛩) Then, it follows for 𝑛, 𝑘→ ∞ with 𝑘 = o(𝑛) that

𝑑𝐵𝐿

(


(

√

𝑘
(

sup
𝜃∈𝛩

𝑂𝑇 (𝜇𝑏𝑛,𝑘, 𝜈
𝑏
𝑛,𝑘, 𝑐𝜃) − sup

𝜃∈𝛩
𝑂𝑇 (𝜇𝑛, 𝜈𝑛, 𝑐𝜃)

)

|𝑋1,… , 𝑋𝑛, 𝑌1,… , 𝑌𝑛

)

,


(

√

𝑛
(

sup
𝜃∈𝛩

𝑂𝑇 (𝜇𝑛, 𝜈𝑛, 𝑐𝜃) − sup
𝜃∈𝛩

𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
)) )

P∗
←←←←←←←←←←←→ 0.

Notably, we also obtain consistency of the 𝑛-out-of-𝑛 bootstrap for setting (𝑖) since (KP) implies linearity of the Hadamard
directional derivative.

3. Discussion of the assumptions

In this section we discuss the assumptions on the distributional limits and the bootstrap consistency. We also provide sufficient
conditions for their validity. All the proofs are deferred to Appendix B.

3.1. Assumptions (JW) and (JW)*: Joint weak convergence

For the empirical OT value under estimated costs we demand in (JW) and (JW)* weak convergence of the empirical processes
in 𝓁∞( 𝑐𝑐 ) and 𝓁∞( 𝑐 ), where  =  (2 ‖𝑐‖∞ + 1, 2𝑤) is selected as in Theorem 2. This requires  𝑐𝑐 and  𝑐 to be 𝜇- and 𝜈-Donsker,
respectively. Moreover, we demand weak convergence of the estimated cost function in 𝐶( ×) to ensure that any sequence of OT
lans for 𝜇𝑛, 𝜈𝑚 and 𝑐𝑛,𝑚 tends towards an OT plan in 𝛱⋆

𝑐 (𝜇, 𝜈). Finally, we stress the necessity of joint weak convergence in (JW)
and (JW)* as the limit distribution is determined by the random variable (G𝜇 ,G𝜈 ,G𝑐 ) and thus characterized by their dependency.

Even though apparently unavoidable, these conditions are somewhat restrictive and delimit the theory to low dimensional
settings. This is to be expected as estimation of the OT value (under population costs) suffers from the curse of dimensionality [41],
leading to slow convergence rates when both population measures 𝜇, 𝜈 exhibit high-dimensional support. However, in view of the
recently discovered lower complexity adaptation principle [43], it suffices that one measure, 𝜇 or 𝜈, is supported on a low dimensional
space. The following proposition provides bounds on the covering numbers (see the notation section for a definition) of  𝑐 and  𝑐𝑐

under uniform norm which leads to a universal Donsker property for both function classes.

Proposition 13 (Universal Donsker property). Let 𝑐 ∈ 𝐶( × ) be a continuous cost function with ‖𝑐‖∞ ≤ 1. Assume one of the three
settings.
9

(i)  = {𝑥1,… , 𝑥𝑁} is a finite space (and no additional assumption on 𝑐).
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(ii) There exists a pseudo metric3 𝑑 on  such that  (𝜀, , 𝑑 ) ≲ 𝜀−𝛽 for 𝜀 > 0 sufficiently small and some 𝛽 ∈ (0, 2) and 𝑐(⋅, 𝑦) is
1-Lipschitz under 𝑑 for all 𝑦 ∈  .

(iii)  =
⋃𝐼
𝑖=1 𝜁𝑖(𝑖) for 𝐼 ∈ N compact, convex subsets 𝑖 ⊆ R𝑑𝑖 , 𝑑𝑖 ≤ 3 with non-empty interior and maps 𝜁𝑖 ∶𝑖 →  such that for

each 𝑖 ∈ {1,… , 𝐼} the function 𝑐(𝜁𝑖(⋅), 𝑦) is (𝛾𝑖, 1)-Hölder4 on 𝑖 for some 𝛾𝑖 ∈ (𝑑𝑖∕2, 2] for all 𝑦 ∈  .

Let 𝐵 ≥ 0 and consider a modulus of continuity 𝑤∶R+ → R+ with respect to a metric 𝑑 on  . Then, for each setting there exists some
𝛼 < 2 such that for 𝜀 > 0 sufficiently small,

log (𝜀, 𝑐 , ‖⋅‖∞) = log (𝜀, 𝑐𝑐 , ‖⋅‖∞) ≲ 𝜀−𝛼 for  =  (𝐵,𝑤),

where the hidden constant depends for (i) on 𝑁 , for (ii) on  (𝜀, , 𝑑 ), and for (iii) on (𝜁𝑖,𝑖)𝐼𝑖=1. In particular, the function classes  𝑐

and  𝑐𝑐 are universal Donsker.

The bounds for the covering numbers stated in the above proposition are essential for the weak convergence of the empirical
processes

√

𝑛(𝜇𝑛 − 𝜇) and
√

𝑚(𝜈𝑚 − 𝜈) and represent an important tool for verifying (JW). In order to clarify the assumptions of
Proposition 13, we rephrase them in the example below. We additionally refer to [44, Section 5] and [43, Section 3] for more
illustrative examples of similar type.

Example 14. Below we list a few cases for which Proposition 13 is applicable and asserts that the function classes  𝑐𝑐 and  𝑐 are
universal Donsker.

1. Both measures are supported on finitely many points and the cost function is real-valued. This includes measures on finite
trees and a tree metric as the cost function (see, e.g., [14] for an application in genetics).

2. Only one measure is supported on finitely many points and the cost function is bounded (see, e.g., [55] for an application in
resource allocation).

3. The cost function 𝑐 ∶R × R → R is locally Lipschitz and both measures 𝜇, 𝜈 ∈ (R) are compactly supported. In particular,
this setting is met for the cost function 𝑐𝑝(𝑥, 𝑦) = |𝑥 − 𝑦|𝑝 of the 𝑝-Wasserstein distance on the real line if 𝑝 ≥ 1 (see, e.g., [34]
for an application in clinical trials).

4. Under 𝑑 ≤ 3, the cost function 𝑐 ∶R𝑑 × R𝑑 → R is twice continuously differentiable and both measures 𝜇, 𝜈 ∈ (R𝑑 ) are
compactly supported. This setting captures the cost function 𝑐𝑝(𝑥, 𝑦) = ‖𝑥 − 𝑦‖𝑝 of the Wasserstein distance on Euclidean
spaces for dimension 𝑑 (see, e.g., [13] for an application in cell biology).

5. On general Euclidean spaces, similar conditions can be stated if the minimum intrinsic dimension of both measures is
sufficiently small. For locally Lipschitz costs 𝑐 ∶R𝑑 × R𝑑 → R we require that one measure is concentrated on a compact
polygonal path or a Lipschitz curve. In case of twice continuously differentiable costs it suffices that one measure is
concentrated on a compact smooth submanifold  of dimension at most three.

To state sufficient conditions for (JW) and (JW)* we assume that the population cost as well as the empirical and bootstrap
estimators are determined by the underlying measures via a Hadamard directionally differentiable functional. For simplicity, we
consider in the subsequent proposition random variables {𝑋𝑖}𝑛𝑖=1 ∼ 𝜇⊗𝑛, {𝑌𝑖}𝑛𝑖=1 ∼ 𝜈⊗𝑛 of identical sample size 𝑛 with empirical
measures 𝜇𝑛, 𝜈𝑛, and bootstrap samples {𝑋𝑏

𝑖 }
𝑘
𝑖=1 ∼ 𝜇⊗𝑘𝑛 , {𝑌 𝑏𝑖 }

𝑘
𝑖=1 ∼ 𝜈⊗𝑘𝑛 of size 𝑘 = 𝑘(𝑛) = o(𝑛) with corresponding bootstrap empirical

measures 𝜇𝑏𝑛,𝑘, 𝜈
𝑏
𝑛,𝑘.

Proposition 15 (Joint weak convergence). Let  ,  be bounded function classes on  and  , respectively, and assume there is a
functional 𝛷𝑐 ∶() × () ⊆ 𝓁∞( ) × 𝓁∞( ) → 𝐶( × ) such that, for all 𝑛, 𝑘 ∈ N,

𝑐 = 𝛷𝑐 (𝜇, 𝜈), 𝑐𝑛 = 𝛷𝑐 (𝜇𝑛, 𝜈𝑛), and 𝑐𝑏𝑛,𝑘 = 𝛷𝑐 (𝜇𝑏𝑛,𝑘, 𝜈
𝑏
𝑛,𝑘).

If 𝛷𝑐 is Hadamard directionally differentiable at (𝜇, 𝜈) tangentially to ()×(), and if  ∪ 𝑐𝑐 is 𝜇-Donsker while  ∪ 𝑐 is 𝜈-Donsker,
then both (JW) and (JW)* are fulfilled.

Remark 16. We like to point out that if the functional 𝛷𝑐 is additionally continuous with respect to the topology induced by weak
convergence on () ×(), it follows that 𝑐𝑛(𝑥, 𝑦) and 𝑐𝑏𝑛,𝑘(𝑥, 𝑦) are measurable for each (𝑥, 𝑦) ∈  × and, due to compactness of
 and  , measurable in 𝐶( × ).

3.2. Assumption (OP) : Uniqueness of optimal transport plans

The subject of uniqueness of OT plans between probability measures and a given cost function is of long-standing interest and has
been addressed by various authors. General conditions for continuous settings were derived by Gangbo and McCann [56] and Levin

3 A non-negative function 𝑑 ∶ × → R+ on a set  is a pseudo-metric if the three conditions 𝑑(𝑥, 𝑥) = 0, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) and 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) are
ulfilled for any 𝑥, 𝑦, 𝑧 ∈ .

4 A function 𝑓 ∶ → R on a convex set  ⊆ R𝑑 with non-empty interior is (𝛾, 𝛬)-Hölder with modulus 𝛬 ≥ 0 and 𝛾 ∈ (0, 1] if ‖𝑓‖∞ < 𝛬 and
𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝛬 ‖𝑥 − 𝑦‖𝛾 for any 𝑥, 𝑦 ∈  . Further, 𝑓 is called (𝛾, 𝛬)-Hölder for 𝛾 ∈ (1, 2] if every partial derivative of 𝑓 is (𝛾 − 1, 𝛬)-Hölder. If  is not

̃ ̃
10

pen, we assume the existence of an extension 𝑓 of 𝑓 onto an open convex set containing  such that 𝑓 is (𝛾, 𝛬)-Hölder theorem, cf. Hundrieser et al. [43].



Stochastic Processes and their Applications 178 (2024) 104462S. Hundrieser et al.

t
a

P

c
r
f

o
a
f
f
r

3

c
a
I
t
L

[57], building on previous works. The subject has since been covered in depth in Chapters 9 and 10 of the reference textbook
by Villani [3]; further advances have been made since.

To guarantee the uniqueness of the OT plan, many works resort to the so-called Twist condition which demands for differentiable
costs the injectivity of the map 𝑦 → ∇𝑥𝑐(𝑥, 𝑦) for all 𝑥 ∈  . The following proposition formalizes a uniqueness criterion based on
his condition and should fulfill the reader’s needs for many practical applications. The result can be deduced from Theorem 10.28
nd Remark 10.33 in Villani [3].

roposition 17. Assume that  , are compact Polish spaces where  ⊆ R𝑑 is a Euclidean subset with non-empty interior and 𝜇 is
absolutely continuous with respect to the Lebesgue measure. Further, assume that 𝑐 is locally Lipschitz on  × , that 𝑐(⋅, 𝑦) is differentiable
on int() for each 𝑦 ∈  and that 𝑦↦ ∇𝑥𝑐(𝑥, 𝑦) is injective for each 𝑥 ∈  . Then, the OT plan is unique.

Even though in certain cases weaker conditions can yield uniqueness [58], these more general conditions are typically
onsiderably more difficult to verify. Nevertheless, unless the cost function exhibits some kind of symmetry or is constant in some
egion, uniqueness of OT plans is often to be expected. Indeed, for fixed measures there is a residual set of cost functions such that
or any such costs the OT plan is unique [59].

In finite discrete settings, i.e., when both underlying measures are supported on finitely many points, results on the uniqueness
f OT plans are mostly based on the theory of finite-dimensional linear programs, and we refer to Klatt et al. [60, Section 6] for
detailed account. Among others, they provide sufficient conditions for uniqueness of OT plans which solely depend on the cost

unction and the support points but are independent of the weights of the measures. For Euclidean-based costs their condition is
ulfilled for Lebesgue-almost every arrangement of support points of 𝜇 and 𝜈, it is however violated if the support points obey some
egular or repetitive pattern.

.3. Assumptions (Sup) and (Sup)*: Control of supremum over empirical processes

Our assumptions on the suprema of the empirical processes ensure that the fluctuation on the set of feasible dual potentials
aused by estimation of the cost function is asymptotically negligible. Let us also point out that the suprema in (Sup) and (Sup)*
re (Borel) measurable by Lemmas 45 and 46. This implies that the convergence in outer probability occurs, in fact, in probability.
ndeed, following along the proof of Lemma 46 and due to measurability of 𝑐𝑛,𝑚 it follows for fixed 𝑓 ∈  =  (2 ‖𝑐‖∞ + 1, 2𝑤)
hat both maps 𝜔 ↦ G𝜇

𝑛 (𝑓 𝑐𝑐 ) and 𝜔 ↦ G𝜇
𝑛 (𝑓 𝑐𝑛,𝑚𝑐𝑛,𝑚 ) are measurable. In conjunction with G𝜇

𝑛 ((⋅)𝑐𝑐 ),G
𝜇
𝑛 ((⋅)𝑐𝑛,𝑚𝑐𝑛,𝑚 ) ∈ 𝐶𝑢( , ‖⋅‖∞) by

emma 45 and compactness of ( , ‖⋅‖∞) the measurability of the G𝜇
𝑛 ((⋅)𝑐𝑐 − (⋅)𝑐𝑛,𝑚𝑐𝑛,𝑚 ) as well as its supremum follow.

In the following, we derive sufficient conditions for the validity of Assumption (Sup) (as well as Assumption (Sup)*). Based on
empirical process theory, in order to suitably control the suprema

sup
𝑓∈

G𝜇
𝑛 (𝑓

𝑐𝑛,𝑚 ,𝑐𝑛,𝑚 − 𝑓 𝑐𝑐 ) and sup
𝑓∈

G𝜈
𝑛(𝑓

𝑐𝑛,𝑚 − 𝑓 𝑐 )

a canonical route would be to impose metric entropy bounds for  𝑐𝑛,𝑚 ,𝑐𝑛,𝑚 ∪ 𝑐𝑐 and  𝑐𝑛,𝑚 ∪ 𝑐 . Such bounds, however, would impose
certain regularity requirements on the cost estimator 𝑐𝑛,𝑚. Hence, in order not to narrow our scope concerning cost estimators,
we employ the same ideas as in Section 2.2 and approximate the cost estimator 𝑐𝑛,𝑚 by a more regular cost estimator 𝑐𝑛,𝑚. The
subsequent result formalizes these considerations for our context. Its proof relies on techniques developed by van der Vaart and
Wellner [61] for empirical processes indexed over estimated function classes.

Proposition 18. Let  , be compact Polish spaces and consider a continuous cost function 𝑐.

(i) Assume (JW) for random elements 𝑐𝑛,𝑚 ∈ 𝐶( × ). Take random elements 𝑐𝑛,𝑚 ∈ 𝐶( × ) with
√

𝑛𝑚∕(𝑛 + 𝑚)‖𝑐𝑛,𝑚 − 𝑐𝑛,𝑚‖∞
P
→ 0

for 𝑛, 𝑚 = 𝑚(𝑛) → ∞ and 𝑚∕(𝑛 + 𝑚) → 𝜆 ∈ (0, 1) such that for 𝜀 > 0 sufficiently small,

log (𝜀, 𝑐𝑐 , ‖⋅‖∞) + sup
𝑛∈N

log (𝜀, 𝑐𝑛,𝑚𝑐𝑛,𝑚 , ‖⋅‖∞) ≲ 𝜀−𝛼 with 𝛼 < 2. (12)

Then Assumption (Sup) is fulfilled.
(ii) Assume (JW) and (JW)* for random elements 𝑐𝑏𝑛,𝑘 ∈ 𝐶( ×) and let 𝑐𝑏𝑛,𝑘 ∈ 𝐶( ×) be random elements with

√

𝑘‖𝑐𝑏𝑛,𝑘−𝑐
𝑏
𝑛,𝑘‖∞

P
→0

for 𝑛, 𝑘 = 𝑘(𝑛) → ∞ and 𝑘 = o(𝑛) such that for 𝜀 > 0 sufficiently small,

log (𝜀, 𝑐𝑐 , ‖⋅‖∞) + sup
𝑛∈N

log (𝜀, 𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘 , ‖⋅‖∞) ≲ 𝜀−𝛼 with 𝛼 < 2. (13)

Then Assumption (Sup)* is fulfilled.

As a straightforward corollary of Proposition 18 we find that (Sup) and (Sup)* are fulfilled if the cost estimators 𝑐𝑛,𝑚 and 𝑐𝑏𝑛,𝑘 fulfill
certain deterministic regularity conditions once 𝑛, 𝑚, 𝑘 are sufficiently large. In the large sample regime we then choose 𝑐𝑛,𝑚 ∶= 𝑐𝑛,𝑚
and 𝑐𝑏𝑛,𝑘 ∶= 𝑐𝑏𝑛,𝑘.

Corollary 19. Let  , be compact Polish spaces, consider a continuous cost function 𝑐. Assume (JW) for 𝑐𝑛 (and (JW)* for 𝑐𝑏𝑛,𝑘) and
that 𝑐, 𝑐𝑛 (and 𝑐𝑏𝑛,𝑘) each fulfill one of the three conditions of Proposition 13 for 𝑛 ≥ 𝑁 , 𝑘 ≥ 𝐾 with random variables 𝑁,𝐾 ∈ N. Then,
11

(Sup) (and (Sup)*) hold.
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Hence, if the population cost 𝑐 and the estimators 𝑐𝑛, 𝑐𝑛,𝑘 are determined by some parameter 𝜃 ∈ 𝛩 and estimators 𝜃𝑛, 𝜃𝑛,𝑘, such
hat the regularity properties of Proposition 13 are met uniformly in an open neighborhood of 𝜃 and if the estimators are consistent,
hen Corollary 19 asserts the validity of Assumptions (Sup) and (Sup)*.

Moreover, under mild additional assumptions on the space  and the cost function 𝑐, we can define 𝛹 ∶𝐶( × ) → 𝐶( × ),
functional such that 𝑐𝑛 ∶= 𝛹 (𝑐𝑛) fulfills the entropy bound (12) while satisfying

√

𝑛 ‖
‖

𝑐𝑛,𝑚 − 𝑐𝑛,𝑚‖‖∞
P
→ 0 for 𝑛 → ∞. We call such a

functional 𝛹 a regularity elevation functional since it lifts the degree of regularity of the cost estimator. Details on regularity elevations
are deferred to Section 5.

Corollary 20. Let  , be compact Polish spaces and consider a continuous cost. Assume (JW) (and (JW)*). Suppose that 𝑐 fulfills one
of the three conditions of Proposition 13. Under (ii) or (iii) further assume the subsequent condition (ii)’ or (iii)’, respectively.

(ii)’ The weak limit G𝑐 is almost surely continuous with respect to ( , 𝑑 ) ×  .
(iii)’ For each 𝑖 ∈ {1,… 𝐼} the set 𝑖 ⊆ R𝑑𝑖 is convex and compact, the map 𝜁𝑖 ∶𝑖 → 𝜁𝑖(𝑖) is a homeomorphism, and the function

𝑐𝑖 ∶= 𝑐(𝜁𝑖(⋅), ⋅)∶𝑖 ×  → R is continuously differentiable in 𝑢 ∈ 𝑖 on 𝑖 ×  , i.e., the derivative ∇𝑢𝑐𝑖 ∶ int(𝑖) ×  → R𝑑 can be
continuously extended to 𝑖 ×  . Further, there exists a continuous partition of unity5 {𝜂𝑖}𝐼𝑖=1 on  with supp(𝜂𝑖) ⊆ 𝜁𝑖(𝑖).

hen, Assumption (Sup) (and (Sup)*) is fulfilled.

Recall that the assumptions in Proposition 13 are all met in the settings described in Example 14. The additional assumptions
n Corollary 20 are fairly mild. For instance, Assumption (ii)’ on G𝑐 is always met if 𝑑 metrizes the topology on  . Further,
ssumption (iii)’ holds if  =  ⊆ R𝑑 with 𝑑 ≤ 3 are convex, compact sets and 𝑐 is a twice continuously differentiable cost function
n R𝑑 × R𝑑 . Assumption (iii)’ is also fulfilled for general 𝑑 ∈ N if  ⊆ R𝑑 is a compact submanifold of dimension at most three
hile  ⊆ R𝑑 is bounded subset and 𝑐 ∶R𝑑 × R𝑑 → R is twice continuously differentiable. This way, thanks to compactness of  , a
artition of unity always exists and up to potentially choosing an atlas of smaller charts (𝜁𝑖,𝑖) for  , the continuous extendability
f ∇𝑢𝑐𝑖 ∶ int(𝑖) ×  → R𝑑 can always be ensured.

.4. Assumption (Don): Donsker property uniformly over 𝛩

For the distributional limits by Hundrieser et al. [44] on the empirical OT value under a fixed cost function 𝑐, the authors
ffectively assume that the function classes  𝑐𝑐 and  𝑐 are 𝜇- and 𝜈-Donsker, respectively (Remark 4(i)). Hence, for the uniform
onvergence result from Theorem 5 it is natural that we demand the 𝜇- and 𝜈-Donsker property for the unions ∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 and ∪𝜃∈𝛩 𝑐𝜃

or  =  (sup𝜃∈𝛩 ‖𝑐‖∞ , 𝑤). The validity of this condition can be ensured under assumptions on the domain  in conjunction with
egularity conditions imposed on the cost function.

roposition 21 (Universal Donsker property over 𝛩). Let  , be compact Polish spaces and let (𝛩, 𝑑𝛩) be a metric space such that
og (𝜀, 𝛩, 𝑑𝛩) ≲ 𝜀−𝛼 for 𝛼 < 2. Suppose that 𝑐 ∶ (𝛩, 𝑑𝛩) → 𝐶( ×), 𝜃 ↦ 𝑐𝜃 is 1-Lipschitz and assume sup𝜃∈𝛩 ‖

‖

𝑐𝜃‖‖∞ ≤ 1. Consider one of
he three settings.

(i)  = {𝑥1,… , 𝑥𝑁} is a finite space (and no additional assumption on 𝑐).
(ii) For any 𝜃 ∈ 𝛩 there exists a pseudo metric 𝑑𝜃, on  such that sup𝜃∈𝛩 (𝜀, , 𝑑𝜃, ) ≲ 𝜀−𝛽 for 𝛽 < 2 and 𝑐𝜃(⋅, 𝑦) is 1-Lipschitz under

𝑑𝜃, for all 𝑦 ∈  .
(iii)  =

⋃𝐼
𝑖=1 𝜁𝑖(𝑖) for 𝐼 ∈ N compact, convex subsets 𝑖 ⊆ R𝑑𝑖 , 𝑑𝑖 ≤ 3 with non-empty interior and maps 𝜁𝑖 ∶𝑖 →  so that for each

𝑖 ∈ {1,… , 𝐼} the function 𝑐𝜃(𝜁𝑖(⋅), 𝑦) is (𝛾𝑖, 1)-Hölder on 𝑖 (recall footnote (iii)) for some 𝛾𝑖 ∈ (𝑑𝑖∕2, 2] for all 𝑦 ∈  , 𝜃 ∈ 𝛩.

hen, for each setting, there exists some 𝛼 < 2 such that

log (𝜀,∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 , ‖⋅‖∞) ≲ 𝜀−𝛼 and log (𝜀,∪𝜃∈𝛩 𝑐𝜃 , ‖⋅‖∞) ≲ 𝜀−𝛼 .

n particular, ∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 , ∪𝜃∈𝛩 𝑐𝜃 are universal Donsker, and Assumption (Don) is fulfilled.

The proof of Proposition 21 is a simple consequence of Proposition 13 in combination with the subsequent lemma whose proof
s deferred to Appendix B.6.

emma 22. Let  , be compact Polish spaces and let (𝛩, 𝑑𝛩) be a metric space. Suppose 𝑐 ∶ (𝛩, 𝑑𝛩) → 𝐶( × ), 𝜃 ↦ 𝑐𝜃 is 1-Lipschitz.
hen, it follows for any 𝜀 > 0 that

max
(


(

𝜀,∪𝜃∈𝛩 𝑐𝜃 , ‖⋅‖∞
)

,
(

𝜀,∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 , ‖⋅‖∞
)

)

≤ 
( 𝜀
4
, 𝛩, 𝑑𝛩

)

sup
𝜃∈𝛩


( 𝜀
2
, 𝑐𝜃𝑐𝜃 , ‖⋅‖∞

)

.

5 A collection {𝜂 }𝐼 is a continuous partition of unity if 𝜂 ∈ 𝐶(), 𝜂 ≥ 0 for each 𝑖 and ∑𝐼 𝜂 ≡ 1 on  .
12
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3.5. Assumption (KP): Uniqueness of Kantorovich potentials

The uniform weak limit of the empirical OT process from Theorem 5 demonstrates a close relation to the collection of Kantorovich
otentials. In particular, for the limit to be supported on 𝐶(𝛩) a certain continuity property on the Kantorovich potentials 𝑆𝑐𝜃 (𝜇, 𝜈)
ith respect to 𝜃 is required. Assumption (KP) on the uniqueness of Kantorovich potentials represents a sufficient condition to ensure

his property.
The recent work by Staudt et al. [62] thoroughly analyzes the topic of uniqueness in Kantorovich potentials and highlights that

t is often expected. More precisely, for differentiable costs and assuming that one probability measure is supported on the closure of
connected open set on a smooth manifold, Kantorovich potentials are unique. As Example 3 in their work showcases, uniqueness

lso occurs under continuous costs if one measure is discrete while the other has connected support. In case both measures have
isconnected support, then uniqueness can still be guaranteed if potentials on restricted OT sub-problems are unique and if there
xists, in the language of Staudt et al., a non-degenerate OT plan, meaning that all connected components of both measures are linked
ia that OT plan. The existence of such OT plans can be guaranteed under mild conditions on the underlying measures (see (14))
nd intuitively demands that the OT problem cannot be divided into distinct sub-problems.

The following statement is a direct consequence of Staudt et al. [62], which we have included for ease of reference.

roposition 23. Let 𝑐 ∶R𝑑 ×R𝑑 → R be a differentiable cost function. Consider probability measures 𝜇, 𝜈 ∈ (R𝑑 ) with compact support
nd suppose supp(𝜇) =

⋃

𝑖∈𝐼 𝑖 and supp(𝜈) =
⋃

𝑗∈𝐽 𝑗 for finitely many disjoint sets. Assume each set 𝑖 is either (i) the closure of a
onnected open set, (ii) the closure of a connected open set in a smooth compact submanifold of R𝑑 , or (iii) a single point. Further, if
in(|𝐼|, |𝐽 |) ≥ 2, suppose for all non-empty, proper 𝐼 ′ ⊂ 𝐼 and 𝐽 ′ ⊂ 𝐽 that

∑

𝑖∈𝐼 ′
𝜇(𝑋𝑖) ≠

∑

𝑗∈𝐽 ′
𝜈(𝑌𝑗 ), (14)

hen, Kantorovich potentials for 𝜇, 𝜈 and 𝑐 are unique (up to a constant shift).

The proposition follows by verifying the conditions of Theorem 1 in Staudt et al. [62]. Indeed, continuity of Kantorovich
otentials on supp(𝜈) follows due to the compactness assumption and continuity of the cost function, uniqueness of Kantorovich
otentials on sub-problems follows from the assumptions on the cost and the sets 𝑖 [62, Corollary 2], and existence of
on-degenerate plans follows via [62, Lemma 6] due to (14).

. Applications

In this section we employ our theory from Section 2 to obtain novel insights about various OT-related concepts and applications.
ll proofs for this section are deferred to Appendix C.

.1. Optimal transport-based one-sample goodness-of-fit-testing

Hallin et al. [19] proposed to use the Wasserstein distance between a sample measure and a reference measure for goodness-of-
it testing under group actions. In the following, we briefly recall the setting for compactly supported measures. Let 𝜈0 ∈ (R𝑑 ) be
ompactly supported, define  as the convex hull of supp(𝜈0), and let 𝐺𝛩 = {𝑔𝜗 ∶ 𝜗 ∈ 𝛩} be a group of measurable transformations
𝜗 ∶ R𝑑 → R𝑑 that is parametrized by 𝜗 ∈ 𝛩 ⊆ R𝑘 for 𝑘 ∈ N. Further, assume that the map 𝑥 ↦ 𝑔𝜗(𝑥) is continuous for every 𝜗 ∈ 𝛩
nd that the mappings 𝜗 ↦ 𝑔𝜗 and 𝑔𝜗 ↦ (𝑔𝜗)#𝜈0 are bijective (this implies the identifiability of the model parameter). Hallin et al.
19] consider the subsequent testing problem:

Let 𝐺𝛩 be a group and define  = {𝑔𝜗#𝜈0 ∶ 𝑔𝜗 ∈ 𝐺𝛩}. Given an i.i.d. sample {𝑋𝑖}𝑛𝑖=1 from some unknown 𝜇 ∈ ()
with  ⊂ R𝑑 compact, the aim is to test

∗
0 ∶ 𝜇 ∈  against ∗

1 ∶ 𝜇 ∉ . (15)

ote that the parameter 𝜗∗ under 0, such that (𝑔𝜗∗ )#𝜈0 = 𝜇, is unknown. To construct a test for the above hypothesis, which is for
nstance of particular interest in the analysis of location-scale families, the authors propose to rely on the (2-)Wasserstein distance,
.e., Hallin et al. [19] propose a test based on an empirical version of

𝑂𝑇
(

𝜇, 𝜈0,
‖

‖

‖

𝑔−1𝜗∗ (⋅) − ⋅‖‖
‖

2
)

= inf
𝜋∈𝛱(𝜇,𝜈0)∫

‖

‖

‖

𝑔−1𝜗∗ (𝑥) − 𝑦
‖

‖

‖

2
d𝜋(𝑥, 𝑦).

or this purpose, the unknown measure 𝜇 is replaced by 𝜇𝑛 and the cost function 𝑐(𝑥, 𝑦) = ‖𝑔−1𝜗∗ (𝑥) − 𝑦‖
2 by 𝑐𝑛(𝑥, 𝑦) = ‖𝑔−1𝜗𝑛 (𝑥) − 𝑦‖

2,
here 𝜗𝑛 ∈ 𝛩 denotes a suitable estimator for 𝜗∗. Thus, the proposed test statistic is given as

𝑂𝑇
(

𝜇𝑛, 𝜈0,
‖

‖

‖

𝑔−1𝜗𝑛 (⋅) − ⋅‖‖
‖

2
)

= inf
𝜋∈𝛱(𝜇𝑛 ,𝜈0)∫

‖

‖

‖

𝑔−1𝜗𝑛 (𝑥) − 𝑦
‖

‖

‖

2
d𝜋(𝑥, 𝑦), (16)

hich amounts to solving an OT problem with an estimated cost function. Hence, we can apply our theory to derive the limiting
istribution of

√

𝑛
(

𝑂𝑇
(

𝜇𝑛, 𝜈0,
‖

‖𝑔−1(⋅) − ⋅‖‖
2
)

− 𝑂𝑇
(

𝜇, 𝜈0,
‖

‖𝑔−1∗ (⋅) − ⋅‖‖
2
))

(17)
13

‖

𝜗𝑛 ‖ ‖

𝜗
‖
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under the null hypothesis 𝐻∗
0 in (15) (see Remark 27 for a discussion). In addition, we are able to extend this to testing whether 𝐻∗

0
olds approximately, which is often preferable in practice (see, e.g., [34,63,64]). For this purpose, we fix an estimation procedure
or 𝜗∗, i.e., we choose a specific estimator 𝜗𝑛 (taking values in 𝛩) for estimating 𝜗∗ and denote its population quantity by 𝜗𝑜 ∈ 𝛩

(under ∗
0 we assume 𝜗∗ = 𝜗𝑜). Then, we consider the subsequent testing problem:

Let 𝐺𝛩 be a group. Given an i.i.d. sample {𝑋𝑖}𝑛𝑖=1 from some unknown 𝜇 ∈ () with  ⊂ R𝑑 compact, the aim is to
test for some prespecified 𝛥 > 0 the hypothesis

0 ∶ 𝑊2((𝑔−1𝜗𝑜 )#𝜇, 𝜈0) ≤ 𝛥 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 1 ∶ 𝑊2((𝑔−1𝜗𝑜 )#𝜇, 𝜈0) > 𝛥. (18)

In order to construct a test for the above problem, we have to derive the distributional limits of (17) under the assumption that
𝜇 ∉ . To this end, we employ the theory from Sections 2 and 3. The first step for the derivation of distributional limits of (17) is
to establish Hölder regularity (cf. footnote (iii)) for costs induced by 𝐶𝛩 ∶ 𝛩 → 𝐶( × ), 𝜗↦ ((𝑥, 𝑦) ↦ ‖𝑔−1𝜗 (𝑥) − 𝑦‖2) near 𝜗𝑜.

emma 24. Let  , ⊆ R𝑑 be compact and denote by 𝐶( ,R𝑑 ) the space of continuous functions from  to R𝑑 . Assume that
𝛩 ∶ 𝛩 ⊆ R𝑘 → 𝐶( ,R𝑑 ), 𝜗 ↦ (𝑥 ↦ 𝑔−1𝜗 (𝑥)) is continuous near 𝜗𝑜. Then, there is an open (w.r.t. relative topology) neighborhood
⊆ 𝛩 of 𝜗𝑜 and some 𝛬 ≥ 0 such that for any 𝑥 ∈  and 𝜗 ∈ 𝑈 the cost function 𝐶𝛩(𝜗)(𝑥, ⋅) ∶= ‖𝑔−1𝜗 (𝑥) − ⋅‖2 is (2, 𝛬)-Hölder on  .

Next, we verify that Hadamard differentiability of 𝐾𝛩 at 𝜗𝑜 implies Hadamard differentiability of the cost parametrizing map
𝐶𝛩 ∶ 𝛩 → 𝐶( × ), 𝜗↦ ((𝑥, 𝑦) ↦ ‖𝑔−1𝜗 (𝑥) − 𝑦‖2) at 𝜗𝑜. To this end, we additionally impose the following assumption.

(G) For 𝜗𝑜 there exists 𝑚𝜗𝑜 > 0 such that for all 𝜗′ ∈ 𝛩 in some neighborhood of 𝜗𝑜,

sup
𝑥∈R𝑑

‖

‖

‖

𝑔−1𝜗′ (𝑥) − 𝑔
−1
𝜗𝑜 (𝑥)

‖

‖

‖

1 + ‖

‖

‖

𝑔−1𝜗𝑜 (𝑥)
‖

‖

‖

≤ 𝑚𝜗𝑜 ‖‖𝜗
′ − 𝜗𝑜‖

‖

.

This condition is fulfilled, e.g., for location-scale families and affine transformations. A global version of the above assumption,
i.e., where the condition is to be fulfilled for any 𝜗 and not only 𝜗0, has been used by Hallin et al. [19] to ensure the consistency of
their goodness-of-fit test described above.

Lemma 25. Assume that the function 𝐾𝛩 ∶ 𝛩 → 𝐶( ,R𝑑 ), 𝜗 ↦ (𝑥 ↦ 𝑔−1𝜗 (𝑥)) is Hadamard differentiable at 𝜗𝑜 tangentially to 𝛩, i.e., for
ny sequence (𝜗𝑜 + 𝑡𝑛ℎ𝑛)𝑛∈N ⊆ 𝛩 such that 𝑡𝑛 ↘ 0 and ℎ𝑛 → ℎ ∈ R𝑘 as 𝑛→ ∞,

lim
𝑛→∞

‖

‖

‖

‖

𝐾𝛩(𝜗𝑜 + 𝑡𝑛ℎ𝑛) −𝐾𝛩(𝜗𝑜)
𝑡𝑛

−𝐷𝐻
|𝜗𝑜𝐾𝛩(ℎ)

‖

‖

‖

‖∞
= 0,

where 𝐷𝐻
|𝜗𝑜𝐾𝛩(ℎ)∶ → R𝑑 is a continuous function. Then, if Assumption (G) is satisfied, 𝐶𝛩 is Hadamard differentiable at 𝜗𝑜 tangentially

to 𝛩 with derivative 𝐷𝐻
|𝜗𝑜𝐶𝛩(ℎ) ∈ 𝐶( × ) given by

𝐷𝐻
|𝜗𝑜𝐶𝛩(ℎ)∶ ×  → R, (𝑥, 𝑦) ↦ 2

⟨

𝐷𝐻
𝜗𝑜𝐾𝛩(ℎ)(𝑥), 𝑔

−1
𝜗𝑜 (𝑥) − 𝑦

⟩

.

Moreover, if
√

𝑛(𝜗𝑛 − 𝜗𝑜) ⇝ G𝜗 for 𝑛→ ∞, we obtain for 𝑐𝑛 ∶= 𝐶𝛩(𝜗𝑛) and 𝑐 ∶= 𝐶𝛩(𝜗) that
√

𝑛(𝑐𝑛 − 𝑐) ⇝ G𝑐 ∶=
(

2
⟨

𝐷𝐻
𝜗𝑜𝐾𝛩(G

𝜗)(𝑥), 𝑔−1𝜗𝑜 (𝑥) − 𝑦
⟩)

(𝑥,𝑦)∈×
in 𝐶( × ). (19)

Under the conditions in the proposition above, our main result from Theorem 2 yields a (typically) non-degenerate limiting
istributions for the statistic 𝑂𝑇

(

𝜇𝑛, 𝜈, 𝑐𝑛
)

under the assumption that 𝜇 ∉ . In particular, this allows us to construct an asymptotic
evel 𝛼 test for the null hypotheses given in (18) (see [34] for the precise construction).

roposition 26. Let 𝜈0 ∈ (R𝑑 ) for 𝑑 ≤ 3 be compactly supported and define  as the convex hull of supp(𝜈0), and let  ⊆ R𝑑 be compact.
ssume that (G) holds, and suppose that 𝐾𝛩 ∶ 𝛩 → 𝐶( ,R𝑑 ), 𝜗↦ (𝑥↦ 𝑔−1𝜗 (𝑥)) is continuous near 𝜗𝑜 and Hadamard differentiable at 𝜗𝑜.
efine for 𝛬 ≥ 0 from Lemma 25 the function class

 ∶=
{

𝑓 ∶ → R |

|

|

‖𝑓‖∞ ≤ 𝛬 + 1, |𝑓 (𝑦) − 𝑓 (𝑦′)| ≤ 2𝛬 ‖

‖

𝑦 − 𝑦′‖
‖

for all 𝑦, 𝑦′ ∈ 
}

.

hen, the function class 𝐶𝛩(𝜗𝑜) on  is universal Donsker. Moreover, for i.i.d. random variables {𝑋𝑖}𝑛𝑖=1 ∼ 𝜇⊗𝑛 consider a measurable
stimator 𝜗𝑛 and suppose for 𝑛→ ∞ joint weak convergence,

√

𝑛
(

𝜇𝑛 − 𝜇
𝜗𝑛 − 𝜗𝑜

)

⇝

(

G𝜇

G𝜗

)

in 𝓁∞(𝐶𝛩(𝜗𝑜)) × R𝑘. (20)

Then, for 𝑐𝑛 ∶= 𝐶𝛩(𝜗𝑛) and 𝑐 ∶= 𝐶𝛩(𝜗) and by denoting the limit from (19) as G𝑐 , it follows that
√

𝑛
(

𝑂𝑇
(

𝜇𝑛, 𝜈0, 𝑐𝑛
)

− 𝑂𝑇
(

𝜇, 𝜈0, 𝑐
))

⇝ inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈0)
𝜋(G𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈0)
G𝜇(𝑓 𝑐 ),

where 𝑆 (𝜇, 𝜈 ) represents the set of optimizers for sup 𝜇(𝑓 𝑐 ) + 𝜈 (𝑓 𝑐𝑐 ).
14
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Remark 27. A few comments on the distributional limits are in order.

(i) Given that the function class 𝐶𝛩(𝜗𝑜) is universal Donsker and thus 𝜇-Donsker, and assuming that
√

𝑛(𝜗𝑛 − 𝜗𝑜) converges in
distribution, the requirement of joint convergence as required in (20) is very mild. Indeed, if

√

𝑛(𝜗𝑛 − 𝜗𝑜) can be expressed
asymptotically in terms of a suitable linear functional of an empirical process, i.e., if it admits an asymptotic influence function
𝜓 ∈ 𝐿2(𝜇) (cf. van der Vaart [65, p. 58]), joint convergence follows since the union  𝑐𝑐 ∪ {𝜓} is 𝜇-Donsker.

(ii) We like to point out that Proposition 26 also remains valid if 𝜇 ∈ . However, under this assumption it follows that
(𝑔−1𝜗𝑜 )#𝜇 = 𝜈0 which implies that the corresponding OT plan between 𝜇 and 𝜈0 is given by 𝜋 = (Id, 𝑔−1𝜗𝑜 (⋅))#𝜇. Hence, by (19)
the process G𝑐 vanishes along the support of 𝜋 and the first term in the limit degenerates. Further, if the support of 𝜈0 is
connected then Kantorovich potentials are unique up to a constant shift [62, Corollary 2] and 𝜈0-a.s. constant [44, Corollary
4.6(i)]. Consequently, for this setting the corresponding limit distribution is degenerate. In contrast, if 𝜈0 has disconnected
support, non-constant Kantorovich potentials exist [62, Lemma 11] which results in a non-degenerate limit distribution.

(iii) The elements presented for the one-sample case can also be generalized to the case where both empirical measures undergo
a transformation, either separately or jointly. One might think of choosing the Mahalanobis distance (𝑥 − 𝑦)⊤𝛴−1(𝑥 − 𝑦) as
a cost function where 𝛴−1 has to be estimated and could, e.g., be a diagonal matrix. As the OT value is not invariant with
respect to affine transformations, rescaling the variables would ensure that no component has an overwhelming impact on
the cost function compared to the other components.

Let us now exhibit the use of Proposition 26 with the following example.

xample 28 (Location-scale family). For a compactly supported probability measure 𝜈0 ∈ (R𝑑 ), 𝑑 ≤ 3, that has mean equal to
ero and covariance equal to the identity matrix, consider the location scale family  = {𝑔𝜗#𝜈0 ∶ 𝜗 ∈ 𝛩 ∶= R𝑑 × SPD(𝑑)} where
𝜗(𝑥) = 𝛴1∕2𝑥 +𝑚 for 𝜗 = (𝑚,𝛴) ∈ 𝛩. In consequence, the measure 𝑔𝜗#𝜈0 has mean 𝑚 and covariance 𝛴. Given i.i.d. sample {𝑋𝑖}𝑛𝑖=1
rom some unknown 𝜇 ∈ () for  ⊆ R𝑑 compact, we pose the question of how close 𝜇 is to the family  or alternatively how
lose (𝑔−1𝜗𝑜 )#𝜇 is to 𝜈, where 𝜗𝑜 = (𝑚0, 𝛴0) with 𝑚0 and 𝛴0 denoting the mean and covariance of 𝜇, respectively. To this end, we
mploy the empirical estimators for the mean and covariance 𝑚𝑛 ∶= 1

𝑛
∑𝑛
𝑖=1𝑋𝑖 and 𝛴𝑛 ∶= 1

𝑛
∑𝑛
𝑖=1𝑋𝑖𝑋⊤

𝑖 , define 𝜗𝑛 ∶= (𝑚𝑛, 𝛴𝑛), and
onsider the test statistic

√

𝑛
(

𝑂𝑇
(

𝜇𝑛, 𝜈0, 𝑐𝑛
)

− 𝛥
)

where 𝑐𝑛(𝑥, 𝑦) = ‖𝑔−1𝜗𝑛 (𝑥) − 𝑦‖
2 and 𝛥 > 0 is some positive threshold (recall testing

problem (18)). To apply Proposition 26 two types of conditions are required. The first concerns the regularity and differentiability
of the parametrized cost functions, and the second addresses joint weak convergence (20). For the latter we note that the function
class 𝐶𝛩(𝜗𝑜) ∪ {𝑥 ↦ 𝑥𝑖 ∣ 𝑖 ∈ {1,… , 𝑑}} ∪ {𝑥 ↦ 𝑥𝑖 ⋅ 𝑥𝑗 ∣ 𝑖, 𝑗 ∈ {1,… , 𝑑}} is Donsker, being a finite union of Donsker classes, which
ensures the validity of (20) according to Remark 27(i). For the first type of conditions, we note that condition (G) is fulfilled, hence
it suffices to confirm continuity and Hadamard differentiability of

𝐾𝛩 ∶𝛩 → 𝐶( ,R𝑑 ), 𝜗 = (𝑚,𝛴) ↦
(

𝑥↦ 𝑔−1𝜗 (𝑥) = 𝛴−1∕2(𝑥 − 𝑚)
)

at 𝜗𝑜 = (𝑚0, 𝛴0). Based on Fréchet differentiability of the inverse matrix root (see Lemma 29 below) and with compactness of  it
follows that this condition is met, with derivative given by

𝐷𝐹
|𝜗𝑜𝐾𝛩 ∶R

𝑑 × S(𝑑) → 𝐶( ,R𝑑 ), ℎ = (ℎ𝑚,𝐻𝛴 ) ↦
(

𝑥 ↦ −𝛴
− 1

2
0 𝐻̃𝛴𝛴

− 1
2

0 (𝑥 − 𝑚0) − 𝛴
− 1

2
0 ℎ𝑚

)

,

where 𝐻̃𝛴 ∈ R𝑑×𝑑 denotes the unique solution to the (continuous-time) Lyapunov equation 𝛴1∕2
0 𝑋 + 𝑋𝛴1∕2

0 = 𝐻𝛴 . Proposition 26
ow details the asymptotic distribution of the optimal transport based test statistic. In particular, under uniqueness of OT plan
nd potentials, it will be centered normal with a variance that could be estimated via plug-in estimators for 𝜋 ∈ 𝛱⋆

𝑐 (𝜇, 𝜈) and
𝑐 as well as G𝜇 and 𝑓 ∈ 𝑆𝑐 (𝜇, 𝜈0). A potential difficulty to take into account is the dependency of G𝑐 and G𝜇 , which however

ould be sidestepped by splitting samples (one for estimation of mean and covariance, one for estimation of 𝜇). Alternatively, since
roposition 10 is applicable here and thanks to the explicit choice of the cost estimators, the quantiles for the test statistic could be
stimated via a bootstrap 𝑘-out-of-𝑛 resampling scheme with 𝑘 = 𝑜(𝑛) even without imposing uniqueness of OT plans and potentials.

emma 29. The inverse matrix root IR∶ SPD(𝑑) → SPD(𝑑), 𝛴 ↦ 𝛴−1∕2 defined on the set of symmetric positive definite matrices is
réchet differentiable and thus also Hadamard directionally differentiable. The corresponding Fréchet derivative at an element 𝛴0 ∈ SPD(𝑑)
s given by

𝐷
|𝛴0

IR∶ S(𝑑) → S(𝑑), 𝐻 ↦ −𝛴−1∕2
0 𝐻̃𝛴−1∕2

0 , (21)

here 𝐻̃ ∈ R𝑑×𝑑 represents the unique solution to the (continuous-time) Lyapunov equation 𝛴1∕2
0 𝑋 +𝑋𝛴1∕2

0 = 𝐻 .

.2. Optimal transport with embedded invariances

In a similar spirit as to the previous section, another strand of the literature [20,66] aims at making OT invariant to a class of
ransformation  , with 𝜏 ∶R𝑑 → R𝑑 continuously differentiable for each 𝜏 ∈  , by considering

inf 𝑂𝑇
(

𝜇, 𝜈, ‖ ⋅ −𝜏(⋅)‖2
)

= inf inf ‖𝑥 − 𝜏(𝑦)‖2d𝜋(𝑥, 𝑦). (22)
15
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This distance is useful in many contexts, among which the word embedding problem or protein alignment. If the class of
transformations considered is the set of rotations, analyses relying on that distance is coined Wasserstein–Procrustes Analysis [20,67].
Theorem 6 provides the required tools for statistical inference for the empirical version of the optimization problem in (22). We
stress that the following proposition is the first result of its kind for empirical optimal transport under embedded invariances.

Corollary 30. Consider a set of transformations ( , 𝑑 ) that is a compact metric space with log (𝜀,  , 𝑑 ) ≲ 𝜀−𝛼 for 𝛼 < 2. Let  , ⊆ R𝑑
be compact subsets and assume that the functional 𝑐 ∶ ( , 𝑑 ) → 𝐶( × ), 𝜏 ↦ 𝑐𝜏 , with 𝑐𝜏 (𝑥, 𝑦) = ‖𝑥 − 𝜏(𝑦)‖2, is 𝐿-Lipschitz for some
𝐿 ≥ 0. Further, assume for  and {𝑐𝑡}𝑡∈ any of the settings from Proposition 21 and take 𝜇 ∈ (), 𝜈 ∈ () such that the support of
𝜇 or 𝜈 is the closure of a connected open set in R𝑑 . Then, for {𝑋𝑖}𝑛𝑖=1 ∼ 𝜇⊗𝑛 and {𝑌𝑖}𝑚𝑖=1 ∼ 𝜈⊗𝑚, respectively, with 𝑛, 𝑚 → ∞ such that
𝑚∕(𝑛 + 𝑚) → 𝜆 ∈ (0, 1), it holds that

√

𝑛𝑚
𝑛 + 𝑚

(

inf
𝜏∈

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜏 ) − inf
𝜏∈

𝑂𝑇 (𝜇, 𝜈, 𝑐𝜏 )
)

⇝ inf
𝜏∈𝑆−( ,𝜇,𝜈)

√

𝜆 G𝜇(𝑓 𝑐𝜏 𝑐𝜏𝜏 ) +
√

1 − 𝜆 G𝜈 (𝑓 𝑐𝜏𝜏 ),

where 𝑓𝜏 ∈ 𝑆𝑐𝜏 (𝜇, 𝜈) denotes a Kantorovich potential between 𝜇, 𝜈 and cost 𝑐𝜏 for 𝜏 ∈ 𝑆−( , 𝜇, 𝜈).

The above result details that for settings of dimension 𝑑 ≤ 3 the OT value under embedded invariances can be well-approximated
by replacing population measures by empirical counterparts. Insofar, our results mathematically justifies randomized computational
schemes for (22) while providing statistical guarantees. Moreover, we like to point out that the assumption on the class of
transformations  captures many compact finite dimensional classes (e.g., orthogonal or bounded linear transformations) but also
permits non-parametric ones (e.g., via sufficiently regular autoencoders) as long as their metric entropy does not grow to large.
As previously noted, one can relax the requirement that  is compact to the assumption that the sequence of estimated optimal
transformation 𝜏𝑛 is contained within a compact set with probability tending to one (Proposition 8). In the setting of  consisting
of diffeomorphisms we have by Lemma 1 of [8]

inf
𝜏∈

𝑂𝑇
(

𝜇, 𝜈, ‖ ⋅ −𝜏(⋅)‖2
)

= inf
𝜏∈

𝑂𝑇
(

𝜇, 𝜏#𝜈, ‖ ⋅ − ⋅ ‖2
)

= inf
𝜏∈

𝑊 2
2
(

𝜇, 𝜏#𝜈
)

,

for which convergence of empirical minimizers 𝜏𝑛 can be verified for various settings using results by Bernton et al. [68].

Remark 31 (Wasserstein–Procrustes). The above proposition can be applied under mild regularity assumptions on the measures to
the special orthogonal group  ∶= SO(𝑑) for 𝑑 ≤ 3. Indeed, upon choosing  , as compact, convex sets of R𝑑 setting (𝑖𝑖𝑖) of
Proposition 21 is fulfilled, asserting (Don). Moreover, if the support of 𝜇 or 𝜈 is the closure of a connected open set in R𝑑 , then (KP)
holds and the distributional limits of Theorem 6 follow.

4.3. Sketched Wasserstein distance for mixture distributions

Recently, Bing et al. [69] and Delon and Desolneux [70] investigated a distance between (Gaussian) mixture distributions. These
distributions are ubiquitous in statistics and machine learning, see McLachlan et al. [71] and the references therein. One way
of understanding that distance is to start from the Wasserstein distance between discrete measures but instead of using a cost
function between points, one replaces the points by distributions and one must thus choose a cost between distributions. Before
formally defining that concept, recall that, for a set of distributions  ∶= (A1,… ,A𝐾 ) of finite cardinality 𝐾, a mixture 𝑟 is a convex
combination of components from  given by a vector 𝛼 ∈ 𝛥𝐾 , i.e., 𝑟 = ∑𝐾

𝑖=1 𝛼𝑖A𝑖, where 𝛥𝐾 is the probability simplex in R𝐾 . Given
a distance 𝑑 ∶ × → R+ between mixture components of , the aforementioned authors define the sketched Wasserstein distance
between two mixture distributions with weights 𝛼 and 𝛽 as

𝑊 (𝛼, 𝛽, 𝑑) ∶= inf
𝜋∈𝛱(𝛼,𝛽)

𝐾
∑

𝑘,𝓁=1
𝜋𝑘,𝓁𝑑(A𝑘,A𝓁),

where the infimum is taken over elements of the set of couplings

𝛱(𝛼, 𝛽) =

{

𝜋 ∈ 𝛥𝐾×𝐾

|

|

|

|

|

∑𝐾
𝓁=1 𝜋𝑘,𝓁 = 𝛼𝑘, for all 𝑘 ∈ {1,… , 𝐾}

∑𝐾
𝑘=1 𝜋𝑘,𝓁 = 𝛽𝓁 , for all 𝓁 ∈ {1,… , 𝐾}

}

.

Understanding the fluctuations of a plug-in estimator for this distance can be achieved using our proof technique for Theorem 2
and is formalized in the following proposition.

Proposition 32. Let (𝛼𝑛, 𝛽𝑛, 𝑑𝑛) ∈ 𝛥𝐾 × 𝛥𝐾 × R𝐾2
+ be measurable estimators for 𝛼, 𝛽, 𝑑, respectively. Further, for a positive sequence

(𝑎𝑛)𝑛∈N with lim𝑛→∞ 𝑎𝑛 = ∞, assume for 𝑛→ ∞ that

𝑎𝑛
⎛

⎜

⎜

⎝

𝛼𝑛 − 𝛼
𝛽𝑛 − 𝛽
𝑑𝑛 − 𝑑

⎞

⎟

⎟

⎠

= 𝑎𝑛

⎛

⎜

⎜

⎜

⎝

(𝛼𝑛,𝑘 − 𝛼𝑘)𝐾𝑘=1
(𝛽𝑛,𝑘 − 𝛽𝑘)𝐾𝑘=1

(𝑑𝑛(A𝑘,A𝓁) − 𝑑(A𝑘,A𝓁))𝐾𝑙,𝑘=1

⎞

⎟

⎟

⎟

⎠

⇝
⎛

⎜

⎜

⎝

G𝛼

G𝛽

G𝑑

⎞

⎟

⎟

⎠

in R2𝐾+𝐾2
, (23)

where (G𝛼 ,G𝛽 ,G𝑑 ) represents a tight (possibly non-Gaussian) random variable on R2𝐾+𝐾2 . Then,

𝑎𝑛
(

𝑊 (𝛼𝑛, 𝛽𝑛, 𝑑𝑛) −𝑊 (𝛼, 𝛽, 𝑑)
)

⇝ inf
⋆

⟨𝜋,G𝑑
⟩ + sup ⟨𝑓 𝑑𝑑 ,G𝛼

⟩ + ⟨𝑓 𝑑 ,G𝛽
⟩.
16
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The proof follows along the same approach as for showing Theorem 2 and is therefore omitted, see Remark 4 (iii). In this context,
he requirement of weak convergence for the measure estimators (𝛼𝑛, 𝛽𝑛) ⇝ (𝛼, 𝛽) in probability follows from our assumption in (23)

since the population measures and its estimators are supported on finitely many points.
For comparison, Bing et al. [69, Proposition 1] obtain a distributional limit in the case where the asymptotic fluctuation of

the cost is negligible compared to that of the estimated measures. Their result is captured by Proposition 32, which in addition
covers the setting where the cost is estimated on the same data and converges at the same rate. Insofar, our analysis more explicitly
characterizes how the additional uncertainty caused by the cost estimation affects the asymptotic fluctuation of the estimated OT
value.

Finally, we stress that Proposition 32 enables potentially statistical inference in the context of parameter estimation for finite
mixture models, most notably Gaussian mixtures. Mathematically, the mixing measure is described by 𝜇 =

∑𝐾
𝑘=1 𝛼𝑘𝛿𝜃𝑘 with ∑𝐾

𝑘=1 𝛼𝑘 = 1
nd 𝛼𝑘 ≥ 0 and 𝜃1,… , 𝜃𝐾 ∈ R𝑑 for all 𝑘 ∈ {1,… , 𝐾} and the mixture distribution, which describes the distribution of the data, has
density on R𝑑 given by 𝑓 (𝑥 ∣ 𝜇) ∶=

∑𝐾
𝑘=1 𝛼𝑘𝑓 (𝑥, 𝜃𝑘) where 𝑓 (𝑥, 𝜃) denotes a suitable family of probability densities. Within the last

decade, the convergence rates of various parameter estimators 𝜇̃𝑛 for 𝜇 with respect to the Wasserstein distance have been analyzed,
including maximum likelihood estimators [72–75], moment-based estimators [76,77] and Bayesian estimators [78,79]. As part of
Proposition 32, to obtain a distributional limit for 𝑊 (𝜇̃𝑛, 𝜇) where 𝜇̃𝑛 is a finitely supported measure estimator it is necessary to
derive distributional limits for the mass assigned to each point of 𝜇̃𝑛 as well as the respective locations. So far, such an analysis is
still open and would be an interest venue for future research.

4.4. Sliced optimal transport

Our theory from Section 2.3 also enables the analysis of sliced OT quantities and complement or extend available results from
the literature [50,80–82]. In the following, we formalize this statement. For two Borel probability measures 𝜇, 𝜈 ∈ (R𝑑 ) the
average-sliced and max-sliced Wasserstein distances of order 1 ≤ 𝑝 <∞ are defined, respectively, as

𝑊 𝑝(𝜇, 𝜈) ∶=
(

∫S𝑑−1
𝑂𝑇 (p𝜃#𝜇, p

𝜃
#𝜈, | ⋅ − ⋅ |𝑝) d𝜎(𝜃)

)
1
𝑝

and 𝑊 𝑝(𝜇, 𝜈) ∶= max
𝜃∈S𝑑−1

(

𝑂𝑇 (p𝜃#𝜇, p
𝜃
#𝜈, | ⋅ − ⋅ |𝑝)

)

1
𝑝 ,

here p𝜃 ∶ R𝑑 → R is the projection map 𝑥 ↦ 𝜃𝑇 𝑥 and 𝜎 represents the uniform distribution on the unit sphere S𝑑−1. Note by
emma 1 in Nies et al. [8] for any 𝜃 ∈ S𝑑−1 that

𝑂𝑇 (p𝜃#𝜇, p
𝜃
#𝜈, | ⋅ − ⋅ |𝑝) = 𝑂𝑇 (𝜇, 𝜈, |p𝜃(⋅) − p𝜃(⋅)|𝑝),

which enables to view the sliced Wasserstein quantities in the framework of Section 2.3 and asserts by Theorems 5–7 the following
result.

Corollary 33. Let 𝑝 ≥ 1, 𝑑 ≥ 2, and define for 𝜃 ∈ S𝑑−1 the cost 𝑐𝜃 ∶ R𝑑 × R𝑑 → R, (𝑥, 𝑦) ↦ |p𝜃(⋅) − p𝜃(⋅)|𝑝. Further, take
compactly supported probability measures 𝜇, 𝜈 ∈ (R𝑑 ) with empirical measures 𝜇𝑛, 𝜈𝑚, respectively. For all assertions, we let 𝑛, 𝑚→ ∞ with
𝑚∕(𝑛 + 𝑚) → 𝜆 ∈ (0, 1).

(i) Assume that the set of Kantorovich potentials 𝑆𝑐𝜃 (𝜇, 𝜈) is unique (up to a constant shift) for any 𝜃 ∈ S𝑑−1. Then, it follows upon
selecting 𝑓𝜃 ∈ 𝑆𝑐𝜃 (𝜇, 𝜈) for any 𝜃 ∈ S𝑑−1 that

√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈, 𝑐𝜃) − 𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
)

𝜃∈S𝑑−1
⇝

(
√

𝜆G𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐𝜃𝜃 )
)

𝜃∈S𝑑−1
in 𝐶(S𝑑−1)

(ii) Assume the same as in (i). Then, it follows that
√

𝑛𝑚
𝑛 + 𝑚

(

𝑊 𝑝
𝑝(𝜇𝑛, 𝜈𝑚) −𝑊

𝑝
𝑝(𝜇, 𝜈)

)

⇝ ∫S𝑑−1

√

𝜆G𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐𝜃𝜃 ) d𝜃.

(iii) Without imposing the assumption on uniqueness of Kantorovich potentials, it follows that
√

𝑛𝑚
𝑛 + 𝑚

(

𝑊
𝑝
𝑝(𝜇𝑛, 𝜈𝑚) −𝑊

𝑝
𝑝(𝜇, 𝜈)

)

⇝ sup
𝜃∈𝑆+(S𝑑−1 , 𝜇,𝜈)
𝑓𝜃∈𝑆𝑐𝜃 (𝜇,𝜈)

√

𝜆G𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐𝜃𝜃 ).

Comparing Corollary 33 to the literature for 𝑝 > 1, results in Goldfeld et al. [80] and Xi and Niles-Weed [50] are recovered under
lightly weaker assumptions. For the analysis of both types of empirical sliced Wasserstein distances Goldfeld et al. [80] require the
nderlying measures to have compact, convex support. Moreover, for the uniform central limit theorem by Xi and Niles-Weed [50]
f the sliced OT process, they assume for each 𝑢 ∈ S𝑑−1 that one of the projected measures has compact, connected support. These
onditions are sufficient for the uniqueness of Kantorovich potentials, but it can also be guaranteed for measures with disconnected
upport (cf. Proposition 23 and more generally Staudt et al. [62]). Corollary 33(𝑖𝑖) also complements results by Manole et al. [81] on
he trimmed sliced Wasserstein distance as we do not require the existence of a density but the underlying measures to be compactly
upported.

For the special case 𝑝 = 1, unlike in our results, distributional limits by Goldfeld et al. [80],Xu and Huang [82] for the average-
nd max-sliced Wasserstein distance do not require uniqueness of the Kantorovich potentials. Further, their theory remains valid for
17
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non-compactly supported measures by imposing suitable moment-conditions. Crucial to their approach is the special characterization
of the 1-Wasserstein distance as an integral probability metric over Lipschitz functions [3, Remark 6.5], a property which we do
not exploit in our general theory. Still, under uniqueness of Kantorovich potentials, which occurs, e.g., if one measure is discrete
while the other has connected support and is absolutely continuous [62, Example 3], Corollary 33(𝑖) asserts weak convergence for
the sliced OT process in 𝐶(S𝑑−1).

As potential extensions we like to mention that our theory can also naturally be adapted to more general projection operations,
as exemplified in the context of generalized sliced OT [83], or when considering more non-Euclidean data but which involve a
projection onto a one-dimensional domain, e.g., for sliced OT on the sphere [84], on hyperbolic spaces [85], or on the space of
symmetric positive definite matrices [86]. In all these cases our results provide statistical guarantees for randomized computation
schemes of sliced OT quantities.

4.5. Stability analysis of optimal transport

In addition to statistical applications, our theory for the empirical OT value under weakly converging costs enables a deterministic
stability analysis of the OT problem (1) under joint perturbations of the costs and the measures, which may be of independent
interest, e.g., from the viewpoint of optimization. More precisely, we prove in the following Gateaux differentiability of the OT
value in (𝜇, 𝜈, 𝑐) ∈ () × () × 𝐶( × ) for all admissible directions. This extends previous a sensitivity result for the OT value
which was limited to the setting of finitely supported measures, and as based on the theory of finite-dimensional linear programs [87,
Theorem 3.1]. In particular, relevant to ongoing progress on the domain of identifying and learning appropriate cost functions in a
data-driven manner [27,28], the following result provides an additional insight on the robustness of the OT value.

Proposition 34. Let 𝜇 ∈ (), 𝜈 ∈ () and 𝑐 ∈ 𝐶( × ) be fixed. Define for 𝑡 > 0 sufficiently small the quantities 𝜇𝑡 = 𝜇 + 𝑡𝛥𝜇 and
𝜈𝑡 = 𝜈 + 𝑡𝛥𝜈 , where 𝛥𝜇 ∈ (() − 𝜇) and 𝛥𝜈 ∈ (() − 𝜈), respectively. Further, let 𝑐𝑡 = 𝑐 + 𝑡𝛥𝑐 for some 𝛥𝑐 ∈ 𝐶( × ). Then, it follows
that

lim
𝑡↘0

1
𝑡
(

𝑂𝑇 (𝜇𝑡, 𝜈𝑡, 𝑐𝑡) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

= inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(𝛥𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)
𝛥𝜇(𝑓 𝑐𝑐 ) + 𝛥𝜈 (𝑓 𝑐 ).

Remark 35 (On Hadamard directional differentiability). Since the set of admissible directions (()−𝜇)×(()−𝜈)×𝐶( ×) is not a
ormed vector space, we are in general unable to infer Hadamard directional differentiability by additionally proving Lipschitzianity
f the OT problem with respect to the measures 𝜇, 𝜈 and the cost function 𝑐.

Invoking the same proof strategy as in Proposition 34 would require us to show for any 𝑡𝑛 ↘ 0 and any sequence of measures and
ost (𝜇𝑛, 𝜈𝑛, 𝑐𝑛) = (𝜇+ 𝑡𝑛𝛥

𝜇
𝑛 , 𝜈 + 𝑡𝑛𝛥𝜈𝑛, 𝑐 + 𝑡𝑛𝛥

𝑐
𝑛) ∈ () ×() ×𝐶( ×) with (𝛥𝜇𝑛 , 𝛥𝜈𝑛, 𝛥

𝑐
𝑛) → (𝛥𝜇 , 𝛥𝜈 , 𝛥𝑐 ) in 𝓁∞( 𝑐𝑐 ) × 𝓁∞( 𝑐 ) ×𝐶( ×)

hat

sup
𝑓∈

|

|

𝛥𝜇𝑛 (𝑓
𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 ) + 𝛥𝜈𝑛(𝑓

𝑐𝑛 − 𝑓 𝑐 )|
|

→ 0. (24)

howing this remains a challenge and would enable us to omit conditions (Sup) and (Sup)* in the formulations of Theorem 2 and
roposition 10, respectively. Another challenge in such an attempt is that any such sequence (𝜇𝑛, 𝜈𝑛) does not necessarily converge
eakly for 𝑛→ ∞ to (𝜇, 𝜈), which is relevant for our proof, since the topology induced by 𝓁∞( 𝑐𝑐 ) × 𝓁∞( 𝑐 ) may be too weak.

Though it is likely possible to show Hadamard directional differentiability of the OT problem jointly in the measures and the cost
y selecting a sufficiently strong norm that metrizes weak convergence of measures, the functional delta method would inevitably
equire the empirical process to weakly converge in this norm and impose additional conditions. A similar trade-off for the choice
f the norm is natural and known in the literature (cf. Dudley [88, p.76] and Jourdain and Tse [89]).

. Regularity elevation functionals

In this section, we construct regularity elevation maps, i.e., continuous maps 𝛹 ∶𝐶( ×) → 𝐶( ×) such that for measurable
stimators 𝑐𝑛 with

√

𝑛(𝑐𝑛 − 𝑐) ⇝ G𝑐 for 𝑛→ ∞, it follows that

(𝑖)
√

𝑛
(

𝑐𝑛 − 𝛹 (𝑐𝑛)
) P
→ 0 and (𝑖𝑖) 𝛹 (𝑐𝑛) fulfills certain regularity properties. (25)

Based on Lipschitzianity of the OT value with respect to the cost function (Lemma 43), condition (𝑖) allows us to substitute a cost
estimator with one that enjoys certain regularity properties, effectively ‘‘elevating’’ its level of regularity. Such maps prove useful
in our work at two particular instances. For one, it enables us to assume in the proof of Theorem 2 that cost estimators are suitably
bounded and exhibit the same modulus of continuity as the population cost function (cf. Corollary 39). This represents an important
step to rely on Lemma 1. Moreover, the notion of regularity elevations also represents a useful tool to prove Corollary 20, for which
we employ Proposition 18 and set 𝑐𝑛 ∶= 𝛹 (𝑐𝑛) for a suitable regularity elevation map. Insofar, these maps serve as an effective tool
for the theoretical analysis of distributional limits.

The subsequent result provides a first set of conditions to ensure condition (𝑖) of (25). Its proof as well as the proof of all
subsequent results of this section are detailed in Appendix D.
18
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Proposition 36. Let  , be compact Polish spaces and let 𝑐𝑛 ∈ 𝐶(×) be a (Borel measurable) random sequence such that 𝑎𝑛(𝑐𝑛−𝑐) ⇝ 
in 𝐶( × ) for some 𝑐 ∈ 𝐶( × ) and (𝑎𝑛)𝑛∈N such that 𝑎𝑛 → ∞ for 𝑛 → ∞. Let 𝑈 ⊆ 𝐶( × ) be a linear subspace such that  is a.s.
contained in 𝑈 . Then, if 𝛹 ∶𝐶( ×) → 𝐶( ×) is continuous near 𝑐, Hadamard directionally differentiable at 𝑓 with a derivative such
that 𝐷𝐻

𝑐 𝛹 |𝑈 = Id𝑈 and 𝛹 (𝑐) = 𝑐, it follows for 𝑛→ ∞ that

𝑎𝑛
(

𝑐𝑛 − 𝛹 (𝑐𝑛)
) P
→0 for 𝑛→ ∞.

Notably, in case 𝛹 is Hadamard differentiable with 𝐷𝐻
𝑓 𝛹 = Id𝐶(×), one may select 𝑈 = 𝐶( × ) and the condition on the

imit  becomes vacuous.
To conclude various types of useful regularity properties, as required in (𝑖𝑖) of (25), we thus define in the following subsections

arious maps such that the conditions of Proposition 36 are met. Additionally, we provide suitable metric entropy bounds for
𝛹 (𝑐)𝛹 (𝑐) independent of 𝑐 ∈ 𝐶( × ).

.1. Regularity elevation to deterministic boundedness

Consider compact Polish spaces  , and let 𝑐 ∈ 𝐶( × ) be a continuous cost function such that ‖𝑐‖∞ ≤ 1. We define the
regularity elevation functional for boundedness as

𝛹bdd ∶𝐶( × ) → 𝐶( × ), 𝑐 ↦
(

(𝑥, 𝑦) ↦ max(min(𝑐(𝑥, 𝑦), 2),−2)
)

.

Proposition 37. For the above setting, 𝛹 = 𝛹bdd fulfills 𝛹 (𝑐) = 𝑐, is continuous, and it is Hadamard differentiable at 𝑐 with
𝐷𝐻

|𝑐 𝛹 = Id𝐶(×). In particular, if  is a finite space, we obtain for any uniformly bounded function class  on  that

sup
𝑐∈𝐶(×)

log (𝜀,𝛹 (𝑐), ‖⋅‖∞) ≲ | log(𝜀)|.

Hence, for our analysis of the empirical OT value under estimated cost functions we can assume without loss of generality that
cost estimators are deterministically bounded by a constant that depends on the population cost. In the following we prove a similar
insight for the modulus of continuity for cost estimators on compact (pseudo-)metric spaces.

5.2. Regularity elevation to concave modulus of continuity and lipschitzianity

Consider compact Polish spaces  , and let 𝑑 be a continuous (pseudo-) metric on  . Denote by ̃ the space  equipped
with the topology induced by 𝑑 which is also compact (Lemma 57) but potentially does not satisfy the Hausdorff property. Let
𝑐 ∈ 𝐶(̃ ×) be a cost function such that ‖𝑐‖∞ ≤ 1 and consider a concave modulus 𝑤∶R+ → R+ with 𝑤(𝛿) > 0 for 𝛿 > 0 such that

|𝑐(𝑥, 𝑦) − 𝑐(𝑥′, 𝑦)| ≤ 𝑤(𝑑 (𝑥, 𝑥′)) for any 𝑥, 𝑥′ ∈ ̃ , 𝑦 ∈  . (26)

If 𝑐(⋅, 𝑦) is 1-Lipschitz under 𝑑 , then select 𝑤(𝑡) ∶= 𝑡 and if 𝑐(⋅, 𝑦) is (𝛾, 1)-Hölder for 𝛾 ∈ (0, 1] (recall footnote (iii)), choose 𝑤(𝑡) ∶= 𝑡𝛾 .
The regularity elevation functional for 𝑤◦𝑑 is then given by

𝛹𝑤◦𝑑mod ∶𝐶( × ) → 𝐶(̃ × ), 𝑐 ↦
(

(𝑥, 𝑦) ↦ inf
𝑥′∈

𝑐(𝑥′, 𝑦) + 2𝑤(𝑑 (𝑥, 𝑥′))
)

Proposition 38. For the above setting, 𝛹 = 𝛹𝑤◦𝑑mod ◦𝛹bdd fulfills 𝛹 (𝑐) = 𝑐, it is continuous near 𝑐, and it is Hadamard directionally
differentiable at 𝑐 with 𝐷𝐻

|𝑐 𝛹 |𝐶(̃×) = Id𝐶(̃×). Further, for any uniformly bounded function class  on  it holds that

sup
𝑐∈𝐶(×)

log (𝜀,𝛹 (𝑐), ‖⋅‖∞) ≲ (𝜀∕8, , 𝑤◦𝑑 )| log(𝜀)|.

An appealing consequence of the above considerations is that they allow us to construct a regularity elevated estimator 𝑐𝑛,𝑚 from
𝑐𝑛,𝑚 such that 𝑐𝑛,𝑚 ⊆  𝑐𝑛,𝑚𝑐𝑛,𝑚 , for  =  (2 ‖𝑐‖∞ + 1, 2𝑤) defined in (9), holds deterministically.

Corollary 39. Let 𝑐 ∈ 𝐶( × ), set 𝐵 ∶= ‖𝑐‖∞ + 1∕2 and let 𝑤∶R+ → R+ be a concave modulus with 𝑤(𝛿) > 0 for 𝛿 > 0 such that
(26) holds for a metric 𝑑 on  . Assume for a random sequence 𝑐𝑛 ∈ 𝐶( ×) that 𝑎𝑛(𝑐𝑛 − 𝑐) ⇝ G𝑐 in 𝐶( ×) with 𝑎𝑛 → ∞. Then, the
random sequence

𝑐𝑛 ∶= 𝐵 ⋅ 𝛹𝑤◦𝑑 ∕𝐵
mod ◦𝛹bdd(𝑐𝑛∕𝐵) ∈ 𝐶( × )

atisfies 𝑎𝑛 ‖‖𝑐𝑛 − 𝑐𝑛‖‖∞
P
→ 0 for 𝑛 → ∞ and deterministically fulfills ‖

‖

𝑐𝑛‖‖∞ ≤ 2𝐵 = 2 ‖𝑐‖∞ + 1, relation (26), and the inclusion
𝑐𝑛 ⊆  𝑐𝑛𝑐𝑛 (2 ‖𝑐‖∞ + 1, 2𝑤).

5.3. Regularity elevation to Hölder functions of order 𝛾 ∈ (1, 2]

Since we are able to leverage for convergence rates of the empirical OT value (recall Proposition 13(𝑖)) the regularity of the
underlying cost function up to Hölder degree 𝛾 ≤ 2, we provide in this subsection a corresponding regularity elevation map. As the
setting for 𝛾 ≤ 1 can be treated using the theory from previous subsection, we only focus on the regime of 𝛾 ∈ (1, 2].
19
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Consider a convex, compact set  ⊆ R𝑑 with non-empty interior. Let 𝑐 ∈ 𝐶( × ) be a cost function such that ‖𝑐‖∞ ≤ 1 and
assume 𝑐 is continuously differentiable in 𝑥, i.e., suppose that ∇𝑥𝑐 ∶ int()× → R𝑑 can be continuously extended to  × . Further,
suppose that 𝑐(⋅, 𝑦) is (𝛾, 1)-Hölder for each 𝑦 ∈  for 𝛾 ∈ (1, 2]. We define the regularity elevation map for Hölder functions of order
∈ (1, 2] by

𝛹 𝑐,𝛾Hol ∶𝐶( × ) → 𝐶( × ), 𝑐 ↦
(

(𝑥, 𝑦) ↦ inf
𝑥′∈

𝑐(𝑥′, 𝑦) + ⟨∇𝑥𝑐(𝑥′, 𝑦), 𝑥 − 𝑥′⟩ + 2
√

𝑑 ‖
‖

𝑥 − 𝑥′‖
‖

𝛾
)

Notably, it is crucial that the scalar product term involves the partial derivative of the respective (population) cost function 𝑐.
Moreover, we like to point out that the image under 𝛹 𝑐,𝛾Hol does not necessarily lead to (𝛾, 1)-Hölder functions but nonetheless ensures
suitable metric entropy bounds.

Proposition 40. For the above setting with  ⊆ R𝑑 convex and compact, 𝛹 = 𝛹 𝑐,𝛾Hol◦𝛹bdd fulfills 𝛹 (𝑐) = 𝑐, it is continuous near 𝑐, and it
s Hadamard differentiable at 𝑐 with 𝐷𝐻

|𝑐 𝛹 = Id𝐶(×). Further, for any uniformly bounded function class  on  we obtain that

sup
𝑐∈𝐶(×)

log (𝜀,𝛹 (𝑐), ‖⋅‖∞) ≲ 𝜀−𝑑∕𝛾 .

.4. Combination of regularity elevations

Finally, we also outline a constructive way to combine regularity elevation maps defined on different spaces. This is important
ince it enables to leverage regularity properties of the population cost function for different regions of the domain.

Hence, let  , be compact Polish spaces and assume existence of a collection of homeomorphisms 𝜁𝑖 ∶𝑖 → 𝜁𝑖(𝑖) for 1 ≤ 𝑖 ≤ 𝐼
uch that  =

⋃𝐼
𝑖=1 𝜁𝑖(𝑖). Further, assume there exists a partition on unity {𝜂𝑖}𝐼𝑖=1 on  with supp(𝜂𝑖) ⊆ 𝜁𝑖(𝑖). Consider a continuous

ost function 𝑐 ∶ × → R and let 𝑐𝑖 ∶𝑖 × → R, (𝑢, 𝑦) ↦ 𝑐(𝜁𝑖(𝑢), 𝑦). Assume there exist maps 𝛹𝑖 ∶𝐶(𝑖 ×) → 𝐶(𝑖 ×) such that
𝑖(𝑐𝑖) = 𝑐𝑖 and where 𝛹𝑖 is continuous near 𝑐𝑖 and Hadamard differentiable at 𝑐𝑖 with derivative 𝐷𝐻

|𝑐𝑖
𝛹𝑖 = Id. Using these maps we

efine the combination of regularity elevations as

𝛹com ∶𝐶( × ) → 𝐶( × ), 𝑐 ↦

(

(𝑥, 𝑦) ↦
𝐼
∑

𝑖=1
𝜂𝑖(𝑥)𝛹𝑖

(

𝑐(𝜁𝑖(⋅), ⋅)
)

(𝜁−1𝑖 (𝑥), 𝑦)

)

.

ndeed, by continuity of the partition of one 𝜂𝑖 as well as the functionals 𝛹𝑖 and 𝜁𝑖, 𝜁−1𝑖 for each 𝑖 ∈ {1,… , 𝐼} it follows that the
ange of this functional is indeed contained in 𝐶( × ).

roposition 41. For the above setting, 𝛹 = 𝛹com fulfills 𝛹 (𝑐) = 𝑐, it is continuous near 𝑐, and it is Hadamard differentiable at 𝑐 with
𝐻
|𝑐 𝛹 = Id𝐶(×). Further, for any uniformly bounded function class  on  we obtain

sup
𝑐∈𝐶(×)

log (𝜀,𝛹 (𝑐), ‖⋅‖∞) ≤
𝐼
∑

𝑖=1
sup

𝑐∈𝐶(×)
log (𝜀,𝛹𝑖(𝑐(𝜁𝑖(⋅),⋅)), ‖⋅‖∞).

. Proofs of main results

In this section, we provide the full proofs of Lemma 1 for the dual representation of the OT value, Theorem 2 and Proposition 10
or the distributional limit of the empirical OT value under weakly converging costs, as well as Theorems 5–7 and Proposition 8 for
mpirical OT with extremal-type costs. Proofs for all auxiliary results of this section are deferred to Appendix E.

.1. Proof of Lemma 1: Dual representation of optimal transport value

The subsequent auxiliary lemma establishes an important property of cost-transformations which is essential throughout this
ection.

emma 42 (Lipschitz Property of Cost-Transformation). For arbitrary functions 𝑓, 𝑓 ∶ → R and cost functions 𝑐, 𝑐 ∶ × → R, it follows
hat ‖

‖

𝑓 𝑐 − 𝑓 𝑐‖
‖∞ ≤ ‖

‖

𝑓 − 𝑓‖
‖∞+‖𝑐 − 𝑐‖∞. In particular, upon selecting the constant functions 𝑓, 𝑐 ≡ 0, it follows that ‖𝑓 𝑐‖∞ ≤ ‖𝑓‖∞+‖𝑐‖∞.

roof of Lemma 1. For any ℎ ∈ 𝑐 there exists 𝑔∶ → [− ‖𝑐‖∞ , ‖𝑐‖∞] with ℎ = 𝑔𝑐 , and hence

− ‖𝑐‖∞ − sup
𝑦∈

𝑔(𝑦) ≤ ℎ(𝑥) = inf
𝑦∈

𝑐(𝑥, 𝑦) − 𝑔(𝑦) ≤ ‖𝑐‖∞ − sup
𝑦∈

𝑔(𝑦).

n consequence, we find that ‖ℎ‖∞ ≤ 2 ‖𝑐‖∞ ≤ 2𝐵. Further, for arbitrary 𝑥, 𝑥′ ∈  and 𝜀 > 0, consider 𝑦′ ∈  such that
(𝑥′) ≥ 𝑐(𝑥′, 𝑦′) − 𝑔(𝑦′) − 𝜀. Then, it follows that

ℎ(𝑥) − ℎ(𝑥′) =
[

inf
𝑦∈

𝑐(𝑥, 𝑦) − 𝑔(𝑦)
]

−
[

inf
𝑦∈

𝑐(𝑥′, 𝑦) − 𝑔(𝑦)
]

′ ′ ′ ′ ′
20

≤ 𝑐(𝑥, 𝑦 ) − 𝑔(𝑦 ) − 𝑐(𝑥 , 𝑦 ) + 𝑔(𝑦 ) + 𝜀
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≤ 𝑤(𝑑 (𝑥, 𝑥′)) + 𝜀.

Since 𝜀 > 0 can be chosen arbitrarily small, we obtain that |ℎ(𝑥) − ℎ(𝑥′)| ≤ 𝑤(𝑑 (𝑥, 𝑥′)). This yields 𝑐 ⊆  and thus 𝑐
𝑐 ⊆  𝑐 .

urther, by Santambrogio [2, Proposition 1.34] we infer 𝑐 = 𝑐𝑐
𝑐 ⊆  𝑐𝑐 . To show the remaining inclusions note for 𝑓 ∈  that

− ‖𝑐‖∞ − sup
𝑥∈

𝑓 (𝑥) ≤ 𝑓 𝑐 ≤ ‖𝑐‖∞ − sup
𝑥∈

𝑓 (𝑥).

ence, the function 𝑔 ∶= 𝑓 𝑐 + sup𝑥∈ 𝑓 (𝑥) fulfills ‖𝑔‖∞ ≤ ‖𝑐‖∞, and since ‖𝑓‖∞ ≤ 2𝐵, we find that

𝑓 𝑐𝑐 (𝑥) = (𝑓 𝑐 )𝑐 = (𝑔)𝑐 + sup
𝑥∈

𝑓 (𝑥) ∈ 𝑐 + [−2𝐵, 2𝐵],

hich yields  𝑐𝑐 ⊆ 𝑐 + [−2𝐵, 2𝐵] as well as  𝑐 =  𝑐𝑐𝑐 ⊆ 𝑐
𝑐 + [−2𝐵, 2𝐵]. To show representation (10), we combine the inclusions

𝑐 ⊆  ⊆ 𝐶() with the alternative dual representations (2) and (8). For the final claim, take a maximizing sequence {𝑓𝑛}𝑛∈N for
10) which admits by compactness of  a converging subsequence {𝑓𝑛𝑘}𝑘∈N with uniform limit 𝑓 ∈  . Then by Lemma 42 it follows
hat {𝑓 𝑐𝑛𝑘}𝑘∈N and {𝑓 𝑐𝑐𝑛𝑘 }𝑘∈N also uniformly converge to 𝑓 𝑐 and 𝑓 𝑐𝑐 , respectively. We thus obtain that

𝜇(𝑓 𝑐𝑐 ) + 𝜈(𝑓 𝑐 ) = lim
𝑘→∞

𝜇(𝑓 𝑐𝑐𝑛𝑘 ) + 𝜈(𝑓
𝑐
𝑛𝑘
) = 𝑂𝑇 (𝜇, 𝜈, 𝑐)

which shows that 𝑓 ∈  is a maximizing element hence the set of optimizers 𝑆𝑐 (𝜇, 𝜈) for (10) is non-empty. □

6.2. Proofs for distributional limits under weakly converging costs

6.2.1. Proof of Theorem 2
For the proof of Theorem 2 the following auxiliary results are crucial. We start with lower and upper bound on the difference

between OT values for varying costs and probability measures which are a consequence of the OT problem having a representation
in terms of an infimum over feasible couplings as well as a supremum over feasible potentials.

Lemma 43 (Lower and upper bounds). Define for 𝐵 > 0 and a concave modulus of continuity 𝑤∶R+ → R+ the collection

𝐶(𝐵,𝑤) ∶=
{

𝑐 ∈ 𝐶( × ) | ‖𝑐‖∞ ≤ 𝐵, |𝑐(𝑥, 𝑦) − 𝑐(𝑥′, 𝑦)| ≤ 𝑤(𝑑 (𝑥, 𝑥′)) for all 𝑥, 𝑥′ ∈  , 𝑦 ∈ 
}

.

Then, for costs 𝑐, 𝑐 ∈ 𝐶(𝐵,𝑤) and probability measures 𝜇, 𝜇̃ ∈ (), 𝜈, 𝜈̃ ∈ () it holds that

inf
𝜋∈𝛱⋆

𝑐 (𝜇̃,𝜈̃)
𝜋(𝑐 − 𝑐) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)
(𝜇̃ − 𝜇)𝑓 𝑐𝑐 + (𝜈̃ − 𝜈)𝑓 𝑐

≤ 𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)

≤min
(

inf
𝜋∈𝛱⋆

𝑐 (𝜇̃,𝜈̃)
𝜋(𝑐 − 𝑐) + sup

𝑓∈𝑆𝑐 (𝜇̃,𝜈̃)
(𝜇̃ − 𝜇)𝑓 𝑐𝑐 + (𝜈̃ − 𝜈)𝑓 𝑐 ,

inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(𝑐 − 𝑐) + sup

𝑓∈𝑆𝑐 (𝜇̃,𝜈̃)
(𝜇̃ − 𝜇)𝑓 𝑐𝑐 + (𝜈̃ − 𝜈)𝑓 𝑐 + sup

𝑓∈
(𝜇̃ − 𝜇)(𝑓 𝑐𝑐 − 𝑓 𝑐𝑐 ) + (𝜈̃ − 𝜈)(𝑓 𝑐 − 𝑓 𝑐 ).

)

In particular, for fixed measures or fixed costs it follows that

|𝑂𝑇 (𝜇, 𝜈, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)| ≤ ‖𝑐 − 𝑐‖∞, |𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)| ≤ sup
𝑓∈𝑐𝑐

|

|

|

(𝜇̃ − 𝜇)𝑓 ||
|

+ sup
𝑓∈𝑐

|

|

|

(𝜈̃ − 𝜈)𝑓 ||
|

.

To employ the lower and upper bounds of Lemma 43 for the proof of Theorem 2 we additionally require a number of continuity
and measurability properties which are captured in the following lemma. Notably, we equip ()×() with the bounded Lipschitz
norm, which turns it into a Polish metric space and metrizes weak convergence of measures.

Lemma 44 (Continuity and measurability).Let 𝜇 ∈ (), 𝜈 ∈ (), and 𝑐 ∈ 𝐶( × ). Take a concave modulus of continuity
𝑤∶R+ → R+ for 𝑐 and set 𝐶 ∶= 𝐶(2 ‖𝑐‖∞ + 1, 2𝑤) (for the definition of 𝐶(2 ‖𝑐‖∞ + 1, 2𝑤) see Lemma 43). Further, recall the function
class  =  (2 ‖𝑐‖∞ + 1, 2𝑤) introduced in (9) and define the functions

𝑇1 ∶() × () × 𝐶 → R, (𝜇′, 𝜈′, 𝑐′) ↦ 𝑂𝑇 (𝜇′, 𝜈′, 𝑐′),

𝑇2 ∶() × () × 𝐶 × 𝐶( × ) → R, (𝜇′, 𝜈′, 𝑐′, ℎ𝑐 ) ↦ inf
𝜋∈𝛱⋆

𝑐′
(𝜇′ ,𝜈′)

𝜋(ℎ𝑐 ),

𝑇3 ∶() × () × 𝐶 × 𝐶𝑢( )2 → R, (𝜇′, 𝜈′, 𝑐′, ℎ𝜇 , ℎ𝜈 ) ↦ sup
𝑓∈𝑆𝑐′ (𝜇′ ,𝜈′)

ℎ𝜇(𝑓 ) + ℎ𝜈 (𝑓 ),

𝑇4 ∶𝐶𝑢( )4 → R, (ℎ𝜇 , ℎ̃𝜇 , ℎ𝜈 , ℎ̃𝜈) ↦ sup
𝑓∈

ℎ𝜇(𝑓 ) − ℎ̃𝜇(𝑓 ) + ℎ𝜈 (𝑓 ) − ℎ̃𝜈 (𝑓 ).

Then, 𝑇1 and 𝑇4 are continuous, 𝑇2 is lower semi-continuous, and 𝑇3 is upper semi-continuous. If 𝛱⋆
𝑐′ (𝜇

′, 𝜈′) is unique, 𝑇2 is continuous at
(𝜇′, 𝜈′, 𝑐′, ℎ𝑐 ). Moreover, for fixed (𝜇′, 𝜈′, 𝑐′) the map 𝑇2 is continuous in ℎ𝑐 while 𝑇3 is continuous in (ℎ𝜇 , ℎ𝜈 ). In particular, each function
21

𝑇𝑖 for 1 ≤ 𝑖 ≤ 4 is Borel measurable.
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The previous two assertions fully deal with deterministic statements on the OT functional and related terms that arise from
orresponding bounds. The following two results provide the relevant tools to control the stochastic aspects. More precisely, for our
roof of Theorem 2 we consider a Skorokhod representation of the random sequence detailed in (JW) which additionally fulfills the
roperty that 𝜇𝑛 and 𝜈𝑛 weakly converge to 𝜇 and 𝜈, respectively. For this purpose, we state the following measurability assertions
nd joint weak convergence statements.

emma 45 (Measurability of empirical process). For a Polish space  consider a totally bounded function class  ⊆ 𝐶() under uniform
orm. Then, the following assertions hold.

(i) Any probability measure 𝜇 ∈ () defines via evaluation a uniformly continuous functional on , i.e., 𝜇 ∈ 𝐶𝑢().
(ii) A map 𝜔 ↦ 𝜇(𝜔) ∈ () ⊆ 𝐶𝑢() is Borel measurable if and only if for any 𝑔 ∈  the evaluation map 𝜔 ↦ 𝜇(𝜔)(𝑔) is Borel

measurable.
(iii) The empirical process

√

𝑛(𝜇𝑛 − 𝜇) and the bootstrap empirical process
√

𝑘(𝜇𝑏𝑛,𝑘 − 𝜇𝑛) are both Borel measurable random variables in
𝐶𝑢().

emma 46 (Joint Weak Convergence).For the setting of Theorem 2, assume (JW). Then, for 𝑛, 𝑚 → ∞, weak convergence in the Polish
pace 𝐶𝑢( )2 × 𝐶( × ) × () × () to a tight limit occurs

(

(

G𝜇
𝑛 (𝑓

𝑐𝑐 ),G𝜈
𝑚(𝑓

𝑐 )
)

𝑓∈
,G𝑐

𝑛,𝑚, 𝜇𝑛, 𝜈𝑚

)

⇝

(

(

G𝜇(𝑓 𝑐𝑐 ),G𝜈 (𝑓 𝑐 )
)

𝑓∈
,G𝑐 , 𝜇, 𝜈

)

. (27)

If (Sup) of Theorem 2 is also valid, then, for 𝑛, 𝑚→ ∞, it follows in the Polish space 𝐶𝑢( )4 × 𝐶( × ) × () × () that
(

(

G𝜇
𝑛 (𝑓

𝑐𝑐 ),G𝜇
𝑛 (𝑓

𝑐𝑛,𝑚𝑐𝑛,𝑚 ),G𝜈
𝑚(𝑓

𝑐 ),G𝜈
𝑚(𝑓

𝑐𝑛,𝑚 )
)

𝑓∈
,G𝑐

𝑛,𝑚, 𝜇𝑛, 𝜈𝑛,
)

⇝

(

(

G𝜇(𝑓 𝑐𝑐 ),G𝜇(𝑓 𝑐𝑐 ),G𝜈 (𝑓 𝑐 ),G𝜈 (𝑓 𝑐 )
)

𝑓∈
,G𝑐 , 𝜇, 𝜈

)

. (28)

Each sequence element for (27) and (28) as well as the weak limit are Borel measurable.

Remark 47 (Skorokhod Representation). When dealing with weak convergence of empirical processes in non-separable spaces, special
care is required due to potential measurability issues. However, since the different maps of interest are defined between Polish spaces
and measurable, we circumvent such issues. In particular, since the random variables from Lemma 46 converge weakly to a tight
limit with separable support, the conditions of Billingsley [90, Theorem 6.7] are met and a (measurable) Skorokhod representation
exists.

With these tools at our disposal, we now proceed with the proof of Theorem 2.

Proof of Theorem 2. Invoking Corollary 39, as
√

𝑛𝑚∕(𝑛 + 𝑚)(𝑐𝑛,𝑚 − 𝑐) =∶G𝑐
𝑛,𝑚 ⇝ G𝑐 in the space 𝐶( × ), there exists 𝑐𝑛,𝑚 such

that the inclusion 𝑐𝑛,𝑚 ⊆  𝑐𝑛,𝑚𝑐𝑛,𝑚 (recall the function classes from Section 2.1) holds deterministically for  =  (2 ‖𝑐‖∞ + 1, 2𝑤)

nd
√

𝑛(𝑐𝑛,𝑚 − 𝑐𝑛,𝑚)
P
→ 0. The latter implies by Lemma 43 that

√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚)
) P
→ 0.

ence, to prove the assertion it suffices by Slutzky’s lemma to show that
√

𝑛𝑚
𝑛 + 𝑚

(

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

⇝ inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆G𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆G𝜈 (𝑓 𝑐 ). (29)

Without loss of generality, we may therefore assume 𝑐𝑛,𝑚 = 𝑐𝑛,𝑚. Further, set 𝜆𝑛 ∶= 𝑚∕(𝑛 + 𝑚). Then, by Lemma 43, the subsequent
ower and upper bounds follow,

inf
𝜋∈𝛱⋆

𝑐𝑛,𝑚 (𝜇𝑛 ,𝜈𝑚)
𝜋(G𝑐

𝑛,𝑚) + sup
𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆𝑛 G𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G𝜈
𝑚(𝑓

𝑐 )

≤
√

𝑛𝑚
𝑛 + 𝑚

(𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)) (30)

≤ min
(

inf
𝜋∈𝛱⋆

𝑐 (𝜇𝑛 ,𝜈𝑚)
𝜋(G𝑐

𝑛,𝑚) + sup
𝑓∈𝑆𝑐 (𝜇𝑛 ,𝜈𝑚)

√

𝜆𝑛 G𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G𝜈
𝑚(𝑓

𝑐 ),

inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G𝑐

𝑛,𝑚) + sup
𝑓∈𝑆𝑐𝑛,𝑚 (𝜇𝑛 ,𝜈𝑚)

√

𝜆𝑛 G𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G𝜈
𝑚(𝑓

𝑐 )

+ sup
𝑓∈

√

𝜆𝑛
(

G𝜇
𝑛 (𝑓

𝑐𝑛,𝑚𝑐𝑛,𝑚 ) −G𝜇
𝑛 (𝑓

𝑐𝑐 )
)

+
√

1 − 𝜆𝑛
(

G𝜈
𝑚(𝑓

𝑐𝑛,𝑚 ) −G𝜈
𝑚(𝑓

𝑐 )
)

)

.

For each setting (OP) and (Sup) we show that the upper and lower bounds asymptotically converge in distribution to the limit
in (29), which then asserts that the empirical OT value also tends to this limit. To this end, we take for the random variables
of Lemma 46 a Skorokhod representation on a probability space (𝛺,, 𝑃 ) [90, p. 70] which is well-defined by Remark 47. More
22
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𝑇

𝑇

precisely, under (OP) we take the Skorokhod representation such that
(

(

G̃𝜇
𝑛 (𝑓

𝑐𝑐 ), G̃𝜈
𝑚(𝑓

𝑐 )
)

𝑓∈
, G̃𝑐

𝑛,𝑚, 𝜇̃𝑛, 𝜈̃𝑚

)

a.s.
←←←←←←←←←←←←←←→

(

(

G̃𝜇(𝑓 𝑐𝑐 ), G̃𝜈 (𝑓 𝑐 )
)

𝑓∈
, G̃𝑐 , 𝜇, 𝜈

)

(31)

in 𝐶𝑢( )2 × 𝐶( × ) × () × (), whereas under (Sup) we choose it such that
(

(

G̃𝜇
𝑛 (𝑓

𝑐𝑐 ), G̃𝜇
𝑛 (𝑓

𝑐𝑛,𝑚𝑐𝑛,𝑚 ), G̃𝜈
𝑚(𝑓

𝑐 ), G̃𝜈
𝑚(𝑓

𝑐𝑛 )
)

𝑓∈
, G̃𝑐

𝑛,𝑚, 𝜇̃𝑛, 𝜈̃𝑚

)

a.s.
←←←←←←←←←←←←←←→

(

(

G̃𝜇(𝑓 𝑐𝑐 ), G̃𝜇(𝑓 𝑐𝑐 ), G̃𝜈 (𝑓 𝑐 ), G̃𝜈(𝑓 𝑐 )
)

𝑓∈
, G̃𝑐 , 𝜇, 𝜈

)

(32)

in 𝐶𝑢( )4 × 𝐶( × ) × () × (). We also set 𝑐𝑛,𝑚 ∶= 𝑐 + G̃𝑐
𝑛,𝑚∕

√

𝑛𝑚∕(𝑛 + 𝑚) which a.s. converges to 𝑐.
For the subsequent argument recall the functions 𝑇1, 𝑇2, 𝑇3, 𝑇4 from Lemma 44 and their (semi-) continuity properties. Further-

ore, note that an application of Lemma 42 in combination with the arguments of the proof of Lemma 45 (𝑖) yields that the maps
→ R,

𝑓 ↦ G𝜇
𝑛 (𝑓

𝑐𝑐 ), 𝑓 ↦ G𝜇
𝑛 (𝑓

𝑐𝑛,𝑚𝑐𝑛,𝑚 ), 𝑓 ↦ G𝜈
𝑚(𝑓

𝑐 ), 𝑓 ↦ G𝜈
𝑚(𝑓

𝑐𝑛,𝑚 )

re uniformly continuous, i.e., elements in 𝐶𝑢( ). For both settings (OP) and (Sup) it follows by measurability of the maps 𝑇1, 𝑇2, 𝑇3
for each 𝑛, 𝑚 ∈ N that

√

𝑛𝑚
𝑛 + 𝑚

(𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐))
𝑑
=
√

𝑛𝑚
𝑛 + 𝑚

(𝑂𝑇 (𝜇̃𝑛, 𝜈̃𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)),

inf
𝜋∈𝛱⋆

𝑐𝑛,𝑚 (𝜇𝑛 ,𝜈𝑚)
𝜋(G𝑐

𝑛,𝑚) + sup
𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆𝑛 G𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G𝜈
𝑚(𝑓

𝑐 )
𝑑
= inf
𝜋∈𝛱⋆

𝑐𝑛,𝑚
(𝜇̃𝑛 ,𝜈̃𝑚)

𝜋(G̃𝑐
𝑛,𝑚) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆𝑛 G̃𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G̃𝜈
𝑚(𝑓

𝑐 ).

Under (OP) we also notice that

inf
𝜋∈𝛱⋆

𝑐 (𝜇𝑛 ,𝜈𝑚)
𝜋(G𝑐

𝑛,𝑚) + sup
𝑓∈𝑆𝑐 (𝜇𝑛 ,𝜈𝑚)

√

𝜆𝑛 G𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G𝜈
𝑚(𝑓

𝑐 )
𝑑
= inf
𝜋∈𝛱⋆

𝑐 (𝜇̃𝑛 ,𝜈̃𝑚)
𝜋(G̃𝑐

𝑛,𝑚) + sup
𝑓∈𝑆𝑐 (𝜇̃𝑛 ,𝜈̃𝑚)

√

𝜆𝑛 G̃𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G̃𝜈
𝑚(𝑓

𝑐 ),

whereas under (Sup) we additionally employ measurability of 𝑇4 to infer for each 𝑛 ∈ N that

inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G𝑐

𝑛,𝑚) + sup
𝑓∈𝑆𝑐𝑛,𝑚 (𝜇𝑛 ,𝜈𝑚)

√

𝜆𝑛 G𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G𝜈
𝑚(𝑓

𝑐 )

+ sup
𝑓∈

√

𝜆𝑛
(

G𝜇
𝑛 (𝑓

𝑐𝑐 ) −G𝜇
𝑛 (𝑓

𝑐𝑛,𝑚𝑐𝑛,𝑚 )
)

+
√

1 − 𝜆𝑛
(

G𝜈
𝑚(𝑓

𝑐 ) −G𝜈
𝑚(𝑓

𝑐𝑛,𝑚 )
)

𝑑
= inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G̃𝑐

𝑛,𝑚) + sup
𝑓∈𝑆𝑐𝑛,𝑚 (𝜇̃𝑛 ,𝜈̃𝑚)

√

𝜆𝑛 G̃𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G̃𝜈
𝑚(𝑓

𝑐 )

+ sup
𝑓∈

√

𝜆𝑛
(

G̃𝜇
𝑛 (𝑓

𝑐𝑐 ) − G̃𝜇
𝑛 (𝑓

𝑐𝑛,𝑚𝑐𝑛,𝑚 )
)

+
√

1 − 𝜆𝑛
(

G̃𝜈
𝑚(𝑓

𝑐 ) − G̃𝜈
𝑚(𝑓

𝑐𝑛,𝑚 )
)

.

Hence, it suffices to work with the Skorokhod representation to obtain the weak limit for the empirical OT value. Invoking Lemma 43,
identical lower and upper bounds on the quantity of interest,

√

𝑛𝑚∕(𝑛 + 𝑚)(𝑂𝑇 (𝜇̃𝑛, 𝜈̃𝑚, 𝑐𝑛,𝑚)−𝑂𝑇 (𝜇, 𝜈, 𝑐)), as for (30) can be concluded.
To obtain a suitable bound on the limit inferior of

√

𝑛𝑚∕(𝑛 + 𝑚)(𝑂𝑇 (𝜇̃𝑛, 𝜈̃𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)) take for both (OP) and (Sup) a
measurable set 𝐴 ∈  of full measure such that the convergence from (31) and (32) is fulfilled thereon, respectively. Then, for each
𝜔 ∈ 𝐴 it follows by lower semi-continuity of 𝑇2 jointly with continuity of 𝑇3 under fixed (𝜇, 𝜈, 𝑐) that

lim inf
𝑛,𝑚→∞

inf
𝜋∈𝛱⋆

𝑐𝑛,𝑚
(𝜇̃𝑛 ,𝜈̃𝑚)

𝜋(G̃𝑐
𝑛,𝑚) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆𝑛 G̃𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G̃𝜈
𝑚(𝑓

𝑐 )

≥ inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G̃𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆 G̃𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆 G̃𝜈 (𝑓 𝑐 ).

Under (OP), we find for each 𝜔 ∈ 𝐴 by continuity of 𝑇2 at (𝜇, 𝜈, 𝑐,G𝑐
𝑛,𝑚) as a consequence of (OP) and upper semi-continuity of

3 that

lim sup
𝑛,𝑚→∞

inf
𝜋∈𝛱⋆

𝑐 (𝜇̃𝑛 ,𝜈̃𝑚)
𝜋(G̃𝑐

𝑛,𝑚) + sup
𝑓∈𝑆𝑐 (𝜇̃𝑛 ,𝜈̃𝑚)

√

𝜆𝑛 G̃𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G̃𝜈
𝑚(𝑓

𝑐 )

≤ 𝜋⋆(G̃𝑐 ) + sup
𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆 G̃𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆 G̃𝜈 (𝑓 𝑐 )

= inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G̃𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆 G̃𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆 G̃𝜈 (𝑓 𝑐 ).

Under (Sup), we note for each 𝜔 ∈ 𝐴 by continuity of 𝑇2 in ℎ𝑐 for fixed (𝜇, 𝜈, 𝑐), upper semi-continuity of 𝑇3 and continuity of
4 that

lim sup
𝑛,𝑚→∞

inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G̃𝑐

𝑛,𝑚) + sup
𝑓∈𝑆𝑐𝑛,𝑚 (𝜇̃𝑛 ,𝜈̃𝑚)

√

𝜆𝑛 G̃𝜇
𝑛 (𝑓

𝑐𝑐 ) +
√

1 − 𝜆𝑛 G̃𝜈
𝑚(𝑓

𝑐 )

+ sup
𝑓∈

√

𝜆𝑛
(

G̃𝜇
𝑛 (𝑓

𝑐𝑐 ) − G̃𝜇
𝑛 (𝑓

𝑐𝑛,𝑚𝑐𝑛,𝑚 )
)

+
√

1 − 𝜆𝑛
(

G̃𝜈
𝑚(𝑓

𝑐 ) − G̃𝜈
𝑚(𝑓

𝑐𝑛,𝑚 )
)

≤ inf
⋆

𝜋(G̃𝑐 ) + sup
√

𝜆 G̃𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆 G̃𝜈 (𝑓 𝑐 )
23

𝜋∈𝛱𝑐 (𝜇,𝜈) 𝑓∈𝑆𝑐 (𝜇,𝜈)
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𝜇

o

P
p
(

+ sup
𝑓∈

√

𝜆
(

G̃𝜇(𝑓 𝑐𝑐 ) − G̃𝜇(𝑓 𝑐𝑐 )
)

+
√

1 − 𝜆
(

G̃𝜈 (𝑓 𝑐 ) − G̃𝜈(𝑓 𝑐 )
)

= inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G̃𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆 G̃𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆 G̃𝜈 (𝑓 𝑐 ).

As the lower bound and the upper bounds for
√

𝑛𝑚∕(𝑛 + 𝑚)(𝑂𝑇 (𝜇̃𝑛, 𝜈̃𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)) asymptotically match for all 𝜔 ∈ 𝐴, it
follows under both (OP) and (Sup) that

lim
𝑛,𝑚→∞

√

𝑛𝑚
𝑛 + 𝑚

(𝑂𝑇 (𝜇̃𝑛, 𝜈̃𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)) = inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(G̃𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆 G̃𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆 G̃𝜈 (𝑓 𝑐 ).

As the set 𝐴 has full measure we obtain that
√

𝑛𝑚
𝑛 + 𝑚

(𝑂𝑇 (𝜇̃𝑛, 𝜈̃𝑚, 𝑐𝑛,𝑚) − 𝑂𝑇 (𝜇, 𝜈, 𝑐))
a.s.
←←←←←←←←←←←←←←→ inf

𝜋∈𝛱⋆
𝑐 (𝜇,𝜈)

𝜋(G̃𝑐 ) + sup
𝑓∈𝑆𝑐 (𝜇,𝜈)

√

𝜆 G̃𝜇(𝑓 𝑐𝑐 ) +
√

1 − 𝜆 G̃𝜈 (𝑓 𝑐 ),

where the limit has by measurability of 𝑇2 and 𝑇3 the same Borel law as the limit in the assertion, which finishes the proof. □

6.2.2. Proof of Proposition 10
Before turning to the proof of the bootstrap consistency, i.e., Proposition 10, we state an important result on the convergence of

the bootstrap empirical measure.

Lemma 48. For a Polish space  let 𝜇 ∈ (). Consider i.i.d. random variables {𝑋𝑖}𝑛𝑖=1 ∼ 𝜇⊗𝑛 and define the empirical measure
𝑛 ∶= 𝑛−1

∑𝑛
𝑖=1 𝛿𝑋𝑖 . Further, consider 𝑘(𝑛) i.i.d. random variables {𝑋𝑏

𝑘}
𝑛
𝑖=1 ∼ 𝜇⊗𝑘(𝑛)𝑛 to similarly define the bootstrap empirical measure

𝜇𝑏𝑛,𝑘 ∶=
1
𝑘(𝑛)

∑𝑘(𝑛)
𝑗=1 𝛿𝑋𝑏𝑖 . Then, provided that 𝑘(𝑛) → ∞ as 𝑛→ ∞, it follows under 𝑛→ ∞ that 𝜇𝑏𝑛,𝑘 weakly converges to 𝜇, in probability.

The above lemma is a corollary of Theorem 2 in [91] and was added to ease further referencing. We can now prove Proposition 10
n bootstrap consistency under weakly converging costs.

roof of Proposition 10. By Assumptions (JW) and (JW)*, and by measurability of the empirical and bootstrap empirical
rocesses (Lemma 45) we infer using Lemma 2.2(𝑐) ⇒ (𝑎) in Bücher and Kojadinovic [54] for two bootstrap versions (𝜇(1)𝑛,𝑘, 𝜈

(1)
𝑛,𝑘, 𝑐

(1)
𝑛,𝑘),

𝜇(2)𝑛,𝑘, 𝜈
(2)
𝑛,𝑘, 𝑐

(2)
𝑛,𝑘) based on independent bootstrap samples {𝑋(1)

𝑖 }𝑘𝑖=1, {𝑋
(2)
𝑖 }𝑘𝑖=1 ∼ 𝜇⊗𝑘𝑛 and {𝑌 (1)

𝑖 }𝑘𝑖=1, {𝑌
(2)
𝑖 }𝑘𝑖=1 ∼ 𝜈⊗𝑘𝑛 for 𝑛, 𝑘→ ∞, 𝑘 = o(𝑛)

that

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

𝑛
⎛

⎜

⎜

⎝

𝜇𝑛 − 𝜇
𝜈𝑛 − 𝜈
𝑐𝑛 − 𝑐

⎞

⎟

⎟

⎠

√

𝑘

⎛

⎜

⎜

⎜

⎝

𝜇(𝑖)𝑛,𝑘 − 𝜇𝑛
𝜈(𝑖)𝑛,𝑘 − 𝜈𝑛
𝑐(𝑖)𝑛,𝑘 − 𝑐𝑛

⎞

⎟

⎟

⎟

⎠𝑖=1,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⇝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

G𝜇

G𝜈

G𝑐

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

G𝜇,(𝑖)

G𝜈,(𝑖)

G𝑐,(𝑖)

⎞

⎟

⎟

⎠𝑖=1,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

in
(

𝐶𝑢( 𝑐𝑐 ) × 𝐶𝑢( 𝑐 ) × 𝐶( × )
)3

. Since 𝑘 = o(𝑛) we also obtain by Slutzky’s lemma that

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

𝑛
⎛

⎜

⎜

⎝

𝜇𝑛 − 𝜇
𝜈𝑛 − 𝜈
𝑐𝑛 − 𝑐

⎞

⎟

⎟

⎠

√

𝑘

⎛

⎜

⎜

⎜

⎝

𝜇(𝑖)𝑛,𝑘 − 𝜇
𝜈(𝑖)𝑛,𝑘 − 𝜈
𝑐(𝑖)𝑛,𝑘 − 𝑐

⎞

⎟

⎟

⎟

⎠𝑖=1,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=∶

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

G𝜇
𝑛

G𝜈
𝑛

G𝑐
𝑛

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

G𝜇,(𝑖)
𝑛,𝑘

G𝜈,(𝑖)
𝑛,𝑘

G𝑐,(𝑖)
𝑛,𝑘

⎞

⎟

⎟

⎟

⎠𝑖=1,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⇝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

G𝜇

G𝜈

G𝑐

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

G𝜇,(𝑖)

G𝜈,(𝑖)

G𝑐,(𝑖)

⎞

⎟

⎟

⎠𝑖=1,2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Herein, the triples (G𝜇 ,G𝜈 ,G𝑐 ), (G𝜇,(1),G𝜈,(1),G𝑐,(1)), and (G𝜇,(2),G𝜈,(2),G𝑐,(2)) are independent and have identical law. Notably,
invoking Corollary 39 we may assume without loss of generality that the empirical and bootstrap cost function 𝑐𝑛 and 𝑐(𝑖)𝑛,𝑘 for
𝑖 ∈ {1, 2} deterministically satisfy the relation 𝑐 ⊆  𝑐𝑐 , 𝑐 ∈ {𝑐𝑛, 𝑐

(𝑖)
𝑛,𝑘}. Moreover, by Varadarajan [92] we know that 𝜇𝑛 ⇝ 𝜇, 𝜈𝑛 ⇝ 𝜈

a.s. for 𝑛→ ∞, and by Lemma 48 we infer for 𝑖 ∈ {1, 2} that 𝜇(𝑖)𝑛,𝑘 ⇝ 𝜇, 𝜈(𝑖)𝑛,𝑘 ⇝ 𝜈 in probability for 𝑛, 𝑘→ ∞, 𝑘 = o(𝑛). Hence, Slutzky’s
lemma asserts that

⎛

⎜

⎜

(

G𝜇
𝑛 ,G𝜈

𝑛,G
𝑐
𝑛, 𝜇𝑛, 𝜈𝑛

)𝑇

(

G𝜇,(𝑖),G𝜈,(𝑖),G𝑐,(𝑖), 𝜇(𝑖) , 𝜈(𝑖)
)𝑇

⎞

⎟

⎟

⇝
⎛

⎜

⎜

(

G𝜇 ,G𝜈 ,G𝑐 , 𝜇, 𝜈
)𝑇

(

G𝜇,(𝑖),G𝜈,(𝑖),G𝑐,(𝑖), 𝜇, 𝜈
)𝑇

⎞

⎟

⎟

(33)
24

⎝ 𝑛,𝑘 𝑛,𝑘 𝑛,𝑘 𝑛,𝑘 𝑛,𝑘 𝑖=1,2⎠ ⎝ 𝑖=1,2⎠
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6

a
c
1

in
(

𝐶𝑢( 𝑐𝑐 ) ×𝐶𝑢( 𝑐 ) ×𝐶( ×) ×() ×()
)3. Moreover, using an analogous argument as for the proof of Lemma 46 we conclude

that
⎛

⎜

⎜

⎜

⎜

⎝

(

(

G𝜇
𝑛 (𝑓 𝑐𝑐 ),G𝜈

𝑛(𝑓
𝑐 )
)

𝑓∈
,G𝑐

𝑛, 𝜇𝑛, 𝜈𝑛

)𝑇

(

(

G𝜇,(𝑖)
𝑛,𝑘 (𝑓 𝑐𝑐 ),G𝜈,(𝑖)

𝑛,𝑘 (𝑓 𝑐 )
)

𝑓∈
,G𝑐,(𝑖)

𝑛,𝑘 , 𝜇
(𝑖)
𝑛,𝑘, 𝜈

(𝑖)
𝑛,𝑘

)𝑇

𝑖=1,2

⎞

⎟

⎟

⎟

⎟

⎠

⇝

⎛

⎜

⎜

⎜

⎜

⎝

(

(

G𝜇(𝑓 𝑐𝑐 ),G𝜈(𝑓 𝑐 )
)

𝑓∈
,G𝑐 , 𝜇, 𝜈

)𝑇

(

(

G𝜇,(𝑖)(𝑓 𝑐𝑐 ),G𝜈,(𝑖)(𝑓 𝑐 )
)

𝑓∈
,G𝑐,(𝑖), 𝜇, 𝜈

)𝑇

𝑖=1,2

⎞

⎟

⎟

⎟

⎟

⎠

(34)

in the Polish space
(

𝐶𝑢( )2 × 𝐶( × ) × () × ()
)3, and we use under Assumption (OP) a Skorokhod representation for the

process in (34).
Under Assumptions (Sup) and (Sup)*, by measurability of 𝑐𝑛 and 𝑐𝑛,𝑘 as maps to 𝐶( ×), Lipschitzianity under 𝑐-transformation

(Lemma 42) and Slutzky’s lemma we conclude weak convergence of the random variables

⎛

⎜

⎜

⎜

⎜

⎝

(

(

G𝜇
𝑛 (𝑓 𝑐𝑐 ),G

𝜇
𝑛 (𝑓 𝑐𝑛𝑐𝑛 ),G𝜈

𝑛(𝑓
𝑐 ),G𝜈

𝑛(𝑓
𝑐𝑛 )

)

𝑓∈
,G𝑐

𝑛, 𝜇𝑛, 𝜈𝑛

)𝑇

(

(

G𝜇,(𝑖)
𝑛,𝑘 (𝑓 𝑐𝑐 ),G𝜇,(𝑖)

𝑛,𝑘 (𝑓 𝑐
(𝑖)
𝑛,𝑘 ),G𝜈,(𝑖)

𝑛,𝑘 (𝑓 𝑐 ),G𝜈,(𝑖)
𝑛,𝑘 (𝑓 𝑐

(𝑖)
𝑛,𝑘 )

)

𝑓∈
,G𝑐,(𝑖)

𝑛,𝑘 , 𝜇
(𝑖)
𝑛,𝑘, 𝜈

(𝑖)
𝑛,𝑘

)𝑇

𝑖=1,2

⎞

⎟

⎟

⎟

⎟

⎠

⇝

⎛

⎜

⎜

⎜

⎜

⎝

(

(

G𝜇(𝑓 𝑐𝑐 ),G𝜇(𝑓 𝑐𝑐 ),G𝜈(𝑓 𝑐 ),G𝜈 (𝑓 𝑐 )
)

𝑓∈
,G𝑐 , 𝜇, 𝜈

)𝑇

(

(

G𝜇,(𝑖)(𝑓 𝑐𝑐 ),G𝜇,(𝑖)(𝑓 𝑐𝑐 ),G𝜈,(𝑖)(𝑓 𝑐 ),G𝜈,(𝑖)(𝑓 𝑐 )
)

𝑓∈
,G𝑐,(𝑖), 𝜇, 𝜈

)𝑇

𝑖=1,2

⎞

⎟

⎟

⎟

⎟

⎠

(35)

in the Polish space
(

𝐶𝑢( )4×𝐶( ×)×()×()
)3. For the random variables from (35) we now take a Skorokhod representation.

To denote the random elements from the Skorokhod representation, we equip to the respective random variable with a tilde,
e.g., we write 𝜇̃𝑛 for the representation of 𝜇𝑛. Following the same proof technique as Theorem 2 we thus conclude with Lemma 43
and Lemma 44 that

⎛

⎜

⎜

⎝

√

𝑛
(

𝑂𝑇 (𝜇̃𝑛, 𝜈̃𝑛, 𝑐𝑛) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

√

𝑘
(

𝑂𝑇 (𝜇̃(𝑖)𝑛,𝑘, 𝜈̃
(𝑖)
𝑛,𝑘, 𝑐

(𝑖)
𝑛,𝑘) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)

)

𝑖=1,2

⎞

⎟

⎟

⎠

a.s.
←←←←←←←←←←←←←←→

(

inf𝜋∈𝛱⋆
𝑐 (𝜇,𝜈) 𝜋(G̃

𝑐 ) + sup𝑓∈𝑆𝑐 (𝜇,𝜈) G̃
𝜇(𝑓 𝑐𝑐 ) + G̃𝜈(𝑓 𝑐 )

(

inf𝜋∈𝛱⋆
𝑐 (𝜇,𝜈) 𝜋(G̃

𝑐,(𝑖)) + sup𝑓∈𝑆𝑐 (𝜇,𝜈) G̃
𝜇,(𝑖)(𝑓 𝑐𝑐 ) + G̃𝜈,(𝑖)(𝑓 𝑐 )

)

𝑖=1,2

)

.

Consequently, we infer for the original random variables and using that 𝑘 = o(𝑛) that

⎛

⎜

⎜

⎝

√

𝑛
(

𝑂𝑇 (𝜇𝑛, 𝜈𝑛, 𝑐𝑛) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)
)

√

𝑘
(

𝑂𝑇 (𝜇(𝑖)𝑛,𝑘, 𝜈
(𝑖)
𝑛,𝑘, 𝑐

(𝑖)
𝑛,𝑘) − 𝑂𝑇 (𝜇𝑛, 𝜈𝑛, 𝑐𝑛)

)

𝑖=1,2

⎞

⎟

⎟

⎠

⇝

(

inf𝜋∈𝛱⋆
𝑐 (𝜇,𝜈) 𝜋(G

𝑐 ) + sup𝑓∈𝑆𝑐 (𝜇,𝜈) G
𝜇(𝑓 𝑐𝑐 ) +G𝜈 (𝑓 𝑐 )

(

inf𝜋∈𝛱⋆
𝑐 (𝜇,𝜈) 𝜋(G

𝑐,(𝑖)) + sup𝑓∈𝑆𝑐 (𝜇,𝜈) G
𝜇,(𝑖)(𝑓 𝑐𝑐 ) +G𝜈,(𝑖)(𝑓 𝑐 )

)

𝑖=1,2

)

.

Since the three components in the limit have identical distributions and are independent, the assertion follows at once from Bücher
and Kojadinovic [54, Lemma 2.2 (𝑎) ⇒ (𝑐)]. □

6.3. Proofs for distributional limits under extremal-type costs

Before we proceed with the proofs for the results from Section 2.3 which rely on an application of the functional delta method,
we provide a simple result on the support of the limiting processes. Its proof is deferred to Appendix E.6.

Lemma 49. For a Polish space  let 𝜇 ∈ () and take a bounded, measurable function class ̃ on  . Then, the following assertions
hold.

(i) The contingent cone of () at 𝜇 is given by 𝑇𝜇() = Cl{ 𝜇
′−𝜇
𝑡 |𝑡 > 0, 𝜇′ ∈ ()} ⊆ 𝓁∞(̃ ).

(ii) For any 𝛥 ∈ 𝑇𝜇() and 𝑓, 𝑓 ′ ∈ ̃ with 𝑓 − 𝑓 ′ ≡ 𝜅 for some 𝜅 ∈ R it holds that 𝛥(𝑓 ) = 𝛥(𝑓 ′).
(iii) If ̃ is 𝜇-Donsker, then the tight limit G𝜇 of the empirical process

√

𝑛(𝜇𝑛 − 𝜇) in 𝓁∞(̃ ) is a.s. contained in 𝑇𝜇().

.3.1. Proof of Theorem 5
The result follows by an application of the functional delta method [45]. Without loss of generality, we assume that  = supp(𝜇)

nd  = supp(𝜈). This ensures that Kantorovich potentials are by (KP) unique on the full domains  and  . Assumption (Don) in
onjunction with independence of the underlying random variables from 𝜇 and 𝜈 ensure by van der Vaart and Wellner [38, Example
.4.6] that the joint process

√

𝑛𝑚∕𝑛 + 𝑚(𝜇𝑛 −𝜇, 𝜈𝑚 − 𝜈) weakly converge in 𝓁∞(∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 ) ×𝓁∞(∪𝜃∈𝛩 𝑐𝜃 ). Further, by Lemma 49 the
limit is a.s. contained in 𝑇𝜇() × 𝑇𝜈(). It remains to show that the map

(𝑂𝑇 (⋅, ⋅, 𝑐 )) ∶() × () ⊆ 𝓁∞(∪  𝑐𝜃𝑐𝜃 ) × 𝓁∞(∪  𝑐𝜃 ) → 𝐶(𝛩),
25

𝜃 𝜃∈𝛩 𝜃∈𝛩 𝜃∈𝛩
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a
i

(𝜇, 𝜈) ↦
(

𝜃 ↦ sup
𝑓∈

𝜇(𝑓 𝑐𝜃 ,𝑐𝜃 ) + 𝜈(𝑓 𝑐𝜃 )
)

is Hadamard directionally differentiable at (𝜇, 𝜈) tangentially to () ×(). In the language of Theorem 52, take  and 𝛩 as they
are and set

𝑉 ∶= 𝓁∞(∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 ) × 𝓁∞(∪𝜃∈𝛩 𝑐𝜃 ), 𝑈 ∶= () × (), 𝐸((𝜇, 𝜈), 𝑓 , 𝜃) ∶= 𝜇(𝑓 𝑐𝜃𝑐𝜃 ) + 𝜈(𝑓 𝑐𝜃 ).

Then, Assumption (EC) follows from Lemma 42, while (Lip) and (Lin) are simple to verify by definition of 𝑉 and 𝐸. Moreover, by
Assumption List (KP) the condition of point (ii) in Lemma 53 holds, since the evaluations of 𝐸 in 𝑓 with (𝛥𝜇 , 𝛥𝜈 ) ∈ 𝑇𝜇()×𝑇𝜈()
re invariant under constant shifts (Lemma 49), and since Kantorovich potentials are unique on  and  up to a constant shift. This
stablishes (DC), and the proof is complete. □

.3.2. Proof of Theorem 6
Since 𝛩 is a compact Polish space, it follows by Fang and Santos [48, Lemma S.4.9] (see also Cárcamo et al. [52, Corollary 2.3])

hat the infimal mapping,

𝐼 ∶𝐶(𝛩) → R, ℎ↦ inf
𝜃∈𝛩

ℎ(𝜃),

s Hadamard directionally differentiable at 𝑂𝑇 (𝜇, 𝜈, 𝑐(⋅)) ∈ 𝐶(𝛩) with derivative given by

𝐷𝐻
𝑂𝑇 (𝜇,𝜈,𝑐(⋅))𝐼 ∶𝐶(𝛩) → R, 𝛥ℎ ↦ inf

𝜃∈𝑆−(𝛩,𝜇,𝜈)
𝛥ℎ(𝜃).

ence, applying the functional delta method [45] for the infimal mapping 𝐼 onto the uniform weak limit for the empirical OT
rocess from Theorem 5 asserts the claim. □

.3.3. Proof of Theorem 7
From the dual formulation (10) the supremal OT value over 𝛩 is given by

sup
𝜃∈𝛩

𝑂𝑇 (⋅, ⋅, 𝑐𝜃)∶() × () ⊆ 𝓁∞(∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 ) × 𝓁∞(∪𝜃∈𝛩 𝑐𝜃 ) → R,

(𝜇, 𝜈) ↦ sup
(𝑓,𝜃)∈×𝛩

𝜇(𝑓 𝑐𝜃𝑐𝜃 ) + 𝜈(𝑓 𝑐𝜃 ).

The results of Appendix A readily apply, with the choices for 𝑉 , 𝑈 , and 𝐸 as in the proof of Theorem 5; the only difference being
that the supremum is taken over  × 𝛩 instead of  . In particular, (EC), (Lip), and (Lin) are valid, whereas (DC) is now trivially
fulfilled. Overall, Theorem 52 asserts that sup𝜃∈𝛩 𝑂𝑇 (⋅, ⋅, 𝑐𝜃) is Hadamard directionally differentiable tangentially to () × ()
with derivative

𝐷𝐻
|(𝜇,𝜈) sup𝜃∈𝛩

𝑂𝑇 (⋅, ⋅, 𝑐𝜃)∶ 𝑇𝜇() × 𝑇𝜈() → R, (𝛥𝜇 , 𝛥𝜈 ) ↦ sup
𝜃∈𝑆+(𝛩,𝜇,𝜈)
𝑓𝜃∈𝑆𝑐𝜃 (𝜇,𝜈)

𝛥𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 ) + 𝛥𝜈 (𝑓 𝑐𝜃𝜃 ).

ombined with weak convergence of
√

𝑛𝑚∕𝑛 + 𝑚(𝜇𝑛 − 𝜇, 𝜈𝑚 − 𝜈) in 𝓁∞(∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 ) × 𝓁∞(∪𝜃∈𝛩 𝑐𝜃 ) by (Don) in conjunction with the
ndependence of the underlying samples [38, Example 1.4.6], and the inclusion of the limit in 𝑇𝜇() × 𝑇𝜈() by Lemma 49, the
unctional delta method [45] implies the claim. □

emark 50. In addition to the proof presented above, it is also possible to show Theorem 7 with similar arguments to those found
n the proof of Fang and Santos [48, Lemma S.4.9] or Cárcamo et al. [52, Corollary 2.3]. However, their statements only provide
ufficient conditions for Hadamard directional differentiability for tangentially to the space 𝐶(∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 )×𝐶(∪𝜃∈𝛩 𝑐𝜃 ), whereas the
upremal OT value is defined only on the strict subset () × ().

.3.4. Proof of Proposition 8
Define 𝛥(𝜇𝑛, 𝜈𝑚, 𝐾) ∶= inf𝜃∈𝛩 𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜃) − inf𝜃∈𝐾 𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜃). Then,

P∗
(

𝛥(𝜇𝑛, 𝜈𝑚, 𝐾) ≠ 0
)

≤ P∗
({

𝛥(𝜇𝑛, 𝜈𝑚, 𝐾) ≠ 0
}

∩
{

𝜃𝑛,𝑚 ∈ 𝐾
})

+ P∗(𝜃𝑛,𝑚 ∉ 𝐾),

nd as the first summand in the above display is null while lim𝑛→∞ P∗(𝜃𝑛,𝑚 ∉ 𝐾) = 0, the right-hand side converges to zero. Hence,
nvoking Slutzky’s Lemma [38, Example 1.4.7] it follows from Theorem 6 that

√

𝑛𝑚
𝑛 + 𝑚

(

inf
𝜃∈𝛩

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜃) − inf
𝜃∈𝛩

𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
)

=
√

𝑛𝑚
𝑛 + 𝑚

𝛥(𝜇𝑛, 𝜈𝑚, 𝐾) +
√

𝑛𝑚
𝑛 + 𝑚

(

inf
𝜃∈𝐾

𝑂𝑇 (𝜇𝑛, 𝜈𝑚, 𝑐𝜃) − inf
𝜃∈𝐾

𝑂𝑇 (𝜇, 𝜈, 𝑐𝜃)
)

⇝ 0 + inf
𝜃∈𝑆−(𝐾,𝜇,𝜈)

√

𝜆G𝜇(𝑓 𝑐𝜃𝑐𝜃𝜃 ) +
√

1 − 𝜆G𝜈(𝑓 𝑐𝜃𝜃 ).
26

The claim now follows at once after observing that 𝑆−(𝐾, 𝜇, 𝜈) = 𝑆−(𝛩, 𝜇, 𝜈). □
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Appendix A. Uniform Hadamard differentiability of extremal-type functionals

A number of results in this work rely on the notion of Hadamard directional differentiability and the functional delta method.
More precisely, both the result on the weak convergence of the empirical OT process from Section 2.3 and the formulation of
regularity elevation functionals from Section 5 rely on this approach. Although, these two findings are conceptually rather unrelated,
their proof techniques are based on a more general insight which we lay out in this section.

Let (𝑉 , ‖⋅‖𝑉 ) be a normed vector space and consider sets  and 𝛩. Additionally, consider a real-valued function 𝐸 ∶𝑉 ××𝛩 → R
which assigns each triple (𝑣, 𝑓 , 𝜃) to a some objective value 𝐸(𝑣, 𝑓 , 𝜃). We are interested in sensitivity results for extremal-type
functionals

𝛹 (𝑣) ∶=
(

sup
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃)
)

𝜃∈𝛩
and 𝛹̃ (𝑣) ∶=

(

inf
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃)
)

𝜃∈𝛩
.

Herein, 𝛩 provides the collection of feasible parameters which affect the optimization problem, while  represents the collection of
easible solutions. The space 𝑉 denotes another set of parameters that determine the optimization problem and exhibit a vector space
tructure. Overall, these optimization problems characterize the general structure of processes indexed over 𝛩 which are pointwise

defined as the supremum or infimum over a collection  and depend on some parameter in 𝑉 with an additive structure.
For our sensitivity analysis under perturbations of 𝑣 it suffices to focus only on 𝛹 since

inf
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃) = − sup
𝑓∈

−𝐸(𝑣, 𝑓 , 𝜃) for any (𝑣, 𝜃) ∈ 𝑉 × 𝛩.

In the following, we first establish sufficient conditions in terms of 𝐸 for the continuity properties of 𝛹 and the underlying sets of
optimizers.

Lemma 51 (Continuity). Let (𝑉 , ‖⋅‖𝑉 ) be a normed vector space, consider compact topological spaces  and 𝛩 whose topologies are
generated by (pseudo-)metrics 𝑑 and 𝑑𝛩, respectively, and assume that 𝐸 ∶𝑉 ×  × 𝛩 → R satisfies the following.

(EC) For any 𝑣 ∈ 𝑉 the functional 𝐸(𝑣, ⋅, ⋅)∶ × 𝛩 → R is continuous.

(Lip) There exists some 𝐿 ≥ 0 such that for any (𝑓, 𝜃) ∈  × 𝛩 the functional 𝐸(⋅, 𝑓 , 𝜃)∶𝑉 → R is 𝐿-Lipschitz with respect to ‖⋅‖𝑉 .

Then, Range(𝛹 ) ⊆ 𝐶(𝛩) and the functional 𝛹 ∶ 𝑉 → 𝐶(𝛩) is 𝐿-Lipschitz. Further, for any (𝑣, 𝜃) ∈ 𝑉 × 𝛩 the set of optimizers
𝑆(𝑣, 𝜃) ∶= {𝑓 ∈  | sup𝑓 ′∈ 𝐸(𝑣, 𝑓 ′, 𝜃) = 𝐸(𝑣, 𝑓 , 𝜃)} is non-empty, and for fixed 𝑣 ∈ 𝑉 the set-valued map

(𝜃, 𝑡) ∈ 𝛩 × R+ ↦ 𝑆(𝑣, 𝜃; 𝑡) ∶=

{

𝑓 ∈  |

|

|

sup
𝑓 ′∈

𝐸(𝑣, 𝑓 ′, 𝜃) ≤ 𝐸(𝑣, 𝑓 , 𝜃) + 𝑡

}

is upper semi-continuous in terms of inclusion, i.e., for 𝜃𝑛 → 𝜃 and 𝑡𝑛 → 𝑡 any sequence 𝑓𝑛 ∈ 𝑆(𝑣, 𝜃𝑛; 𝑡𝑛) admits a converging subsequence
(𝑓𝑛𝑘 )𝑘∈N in  with limit 𝑓 ∈ 𝑆(𝑣, 𝜃; 𝑡).

Proof of Lemma 51. By Assumption (EC) and compactness of 𝛩× it follows for any 𝑣 ∈ 𝑉 that 𝐸(𝑣, ⋅, ⋅) is uniformly continuous,
hence the function

𝑤𝐸,𝑣 ∶R+ → R+, 𝑡↦ sup
𝑑𝛩 (𝜃,𝜃′)≤𝑡
𝑑 (𝑓,𝑓 ′)≤𝑡

|𝐸(𝑣, 𝑓 , 𝜃) − 𝐸(𝑣, 𝑓 ′, 𝜃′)|

is finite for all 𝑡 ≥ 0 and fulfills lim𝑡↘0𝑤𝐸,𝑣(𝑡) = 0. For 𝜃, 𝜃′ ∈ 𝛩 we thus find that
|

|

|

|

|

sup
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃) − sup
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃′)
|

|

|

|

|

≤ sup
𝑓∈

|𝐸(𝑣, 𝑓 , 𝜃) − 𝐸(𝑣, 𝑓 , 𝜃′)| ≤ 𝑤𝐸,𝑣(𝑑𝛩(𝜃, 𝜃′)),

which implies for 𝑣 ∈ 𝑉 that 𝛹 (𝑣) ∈ 𝐶(𝛩) and therefore Range(𝛹 ) ⊆ 𝐶(𝛩). For the Lipschitzianity of 𝛹 , note by Assumption (Lip)
for any 𝑣, 𝑣′ ∈ 𝑉 that

‖

‖

𝛹 (𝑣) − 𝛹 (𝑣′)‖
‖𝐶(𝛩) = sup

|

|

|sup 𝐸(𝑣, 𝑓 , 𝜃) − sup 𝐸(𝑣′, 𝑓 , 𝜃)
|

|

|

27

𝜃∈𝛩 |
|

𝑓∈ 𝑓∈ |

|
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t

a
(

(

n

S

L

P

≤ sup
𝜃∈𝛩
𝑓∈

|𝐸(𝑣, 𝑓 , 𝜃) − 𝐸(𝑣′, 𝑓 , 𝜃)| ≤ 𝐿 ‖

‖

𝑣 − 𝑣′‖
‖𝑉 .

To see that 𝑆(𝑣, 𝜃) ≠ ∅, note that the function 𝐸(𝑣, ⋅, 𝜃)∶ → R is continuous for any (𝑣, 𝜃) ∈ 𝑉 ×𝛩; hence, by compactness of 
he supremum over  is attained.

It remains to prove the assertion on upper semi-continuity. Consider converging sequences 𝑡𝑛 → 𝑡 ≥ 0 and 𝜃𝑛 → 𝜃 ∈ 𝛩 and take
sequence 𝑓𝑛 ∈ 𝑆(𝑣, 𝜃𝑛; 𝑡𝑛). By compactness of  a converging subsequence (𝑓𝑛𝑘 )𝑘∈N exists with limit 𝑓 ∈  . Hence, by Assumption
EC) and since sup𝑓∈ 𝐸(𝑣, 𝑓 , ⋅) = 𝛹 (𝑣)(⋅) ∈ 𝐶(𝛩) we obtain that 𝑓 ∈ 𝑆(𝑣, 𝜃; 𝑡) since

𝐸(𝑣, 𝑓 , 𝜃) + 𝑡 = lim
𝑘→∞

𝐸(𝑣, 𝑓𝑛𝑘 , 𝜃𝑛𝑘 ) + 𝑡𝑛𝑘 ≥ lim
𝑘→∞

sup
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃𝑛𝑘 ) = sup
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃). □

With these tools at our disposal, we can state our general sensitivity result.

Theorem 52 (Differentiability). Assume in the setting of Lemma 51 Assumptions (EC) and (Lip). Let 𝑣 ∈ 𝑉 and consider a convex set
𝑈 ⊂ 𝑉 . Denote by 𝑇𝑣𝑈 ∶= Cl{ 𝑣−𝑣𝑡 ∣ 𝑡 > 0, 𝑣 ∈ 𝑈} ⊆ 𝑉 its contingent cone at 𝑣. Further, assume the following.

Lin) For any (𝑓, 𝜃) ∈  × 𝛩 the function 𝛥
|𝑣𝐸(⋅, 𝑓 , 𝜃)∶𝑉 → R, 𝑣↦ 𝐸(𝑣 + 𝑣, 𝑓 , 𝜃) − 𝐸(𝑣, 𝑓 , 𝜃) is linear.

(DC) For any ℎ ∈ 𝑇𝑣𝑈 the function 𝜃 ∈ 𝛩 ↦ sup𝑓∈𝑆(𝑣,𝜃) 𝛥|𝑣𝐸(ℎ, 𝑓 , 𝜃) is lower semi-continuous.

Then, the functional

𝛹 ∶𝑉 → 𝐶(𝛩), 𝑣↦
(

sup
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃)
)

𝜃∈𝛩

is Hadamard directionally differentiable at 𝑣 tangentially to 𝑈 with derivative given by

𝐷𝐻
|𝑣𝛹 ∶ 𝑇𝑣𝑈 → 𝐶(𝛩), ℎ↦

(

sup
𝑓∈𝑆(𝑣,𝜃)

𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃)

)

𝜃∈𝛩

.

Theorem 52 can be viewed as an extension of Fang and Santos [48, Lemma S.4.9] to a uniform perturbation result over the
parameter space 𝛩. Additionally, our result does not require regularity properties on the full domain 𝑉 but only a convex set 𝑈 , an
appealing property which we exploit in the context of our analysis for the OT process (where we choose 𝑈 = () × ()) as well
as regularity elevations (see proof of Proposition 38).

Assumptions (EC), (Lip), and (Lin) are fairly straightforward and often simple to verify. The first two conditions also appear to be
ecessary to infer that Range(𝛹 ) ⊆ 𝐶(𝛩) and Lipschitzianity of 𝛹 ∶𝑉 → 𝐶(𝛩). Assumption (DC) is more technical and requires some

knowledge on the set of optimizers 𝑆(𝑣, 𝜃). As the proof of Theorem 52 reveals, is the functional 𝜃 ∈ 𝛩 ↦ sup𝑓∈𝑆(𝑣,𝜃) 𝐸(ℎ, 𝑓 , 𝜃) under
the assumptions of Lemma 51 always upper semi-continuous. Hence, the sole purpose of (DC) is to ensure Range(𝐷𝐻

|𝑣𝛹 ) ⊆ 𝐶(𝛩).
ufficient conditions for its validity are stated as follows.

emma 53. Assume the setting of Lemma 51 and Theorem 52. Then under either of the following conditions Assumption (DC) of
Theorem 52 is fulfilled.

(i) For any 𝜃 ∈ 𝛩 and ℎ ∈ 𝑇𝑣𝑈 there exists 𝑓 ∈ 𝑆(𝑣, 𝜃) with sup𝑓 ′∈𝑆(𝑣,𝜃) 𝛥𝑠𝑣𝑒𝑟𝑡𝑣𝐸(ℎ, 𝑓 ′, 𝜃) = 𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃) such that any converging

sequence 𝜃𝑛 → 𝜃 admits a sub-sequence (𝜃𝑛𝑘 ) and a converging sequence 𝑓𝑛𝑘 ∈ 𝑆(𝑣, 𝜃𝑛𝑘 ) with 𝑓𝑛𝑘 → 𝑓 in  .
(ii) For any 𝜃 ∈ 𝛩 and ℎ ∈ 𝑇𝑣𝑈 it holds that 𝛥

|𝑣𝐸(ℎ, 𝑓 , 𝜃) = 𝛥
|𝑣𝐸(ℎ, 𝑓 ′, 𝜃) for any 𝑓, 𝑓 ′ ∈ 𝑆(𝑣, 𝜃).

roof of Lemma 53. Let 𝜃𝑛 → 𝜃 and consider an element 𝑓 ∈ 𝑆(𝑣, 𝜃) such that 𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃) = sup𝑓 ′∈𝑆(𝑣,𝜃) 𝛥|𝑣𝐸(ℎ, 𝑓 , 𝜃). For setting

(𝑖) take an arbitrary subsequence 𝜃𝑛𝑘 and take another subsequence 𝜃𝑛𝑘𝑙 such that 𝑓𝑛𝑘𝑙 ∈ 𝑆(𝑣, 𝜃𝑛𝑘𝑙 ) converges to 𝑓 for 𝑙 → ∞. Then,
by (EC),

lim
𝑙→∞

𝛥
|𝑣𝐸(ℎ, 𝑓𝑛𝑘𝑙 , 𝜃𝑛𝑘𝑙 ) = 𝛥

|𝑣𝐸(ℎ, 𝑓 , 𝜃) = sup
𝑓 ′∈𝑆(𝑣,𝜃)

𝛥
|𝑣𝐸(ℎ, 𝑓 ′, 𝜃).

This implies by monotonicity of the limit inferior and Lemma 56 that

lim inf
𝑛→∞

sup
𝑓 ′∈𝑆(𝑣,𝜃)

𝛥
|𝑣𝐸(ℎ, 𝑓 ′, 𝜃𝑛) ≥ lim inf

𝑛→∞
𝛥
|𝑣𝐸(ℎ, 𝑓𝑛, 𝜃𝑛) ≥ sup

𝑓 ′∈𝑆(𝑣,𝜃)
𝛥
|𝑣𝐸(ℎ, 𝑓 ′, 𝜃),

which asserts the validity of Assumption (DC) of Theorem 52. For setting (𝑖𝑖) take 𝑓𝑛 ∈ 𝑆(𝑣, 𝜃𝑛) and consider by Lemma 51 a
converging subsequence 𝑓𝑛𝑘 with limit 𝑓 ∈ 𝑆(𝑣, 𝜃). Hence, it holds that 𝛥

|𝑣𝐸(ℎ, 𝑓 , 𝜃) = sup𝑓 ′∈𝑆(𝑣,𝜃) 𝛥|𝑣𝐸(ℎ, 𝑓 ′, 𝜃) and the assertion
follows from (𝑖). □

Proof of Theorem 52. The proof strategy is inspired by Römisch [45] who performs a sensitivity analysis for when 𝛩 is a singleton.
To extend the claim for a compact topological space 𝛩 we employ the subsequent version of Dini’s theorem.

Lemma 54 (Dini’s theorem, [49, Corollary 1]). Let 𝛩 be a compact topological space and consider a decreasing 𝑓𝑛 ∶𝛩 → R sequence
(i.e., 𝑓𝑛 ≥ 𝑓𝑛+1 for all 𝑛 ∈ N) of upper semi-continuous functions. Further, assume that 𝑓𝑛 pointwise converges to a (lower semi-)continuous
28

function 𝑓 ∶𝛩 → R. Then, 𝑓𝑛 converges to 𝑓 uniformly on 𝛩.
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Take a positive null sequence 𝑡𝑛 ↘ 0 with 𝑡𝑛 > 0 for all 𝑛 ∈ N and let ℎ ∈ 𝑇𝑣𝑈 . Further, take a sequence ℎ𝑛 ∈ 𝑉 such that
𝑛 ∶= 𝑣+ 𝑡𝑛ℎ𝑛 ∈ 𝑈 for all 𝑛 ∈ N and ℎ𝑛 → ℎ in 𝑉 . For any 𝜃 ∈ 𝛩, we then observe by (Lin) and (Lip) for any 𝑛 ∈ N the lower bound

𝛹 (𝑣𝑛)(𝜃) − 𝛹 (𝑣)(𝜃) = sup
𝑓∈

𝐸(𝑣𝑛, 𝑓 , 𝜃) − sup
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃)

≥ sup
𝑓∈𝑆(𝑣,𝜃)

𝐸(𝑣𝑛, 𝑓 , 𝜃) − 𝐸(𝑣, 𝑓 , 𝜃)

≥ sup
𝑓∈𝑆(𝑣,𝜃)

𝛥
|𝑣𝐸(𝑡𝑛ℎ𝑛, 𝑓 , 𝜃)

≥ 𝑡𝑛 sup
𝑓∈𝑆(𝑣,𝜃)

𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃) − 2𝑡𝑛𝐿 ‖

‖

ℎ − ℎ𝑛‖‖𝑉 . (A.1)

Analogously, we obtain the upper bound

𝛹 (𝑣𝑛)(𝜃) − 𝛹 (𝑣)(𝜃) = sup
𝑓∈

𝐸(𝑣𝑛, 𝑓 , 𝜃) − sup
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃)

≤ sup
𝑓∈𝑆(𝑣𝑛 ,𝜃)

𝐸(𝑣𝑛, 𝑓 , 𝜃) − 𝐸(𝑣, 𝑓 , 𝜃)

≤ 𝑡𝑛 sup
𝑓∈𝑆(𝑣𝑛 ,𝜃)

𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃) + 2𝑡𝑛𝐿 ‖

‖

ℎ − ℎ𝑛‖‖𝑉 . (A.2)

Note that 𝑆(𝑣𝑛, 𝜃) ⊆ 𝑆(𝑣, 𝜃; 2𝐿 ‖

‖

𝑣𝑛 − 𝑣‖‖𝑉 ) since any 𝑓 ∗ ∈ 𝑆(𝑣𝑛, 𝜃) fulfills by (Lip) the bound

𝐸(𝑣, 𝑓 ∗, 𝜃) ≥ 𝐸(𝑣𝑛, 𝑓 ∗, 𝜃) − 𝐿 ‖

‖

𝑣𝑛 − 𝑣‖‖𝑉
= sup
𝑓∈

𝐸(𝑣𝑛, 𝑓 , 𝜃) − 𝐿 ‖

‖

𝑣𝑛 − 𝑣‖‖𝑉

≥ sup
𝑓∈

𝐸(𝑣, 𝑓 , 𝜃) − 2𝐿 ‖

‖

𝑣𝑛 − 𝑣‖‖𝑉 .

Hence, it follows from (A.2) upon defining 𝜀𝑛 ∶= sup𝑘≥𝑛 2𝐿 ‖

‖

𝑣𝑘 − 𝑣‖‖𝑉 that

𝛹 (𝑣𝑛)(𝜃) − 𝛹 (𝑣)(𝜃) ≤ 𝑡𝑛 sup
𝑓∈𝑆(𝑣,𝜃;2𝐿‖𝑣𝑛−𝑣‖𝑉 )

𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃) + 2𝑡𝑛𝐿 ‖

‖

ℎ − ℎ𝑛‖‖𝑉

≤ 𝑡𝑛 sup
𝑓∈𝑆(𝑣,𝜃;𝜀𝑛)

𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃) + 2𝑡𝑛𝐿 ‖

‖

ℎ − ℎ𝑛‖‖𝑉 . (A.3)

Combining (A.1) and (A.3) we thus obtain for any 𝜃 ∈ 𝛩 that

sup
𝑓∈𝑆(𝑣,𝜃)

𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃) − 2𝐿 ‖

‖

ℎ − ℎ𝑛‖‖𝑉 ≤
𝛹 (𝑣𝑛)(𝜃) − 𝛹 (𝑣)(𝜃)

𝑡𝑛
≤ sup
𝑓∈𝑆(𝑣,𝜃;𝜀𝑛)

𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃) + 2𝐿 ‖

‖

ℎ − ℎ𝑛‖‖𝑉 .

To conclude the claim we show that the lower and upper bound uniformly converge on 𝛩 for 𝑛 → ∞ to the 𝐷𝐻
|𝑣𝛹 . Since

ℎ𝑛 − ℎ‖‖𝑉 → ∞, it suffices to prove for the functions

𝛷 ∶= 𝐷𝐻
|𝑣𝛹 ∶𝛩 → R, 𝜃 ↦ sup

𝑓∈𝑆(𝑣,𝜃)
𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃), 𝛷𝑛 ∶𝛩 → R, 𝜃 ↦ sup

𝑓∈𝑆(𝑣,𝜃,𝜀𝑛)
𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃),

hat lim𝑛→∞
‖

‖

𝛷 −𝛷𝑛‖‖𝐶(𝛩) = 0. For this purpose, we employ Dini’s theorem (Lemma 54).
In this context note, since (𝜀𝑛)𝑛∈N is a decreasing null-sequence, for all 𝑛 ∈ N and any 𝜃 ∈ 𝛩 that 𝑆(𝑣, 𝜃) ⊆ 𝑆(𝑣, 𝜃; 𝜀𝑛+1) ⊆ 𝑆(𝑣, 𝜃; 𝜀𝑛)

nd consequently

𝛷(𝜃) ≤ 𝛷𝑛+1(𝜃) ≤ 𝛷𝑛(𝜃) ≤ 2 sup
𝜃∈𝛩

sup
𝑓∈

𝐸(ℎ, 𝑓 , 𝜃) < ∞, (A.4)

where the upper bound is finite due to Assumption (EC) and compactness of  × 𝛩.
Further, let us show for any 𝜃 ∈ 𝛩 that lim𝑛→∞𝛷𝑛(𝜃) = 𝛷(𝜃). Take a sequence 𝑓𝑛 ∈ 𝑆(𝑣, 𝜃; 𝜀𝑛) such that 𝛷𝑛(𝜃) ≤ 𝛥

|𝑣𝐸(ℎ, 𝑓𝑛, 𝜃)+1∕𝑛.
onsider a converging subsequence (𝑓𝑛𝑘 )𝑘∈N with limit 𝑓∞ ∈ 𝑆(𝑣, 𝜃). Then, by (EC) it follows that

lim sup
𝑘→∞

𝛷𝑛𝑘 (𝜃) ≤ lim
𝑘→∞

𝛥
|𝑣𝐸(ℎ, 𝑓𝑛𝑘 , 𝜃) + 1∕𝑛𝑘 = 𝛥

|𝑣𝐸(ℎ, 𝑓∞, 𝜃) ≤ sup
𝑓∈𝑆(𝑣,𝜃)

𝛥
|𝑣𝐸(𝑣, 𝑓 , 𝜃) = 𝛷(𝜃).

ecalling (A.4), it thus follows that lim𝑛→∞𝛷𝑛(𝜃) = 𝛷(𝜃).
To conclude the assertion with Dini’s theorem it remains to show upper-continuity of 𝛷𝑛 and of 𝛷; recall by Assumption (DC)

that 𝛷 is already lower semi-continuous. To this end, let 𝜀 ≥ 0 and consider a converging sequence 𝜃𝑛 → 𝜃. Select 𝑓𝑛 ∈ 𝑆(𝑣, 𝜃𝑛, 𝜀)
uch that sup𝑓∈𝑆(𝑣,𝜃𝑛 ,𝜀) 𝛥|𝑣𝐸(ℎ, 𝑓 , 𝜃𝑛) ≤ 𝛥

|𝑣𝐸(ℎ, 𝑓𝑛, 𝜃𝑛) + 1∕𝑛. Take a subsequence 𝑓𝑛𝑘 and select by Lemma 51 another converging
subsequence 𝑓𝑛𝑘𝑙 with limit 𝑓∞ ∈ 𝑆(𝑣, 𝜃; 𝜀). Using Assumption (EC) it thus follows that

lim
𝑙→∞

𝛥
|𝑣𝐸(ℎ, 𝑓𝑛𝑘𝑙 , 𝜃𝑛𝑘𝑙 ) + 1∕𝑛𝑘𝑙 = 𝛥

|𝑣𝐸(ℎ, 𝑓∞, 𝜃) ≤ sup
𝑓∈𝑆(𝑣,𝜃;𝜀)

𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃)

nvoking monotonicity of the limit superior and Lemma 56 we thus obtain that

lim sup sup 𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃) ≤ lim sup𝛥

|𝑣𝐸(ℎ, 𝑓𝑛, 𝜃𝑛) + 1∕𝑛 ≤ sup 𝛥
|𝑣𝐸(ℎ, 𝑓 , 𝜃),
29

𝑛→∞ 𝑓∈𝑆(𝑣,𝜃𝑛;𝜀) 𝑙→∞ 𝑓∈𝑆(𝑣,𝜃;𝜀)
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Hence, by Lemma 56 we conclude that 𝛷𝑛 is upper semi-continuous and that 𝛷 is continuous. Dini’s theorem (Lemma 54) thus
implies lim𝑛→∞

‖

‖

𝛷 −𝛷𝑛‖‖∞ = 0, asserting the Hadamard directional differentiability of 𝛹 at 𝑣 tangentially to 𝑈 . Finally, note that
the range of 𝐷𝐻

𝑣 𝛹 is indeed contained in 𝐶(𝛩). □

Appendix B. Proofs for Section 3: Sufficient criteria for assumptions

B.1. Proof of Proposition 13

By Lemma 1 it follows that  𝑐 ⊆ 𝑐
𝑐 + [−2𝐵, 2𝐵] and  𝑐𝑐 ⊆ 𝑐 + [−2𝐵, 2𝐵] with 𝑐 defined in (7). Invoking Hundrieser et al.

[43, Lemma 2.1] and Santambrogio [2, Proposition 1.34] we obtain for any 𝜀 > 0 that

 (𝜀, 𝑐 , ‖⋅‖∞) =  (𝜀, 𝑐𝑐 , ‖⋅‖∞) ≤
⌈ 2𝐵
𝜀

⌉

 (𝜀∕2,𝑐
𝑐 , ‖⋅‖∞) =

⌈ 2𝐵
𝜀

⌉

 (𝜀∕2,𝑐 , ‖⋅‖∞).

For the function class 𝑐 , the asserted uniform metric entropy bounds are available in Section 3.1 and Appendix A of Hundrieser
et al. [43]. Note by uniform boundedness of the cost function that 𝑐 and 𝑐

𝑐 are uniformly bounded. The assertion on the universal
Donsker property then follows from van der Vaart and Wellner [38, Theorem 2.5.6]. □

B.2. Proof of Proposition 15

By assumption the functional

𝛷𝑐 ∶() × () → 𝓁∞( 𝑐𝑐 ) × 𝓁∞( 𝑐 ) × 𝐶( × )

(𝜇, 𝜈) ↦ (𝜇, 𝜈,𝛷𝑐 (𝜇, 𝜈)),

where the domain is viewed as a subset of 𝓁∞(∪ 𝑐𝑐 )×𝓁∞(∪ 𝑐 ), is Hadamard differentiable at (𝜇, 𝜈) tangentially to ()×().
Moreover, since  ∪  𝑐𝑐 is 𝜇-Donsker it follows that

√

𝑛∕2(𝜇𝑛 − 𝜇) ⇝ G𝜇 in 𝓁∞( ∪  𝑐𝑐 ). Likewise, since  ∪  𝑐 is 𝜈-Donsker it
follows that

√

𝑛∕2(𝜈𝑛 − 𝜈) ⇝ G𝜈 in 𝓁∞( ∪  𝑐 ). Further, by independence of the random variables {𝑋𝑖}𝑛𝑖=1 and {𝑌𝑖}𝑛𝑖=1 it follows
from [38, Theorem 1.4.6] that the joint empirical processes

√

𝑛∕2(𝜇𝑛 − 𝜇, 𝜈𝑛 − 𝜈) weakly converge in 𝓁∞( ∪ 𝑐𝑐 ) × 𝓁∞( ∪ 𝑐 ) to
(G𝜇 ,G𝜈 ), contained in 𝑇𝜇() × 𝑇𝜈() by Lemma 49. We thus conclude by the functional delta method [45] for 𝛷𝑐 that (JW) is
fulfilled.

Moreover, by the Donsker property and independence of the random variables, we also infer by van der Vaart and Wellner [38,
Theorem 3.6.13] in the space 𝓁∞( ∪  𝑐𝑐 ) × 𝓁∞( ∪  𝑐 ) that

𝑑𝐵𝐿

(



(

√

𝑘

(

𝜇𝑏𝑛,𝑘 − 𝜇𝑛
𝜈𝑏𝑛,𝑘 − 𝜈𝑛

)

|𝑋1,… , 𝑋𝑛, 𝑌1,… 𝑌𝑛

)

,
(

G𝜇

G𝜈

)

)

P∗
←←←←←←←←←←←→ 0.

Hence, by the functional delta method for conditionally weakly converging random variables Dümbgen [53] for 𝛹 𝑐 we infer that

𝑑𝐵𝐿

⎛

⎜

⎜

⎜

⎝


⎛

⎜

⎜

⎜

⎝

√

𝑘

⎛

⎜

⎜

⎜

⎝

𝜇𝑏𝑛,𝑘 − 𝜇𝑛
𝜈𝑏𝑛,𝑘 − 𝜈𝑛
𝑐𝑏𝑛,𝑘 − 𝑐𝑛

⎞

⎟

⎟

⎟

⎠

|𝑋1,… , 𝑋𝑛, 𝑌1,… 𝑌𝑛

⎞

⎟

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

√

𝑛
⎛

⎜

⎜

⎝

𝜇𝑛 − 𝜇
𝜈𝑛 − 𝜈
𝑐𝑛 − 𝑐

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

P∗
←←←←←←←←←←←→ 0. □

B.3. Proof of Proposition 18

Before, we start to prove Proposition 18, we establish an auxiliary lemma.

Lemma 55. Let  and  be compact Polish spaces and consider 𝑐 ∈ 𝐶( × ).

(i) For any function 𝑔 ∶  → R and any constant 𝜅, it holds that (𝑔 + 𝜅)𝑐 = 𝑔𝑐 − 𝜅.
(ii) Let 𝐵 > 0. Then, for any 𝑔 ∶  → R and 𝛥𝑐 ∈ 𝐶( × ) with ‖𝑔‖∞ + 2 ‖𝑐 + 𝛥𝑐‖∞ ≤ 𝐵 it holds that 𝑔(𝑐+𝛥𝑐 )(𝑐+𝛥𝑐 )𝑐𝑐 ∈ 𝑐 + [−𝐵,𝐵].

The proof of the above lemma can be found in Appendix E.7.

roof of Proposition 18. The proof is strongly inspired by van der Vaart and Wellner [61, Theorem 2.3] and employs standard
mpirical process arguments. In order to simplify the notation, we only consider the case 𝑛 = 𝑚 and write 𝑐𝑛 instead of 𝑐𝑛,𝑛. Note
hat the claim for 𝑛 ≠ 𝑚 follows by the analogous arguments.

To show (𝑖) first note by triangle inequality and using Lemma 42 that

sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )| ≤ sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑛𝑐𝑛 )| + sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )|

≤ 4
√

𝑛 ‖
‖

𝑐𝑛 − 𝑐𝑛‖‖∞ + sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )|. (B.1)
30
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B
t

A

F

The first term converges by assumption for 𝑛 → ∞ in probability to zero. For the latter term note by (JW) and the assumption
on 𝑐𝑛 that

√

𝑛∕2(𝑐𝑛 − 𝑐) ⇝ G𝑐 . By tightness of the law of G𝑐 there exists for any 𝜀 > 0 a compact set 𝐾 ⊆ 𝐶( × ) such that
P(G𝑐 ∈ 𝐾) > 1 − 𝜀; thus for any 𝛿 > 0 the set 𝐾𝛿 of elements in 𝐶( × ) with distance less than 𝛿 > 0 to 𝐾 fulfills

lim inf
𝑛→∞

P
(

√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿
)

≥ P(G𝑐 ∈ 𝐾𝛿) > 1 − 𝜀. (B.2)

y compactness of 𝐾 there exists a finite 𝛿∕2-covering {ℎ1,… , ℎ𝑝} which implies that 𝐾𝛿∕2 ⊆
⋃𝑝
𝑖=1 𝐵(ℎ𝑖, 𝛿), where 𝐵(ℎ, 𝛿) denotes

he open ball of radius 𝛿 around ℎ in the space 𝐶( × ). We thus obtain
{

√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2
}

⊂
𝑝
⋃

𝑖=1

{

𝑐𝑛 ∈ 𝐵(𝑐 + 2𝑛−1∕2ℎ𝑖, 𝛿)
}

.

Moreover, by Santambrogio [2, Proposition 1.34] it follows for any 𝑓 ∈  and 𝑐 ∈ 𝐶( ×) that 𝑓 𝑐𝑐 = 𝑓 𝑐𝑐𝑐𝑐 . Therefore, by triangle
inequality,

sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )| = sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐𝑐𝑐 )|

≤ sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑛𝑐𝑛𝑐𝑐 )| + sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )|

≤ sup
𝑓∈𝑐𝑛𝑐𝑛

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )| + sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )|. (B.3)

ssuming
√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2, it follows for the first term in (B.3) that

sup
𝑓∈𝑐𝑛𝑐𝑛

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )| ≤ sup
𝑓∈𝑐𝑛𝑐𝑛

max
𝑖=1,…,𝑝

sup
‖ℎ−ℎ𝑖‖∞<𝛿

|G𝜇
𝑛 (𝑓

(𝑐+2ℎ∕
√

𝑛)(𝑐+2ℎ∕
√

𝑛) − 𝑓 𝑐𝑐 )|

≤ sup
𝑓∈𝑐𝑛𝑐𝑛

max
𝑖=1,…,𝑝

sup
‖ℎ−ℎ𝑖‖∞<𝛿

|G𝜇
𝑛 (𝑓

(𝑐+2ℎ∕
√

𝑛)(𝑐+2ℎ∕
√

𝑛) − 𝑓 (𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛))|

+ sup
𝑓∈𝑐𝑛𝑐𝑛

max
𝑖=1,…,𝑝

|G𝜇
𝑛 (𝑓

(𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛) − 𝑓 𝑐𝑐 )|

≤ 8𝛿 + sup
𝑓∈𝑐𝑛𝑐𝑛

max
𝑖=1,…,𝑝

|G𝜇
𝑛 (𝑓

(𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛) − 𝑓 𝑐𝑐 )|. (B.4)

Here, we used in the last inequality Lemma 42 to infer
‖

‖

‖

𝑓 (𝑐+2ℎ∕
√

𝑛)(𝑐+2ℎ∕
√

𝑛) − 𝑓 (𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛)‖
‖

‖∞
≤ 4 ‖

‖

ℎ𝑖 − ℎ‖‖∞ ∕
√

𝑛 ≤ 4𝛿∕
√

𝑛

in conjunction with G𝜇
𝑛 (𝑔) =

√

𝑛(𝜇𝑛 − 𝜇)(𝑔) ≤ 2
√

𝑛 ‖𝑔‖∞ for any measurable function 𝑔 on  . Now, define for 1≤ 𝑖 ≤ 𝑝 the function
class

̃𝑖𝑛 ∶= ̃𝑖𝑛(ℎ𝑖) ∶=
{

𝑓 (𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛) − 𝑓 𝑐𝑐 ||
|

𝑓 ∈  𝑐𝑛𝑐𝑛
}

.

or each 1 ≤ 𝑖 ≤ 𝑝 and any 𝜀 > 0 we then observe that

log𝑁(𝜀, ̃𝑖𝑛, ‖⋅‖∞) ≤ log𝑁(𝜀, 𝑐𝑛𝑐𝑛(𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛), ‖⋅‖∞) + log𝑁(𝜀, ̃ 𝑐𝑛𝑐𝑛𝑐𝑐 , ‖⋅‖∞)

≤2 log𝑁(𝜀, 𝑐𝑛𝑐𝑛 , ‖⋅‖∞),

where the last step follows by Lemma 2.1 in [43]. In consequence, it follows by Dudley’s entropy integral (see, e.g.,[93, Chapter 5])
that

E

[

sup
𝑓∈𝑐𝑛𝑐𝑛

max
𝑖=1,…,𝑝

|

|

|

G𝜇
𝑛 (𝑓

(𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛) − 𝑓 𝑐𝑐 )||
|

]

≤
𝑝
∑

𝑖=1
E

[

sup
𝑔∈̃𝑖𝑛

|

|

G𝜇
𝑛 (𝑔)||

]

≲
𝑝
∑

𝑖=1
∫

4‖ℎ𝑖‖∞∕
√

𝑛

0

√

log
(

 (𝜀, 𝑐𝑛𝑐𝑛 , ‖⋅‖∞)
)

𝑑𝜀

≲
𝑝
∑

𝑖=1
∫

4‖ℎ𝑖‖∞∕
√

𝑛

0
𝜀−𝛼∕2𝑑𝜀

≲
𝑝
∑

𝑖=1
(‖
‖

ℎ𝑖‖‖∞ ∕
√

𝑛)1−𝛼∕2,

where by assumption the hidden constants do not depend on 𝑛. We thus infer conditionally on the event
√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2 for
𝑛→ ∞ that

sup
𝑓∈𝑐𝑛𝑐𝑛

max
𝑖=1,…,𝑝

G𝜇
𝑛 (𝑓

(𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛) − 𝑓 𝑐𝑐 )
P
→ 0. (B.5)

For the second term in (B.3) we assume
√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2 and obtain by similar arguments,

sup |G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )| ≤ 8𝛿 + sup max |G𝜇
𝑛 (𝑓

(𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛)𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )|. (B.6)
31
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A

w

b
2

w

Upon defining the function class

̃𝑛 ∶= ̃𝑛(ℎ1,… , ℎ𝑝) ∶=
{

𝑓 (𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛)𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 ||
|

𝑓 ∈ 
}

(B.7)

we note again by Lemma 42 that any 𝑔 ∈ 𝑛 fulfills ‖𝑔‖∞ ≤ max𝑖=1,…,𝑝 4 ‖‖ℎ𝑖‖‖∞ ∕
√

𝑛. Further, for 𝑛 sufficiently large there exists a
constant 𝐵 > 0 such that Lemma 55 is applicable for any 𝑓 ∈  , and we obtain

𝑓 (𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛)𝑐𝑐 ∈ 𝑐 + [−𝐵,𝐵].

Hence, for sufficiently large 𝑛, it follows by Lemma 1 for any 𝜀 > 0 that

 (𝜀, ̃𝑛(ℎ1,… , ℎ𝑝), ‖⋅‖∞) ≤
(

 (𝜀, 𝑐𝑐 + [−𝐵,𝐵], ‖⋅‖∞)
)2 .

gain invoking, Dudley’s entropy integral asserts such for 𝑛 that

E

[

sup
𝑓∈

max
𝑖=1,…,𝑝

|

|

|

|

G𝜇
𝑛 (𝑓

(𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛)𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )
|

|

|

|

]

= E

[

sup
𝑓∈̃𝑛

|

|

G𝜇
𝑛 (𝑓 )||

]

≲∫

max𝑖=1,…,𝑝 4‖ℎ𝑖‖∞∕
√

𝑛

0

√

log
(

 (𝜀, ̃𝑛, ‖⋅‖∞)
)

𝑑𝜀

≤∫

max𝑖=1,…,𝑝 4‖ℎ𝑖‖∞∕
√

𝑛

0

√

log
(

 (𝜀, 𝑐𝑐 + [−𝐵,𝐵], ‖⋅‖∞)
)

𝑑𝜀

≲∫

max𝑖=1,…,𝑝 4‖ℎ𝑖‖∞∕
√

𝑛

0
𝜀−𝛼∕2𝑑𝜀

≲
(

max
𝑖=1,…,𝑝

‖

‖

ℎ𝑖‖‖∞ ∕
√

𝑛
)1−𝛼∕2

.

This implies conditionally on the event
√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2 for 𝑛→ ∞ that

sup
𝑓∈

max
𝑖=1,…,𝑝

|G𝜇
𝑛 (𝑓

(𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛)𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )|
P
→ 0. (B.8)

Concluding, for any 𝜀 > 0 it follows for 𝛿 ∶= 𝜀∕32 > 0 from (B.2)–(B.8) that

lim sup
𝑛→∞

P
(

sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )| > 𝜀
)

≤ lim sup
𝑛→∞

(

P
(

sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )| > 𝜀,
√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2
)

+ P
(

√

𝑛∕2(𝑐𝑛 − 𝑐) ∉ 𝐾𝛿∕2
)

)

≤ lim sup
𝑛→∞

P
(

sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )| > 𝜀,
√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2
)

+ 𝜀

≤ lim sup
𝑛→∞

P

(

sup
𝑓∈𝑐𝑛𝑐𝑛

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )| > 𝜀∕2,
√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2

)

+ lim sup
𝑛→∞

P
(

sup
𝑓∈

|G𝜇
𝑛 (𝑓

𝑐𝑛𝑐𝑛𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )| > 𝜀∕2,
√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2
)

+ 𝜀

≤ lim sup
𝑛→∞

P

(

sup
𝑓∈𝑐𝑛𝑐𝑛

max
𝑖=1,…,𝑝

|G𝜇
𝑛 (𝑓

(𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛) − 𝑓 𝑐𝑐 )| > 𝜀∕4,
√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2

)

+ lim sup
𝑛→∞

P
(

sup
𝑓∈

max
𝑖=1,…,𝑝

|G𝜇
𝑛 (𝑓

(𝑐+2ℎ𝑖∕
√

𝑛)(𝑐+2ℎ𝑖∕
√

𝑛)𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )| > 𝜀∕4,
√

𝑛∕2(𝑐𝑛 − 𝑐) ∈ 𝐾𝛿∕2
)

+ 𝜀 = 𝜀,

hich shows the convergence in probability of sup𝑓∈ |G𝜇
𝑛 (𝑓 𝑐𝑛𝑐𝑛 − 𝑓 𝑐𝑐 )| to zero. We thus conclude the convergence in probability for

oth terms of (B.1). An analogous argument yields the convergence sup𝑓∈ |G𝜈
𝑛(𝑓

𝑐𝑛 − 𝑓 𝑐 )|
P
→ 0 for 𝑛 → ∞, where we apply Lemma

.1 of [43] to obtain

sup
𝑛∈N

log (𝜀, 𝑐𝑛 ∪  𝑐 , ‖⋅‖∞) ≤ sup
𝑛∈N

(

log (𝜀, 𝑐𝑛 , ‖⋅‖∞) + log (𝜀, 𝑐 , ‖⋅‖∞)
)

= sup
𝑛∈N

(

log (𝜀, 𝑐𝑛𝑐𝑛 , ‖⋅‖∞) + log (𝜀, 𝑐𝑐 , ‖⋅‖∞)
)

≤ sup
𝑛∈N

2 log (𝜀, 𝑐𝑛𝑐𝑛 ∪  𝑐𝑐 , ‖⋅‖∞) ≲ 𝜀−𝛼 for 𝛼 < 2,

hich overall verifies (Sup) of Theorem 2.
For (𝑖𝑖) note by Bücher and Kojadinovic [54] and since 𝑘 = 𝑘(𝑛) = o(𝑛) for 𝑛→ ∞ that

√

𝑘(𝑐𝑏 − 𝑐) =
√

𝑘(𝑐𝑏 − 𝑐𝑏 ) +
√

𝑘(𝑐𝑏 − 𝑐 ) +
√

𝑘√𝑛(𝑐 − 𝑐) ⇝ G𝑐 .
32

𝑛,𝑘 𝑛,𝑘 𝑛,𝑘 𝑛,𝑘 𝑛 𝑛 𝑛
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Likewise, it follows for 𝑛 → ∞ that
√

𝑘(𝜇𝑏𝑛,𝑘 − 𝜇) ⇝ G𝜇 in 𝓁∞( 𝑐𝑐 ),
√

𝑘(𝜈𝑏𝑛,𝑘 − 𝜈) ⇝ G𝜈 in 𝓁∞( 𝑐 ). This means that we can pursue a
imilar proof strategy as for (𝑖). Define G𝜇

𝑛,𝑘 ∶=
√

𝑘(𝜇𝑏𝑛,𝑘 − 𝜇) and G𝜈
𝑛,𝑘 ∶=

√

𝑘(𝜈𝑏𝑛,𝑘 − 𝜈). Then, we infer from Lemma 42 that

sup
𝑓∈

|G𝜇
𝑛,𝑘(𝑓

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘 − 𝑓 𝑐𝑐 )| ≤ sup

𝑓∈
|G𝜇

𝑛,𝑘(𝑓
𝑐𝑏𝑛,𝑘𝑐

𝑏
𝑛,𝑘 − 𝑓 𝑐

𝑏
𝑛,𝑘𝑐

𝑏
𝑛,𝑘 )| + sup

𝑓∈
|G𝜇

𝑛,𝑘(𝑓
𝑐𝑏𝑛,𝑘𝑐

𝑏
𝑛,𝑘 − 𝑓 𝑐𝑐 )|

≤ 4
√

𝑘 ‖‖
‖

𝑐𝑏𝑛,𝑘 − 𝑐
𝑏
𝑛,𝑘

‖

‖

‖∞
+ sup
𝑓∈

|G𝜇
𝑛,𝑘(𝑓

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘 − 𝑓 𝑐𝑐 )|, (B.9)

here the first term converges for 𝑛→ ∞ in probability to zero. By Santambrogio [2, Proposition 1.34] we obtain that

sup
𝑓∈

|G𝜇
𝑛,𝑘(𝑓

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘 − 𝑓 𝑐𝑐 )| ≤ sup

𝑓∈
𝑐𝑏𝑛,𝑘𝑐

𝑏
𝑛,𝑘

|G𝜇
𝑛,𝑘(𝑓

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘 − 𝑓 𝑐𝑐 )| + sup

𝑓∈
|G𝜇

𝑛,𝑘(𝑓
𝑐𝑏𝑛,𝑘𝑐

𝑏
𝑛,𝑘𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )|.

oreover, by analogous arguments to those for (𝑖) we obtain with probability at least 1 − 𝜀 for 𝑛 sufficiently large that

sup
𝑓∈

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘

|G𝜇
𝑛,𝑘(𝑓

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘 − 𝑓 𝑐𝑐 )| ≤ 8𝛿 + sup

𝑓∈
𝑐𝑏𝑛,𝑘𝑐

𝑏
𝑛,𝑘

max
𝑖=1,…,𝑝

|G𝜇
𝑛,𝑘(𝑓

(𝑐+2ℎ𝑖∕
√

𝑘)(𝑐+2ℎ𝑖∕
√

𝑘) − 𝑓 𝑐𝑐 )| (B.10)

as well as

sup
𝑓∈

|G𝜇
𝑛,𝑘(𝑓

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )| ≤ 8𝛿 + sup

𝑓∈
max
𝑖=1,…,𝑝

|G𝜇
𝑛,𝑘(𝑓

(𝑐+2ℎ𝑖∕
√

𝑘)(𝑐+2ℎ𝑖∕
√

𝑘)𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )|. (B.11)

ext, we verify that the suprema on the right-hand sides of (B.10) and (B.11) converge (unconditionally with respect to the 𝜇𝑛 but
onditionally on the set with probability at least 1 − 𝜀) to zero. We note by Dudley’s entropy integral for the bootstrap empirical
rocess

√

𝑘(𝜇𝑏𝑛,𝑘 − 𝜇𝑛) and the empirical process
√

𝑛(𝜇𝑛 − 𝜇) as well as our previous considerations that

≲E
⎡

⎢

⎢

⎣

sup
𝑓∈

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘

max
𝑖=1,…,𝑝

|G𝜇
𝑛,𝑘(𝑓

(𝑐+2ℎ𝑖∕
√

𝑘)(𝑐+2ℎ𝑖∕
√

𝑘) − 𝑓 𝑐𝑐 )|
⎤

⎥

⎥

⎦

=
𝑝
∑

𝑖=1
E𝜇𝑛

⎡

⎢

⎢

⎣

E𝜇𝑏𝑛,𝑘

⎡

⎢

⎢

⎣

sup
𝑓∈

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘

|

√

𝑘(𝜇𝑏𝑛,𝑘 − 𝜇𝑛)(𝑓
(𝑐+2ℎ𝑖∕

√

𝑘)(𝑐+2ℎ𝑖∕
√

𝑘) − 𝑓 𝑐𝑐 )|
|

|

|

|

|

𝜇𝑛
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

+
√

𝑘
𝑛
E
⎡

⎢

⎢

⎣

sup
𝑓∈

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘

|G𝜇
𝑛 (𝑓

(𝑐+2ℎ𝑖∕
√

𝑘)(𝑐+2ℎ𝑖∕
√

𝑘) − 𝑓 𝑐𝑐 )|
⎤

⎥

⎥

⎦

≲
𝑝
∑

𝑖=1
E𝜇𝑛 ∫

4‖ℎ𝑖‖∞∕
√

𝑘

0

√

log
(

 (𝜀, 𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘 , ‖⋅‖∞)

)

𝑑𝜀 +
√

𝑘
𝑛 ∫

4‖ℎ𝑖‖∞∕
√

𝑘

0

√

log
(

 (𝜀, 𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘 , ‖⋅‖∞)

)

𝑑𝜀

≲
𝑝
∑

𝑖=1

(

1 +
√

𝑘
𝑛

)

∫

4‖ℎ𝑖‖∞∕
√

𝑘

0
𝜀−𝛼∕2𝑑𝜀 ≲

𝑝
∑

𝑖=1

(

1 +
√

𝑘
𝑛

)

(

‖

‖

ℎ𝑖‖‖∞ ∕
√

𝑘
)1−𝛼∕2

,

which tends to zero for 𝑛→ ∞ with 𝑘 = 𝑘(𝑛) = o(𝑛) since the hidden constants do not depend on 𝑛, 𝑘. Recalling the definition of the
function class ̃𝑘 in (B.7) with 𝑛 replaced by 𝑘, we obtain

≲E
[

sup
𝑓∈

max
𝑖=1,…,𝑝

|G𝜇
𝑛,𝑘(𝑓

(𝑐+2ℎ𝑖∕
√

𝑘)(𝑐+2ℎ𝑖∕
√

𝑘)𝑐𝑐 − 𝑓 𝑐𝑐𝑐𝑐 )|
]

= E

[

sup
𝑓∈̃𝑘

|

|

|

G𝜇
𝑛,𝑘(𝑓 )

|

|

|

]

.

Hence, Dudley’s entropy integral in combination with our previous considerations yields

E

[

sup
𝑓∈̃𝑘

|

|

|

G𝜇
𝑛,𝑘(𝑓 )

|

|

|

]

≤ E𝜇𝑛

[

E𝜇𝑏𝑛,𝑘

[

sup
𝑓∈̃𝑘

|

√

𝑘(𝜇𝑏𝑛,𝑘 − 𝜇𝑛)(𝑓 )|
|

|

|

|

|

𝜇𝑛

]]

+
√

𝑘
𝑛
E

[

sup
𝑓∈̃𝑘

|G𝜇
𝑛 (𝑓 )|

]

≲

(

1 +
√

𝑘
𝑛

)

∫

max𝑖=1,…,𝑝 4‖ℎ𝑖‖∞∕
√

𝑘

0

√

log
(

 (𝜀, 𝑐𝑐 + [−𝐵,𝐵], ‖⋅‖∞)
)

𝑑𝜀

≲

(

1 +
√

𝑘
𝑛

)

(

max
𝑖=1,…,𝑝

‖

‖

ℎ𝑖‖‖∞ ∕
√

𝑘
)1−𝛼∕2

,

which goes to zero for 𝑛, 𝑘(𝑛) → ∞ with 𝑘(𝑛) = o(𝑛) (the hidden constants are independent of 𝑛, 𝑘).
Using the same arguments as in (𝑖), we conclude that

sup
𝑓∈

|G𝜇
𝑛,𝑘(𝑓

𝑐𝑏𝑛,𝑘𝑐
𝑏
𝑛,𝑘 − 𝑓 𝑐𝑐 )|

P
→ 0.

𝜈 𝑐𝑏𝑛,𝑘 𝑐 P
33

Finally, analogous arguments yield that sup𝑓∈ |G𝑛,𝑘(𝑓 − 𝑓 )| → 0, thus showing (𝑖𝑖). □
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B.4. Proof of Corollary 19

Define the random variables

𝑐𝑛 ∶=

{

𝑐 if 𝑛 < 𝑁,
𝑐𝑛 if 𝑛 ≥ 𝑁,

and 𝑐𝑏𝑛,𝑘 ∶=

{

𝑐 if 𝑛 < 𝑁 or 𝑘 < 𝐾,
𝑐𝑏𝑛,𝑘 if 𝑛 ≥ 𝑁 and 𝑘 ≥ 𝐾.

By Proposition 13 the cost estimators 𝑐𝑛 and 𝑐𝑏𝑛,𝑘 satisfy the entropy bounds in (12) and (13). Tightness of 𝑁 and 𝐾 implies that
√

𝑛 ‖
‖

𝑐𝑛 − 𝑐𝑛‖‖∞
P
→ 0 and

√

𝑘‖𝑐𝑏𝑛,𝑘 − 𝑐
𝑏
𝑛,𝑘‖∞

P
→ 0 for 𝑛, 𝑘→ ∞, which asserts the claim by Proposition 18. □

B.5. Proof of Corollary 20

By Assumption List (JW) it follows that
√

𝑛𝑚∕(𝑛 + 𝑚)(𝑐𝑛,𝑚− 𝑐) ⇝ G𝑐 , whereas under (JW)* we infer from Bücher and Kojadinovic
[54] and 𝑘 = o(𝑛) that

√

𝑘(𝑐𝑏𝑛,𝑘 − 𝑐) ⇝ G𝑐 unconditionally. In what follows we state the arguments for (Sup); for (Sup)* a similar
proof strategy applies by replacing the empirical costs process by the bootstrap cost process.

First, assume without loss of generality that the population cost function fulfills ‖𝑐‖∞ ≤ 1. Then, for all three settings of
Proposition 13 it follows that log (𝜀, 𝑐𝑐 , ‖⋅‖∞) ≲ 𝜀−𝛼 with 𝛼 < 2.

For setting (𝑖) we set 𝑐𝑛,𝑚 ∶= 𝛹bdd(𝑐𝑛,𝑚), for 𝛹bdd defined in Section 5.1. Since ‖𝑐𝑛,𝑚‖∞ ≤ 2 and  =  (2 ‖𝑐‖∞ +1, 2𝑤) is uniformly
bounded by 6, we obtain that  𝑐𝑛,𝑚 is uniformly bounded by 8. By Propositions 36 and 37 both conditions of Proposition 18(𝑖) are
met, asserting (Sup).

For setting (𝑖𝑖) we take 𝑐𝑛,𝑚 ∶= 𝛹𝑑mod◦𝛹bdd(𝑐𝑛,𝑚) for 𝛹𝑑mod from Section 5.2. Then, ‖𝑐𝑛,𝑚‖∞ ≤ 2 and  𝑐𝑛,𝑚 is uniformly bounded by

8. Moreover, by Assumption (𝑖𝑖)’ it follows with Propositions 36 and 38 that
√

𝑛𝑚∕(𝑛 + 𝑚)‖𝑐𝑛,𝑚 − 𝑐𝑛,𝑚‖∞
P
→ 0 and that

sup
𝑛∈N

log (𝜀, 𝑐𝑛,𝑚𝑐𝑛,𝑚 , ‖⋅‖∞) ≲ (𝜀∕8, , 𝑑 )| log(𝜀)| ≲ 𝜀−𝛽 | log(𝜀)| ≲ 𝜀−2+(2−𝛽)∕2,

where we used the covering number assumption on  . (Sup) then follows from Proposition 18(𝑖).
For setting (𝑖𝑖𝑖) define 𝑐𝑖 ∈ 𝐶(𝑖 ×) as 𝑐𝑖(𝑢, 𝑦) ∶= 𝑐(𝜁𝑖(𝑢), 𝑦). We consider 𝑐𝑛,𝑚 ∶= 𝛹com(𝑐𝑛,𝑚) where 𝛹com denotes the combination

Section 5.4) of regularity elevation functionals 𝛹𝑖 ∶𝐶(𝑖×) → 𝐶(𝑖×) defined by 𝛹𝑖 = 𝛹‖⋅‖𝛾𝑖
mod ◦𝛹bdd from Section 5.2 if 𝛾𝑖 ∈ (0, 1],

and 𝛹𝑖 = 𝛹 𝑐𝑖 ,𝛾𝑖Hol ◦𝛹bdd from Section 5.3 if 𝛾𝑖 ∈ (1, 2], where we replace  by 𝑖. Then, by Propositions 38, 40, and 41 the functional

fulfills the assumptions of Proposition 36 and therefore
√

𝑛𝑚∕(𝑛 + 𝑚)‖𝑐𝑛,𝑚 − 𝑐𝑛,𝑚‖∞
P
→ 0. Moreover, since for any 𝑐 ∈ 𝐶( × ) it

olds that ‖𝛹 (𝑐)‖∞ < 𝐶 for a deterministic constant 𝐶 ≥ 0 that only depends on the functions 𝑐𝑖 and the spaces 𝑖, it follows that
𝛹 (𝑐) is uniformly bounded by 𝐶 + 6 and therefore

sup
𝑛∈N

log (𝜀, 𝑐𝑛,𝑚𝑐𝑛,𝑚 , ‖⋅‖∞) ≲
𝐼
∑

𝑖=1
sup

𝑐𝑖∈𝐶(𝑖×)
log (𝜀, 𝑐𝑛,𝑚𝛹𝑖(𝑐𝑖), ‖⋅‖∞) ≲ max

𝑖=1,…,𝐼
𝜀−𝑑𝑖∕𝛾𝑖 ,

here we use for the first inequality Proposition 41, and for the second we employ the bounds from Proposition 38 with
(𝜀,𝑖, ‖⋅‖

𝛾𝑖 ) ≲ 𝜀−𝑑𝑖∕𝛾𝑖 for 0 < 𝛾𝑖 ≤ 1 and Proposition 40 for 1 < 𝛾𝑖 ≤ 2. The assertion then follows by an application of
roposition 18(𝑖). □

.6. Proof of Lemma 22

For 𝜀 > 0 suppose that the right-hand side is finite since otherwise the claim is vacuous. Set 𝑘 =  (𝜀∕4, 𝛩, 𝑑𝛩) and let
𝜃1,… , 𝜃𝑘} be a minimal 𝜀∕4-covering of 𝛩. Further, for each 𝑖 = 1,… , 𝑘 let {𝑓 𝑖1,… , 𝑓 𝑖𝑘𝑖} be a minimal 𝜀∕2-covering of  𝑐𝜃𝑖 𝑐𝜃𝑖 ,
.e., 𝑘𝑖 = 

(

𝜀∕2, 𝑐𝜃𝑖 𝑐𝜃𝑖 , ‖⋅‖∞
)

. Once we show that  (𝜀) ∶=
⋃𝑘
𝑖=1{𝑓

𝑖
1,… , 𝑓 𝑖𝑘𝑖} is an 𝜀-covering for ⋃

𝜃∈𝛩  𝑐𝜃𝑐𝜃 and that  (𝜀) ∶=
𝑘
𝑖=1{(𝑓

𝑖
1)
𝑐𝜃𝑖 ,… , (𝑓 𝑖𝑘𝑖 )

𝑐𝜃𝑖 } is an 𝜀-covering for ⋃

𝜃∈𝛩  𝑐𝜃 the claim follows, since

| (𝜀)| ≤ | (𝜀)| =
𝑘
∑

𝑖=1


( 𝜀
2
, 𝑐𝜃𝑖 𝑐𝜃𝑖 , ‖⋅‖∞

)

≤ 
( 𝜀
4
, 𝛩, 𝑑𝛩

)

sup
𝜃∈𝛩


( 𝜀
2
, 𝑐𝜃𝑐𝜃 , ‖⋅‖∞

)

.

Hence, let 𝜃 ∈ 𝛩 and 𝑓 ∈  𝑐𝜃𝑐𝜃 , and choose 𝑓 ∈  with 𝑓 = 𝑓 𝑐𝜃𝑐𝜃 . Select 𝜃𝑖 with 𝑑𝛩(𝜃, 𝜃𝑖) ≤ 𝜀∕4 and choose 𝑓 𝑖𝑙𝑖 ∈  (𝜀) such that
𝑓 𝑖𝑙𝑖 − 𝑓

𝑐𝜃𝑖 𝑐𝜃𝑖 ‖
‖

‖∞
≤ 𝜀∕2. Now, by Lipschitzianity of the cost in 𝜃 and Lemma 42 we infer ‖

‖

𝑓 𝑐𝜃𝑖 𝑐𝜃𝑖 − 𝑓 𝑐𝜃𝑐𝜃‖
‖∞ ≤ 2𝑑𝛩(𝜃, 𝜃𝑖) ≤ 𝜀∕2, and it

ollows that
‖

‖

‖

𝑓 𝑖𝑙𝑖 − 𝑓
‖

‖

‖∞
= ‖

‖

‖

𝑓 𝑖𝑙𝑖 − 𝑓
𝑐𝜃𝑐𝜃‖

‖

‖∞
≤ ‖

‖

‖

𝑓 𝑖𝑙𝑖 − 𝑓
𝑐𝜃𝑖 𝑐𝜃𝑖 ‖

‖

‖∞
+ ‖

‖

𝑓 𝑐𝜃𝑖 𝑐𝜃𝑖 − 𝑓 𝑐𝜃𝑐𝜃‖
‖∞ ≤ 𝜀,

hich verifies that  (𝜀) is an 𝜀-covering of ∪𝜃∈𝛩 𝑐𝜃𝑐𝜃 .
Moreover, for any 𝑓 ∈  𝑐𝜃 there exists 𝑓 ∈  with 𝑓 = 𝑓 𝑐𝜃 and by Santambrogio [2, Proposition 1.34] it follows that 𝑓 𝑐𝜃 = 𝑓 𝑐𝜃𝑐𝜃𝑐𝜃 .

ence, upon selecting 𝑓 𝑖𝑙𝑖 ∈  (𝜀) as above, we find by Lemma 42 that

‖ 𝑖 𝑐𝜃𝑖 ̃𝑐𝜃𝑖 ‖ ‖ 𝑖 𝑐𝜃𝑖 ̃𝑐𝜃𝑖 𝑐𝜃𝑖 𝑐𝜃𝑖 ‖ ‖ 𝑖 ̃𝑐𝜃𝑖 𝑐𝜃𝑖 ‖
34

‖

‖

(𝑓𝑙𝑖 ) − 𝑓 ‖

‖∞
= ‖

‖

(𝑓𝑙𝑖 ) − 𝑓 ‖

‖∞
≤ ‖

‖

𝑓𝑙𝑖 − 𝑓 ‖

‖∞
≤ 𝜀∕2.
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Again invoking Lemma 42 yields ‖

‖

𝑓 𝑐𝜃𝑖 − 𝑓 𝑐𝜃‖
‖∞ ≤ 𝑑(𝜃, 𝜃𝑖) ≤ 𝜀∕4. Consequently, we find that

‖

‖

‖

(𝑓 𝑖𝑙𝑖 )
𝑐𝜃𝑖 − 𝑓‖‖

‖∞
= ‖

‖

‖

(𝑓 𝑖𝑙𝑖 )
𝑐𝜃𝑖 − 𝑓 𝑐𝜃‖‖

‖∞
≤ ‖

‖

‖

(𝑓 𝑖𝑙𝑖 )
𝑐𝜃𝑖 − 𝑓 𝑐𝜃𝑖 ‖‖

‖∞
+ ‖

‖

𝑓 𝑐𝜃𝑖 − 𝑓 𝑐𝜃‖
‖∞ ≤ 3𝜀

4
≤ 𝜀,

which proves that  (𝜀) is an 𝜀-covering of ∪𝜃∈𝛩 𝑐𝜃 and finishes the proof. □

Appendix C. Proofs for Section 4: Applications

C.1. Proof of Lemma 24

Select 𝑈 as the pre-image of {𝑔̃ ∈ 𝐶( ,R𝑑 )∶ ‖𝑔̃ − 𝑔−1𝜗𝑜 ‖∞ < 1} under 𝐾𝛩, which is open (relative) in 𝛩 due to continuity. Hence,
by compactness of  , the collection {𝑔−1𝜗 }𝜗∈𝑈 is uniformly bounded on  . Invoking the Cauchy–Schwarz inequality and, due to
compactness of  , we infer that {𝐶𝛩(𝜗)(𝑥, ⋅)}𝜗∈𝑈,𝑥∈ is also uniformly bounded on  . Further, since ∇𝑦𝐶𝛩(𝜗)(𝑥, 𝑦) = 2

(

𝑔−1𝜗 (𝑥)−𝑦
)

for
𝑦 ∈ int() the collection {∇𝑦𝐶𝛩(𝜗)(𝑥, ⋅)} is bounded on  uniformly over 𝜗 ∈ 𝑈, 𝑥 ∈  . Finally, note that Hess𝑦𝐶𝛩(𝜗)(𝑥, 𝑦) = −2Id,
independent of 𝜗 ∈ 𝑈, 𝑥 ∈  . Combining these observations, we conclude the existence of 𝛬 ≥ 0 such that the (2, 𝛬)-Hölder regularity
is met. □

C.2. Proof of Lemma 25

To establish the Hadamard differentiability of 𝐶𝛩 at 𝜗𝑜 note that
‖

‖

‖

‖

𝐶𝛩(𝜗𝑜 + 𝑡𝑛ℎ𝑛) − 𝐶𝛩(𝜗𝑜)
𝑡𝑛

−𝐷𝐻
|𝜗𝑜𝐶𝛩(ℎ)

‖

‖

‖

‖∞

= sup
(𝑥,𝑦)∈×

|

|

|

|

1
𝑡𝑛

⟨

𝑔−1𝜗𝑜+𝑡𝑛ℎ𝑛 (𝑥) − 𝑔
−1
𝜗𝑜 (𝑥), 𝑔

−1
𝜗𝑜+𝑡𝑛ℎ𝑛

(𝑥) + 𝑔−1𝜗𝑜 (𝑥) − 2𝑦
⟩

− 2
⟨

𝐷𝐻
𝜗𝑜𝐾𝛩(ℎ)(𝑥), 𝑔

−1
𝜗𝑜 (𝑥) − 𝑦

⟩

|

|

|

|

≤ sup
(𝑥,𝑦)∈×

(

|

|

|

|

2
⟨ 1
𝑡𝑛

(

𝑔−1𝜗𝑜+𝑡𝑛ℎ𝑛 (𝑥) − 𝑔
−1
𝜗𝑜 (𝑥)

)

−𝐷𝐻
𝜗𝑜𝐾𝛩(ℎ)(𝑥), 𝑔

−1
𝜗𝑜 (𝑥) − 𝑦

⟩

|

|

|

|

+ 1
𝑡𝑛
‖

‖

‖

𝑔−1𝜗𝑜+𝑡𝑛ℎ𝑛 (𝑥) − 𝑔
−1
𝜗𝑜 (𝑥)

‖

‖

‖

2
)

.

or 𝑛 → ∞, the first term tends to zero by Hadamard differentiability of 𝐾𝛩 whereas the second term tends to zero by (G). Hence,
𝛩 is Hadamard differentiable at 𝜗𝑜. The second assertion follows from the functional delta method for Hadamard differentiable

unctionals [45]. □

.3. Proof of Proposition 26

First note that, in comparison to Sections 2 and 3, the roles of  and  are interchanged. The universal Donsker property of
𝐶𝛩(𝜗𝑜) follows from Proposition 13(𝑖𝑖𝑖) since 𝑑 ≤ 3 and 𝐶𝛩(𝜗𝑜)(𝑥, ⋅) is (2, 𝛬)-Hölder for some 𝛬 ≥ 0 uniformly in 𝑥 ∈  (Lemma 24).

Moreover, note by measurability of 𝜗𝑛 and continuity of 𝐶𝛩 near 𝜗𝑜 that 𝑐𝑛 is also measurable. By joint weak convergence (20) we
infer from Hadamard differentiability of 𝐶𝛩 at 𝜗𝑜 (Lemma 25) using the functional delta method that the one-sample version of
(JW) (recall Remark 4(ii)) is fulfilled. Further, since 𝜗𝑛

P
→ 𝜗𝑜, as 𝑛 tends to infinity, we infer from Corollary 20 and Lemma 24 that

the one-sample version of (Sup) is also met. The assertion now follows at once from Theorem 2. □

C.4. Proof of Lemma 29

First note that the matrix root operation R∶ SPD(𝑑) → SPD(𝑑), 𝛴 ↦ 𝛴1∕2 [94, p. 134] is Fréchet differentiable with derivative
given by 𝐷

|𝛴0
R∶ S(𝑑) → S(𝑑),𝐻 ↦ 𝐻̃ , and that the inverse operation I∶ SPD(𝑑) → SPD(𝑑), 𝛴 ↦ 𝛴−1 is also Fréchet

ifferentiable [95, Theorem 8.3] with derivative given by 𝐷
|𝛴0

I∶ S(𝑑) → S(𝑑),𝐻 ↦ −𝛴0𝐻𝛴0. The assertion now follows at once
rom the chain rule [95, Theorem 5.12] for compositions of Fréchet differentiable functions. □

.5. Proof of Corollary 30

Note that by assumption, ( , 𝑑 ) and 𝑐 fulfill the requirements of Theorem 6. Furthermore, note that Assumption (Don) can be
stablished via Proposition 21 and Assumption List (KP) is implied by the assumptions on the support of 𝜇 and 𝜈 [62, Corollary 2].
ence, the statement follows from Theorem 6. □

.6. Proof of Corollary 33

Select  ⊆ R𝑑 as a compact set which contains the supports of 𝜇 and 𝜈. Note that S𝑑−1 is a compact Polish space and consider
he Lipschitz map 𝑐S𝑑−1 ∶ (S𝑑−1, ‖⋅‖) → 𝐶( × ), 𝜃 ↦ 𝑐𝜃|× whose modulus depends on  and 𝑝. By compactness of  and S𝑑−1
t thus follows from the Theorem of Arzelà-Ascoli that {𝑐𝜃|×}𝜃∈S𝑑−1 is uniformly bounded and equicontinuous with a uniform
odulus. Therefore, upon choosing the function class  as in Theorem 5, Assertion (𝑖) follows by Theorem 5 once we verify that
35
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Assumption (Don) is fulfilled. To this end, note that log𝑁(𝜀,S𝑑−1, ‖⋅‖) ≲ | log(𝜀)|. Moreover, define for 𝜃 ∈ S𝑑−1 the pseudo metric
𝜃̃, (𝑥, 𝑦) = |𝜃𝑇 𝑥 − 𝜃𝑇 𝑦| on  which fulfills sup𝜃∈S𝑑−1  (𝜀, , 𝑑𝜃, ) ≲ 𝜀−1 and for any 𝑥, 𝑥′, 𝑦 ∈  ,

|

|

𝑐𝜃(𝑥, 𝑦) − 𝑐𝜃(𝑥′, 𝑦)|| ≤ 𝑝diam(p𝜃())𝑝−1|𝜃𝑇 𝑥 − 𝜃𝑇 𝑥′| ≤ 𝑝diam()𝑝−1𝑑𝜃, (𝑥, 𝑥′).

ince the upper bound for the Lipschitz modulus does not depend on 𝜃, Proposition 21(𝑖𝑖) is applicable, and we conclude that
𝜃∈S𝑑−1  𝑐𝜃𝑐𝜃 and ⋃

𝜃∈S𝑑−1  𝑐𝜃 are universal Donsker. By applying the continuous mapping theorem [38, Theorem 1.11.1] for the
ntegration operator over S𝑑−1 we obtain Assertion (𝑖𝑖). Finally, Assertion (𝑖𝑖𝑖) follows from Theorem 7. □

.7. Proof of Proposition 34

Since  ×  is compact and by continuity of 𝑐 and 𝛥𝑐 there exists a common modulus of continuity 𝑤 for {𝑐𝑡(⋅, 𝑦)}𝑦∈ ,𝑡∈[0,1].
ence, for any 𝑡 ∈ [0, 1] we have 𝑐, 𝑐𝑡 ∈ 𝐶(‖𝑐‖∞ + ‖𝛥𝑐‖∞ + 1, 𝑤) (see Lemma 43 for the definition of 𝐶(⋅, ⋅)). Consequently, we infer
y Lemma 43 the inequalities,

1
𝑡

(

inf
𝜋∈𝛱⋆

𝑐𝑡 (𝜇𝑡 ,𝜈𝑡)
𝜋(𝑡𝛥𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)
𝑡𝛥𝜇(𝑓 𝑐𝑐 ) + 𝑡𝛥𝜈 (𝑓 𝑐 )

)

≤1
𝑡
(𝑂𝑇 (𝜇𝑡, 𝜈𝑡, 𝑐𝑡) − 𝑂𝑇 (𝜇, 𝜈, 𝑐))

≤1
𝑡

(

inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(𝑡𝛥𝑐 ) + sup

𝑓∈𝑆𝑐𝑡 (𝜇𝑡 ,𝜈𝑡)
𝑡𝛥𝜇(𝑓 𝑐𝑐 ) + 𝑡𝛥𝜈 (𝑓 𝑐 ) + sup

𝑓∈
𝑡𝛥𝜇(𝑓 𝑐𝑡𝑐𝑡 − 𝑓 𝑐𝑐 ) + 𝑡𝛥𝜈 (𝑓 𝑐𝑡 − 𝑓 𝑐 )

)

.

Next, we observe that 𝛥𝜇 = 𝜇̃ − 𝜇 for some 𝜇̃ ∈ (). This yields using Lipschitzianity under cost transformations with respect to
the cost function (Lemma 42) that

sup
𝑓∈

|𝛥𝜇(𝑓 𝑐𝑡𝑐𝑡 − 𝑓 𝑐𝑐 )| = sup
𝑓∈

|(𝜇̃ − 𝜇)(𝑓 𝑐𝑡𝑐𝑡 − 𝑓 𝑐𝑐 )| ≤ 4 ‖
‖

𝑐𝑡 − 𝑐‖‖∞ = 4𝑡 ‖𝛥𝑐‖∞
𝑡→0
←←←←←←←←←←←←←←←←→ 0.

Likewise, it follows that | sup𝑓∈ 𝛥𝜈 (𝑓 𝑐𝑡 − 𝑓 𝑐 )| → 0 for 𝑡 → 0. Finally, since the pair (𝜇𝑡, 𝜈𝑡) weakly converges for 𝑡 ↘ 0 to (𝜇, 𝜈) it
follows by Lemma 44 that

lim inf
𝑡↘0

inf
𝜋∈𝛱⋆

𝑐𝑡 (𝜇𝑡 ,𝜈𝑡)
𝜋(𝛥𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)
𝛥𝜇(𝑓 𝑐𝑐 ) + 𝛥𝜈 (𝑓 𝑐 )

≥ inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(𝛥𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)
𝛥𝜇(𝑓 𝑐𝑐 ) + 𝛥𝜈 (𝑓 𝑐 )

as well as

lim sup
𝑡↘0

inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(𝛥𝑐 ) + sup

𝑓∈𝑆𝑐𝑡 (𝜇𝑡 ,𝜈𝑡)
𝛥𝜇(𝑓 𝑐𝑐 ) + 𝛥𝜈 (𝑓 𝑐 )

≤ inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(𝛥𝑐 ) + sup

𝑓∈𝑆𝑐 (𝜇,𝜈)
𝛥𝜇(𝑓 𝑐𝑐 ) + 𝛥𝜈 (𝑓 𝑐 ),

which yields the claim. □

Appendix D. Proofs for Section 5: Regularity elevation functionals

D.1. Proof of Proposition 36

By the functional delta method [45] and the assumptions on 𝛹 and  it follows that

𝑎𝑛

(

(𝑓𝑛 − 𝑓 )
(𝛹 (𝑓𝑛) − 𝑓 )

)

⇝

(


𝐷𝐻
𝑓 𝛹 ()

)

𝑑
=
(




)

for 𝑛→ ∞.

The continuous mapping theorem [38, Theorem 1.11.1] in combination with measurability of the random elements 𝑓𝑛 and 𝛹 (𝑓𝑛)
(due to continuity 𝛹 near 𝑓 ) thus asserts

𝑎𝑛
(

𝛹 (𝑓𝑛) − 𝑓𝑛
) P
→ 0 for 𝑛→ ∞. □

D.2. Proof of Proposition 37

First note that 𝛹 (𝑐) ∈ 𝐶(×) for any 𝑐 ∈ 𝐶(×) as a concatenation of continuous functions and under ‖𝑐‖∞ < 2 that 𝛹 (𝑐) = 𝑐,
which yields 𝛹 (𝑐) = 𝑐. In particular, this shows that 𝛹 ∶𝐶( × ) → 𝐶( × ) is continuous near 𝑐. For Hadamard differentiability
at 𝑐 consider a positive sequence 𝑡𝑛 ↘ 0 and take a converging sequence (ℎ𝑛)𝑛∈N ⊆ 𝐶( × ) with limit ℎ. Since ℎ is bounded and
‖𝑐‖∞ ≤ 1, for 𝑛 sufficiently large we have ‖

‖

𝑐 + 𝑡𝑛ℎ𝑛‖‖∞ < 2 and therefore 𝛹 (𝑐 + 𝑡𝑛ℎ𝑛) = 𝑐 + 𝑡𝑛ℎ𝑛. We then obtain
‖

‖

‖

𝛹 (𝑐 + 𝑡𝑛ℎ𝑛) − 𝛹 (𝑐) − ℎ
‖

‖

‖

= ‖

‖

ℎ𝑛 − ℎ‖‖∞ → 0.
36

‖
𝑡𝑛 ‖∞
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Finally, since for any 𝑐 ∈ 𝐶( × ) it holds that ‖𝑔𝛹 (𝑐)‖∞ ≤ 𝐵 + 2 where 𝐵 ∶= sup𝑔∈ ‖𝑔‖∞ we find for a finite space  that

sup
𝑐∈𝐶(×)

log (𝜀,𝛹 (𝑐), ‖⋅‖∞) ≤ ||(log(𝐵 + 2) + | log(𝜀)|) ≲ | log(𝜀)|. □

.3. Proof of Proposition 38

By condition (26) it follows for 𝑥, 𝑥′ ∈  with 𝑑 (𝑥, 𝑥′) = 0 that 𝑐(𝑥, 𝑦) = 𝑐(𝑥′, 𝑦), whereas under 𝑑 (𝑥, 𝑥′) > 0 we have by 𝑤(𝛿) > 0
for 𝛿 > 0 that

𝑐(𝑥, 𝑦) ≤ 𝑐(𝑥′, 𝑦) +𝑤(𝑑 (𝑥, 𝑥′)) < 𝑐(𝑥′, 𝑦) + 2𝑤(𝑑 (𝑥, 𝑥′)).

This asserts for any (𝑥, 𝑦) ∈  ×  that

𝑆(𝑐, (𝑥, 𝑦)) ∶= argmin
𝑥′∈

𝑐(𝑥′, 𝑦) + 2𝑤
(

𝑑 (𝑥, 𝑥′)
)

= {𝑥′′ ∈  ∣ 𝑑(𝑥, 𝑥′′) = 0},

and overall yields by ‖𝑐‖∞ ≤ 1 that 𝛹 (𝑐) = 𝑐.
For the second and third claim, recall from Proposition 37 that 𝛹bdd ∶𝐶( ×) → 𝐶( ×) is continuous near 𝑐 and Hadamard

differentiable at 𝑐 with derivative Id𝐶(×). Hence, it suffices to verify that 𝛹𝑤◦𝑑mod is continuous near 𝑐 and Hadamard directionally
differentiable with 𝐷𝐻

|𝑐 𝛹 |𝐶(̃×) = Id𝐶(̃×) for which we rely on Lemma 51 and Theorem 52. Define the spaces 𝑉 ∶= 𝐶( × ),
=  , 𝛩 = ̃ ×  and the functional

𝐸𝑤◦𝑑 ∶𝑉 ×  × 𝛩 = 𝐶( × ) ×  × (̃ × ) ↦ R, (𝑐, 𝑥′, (𝑥, 𝑦)) ↦ −𝑐(𝑥′, 𝑦) − 2𝑤(𝑑 (𝑥, 𝑥′)).

or any 𝑐 ∈ 𝐶( × ) the function 𝐸𝑤◦𝑑 (𝑐, ⋅, ⋅)∶ × (̃ × ) → R is continuous as a sum of continuous functions. Further, for any
𝑥′, (𝑥, 𝑦)) ∈  × (̃ × ) note that the function 𝐸𝑤◦𝑑 (⋅, 𝑥′, (𝑥, 𝑦))∶𝐶( × ) → R is 1-Lipschitz under uniform norm and that

𝛥𝑐𝐸
𝑤◦𝑑 (𝑐, 𝑥′, (𝑥, 𝑦)) ∶= 𝐸𝑤◦𝑑 (𝑐 + 𝑐, 𝑥′, (𝑥, 𝑦)) − 𝐸𝑤◦𝑑 (𝑐, 𝑥′, (𝑥, 𝑦)) = −𝑐(𝑥′, 𝑦)

s linear in 𝑐 ∈ 𝐶( × ). Hence, by Lemma 51 we obtain continuity of the functional

𝛹𝑤◦𝑑mod ∶𝐶( × ) → 𝐶(̃ × ),

𝑐 ↦
(

(𝑥, 𝑦) ↦ inf
𝑥′∈

𝑐(𝑥′, 𝑦) + 2𝑤(𝑑 (𝑥, 𝑥′)) = − sup
𝑥′∈

𝐸𝑤◦𝑑 (𝑐, 𝑥′, (𝑥, 𝑦))
)

.

onsider the closed sub-vector space 𝑈 ∶= 𝐶(̃ ×) ⊆ 𝐶( ×), cf. Lemma 57. It remains to show Assumption (DC) of Theorem 52.
o this end, note for ℎ ∈ 𝐶(̃ × ) that

ℎ(𝑥, 𝑦) + 2𝑤(𝑑 (𝑥, 𝑥′)) = ℎ(𝑥′, 𝑦) + 2𝑤(𝑑 (𝑥
′, 𝑥′)) for any 𝑥, 𝑥′ ∈ 𝑆(𝑐, (𝑥, 𝑦))

since 𝑑 (𝑥, 𝑥
′) = 0. This implies by Lemma 53 that (DC) is fulfilled. Theorem 52 thus asserts that 𝛹𝑤◦𝑑mod is Hadamard directionally

differentiable at 𝑐 with derivative given by

𝐷𝐻
|𝑐 𝛹

𝑤◦𝑑
mod ∶𝐶( × ) → 𝐶(̃ × ),

ℎ ↦

(

(𝑥, 𝑦) ↦ inf
𝑥′ ∶ 𝑑 (𝑥′ ,𝑥)=0

ℎ(𝑥′, 𝑦) = − sup
𝑥′ ∶ 𝑑 (𝑥′ ,𝑥)=0

−𝛥𝑐𝐸𝑤◦𝑑 (ℎ, 𝑥′, (𝑥, 𝑦))

)

.

Hence, if ℎ ∈ 𝐶(̃ × ), then 𝐷𝐻
|𝑐 𝛹

𝑤◦𝑑
mod (ℎ) = ℎ, which yields 𝐷𝐻

|𝑐 𝛹
𝑤◦𝑑
mod |𝐶(̃×) = Id𝐶(̃×).

For the last claim note that any 𝑐 ∈ 𝐶( × ) fulfills for (𝑥, 𝑦) ∈  ×  that

− ‖𝑐‖∞ ≤ 𝛹𝑤◦𝑑mod (𝑐)(𝑥, 𝑦) ≤ 𝑐(𝑥, 𝑦) ≤ ‖𝑐‖∞ ,

and hence ‖𝛹 (𝑐)‖∞ = ‖𝛹𝑤◦𝑑mod ◦𝛹bdd(𝑐)‖∞ ≤ 2. Further, for any 𝑥, 𝑥′ ∈  , 𝑦 ∈  we have

𝛹𝑤◦𝑑mod (𝑐)(𝑥, 𝑦) − 𝛹𝑤◦𝑑mod (𝑐)(𝑥′, 𝑦) ≤ inf
𝑥′′∈

𝑐(𝑥′′, 𝑦) + 2𝑤(𝑑 (𝑥′′, 𝑥)) − 𝑐(𝑥′′, 𝑦) − 2𝑤(𝑑 (𝑥′′, 𝑥′))

≤ 2𝑤(𝑑 (𝑥, 𝑥′)), (D.1)

where we used the reverse triangle inequality since 𝑤◦𝑑 defines a (pseudo-)metric on  . We thus conclude for any 𝑐 ∈ 𝐶( × )
and a bounded function class  with 𝐵 ∶= sup𝑔∈ ‖𝑔‖∞ < ∞ from ‖𝛹 (𝑐)‖∞ ≤ 2 and (D.1) that the elements of 𝛹 (𝑐) are bounded by
𝐵 + 2 and 2-Lipschitz under 𝑤◦𝑑 as an infimum over such 2-Lipschitz functions. Hence, 𝛹 (𝑐) ⊆ BL(𝐵+2),2( , 𝑤◦𝑑 ) where for the
latter class uniform metric entropy bounds are available by Kolmogorov and Tikhomirov [96, Section 9], asserting for any 𝜀 > 0

 (𝜀,BL(𝐵+2),2( , 𝑤◦𝑑 ), ‖⋅‖∞) =  (𝜀∕2,BL(𝐵+2)∕2,1( , 𝑤◦𝑑 ), ‖⋅‖∞)
̃

37

≲ (𝜀∕8, , 𝑤◦𝑑 )| log(𝜀)|. □
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D.4. Proof of Corollary 39

We infer from Proposition 38 that 𝛹 ∶= 𝐵 ⋅ 𝛹𝑤◦𝑑 ∕𝐵
mod ◦𝛹bdd(⋅∕𝐵) is continuous near 𝑐 and Hadamard differentiable at 𝑐 with

erivative 𝐷𝐻
|𝑐 𝛹 = Id𝐶(×). Hence, invoking Proposition 36 it follows that 𝑎𝑛(𝑐𝑛 − 𝑐𝑛)

P
→ 0 for 𝑛 → ∞. Moreover, by definition of

𝛹bdd and 𝛹𝑤∕𝐵,𝑑mod it follows that ‖

‖

𝑐𝑛‖‖∞ ≤ 2𝐵 and that 𝑐𝑛 fulfills (26) with 𝑤 replaced by 2𝑤. The inclusion now follows at once
rom Lemma 1. □

.5. Proof of Proposition 40

Since 𝑐 is (𝛾, 1)-Hölder it follows for any 𝑥, 𝑥′ ∈  and 𝑦 ∈  as in Lemma A.4 of Hundrieser et al. [43] by convexity of  that

𝑐(𝑥, 𝑦) = 𝑐(𝑥′, 𝑦) + ⟨∇𝑥𝑐(𝑥′, 𝑦), 𝑥 − 𝑥′⟩ + 𝑅𝑥′ (𝑥) with |𝑅𝑥′ (𝑥)| ≤
√

𝑑 ‖
‖

𝑥 − 𝑥′‖
‖

𝛾 ,

and consequently, for 𝑥 ≠ 𝑥′ we obtain

𝑐(𝑥, 𝑦) < 𝑐(𝑥′, 𝑦) + ⟨∇𝑥𝑐(𝑥′, 𝑦), 𝑥 − 𝑥′⟩ + 2
√

𝑑 ‖
‖

𝑥 − 𝑥′‖
‖

𝛾 .

This asserts for any (𝑥, 𝑦) ∈  ×  that

𝑆(𝑐, (𝑥, 𝑦)) ∶= argmin
𝑥′∈

𝑐(𝑥′, 𝑦) + ⟨∇𝑥𝑐(𝑥′, 𝑦), 𝑥 − 𝑥′⟩ + 2
√

𝑑 ‖
‖

𝑥 − 𝑥′‖
‖

𝛾 = {𝑥}

and yields by ‖𝑐‖∞ ≤ 1 that 𝛹 (𝑐) = 𝑐.
To show the claim on continuity and Hadamard differentiability it suffices to verify that 𝛹Hol is continuous near 𝑐 and that is

adamard differentiable at 𝑐 with derivative 𝐷𝐻
|𝑐 𝛹Hol = Id𝐶(×) for which we rely on Lemma 51 and Theorem 52. Set 𝑉 ∶= 𝐶(×),

∶=  and 𝛩 ∶=  ×  and define the functional

𝐸Hol ∶𝑉 ×  × 𝛩 = 𝐶( × ) ×  × ( × ) → R,

(𝑐, 𝑥′, (𝑥, 𝑦)) ↦ −
(

𝑐(𝑥′, 𝑦) + ⟨∇𝑥𝑐(𝑥′, 𝑦), 𝑥 − 𝑥′⟩ + 2
√

𝑑 ‖
‖

𝑥 − 𝑥′‖
‖

𝛾
)

.

For any 𝑐 ∈ 𝐶( × ) the functional 𝐸Hol(𝑐, ⋅, ⋅)∶ × ( × ) → R is continuous by continuity of ∇𝑥𝑐(⋅, ⋅) and for any (𝑥′, (𝑥, 𝑦)) ∈
 × ( × ) the functional 𝐸Hol(⋅, 𝑥′, (𝑥, 𝑦))∶𝐶( × ) → R is 1-Lipschitz under uniform norm while

𝛥𝑐𝐸Hol(𝑐, 𝑥′, (𝑥, 𝑦)) = 𝐸Hol(𝑐 + 𝑐, 𝑥′, (𝑥, 𝑦)) − 𝐸Hol(𝑐, 𝑥′, (𝑥, 𝑦)) = −𝑐(𝑥′, 𝑦)

s linear in 𝑐 ∈ 𝐶( × ). Finally, condition (DC) follows by Lemma 53 since 𝑆(𝑐, (𝑥, 𝑦)) = {𝑥} is a singleton. Hence, by Lemma 51
nd Theorem 52 the functional

𝛹Hol ∶𝐶( × ) → 𝐶( × ), 𝑐 ↦
(

(𝑥, 𝑦) ↦ − sup
𝑥′∈

𝐸Hol(𝑐, 𝑥′, (𝑥, 𝑦))
)

s continuous near 𝑐 and Hadamard differentiable at 𝑐 with derivative

𝐷𝐻
|𝑐 𝛹Hol ∶𝐶( × ) → 𝐶(̃ × ), ℎ↦

(

(𝑥, 𝑦) ↦ ℎ(𝑥, 𝑦) = −𝛥𝑐𝐸Hol(ℎ, 𝑥′, (𝑥, 𝑦))
)

.

For the claim on the uniform metric entropy bound let 𝑐 ∈ 𝐶( × ), and assume (after application of 𝛹bdd) that ‖𝑐‖∞ ≤ 2.
Define the collection of functions (𝐸̃𝑥′ ,𝑦)𝑥′∈ ,𝑦∈ with

𝐸̃𝑥′ ,𝑦 ∶ → R, 𝑥↦ 𝑐(𝑥′, 𝑦) + ⟨∇𝑥𝑐(𝑥′, 𝑦), 𝑥 − 𝑥′⟩ + 2
√

𝑑 ‖
‖

𝑥 − 𝑥′‖
‖

𝛾 ,

hich is (𝛾, 2)-Hölder on  . Hence, by Hundrieser et al. [43, Lemma A.5] there exists another collection (𝐸̃𝜎𝑥′ ,𝑦)𝑥′∈ ,𝑦∈ ,𝜎∈(0,1] of
mooth functions on  such that

sup
𝑥′∈
𝑦∈

‖

‖

‖

𝐸̃𝑥′ ,𝑦 − 𝐸̃𝜎𝑥′ ,𝑦
‖

‖

‖∞
≤ 𝐾𝜎𝛾 and sup

𝑥′∈
𝑦∈

‖

‖

‖

𝐸̃𝜎𝑥′ ,𝑦
‖

‖

‖𝐶2()
≤ 𝐾𝜎𝛾−2, (D.2)

or all 𝜎 > 0 and some independent 𝐾 > 0. Here, the 𝐶2()-norm of a twice continuously differentiable function 𝑔 ∶  ⊂ R𝑑 → R is
efined as

‖𝑔‖𝐶2() ∶= max
|𝛽|≤2

‖

‖

‖

𝐷𝛽𝑔‖‖
‖∞

, where 𝐷𝛽𝑔 = 𝜕|𝛽|𝑔∕𝜕𝑥𝛽11 ⋯ 𝑥𝛽𝑑𝑑 for 𝛽 ∈ N𝑑0 .

ote that a function with ‖𝑔‖𝐶2() ≤ 𝛤 for 𝛤 > 0 is absolutely bounded by 𝛤 , it is 𝛤 -Lipschitz, and 𝑑𝛤 -semi-concave (for a
ormal definition see [97] or [43]), since the Eigenvalues of its Hessian are bounded by 𝑑 ⋅ 𝛤 . Upon defining 𝑐(𝑥, 𝑦) ∶= 𝛹 (𝑐)(𝑥, 𝑦) =
nf𝑥′∈ 𝐸̃𝑥′ ,𝑦(𝑥) and 𝑐𝜎 (𝑥, 𝑦) ∶= inf𝑥′∈ 𝐸̃𝜎𝑥′ ,𝑦(𝑥) we thus obtain from (D.2) that ‖

‖

𝑐 − 𝑐𝜎‖
‖∞ ≤ 𝐾𝜎𝛾 and that 𝑐𝜎 is semi-concave of order

𝛤 (𝜎) ∶= 𝑑𝐾𝜎𝛾−2. Hence, following along the lines the proofs of Lemma A.4 in [43] we obtain for any 𝜀 > 0 and 𝜎(𝜀) ∶= (𝜀∕4𝐾)1∕𝛾

hat

 (𝜀,𝑐 , ‖⋅‖∞) ≤  (𝜀∕2,𝑐
𝜎(𝜀)
, ‖⋅‖∞) = 

(

𝜀 , 𝑐
𝜎(𝜀)

, ‖⋅‖∞

)

≲
(

𝜀
)−𝑑∕2

≲ 𝜀−𝑑∕𝛾 .
38

2𝛤 (𝜎(𝜀)) 2𝛤 (𝜎(𝜀)) 2𝛤 (𝜎(𝜀))



Stochastic Processes and their Applications 178 (2024) 104462S. Hundrieser et al.

𝑐

w
a
d

B

a

𝑐

A

E

s

Here, we used in the second inequality that 𝑐
𝜎(𝜀)

∕2𝛤 (𝜎(𝜀)) is contained in the collection of functions on  which are absolutely
bounded by 𝐵 ≥ 0, Lipschitz with modulus 𝐿 ≥ 0 and 1-semi-concave, where 𝐵 depends on  and 𝐿 depends on  , in conjunction
with uniform metric entropy bounds by Bronshtein [98],Guntuboyina and Sen [99] for convex functions. In particular, since the
hidden constants do not depend on 𝑐, the claim follows. □

D.6. Proof of Proposition 41

For the first claim note that 𝛹𝑖(𝑐𝑖) = 𝑐𝑖 for each 𝑖 ∈ {1,… , 𝐼} and consequently, it follows for 𝑥 ∈ 𝜁𝑖(𝑖) that 𝛹𝑖(𝑐𝑖)(𝜁−1𝑖 (𝑥), 𝑦) =
(𝑥, 𝑦). Hence, since ∑𝐼

𝑖=1 𝜂𝑖(𝑥) ≡ 1 it follows that 𝛹 (𝑐) = 𝑐.
The claim on continuity of 𝛹 near 𝑐 follows by continuity of the functionals 𝛹𝑖 ∶𝐶(𝑖×) → 𝐶(𝑖×) near 𝑐𝑖 for each 1 ≤ 𝑖 ≤ 𝐼 .
For the claim on Hadamard differentiability of 𝛹 define for each 𝑖 ∈ {1,… , 𝐼} the functionals

𝛹 1
com,𝑖 ∶𝐶( × ) → 𝐶(𝑖 × ), 𝑐 ↦

(

(𝑢, 𝑦) ↦ 𝑐(𝜁𝑖(𝑢), 𝑦)
)

,

𝛹 2
com,𝑖 ∶𝐶(𝑖 × ) → 𝐶(𝜁𝑖(𝑖) × ), 𝑐 ↦

(

(𝑥, 𝑦) ↦ 𝑐(𝜁−1𝑖 (𝑥), 𝑦)
)

,

here both maps assign to the respective spaces of continuous functions since 𝜁−1𝑖 and 𝜁𝑖 are both continuous. Further, note for
ny 𝑐 ∈ 𝐶( × ) that 𝛹 (𝑐) = ∑𝐼

𝑖=1 𝜂𝑖 ⋅ 𝛹
2
com,𝑖◦𝛹𝑖◦𝛹

1
com,𝑖(𝑐). Both functionals 𝛹 1

com,𝑖 and 𝛹 2
com,𝑖 are Hadamard differentiable at 𝑐𝑖 with

erivative

𝐷𝐻
|𝑐𝑖
𝛹 1

com,𝑖 ∶𝐶( × ) → 𝐶(𝑖 × ), ℎ↦
(

(𝑢, 𝑦) ↦ ℎ(𝜁𝑖(𝑢), 𝑦)
)

,

𝐷𝐻
|𝑐𝑖
𝛹 2

com,𝑖 ∶𝐶(𝑖 × ) → 𝐶(𝜁𝑖(𝑖) × ), ℎ↦
(

(𝑥, 𝑦) ↦ ℎ(𝜁−1𝑖 (𝑥), 𝑦)
)

.

y assumption on 𝛹𝑖 and chain rule we infer that 𝛹 is Hadamard differentiable at 𝑐 with derivative

𝐷𝐻
𝑐 𝛹 ∶𝐶( × ) → 𝐶( × ),

ℎ↦

(

(𝑥, 𝑦) ↦
𝐼
∑

𝑖=1
𝜂𝑖(𝑥)ℎ(𝜁−1𝑖 (𝜁𝑖(𝑥)), 𝑦) =

𝐼
∑

𝑖=1
𝜂𝑖(𝑥)ℎ(𝑥, 𝑦) = ℎ(𝑥, 𝑦)

)

nd conclude that 𝐷𝐻
|𝑐 𝛹 = Id𝐶(×).

Finally, the bound on the covering numbers is a consequence of Lemma 3.1 and Lemma A.1 in [43] as they assert for arbitrary
̃ ∈ 𝐶( × ) that

log (𝜀,𝛹 (𝑐), ‖⋅‖∞) ≤
𝐼
∑

𝑖=1
log (𝜀,𝛹 (𝑐)|𝜁𝑖(𝑖), ‖⋅‖∞)

≤
𝐼
∑

𝑖=1
log (𝜀,𝛹𝑖(𝑐)◦𝜁𝑖, ‖⋅‖∞)

=
𝐼
∑

𝑖=1
log (𝜀,𝛹𝑖(𝑐(𝜁𝑖(⋅),⋅)), ‖⋅‖∞). □

ppendix E. Proofs for Section 6: Lemmata of distributional limits

.1. Proof of Lemma 42

Assume ‖𝑓 −𝑓‖∞ +‖𝑐 − 𝑐‖∞ < ∞ since otherwise the claim is vacuous. For 𝑓 and 𝑐 there exists for 𝑦 ∈  and 𝜀 > 0 some 𝑥′ ∈ 
uch that 𝑓 𝑐(𝑦) ≥ 𝑐(𝑥′, 𝑦) − 𝑓 (𝑥′) − 𝜀. Hence,

𝑓 𝑐 (𝑦) − 𝑓 𝑐(𝑦) =
[

inf
𝑥∈

𝑐(𝑥, 𝑦) − 𝑓 (𝑥)
]

−
[

inf
𝑥∈

𝑐(𝑥, 𝑦) − 𝑓 (𝑥)
]

≤ 𝑐(𝑥′, 𝑦) − 𝑓 (𝑥′) − 𝑐(𝑥′, 𝑦) + 𝑓 (𝑥′) + 𝜀

≤ ‖

‖

𝑓 − 𝑓‖
‖∞ + ‖𝑐 − 𝑐‖∞ + 𝜀.

As 𝜀 > 0 can be chosen arbitrarily small, we obtain for any 𝑦 ∈  the inequality

𝑓 𝑐 (𝑦) − 𝑓 𝑐(𝑦) ≤ ‖

‖

𝑓 − 𝑓‖
‖∞ + ‖𝑐 − 𝑐‖∞ .

Repeating the argument for 𝑓 and 𝑐 asserts the converse inequality and proves the claim. □

E.2. Proof of Lemma 43

Let us start by splitting the problem in two different ways,

𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐) = (𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐) − 𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐)) + (𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐))
39

= (𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)) + (𝑂𝑇 (𝜇, 𝜈, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐)).
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

Since 𝑐, 𝑐 ∈ 𝐶(2 ‖𝑐‖∞ + 1, 2𝑤), we can employ the dual representation of the OT value from Lemma 1 with  =  (2 ‖𝑐‖∞ + 1, 2𝑤).
ence, for each bracket in the display above, one can choose to plug-in a feasible plan in the primal formulation or a potential from
in the dual formulation to obtain upper and lower bounds. Doing so, we obtain

inf
𝜋∈𝛱⋆

𝑐 (𝜇̃,𝜈̃)
𝜋(𝑐 − 𝑐) ≤ 𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐) − 𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐) ≤ inf

𝜋∈𝛱⋆
𝑐 (𝜇̃,𝜈̃)

𝜋(𝑐 − 𝑐),

sup
𝑓∈𝑆𝑐 (𝜇,𝜈)

(𝜇̃ − 𝜇)𝑓 𝑐𝑐 + (𝜈̃ − 𝜈)𝑓 𝑐 ≤ 𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐) ≤ sup
𝑓∈𝑆𝑐 (𝜇̃,𝜈̃)

(𝜇̃ − 𝜇)𝑓 𝑐𝑐 + (𝜈̃ − 𝜈)𝑓 𝑐 ,

𝑂𝑇 (𝜇, 𝜈, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐) ≤ inf
𝜋∈𝛱⋆

𝑐 (𝜇,𝜈)
𝜋(𝑐 − 𝑐),

𝑂𝑇 (𝜇̃, 𝜈̃, 𝑐) − 𝑂𝑇 (𝜇, 𝜈, 𝑐) ≤ sup
𝑓∈𝑆𝑐 (𝜇̃,𝜈̃)

(𝜇̃ − 𝜇)𝑓 𝑐𝑐 + (𝜈̃ − 𝜈)𝑓 𝑐 .

In particular, for the last upper bound we further note that

sup
𝑓∈𝑆𝑐 (𝜇̃,𝜈̃)

(𝜇̃ − 𝜇)𝑓 𝑐𝑐 + (𝜈̃ − 𝜈)𝑓 𝑐 ≤ sup
𝑓∈𝑆𝑐 (𝜇̃,𝜈̃)

(𝜇̃ − 𝜇)𝑓 𝑐𝑐 + (𝜈̃ − 𝜈)𝑓 𝑐 + sup
𝑓∈

(𝜇̃ − 𝜇)(𝑓 𝑐𝑐 − 𝑓 𝑐𝑐 ) + (𝜈̃ − 𝜈)(𝑓 𝑐 − 𝑓 𝑐 ),

which overall yields the lower and upper bounds for the OT cost under varying measures and costs.
Finally, the bound under fixed measures 𝜇, 𝜈 it follows by Hölder’s inequality for any 𝜋 ∈ 𝛱(𝜇, 𝜈) that |𝜋(𝑐 − 𝑐)| ≤ ‖𝑐 − 𝑐‖∞,

whereas under a fixed cost function 𝑐 we have

sup
𝑓∈𝑆𝑐 (𝜇̃,𝜈̃)∪𝑆𝑐 (𝜇,𝜈)

|

|

|

(𝜇̃ − 𝜇)𝑓 𝑐𝑐 + (𝜈̃ − 𝜈)𝑓 𝑐 ||
|

≤ sup
𝑓∈

|

|

|

(𝜇̃ − 𝜇)𝑓 𝑐𝑐 ||
|

+ sup
𝑓∈

|

|

|

(𝜈̃ − 𝜈)𝑓 𝑐 ||
|

= sup
𝑓∈𝑐𝑐

|

|

|

(𝜇̃ − 𝜇)𝑓 ||
|

+ sup
𝑓∈𝑐

|

|

|

(𝜈̃ − 𝜈)𝑓 ||
|

. □

E.3. Proof of Lemma 44

The continuity of 𝑇1 is a consequence of Villani [3, Theorem 5.20]. Indeed, any converging sequence (𝜇𝑛, 𝜈𝑛, 𝑐𝑛) with limit
(𝜇∞, 𝜈∞, 𝑐∞) admits a sequence of OT plans 𝜋𝑛 ∈ 𝛱⋆

𝑐𝑛
(𝜇𝑛, 𝜈𝑛) which converges weakly along a subsequence, say (𝜋𝑛𝑘 )𝑘∈N, to an

OT plan 𝜋∞ ∈ 𝛱⋆
𝑐∞

(𝜇∞, 𝜈∞). Hence,

lim sup
𝑘→∞

|𝑇1(𝜇𝑛𝑘 , 𝜈𝑛𝑘 , 𝑐𝑛𝑘 ) − 𝑇1(𝜇∞, 𝜈∞, 𝑐∞)| = lim sup
𝑘→∞

|𝑂𝑇 (𝜇𝑛𝑘 , 𝜈𝑛𝑘 , 𝑐𝑛𝑘 ) − 𝑂𝑇 (𝜇∞, 𝜈∞, 𝑐∞)|

= lim sup
𝑘→∞

|𝜋𝑛𝑘 (𝑐𝑛𝑘 ) − 𝜋∞(𝑐∞)|

≤ lim sup
𝑘→∞

|(𝜋𝑛𝑘 − 𝜋∞)(𝑐∞)| + ‖

‖

‖

𝑐𝑛𝑘 − 𝑐∞
‖

‖

‖∞
= 0.

Since this holds for any sequence of converging OT plans, continuity of 𝑇1 follows from Lemma 56.
For the lower semi-continuity of 𝑇2 take a sequence (ℎ𝑐,𝑛)𝑛∈N with limit ℎ𝑐,∞ and consider OT plans 𝜋𝑛 ∈ 𝛱⋆

𝑐𝑛
(𝜇𝑛, 𝜈𝑛) such that

inf
𝜋∈𝛱⋆

𝑐𝑛 (𝜇𝑛 ,𝜈𝑛)
𝜋(ℎ𝑐,𝑛) ≥ 𝜋𝑛(ℎ𝑐,𝑛) − 1∕𝑛.

Then, by Villani [3, Theorem 5.20] a converging subsequence (𝜋𝑛𝑘 )𝑘∈N with limit 𝜋∞ ∈ 𝛱⋆
𝑐∞

(𝜇∞, 𝜈∞) exists, and it follows that

lim inf
𝑘→∞

𝑇2(𝜇𝑛𝑘 , 𝜈𝑛𝑘 , 𝑐𝑛𝑘 , ℎ𝑐,𝑛𝑘 ) = lim inf
𝑘→∞

inf
𝜋∈𝛱⋆

𝑐𝑛𝑘
(𝜇𝑛𝑘 ,𝜈𝑛𝑘 )

𝜋(ℎ𝑐,𝑛𝑘 )

≥ lim inf
𝑘→∞

𝜋𝑛𝑘 (ℎ𝑐,𝑛𝑘 ) − 1∕𝑛𝑘

≥ lim inf
𝑘→∞

𝜋𝑛𝑘 (ℎ𝑐,∞) − ‖

‖

‖

ℎ𝑐,∞ − ℎ𝑐,𝑛𝑘
‖

‖

‖∞
− 1∕𝑛𝑘

= 𝜋∞(ℎ𝑐,∞) ≥ 𝑇2(𝜇∞, 𝜈∞, 𝑐∞, ℎ𝑐,∞).

Consequently, by Lemma 56, lower semi-continuity of 𝑇2 follows. To infer upper semi-continuity of 𝑇2, and thus continuity, at
(𝜇∞, 𝜈∞, 𝑐∞, ℎ𝑐,∞) under the assumption of a unique OT plan 𝜋⋆ ∈ 𝛱⋆

𝑐∞
(𝜇∞, 𝜈∞) note by Villani [3, Theorem 5.20] that for any

sequence of OT plans 𝜋𝑛 ∈ 𝛱⋆
𝑐𝑛
(𝜇𝑛, 𝜈𝑛) there exists a weakly converging subsequence 𝜋𝑛𝑘 which tends to 𝜋⋆ for 𝑘 → ∞. Hence, we

conclude that

lim sup
𝑘→∞

𝑇2(𝜇𝑛𝑘 , 𝜈𝑛𝑘 , 𝑐𝑛𝑘 , ℎ𝑐,𝑛𝑘 ) = lim sup
𝑘→∞

inf
𝜋∈𝛱⋆

𝑐𝑛𝑘
(𝜇𝑛𝑘 ,𝜈𝑛𝑘 )

𝜋(ℎ𝑐,𝑛𝑘 )

≤ lim sup
𝑘→∞

𝜋𝑛𝑘 (ℎ𝑐,𝑛𝑘 )

≤ lim sup
𝑘→∞

𝜋𝑛𝑘 (ℎ𝑐,∞) − ‖

‖

‖

ℎ𝑐,∞ − ℎ𝑐,𝑛𝑘
‖

‖

‖∞

= 𝜋∞(ℎ𝑐,∞) = 𝑇2(𝜇∞, 𝜈∞, 𝑐∞, ℎ𝑐,∞).

This implies by Lemma 56 the upper semi-continuity of 𝑇2. Moreover, for fixed (𝜇′, 𝜈′, 𝑐′) the map 𝑇2 is continuous in ℎ𝑐 since for
any ℎ̃𝑐 it holds that

̃ ‖ ̃ ‖
40

|𝑇2(𝜇, 𝜈, 𝑐, ℎ𝑐 ) − 𝑇2(𝜇, 𝜈, 𝑐, ℎ𝑐 )| ≤ ‖

ℎ𝑐 − ℎ𝑐‖∞ .
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To show upper semi-continuity of 𝑇3 take a sequence (ℎ𝜇,𝑛, ℎ𝜈,𝑛)𝑛∈N with limit (ℎ𝜇,∞, ℎ𝜈,∞). Further, by definition of 𝐶, it follows

rom Lemma 1 that any 𝑐𝑛 ∈ 𝐶 fulfills 𝑐𝑛 ⊆  𝑐𝑛𝑐𝑛 ⊆  . Take a sequence 𝑓𝑛 ∈ 𝑆𝑐𝑛 (𝜇𝑛, 𝜈𝑛) ⊆  such that

𝑇3(𝜇𝑛, 𝜈𝑛, 𝑐𝑛, ℎ𝜇,𝑛, ℎ𝜈,𝑛) ≤ ℎ𝜇(𝑓𝑛) + ℎ𝜈 (𝑓𝑛) + 1∕𝑛.

By compactness of  there exists a uniformly converging subsequence, say (𝑓𝑛𝑘 )𝑘∈N, with limit 𝑓∞ ∈  . Next, we demonstrate that
𝑓∞ ∈ 𝑆𝑐∞ (𝜇∞, 𝜈∞). To this end, we note

𝑂𝑇 (𝜇∞, 𝜈∞, 𝑐∞) ≥ 𝜇∞(𝑓 𝑐∞𝑐∞∞ ) + 𝜈∞(𝑓 𝑐∞∞ )

= lim
𝑘→∞

𝜇𝑛𝑘 (𝑓
𝑐∞𝑐∞
∞ ) + 𝜈𝑛𝑘 (𝑓

𝑐∞
∞ )

≥ lim
𝑘→∞

𝜇𝑛𝑘 (𝑓
𝑐𝑛𝑘 𝑐𝑛𝑘
𝑛𝑘 ) + 𝜈𝑛𝑘 (𝑓

𝑐𝑛𝑘
𝑛𝑘 ) − ‖

‖

‖

𝑓 𝑐∞𝑐∞∞ − 𝑓
𝑐𝑛𝑘 𝑐𝑛𝑘
𝑛𝑘

‖

‖

‖∞
− ‖

‖

‖

𝑓 𝑐∞∞ − 𝑓
𝑐𝑛𝑘
𝑛𝑘

‖

‖

‖∞

= lim
𝑘→∞

𝑂𝑇 (𝜇𝑛𝑘 , 𝜈𝑛𝑘 , 𝑐𝑛𝑘 ) −
‖

‖

‖

𝑓 𝑐∞𝑐∞∞ − 𝑓
𝑐𝑛𝑘 𝑐𝑛𝑘
𝑛𝑘

‖

‖

‖∞
− ‖

‖

‖

𝑓 𝑐∞∞ − 𝑓
𝑐𝑛𝑘
𝑛𝑘

‖

‖

‖∞

= 𝑂𝑇 (𝜇∞, 𝜈∞, 𝑐∞),

where the last equality follows by continuity of 𝑇1. Hence, we get 𝑓∞ ∈ 𝑆𝑐∞ (𝜇∞, 𝜈∞).
By continuity of ℎ𝜇 and ℎ𝜈 on  and upon denoting the norm on 𝐶𝑢( ) by ‖⋅‖ , we infer that

lim sup
𝑘→∞

𝑇3(𝜇𝑛𝑘 , 𝜈𝑛𝑘 ,𝑐𝑛𝑘 , ℎ𝜇,𝑛𝑘 , ℎ𝜈,𝑛𝑘 ) = lim sup
𝑘→∞

sup
𝑓∈𝑆𝑐𝑛𝑘

(𝜇𝑛𝑘 ,𝜈𝑛𝑘 )
ℎ𝜇,𝑛𝑘 (𝑓 ) + ℎ𝜈,𝑛𝑘 (𝑓 )

≤ lim sup
𝑘→∞

ℎ𝜇,𝑛𝑘 (𝑓𝑛𝑘 ) + ℎ𝜈,𝑛𝑘 (𝑓𝑛𝑘 ) + 1∕𝑛𝑘

≤ lim sup
𝑘→∞

ℎ𝜇,∞(𝑓𝑛𝑘 ) + ℎ𝜈,∞(𝑓𝑛𝑘 ) +
‖

‖

‖

ℎ𝜇,∞ − ℎ𝜇,𝑛𝑘
‖

‖

‖
+ ‖

‖

‖

ℎ𝜈,∞ − ℎ𝜈,𝑛𝑘
‖

‖

‖
+ 1∕𝑛𝑘

= ℎ𝜇,∞(𝑓∞) + ℎ𝜈,∞(𝑓∞) ≤ 𝑇3(𝜇∞, 𝜈∞, 𝑐∞, ℎ𝜇,∞, ℎ𝜈,∞)

and consequently, by Lemma 56, upper semi-continuity of 𝑇3 follows. Further, for fixed (𝜇′, 𝜈′, 𝑐′) the map 𝑇3 is continuous in (ℎ𝜇 , ℎ𝜈)
since for another (ℎ̃𝜇 , ℎ̃𝜈 ) it holds that

|𝑇3(𝜇, 𝜈, 𝑐, ℎ𝜇 , ℎ𝜈) − 𝑇3(𝜇, 𝜈, 𝑐, ℎ̃𝜇 , ℎ̃𝜈 )| ≤
‖

‖

‖

ℎ̃𝜇 − ℎ̃𝜇
‖

‖

‖𝑐𝑐
+ ‖

‖

ℎ̃𝜈 − ℎ̃𝜈‖‖𝑐 .

Finally, for 𝑇4 take (ℎ1,𝜇 , ℎ̃1,𝜇 , ℎ1,𝜈 , ℎ̃1,𝜈 ), (ℎ2,𝜇 , ℎ̃2,𝜇 , ℎ2,𝜈 , ℎ̃2,𝜈 ) ∈ 𝐶𝑢( )4 and note that

|𝑇4(ℎ1,𝜇 , ℎ̃1,𝜇 , ℎ1,𝜈 , ℎ̃1,𝜈 ) − 𝑇4(ℎ2,𝜇 , ℎ̃2,𝜇 , ℎ2,𝜈 , ℎ̃2,𝜈 )|

≤ ‖

‖

‖

ℎ1,𝜇 − ℎ2,𝜇
‖

‖

‖
+ ‖

‖

‖

ℎ̃1,𝜇 − ℎ̃2,𝜇
‖

‖

‖
+ ‖

‖

ℎ1,𝜈 − ℎ2,𝜈‖‖ + ‖

‖

ℎ̃1,𝜈 − ℎ̃2,𝜈‖‖ ,

which asserts continuity. □

E.4. Proof of Lemma 45

For (𝑖) take 𝑓, 𝑔 ∈ , then |𝜇(𝑓 ) − 𝜇(𝑔)| ≤ ‖𝑓 − 𝑔‖∞ and hence 𝜇∶  → R defines a Lipschitz map under uniform norm which
asserts 𝜇 ∈ 𝐶𝑢(). Assertion (𝑖𝑖) follows from Giné and Nickl [100, p. 17]. Finally, (𝑖𝑖𝑖) follows from (𝑖𝑖) since for any 𝑔 ∈  the
evaluations 𝜇𝑛(𝑔) = 𝑛−1

∑𝑛
𝑖=1 𝑔(𝑋𝑖) and 𝜇𝑏𝑛,𝑘(𝑔) = 𝑘−1

∑𝑘
𝑖=1 𝑔(𝑋

𝑏
𝑖 ) are Borel measurable. □

E.5. Proof of Lemma 46

We first prove that Assumption List (JW) implies for 𝑛, 𝑚→ ∞ with 𝑚∕(𝑛 + 𝑚) → 𝜆 ∈ (0, 1) that

⎛

⎜

⎜

⎜

⎜

⎝

√

𝑛
(

(𝜇𝑛 − 𝜇)(𝑓 𝑐𝑐 )
)

𝑓∈
√

𝑚
(

(𝜈𝑚 − 𝜈)(𝑓 𝑐 )
)

𝑓∈
√

𝑛𝑚
𝑛+𝑚 (𝑐𝑛,𝑚 − 𝑐)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

(

G𝜇
𝑛 (𝑓 𝑐𝑐 )

)

𝑓∈
(

G𝜈
𝑚(𝑓

𝑐 )
)

𝑓∈
G𝑐
𝑛,𝑚

⎞

⎟

⎟

⎟

⎟

⎠

⇝

⎛

⎜

⎜

⎜

⎜

⎝

(

G𝜇(𝑓 𝑐𝑐 )
)

𝑓∈
(

G𝜈 (𝑓 𝑐 )
)

𝑓∈
G𝑐

⎞

⎟

⎟

⎟

⎟

⎠

(E.1)

in the Polish space 𝐶𝑢( ) × 𝐶𝑢( ) × 𝐶( × ). To this end, consider the map

𝛹 ∶𝐶𝑢( 𝑐𝑐 ) × 𝐶𝑢( 𝑐 ) × 𝐶( × ) → 𝐶𝑢( ) × 𝐶𝑢( ) × 𝐶( × ),

(𝛼, 𝛽, 𝛾) ↦
(

(

𝛼(𝑓 𝑐𝑐 )
)

𝑓∈ ,
(

𝛽(𝑓 𝑐 )
)

𝑓∈ , 𝛾
)

.

This map is well-defined (i.e., its range is correct) since for any (𝛼, 𝛽) ∈ 𝐶𝑢( 𝑐𝑐 ) × 𝐶𝑢( 𝑐 ) there exist moduli of continuity
𝑤𝛼 , 𝑤𝛽 ∶R+ → R+ such that for 𝑓, 𝑓 ∈  it follows by Lemma 42 that

|𝛼(𝑓 𝑐𝑐 ) − 𝛼(𝑓 𝑐𝑐 )| ≤ 𝑤𝛼(‖‖𝑓
𝑐𝑐 − 𝑓 𝑐𝑐‖

‖∞) ≤ 𝑤𝛼(‖‖𝑓 − 𝑓‖
‖∞),

|𝛽(𝑓 𝑐 ) − 𝛽(𝑓 𝑐 )| ≤ 𝑤𝛽 (‖‖𝑓
𝑐 − 𝑓 𝑐‖

‖∞) ≤ 𝑤𝛽 (‖‖𝑓 − 𝑓‖
‖∞),
41
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w

which assert that ((𝛼(𝑓 𝑐𝑐 ))𝑓∈ , (𝛽(𝑓 𝑐 ))𝑓∈ , 𝛾) ∈ 𝐶𝑢( ) × 𝐶𝑢( ) × 𝐶( × ). Moreover, for any (𝛼, 𝛽), (𝛼̃, 𝛽) ∈ 𝐶𝑢( 𝑐𝑐 ) × 𝐶𝑢( 𝑐 ) we have

sup
𝑓∈

|𝛼(𝑓 𝑐𝑐 ) − 𝛼̃(𝑓 𝑐𝑐 )| = sup
𝑓∈𝑐𝑐

|𝛼(𝑓 ) − 𝛼̃(𝑓 )| and sup
𝑓∈

|𝛽(𝑓 𝑐 ) − 𝛽(𝑓 𝑐 )| = sup
𝑓∈𝑐

|𝛽(𝑓 ) − 𝛽(𝑓 )|,

hence the map 𝛹 is continuous. Consequently, Assumption List (JW) and the continuous mapping theorem [38, Theorem 1.11.1]
assert weak convergence (E.1).

Moreover, by Varadarajan [92] the empirical measures (𝜇𝑛, 𝜈𝑛) weakly converge a.s. in ()×() to (𝜇, 𝜈). Note that ()×()
is by compactness of  and  a separable, complete metric space [101]. Invoking Slutzky’s lemma [38, Example 1.4.7] in conjunction

ith (E.1) we thus obtain the first claim. In particular, by measurability of 𝑐𝑛,𝑚 and Lemma 45, all involved quantities are Borel
measurable.

For the second claim note by Lemma 42 that any realization of 𝜇𝑛, 𝜈𝑚 and 𝑐𝑛,𝑚 leads the processes G𝜇
𝑛 (𝑓 𝑐𝑛,𝑚𝑐𝑛,𝑚 ) and G𝜈

𝑚(𝑓
𝑐𝑛,𝑚 ) to

be 2
√

𝑛-Lipschitz and 2
√

𝑚-Lipschitz in 𝑓 , respectively. Thus, they are uniformly continuous in 𝑓 . Moreover, for fixed 𝑓 ∈  we
can show that the function

G̃𝜇
𝑛 ∶() × 𝐶( × ) → R, (𝜇̃, 𝑐) ↦

√

𝑛(𝜇̃ − 𝜇)(𝑓 𝑐𝑐 )

is upper semi-continuous (i.e., in particular measurable). Indeed, for 𝜇̃𝑘 ⇝ 𝜇̃ in () and 𝑐𝑘 → 𝑐 in 𝐶( ×) it follows by Lemma 42,
upper semi-continuity of 𝑓 𝑐𝑐 and the Portmanteau Theorem [38, Theorem 1.3.4] that

lim sup
𝑘→∞

√

𝑛(𝜇̃𝑘 − 𝜇)(𝑓 𝑐𝑘𝑐𝑘 ) ≤ lim sup
𝑘→∞

√

𝑛(𝜇̃𝑘 − 𝜇)(𝑓 𝑐𝑐 ) + 2
√

𝑛 ‖
‖

𝑓 𝑐𝑘𝑐𝑘 − 𝑓 𝑐𝑐‖
‖∞ ≤

√

𝑛(𝜇̃ − 𝜇)(𝑓 𝑐𝑐 ).

Hence, by Lemma 45(ii) we conclude that (G𝜇
𝑛 (𝑓 𝑐𝑛,𝑚𝑐𝑛,𝑚 ))𝑓∈ is Borel measurable. Likewise, we conclude (G𝜈

𝑚(𝑓
𝑐𝑛,𝑚 ))𝑓∈ is Borel

measurable.
Consequently, by (Sup) we infer, for 𝑛, 𝑚→ ∞, that

(

G𝜇
𝑛 (𝑓

𝑐𝑐 ) −G𝜇
𝑛 (𝑓

𝑐𝑛,𝑚𝑐𝑛,𝑚 ),G𝜈
𝑚(𝑓

𝑐 ) −G𝜈
𝑚(𝑓

𝑐𝑛 )
)

𝑓∈

P
→ (0, 0) in 𝐶𝑢( )2.

The claim now follows by a combination of Slutzky’s lemma and the continuous mapping theorem [38, Example 1.4.7, Theorem
1.11.1]. □

E.6. Proof of Lemma 49

The first claim follows by an observation in Römisch [45] since the set of probability measures () is convex. For additional
insights see Aubin and Frankowska [102, Proposition 4.2.1]

For the second claim consider a sequence 𝛥𝑛 = (𝜇̃𝑛−𝜇)∕𝑡𝑛 with 𝑡𝑛 > 0 and 𝜇̃𝑛 ∈ () such that ‖
‖

𝛥𝑛 − 𝛥‖‖̃ = sup𝑓∈̃ |𝛥𝑛(𝑓 ) − 𝛥(𝑓 )| →
0. Then, it follows from triangle inequality that

|

|

𝛥(𝑓 ) − 𝛥(𝑓 ′)|
|

= |

|

𝛥𝑛(𝑓 ) − 𝛥𝑛(𝑓 ′) + (𝛥 − 𝛥𝑛)(𝑓 ) + (𝛥 − 𝛥𝑛)(𝑓 ′)|
|

≤ |

|

𝛥𝑛(𝑓 − 𝑓 ′)|
|

+ 2 ‖
‖

𝛥 − 𝛥𝑛‖‖̃

Herein, the first term vanishes since 𝛥𝑛(𝑓 − 𝑓 ′) = (𝜇̃𝑛 − 𝜇)(𝜅)∕𝑡𝑛 = 0, whereas the second term converges for 𝑛 → ∞ to zero. Hence,
𝛥(𝑓 ) = 𝛥(𝑓 ′).

The third claim relies on Portemanteau’s theorem [38, Lemma 1.3.4] which asserts using the notion of outer probabilities P∗

that

P
(

G𝜇 ∈ 𝑇𝜇()
)

≥ lim sup
𝑛→∞

P∗
(

√

𝑛(𝜇𝑛 − 𝜇) ∈ 𝑇𝜇()
)

= 1. □

E.7. Proof of Lemma 55

We start by proving (𝑖). Note for 𝜅 ∈ R that

(𝑓 + 𝜅)𝑐 (𝑦) = inf
𝑥∈

𝑐(𝑥, 𝑦) − 𝑓 (𝑥) − 𝜅 = 𝑓 𝑐 (𝑦) − 𝜅,

which yields the claim. To show assertion (𝑖𝑖), observe by Lemma 42 that
‖

‖

‖

𝑔(𝑐+𝛥
𝑐 )(𝑐+𝛥𝑐 )‖

‖

‖∞
≤ ‖𝑔‖∞ + 2 ‖𝑐 + 𝛥𝑐‖∞ ≤ 𝐵. (E.2)

Further, we find that

− ‖𝑐‖∞ − sup
𝑥∈

𝑔(𝑐+𝛥
𝑐 )(𝑐+𝛥𝑐 )(𝑥) ≤ 𝑔(𝑐+𝛥

𝑐 )(𝑐+𝛥𝑐 )𝑐 (𝑦) ≤ ‖𝑐‖∞ − sup
𝑥∈

𝑔(𝑐+𝛥
𝑐 )(𝑐+𝛥𝑐 )(𝑥). (E.3)

Using part (𝑖) of this lemma, we obtain

𝑔(𝑐+𝛥
𝑐 )(𝑐+𝛥𝑐 )𝑐𝑐 =

(

(

𝑔(𝑐+𝛥
𝑐 )(𝑐+𝛥𝑐 )

)𝑐
+ sup
𝑥∈

𝑔(𝑐+𝛥
𝑐 )(𝑐+𝛥𝑐 )(𝑥)

)𝑐
+ sup
𝑥∈

𝑔(𝑐+𝛥
𝑐 )(𝑐+𝛥𝑐 )(𝑥).

(𝑐+𝛥𝑐 )(𝑐+𝛥𝑐 )𝑐𝑐
42

Combining (E.2) and (E.3) with the above equation demonstrates that 𝑔 ∈ 𝑐 + [−𝐵,𝐵] and hence yields the claim. □



Stochastic Processes and their Applications 178 (2024) 104462S. Hundrieser et al.
Appendix F. Elementary analytical results

Lemma 56. Consider a real-valued sequence (𝑎𝑛)𝑛∈N and let 𝐾 ∈ R.

(i) If for any subsequence (𝑎𝑛𝑘 )𝑘∈N there exists a subsequence (𝑎𝑛𝑘𝑙 )𝑙∈N with lim sup𝑙→∞ 𝑎𝑛𝑘𝑙 ≤ 𝐾, then it follows that lim sup𝑛→∞ 𝑎𝑛 ≤ 𝐾.

(ii) If for any subsequence (𝑎𝑛𝑘 )𝑘∈N there exists a subsequence (𝑎𝑛𝑘𝑙 )𝑙∈N with lim inf 𝑙→∞ 𝑎𝑛𝑘𝑙 ≥ 𝐾, then it follows that lim inf𝑛→∞ 𝑎𝑛 ≥ 𝐾.

(iii) If for any subsequence (𝑎𝑛𝑘 )𝑘∈N there exists a subsequence (𝑎𝑛𝑘𝑙 )𝑙∈N with lim𝑙→∞ 𝑎𝑛𝑘𝑙 = 𝐾, then it follows that lim𝑛→∞ 𝑎𝑛 = 𝐾.

Proof. We only prove (𝑖) and note that (𝑖𝑖) and (𝑖𝑖𝑖) can be shown analogously. Assume that lim sup𝑛→∞ 𝑎𝑛 = inf𝑛∈N(sup𝑚≥𝑛 𝑎𝑚) ≥ 𝐾+𝜀
for some 𝜀 > 0. Since (sup𝑚≥𝑛 𝑎𝑚)𝑛∈N is decreasing in 𝑛, this would imply that sup𝑚≥𝑛 𝑎𝑚 ≥ 𝐾 + 𝜀 for all 𝑛 ∈ N. Hence, there would
exist a subsequence of (𝑎𝑛)𝑛∈N, say (𝑎𝑛𝑙 )𝑙∈N, with 𝑎𝑛𝑙 ≥ 𝐾 +𝜀∕2 for all 𝑙 ∈ N. However, this would assert lim inf 𝑙→∞ 𝑎𝑛𝑙 ≥ 𝐾 +𝜀∕2 > 𝐾,
contradicting the assumption. Thus, lim sup𝑛→∞ 𝑎𝑛 ≤ 𝐾. □

Lemma 57. Let ( , 𝑑 ) be a compact metric space and consider a continuous (pseudo-)metric 𝑑 on  . Then, ( , 𝑑 ) is a compact
(pseudo-)metric space. Moreover, given a Polish space  it follows that 𝐶(( , 𝑑 ) × ) ⊆ 𝐶(( , 𝑑 ) × ).

Proof. The (pseudo-)metric properties are clearly fulfilled for ( , 𝑑 ). By continuity of 𝑑 under 𝑑 the canonical inclusion
𝜄∶ ( , 𝑑 ) → ( , 𝑑 ), 𝑥 ↦ 𝑥 is continuous. As the image of a compactum under a continuous map is again compact the first claim
follows. For the second claim, take ℎ ∈ 𝐶(( , 𝑑 ) × ). Then, the composition map  ×  → R, (𝑥, 𝑦) ↦ ℎ(𝜄(𝑥), 𝑦) is continuous and
therefore the canonical embedding ℎ◦(𝜄, Id ) of ℎ is included in 𝐶(( , 𝑑 ) × ). □
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