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Abstract Machine learning (ML)‐based parameterizations have been developed for Earth System Models
(ESMs) with the goal to better represent subgrid‐scale processes or to accelerate computations. ML‐based
parameterizations within hybrid ESMs have successfully learned subgrid‐scale processes from short high‐
resolution simulations. However, most studies used a particular ML method to parameterize the subgrid
tendencies or fluxes originating from the compound effect of various small‐scale processes (e.g., radiation,
convection, gravity waves) in mostly idealized settings or from superparameterizations. Here, we use a filtering
technique to explicitly separate convection from these processes in simulations with the Icosahedral Non‐
hydrostatic modeling framework (ICON) in a realistic setting and benchmark various ML algorithms against
each other offline. We discover that an unablated U‐Net, while showing the best offline performance, learns
reverse causal relations between convective precipitation and subgrid fluxes. While we were able to connect the
learned relations of the U‐Net to physical processes this was not possible for the non‐deep learning‐based
Gradient Boosted Trees. The ML algorithms are then coupled online to the host ICON model. Our best online
performing model, an ablated U‐Net excluding precipitating tracer species, indicates higher agreement for
simulated precipitation extremes and mean with the high‐resolution simulation compared to the traditional
scheme. However, a smoothing bias is introduced both in water vapor path and mean precipitation. Online, the
ablated U‐Net significantly improves stability compared to the non‐ablated U‐Net and runs stable for the full
simulation period of 180 days. Our results hint to the potential to significantly reduce systematic errors with
hybrid ESMs.

Plain Language Summary Due to their computational costs, it is currently not feasible to run more
accurate high‐resolution climate models on a global domain on climate (century) time‐scales. However, high‐
accuracy climate simulations are needed for more robust and detailed projections of our future climate. Here, we
develop and evaluate various machine learning‐based convection parameterizations learned on reconstructed
and coarse‐grained high‐resolution subgrid fluxes to solve this problem, and benchmark their performance. The
data set is chosen from simulations of the Icosahedral Non‐hydrostatic modeling framework (ICON) in a
realistic setting of the tropical Atlantic and at storm‐resolving resolutions. We focus only on convective subgrid
fluxes that are isolated from other components. We improve the best ML algorithms further by excluding
variables that cause unphysical correlations. Finally, we explain the learned relations of the best data‐driven
schemes based on physical process understanding, test their performance when coupled to the ICONmodel, and
achieve stable coupled simulations for 180 days as well as improved precipitation predictions.

1. Introduction
General Circulation Models (GCMs) have been used since the late 1960s to answer scientific questions about our
climate (Manabe & Wetherald, 1967; Phillips, 1956) and to project its expected changes, which are already felt
across the globe (Eyring, Gillett, et al., 2021). Over time, these models gradually included more and more aspects
and processes of the climate system and have evolved into Earth System Models (ESMs), including the carbon
cycle and biogeochemical processes. However, the uncertainty of the simulated equilibrium climate sensitivity
(ECS), that is, the response of global surface air temperature to a doubling of CO2 at equilibrium, has not reduced
significantly in the last decades (Schlund et al., 2020). For the latest generation of ESMs, the ECS is estimated by
the Intergovernmental Panel on Climate Change Sixth Assessment Report (Forster et al., 2021) at 2°C–5°C. This
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uncertainty is about twice the uncertainty for the estimated ECS including all other scientific evidence such as
emergent constraints and paleoclimates of 2.5°C–4°C (Forster et al., 2021).

A large portion of this uncertainty is attributed to cloud feedbacks (Ceppi & Nowack, 2021; Schneider
et al., 2017), the change in cloud types and distributions in response to warming climate. Therefore, it is highly
important to have a good representation of the effects of convection, which is typically a subgrid‐scale process in
climate models (Sherwood et al., 2014). Parameterizations based on physical process understanding, normally
relying on mass‐flux approaches (Arakawa & Schubert, 1974; Tiedtke, 1989), have been used extensively for
approximating the effect of subgrid convection on the large scale. These parameterizations, however, cause some
common problems in climate models (Eyring, Mishra, et al., 2021), such as biases in precipitation patterns
(Christopoulos & Schneider, 2021; Fosser et al., 2024; Stephens et al., 2010), in the position and shape of the
intertropical convergence zone (ITCZ) (Stevens, Satoh, et al., 2019), the missing representation of convectively
coupled waves, and the Madden‐Julian Oscillation (Kuang et al., 2005), or teleconnections (Mahajan et al., 2023)
and the incorrect diurnal cycle of convection (Anber et al., 2015). These biases are reduced in storm‐resolving
models (Bock et al., 2020; Klocke et al., 2017; Stevens et al., 2020; Stevens, Satoh, et al., 2019).

Accurately representing convection in climate models remains a challenge due to its complex and multiscale
nature. In light of recent advances in deep learning, many data‐driven machine learning‐based parameterizations
have been developed to reduce the above‐mentioned biases (Brenowitz & Bretherton, 2018; Gentine et al., 2018;
Iglesias‐Suarez et al., 2024; Krasnopolsky et al., 2013; Otness et al., 2023; Rasp et al., 2018). These studies first
used multilayer perceptron (MLP) neural networks in a simplified aquaplanet setup to replace the super-
parameterized physics in the SuperParameterized Community Atmosphere Model (SPCAM3) (Collins
et al., 2006). Random Forests (RFs) have been used as well (O’Gorman & Dwyer, 2018; Yuval & O’Gor-
man, 2020) with the advantage of guaranteeing conservation properties and physical consistency, via constraints
in the sign of quantities such as precipitation, as well as on its magnitude (reducing coupled model instability). A
disadvantage of RFs is however that they do not extrapolate outside their training domain at all and so are
inherently limited in their application for a changing climate. They can also struggle to represent the diversity of
complex data.

To combine conservation properties that are essential for a climate model, and the ability to extrapolate to some
extent, Yuval et al. (2021) used MLPs to predict vertical fluxes instead of tendencies (the vertical convergence of
the fluxes). More recently, they extended their work by including convective momentum transport in an idealized
aquaplanet setting as well (Yuval & O’Gorman, 2023). Wang et al. (2022) used residual neural networks to
emulate the physical tendencies resulting from a superparameterization of moist physics and radiation in a
realistic setting with coupled simulations running stably over 10 years.

With this work we build on previous studies on data‐driven convection parameterizations andML‐based schemes,
targeting the ICON model (Grundner et al., 2022, 2023). We extend these approaches in several aspects. We use
high‐resolution data that explicitly resolve convection and employ a coarse‐graining method to calculate and
isolate the convective mesoscale flux that is subgrid for a coarse climate model, here ICON in a real‐world setting.
We benchmark a set of different machine learning methods trained on a realistic data set with orography (Data set
section). Although it can be argued to what extent explicit process separation is sensible (Randall et al., 2003),
most parameterization schemes act independently (in parallel or sequentially) from each other for different
subgrid processes (Giorgetta et al., 2018). For this reason, simplicity, and because the trained ML models should
be easily interoperable with the GCM in a coupled mode we treat convection as a separated process. Furthermore,
this enables us to use explainable Artificial Intelligence (AI) methods to interpret the ML models with respect to
our physical understanding of atmospheric convection. To focus on the effects of subgrid convection for coarse
resolution simulations, where convection must be parameterized, we introduce a filtering technique to capture
convective circulations as resolved in storm resolving simulations. Apart from making it possible to selectively
replace only the conventional parameterization, this approach allows to better interpret the physics of the learned
ML model as it does not mix different processes such as convection and radiation. We propose a new way of
computing the coarse‐grained target quantities by not neglecting horizontal fluctuations (not applying the
Boussinesq approximation) in the density as is typical for Reynolds‐averaging. Additionally, we use an
explainable AI technique to interpret the model predictions and relate the revealed connections to physical
process understanding. Similarly to the spectral analysis tool by Brenowitz et al. (2020), this method builds trust
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in the retrieved models and can be used to evaluate the MLmodel, going beyond common metrics such as the root
mean squared error (RMSE) or the coefficient of determination.

In the end we will test the stability of the U‐Net when coupled to the ICON model. Here we test the extrapolation
capabilities of the ML models as they are trained on regional data and then applied on larger/global domains.

This paper is structured as follows. First, in Section 2 we describe the data, preprocessing, and coarse‐graining
method. Afterward, we introduce the machine learning methods in Section 3. Results of the offline evaluation/
benchmarking of different machine learning models are then shown and their predictions interpreted using an
explainable AI technique in Section 4.We will conclude Section 4 with an online stability test of the developed U‐
Net parameterizations. Finally, we discuss our results and give a conclusion of our work.

2. Data and Preprocessing
As training data we use short storm‐resolving simulations of the tropical Atlantic that accompanied the NARVAL
expeditions performed with ICON (Klocke et al., 2017; Stevens, Ament, et al., 2019). Focusing on the deep
convective systems of the ITCZ and the explicit representation of convection, this data set serves as an ideal
starting point to learn convective subgrid processes. There were two related research campaigns, one from the
boreal winter (December 2013/January 2014), and one from the boreal summer (August 2016). We use simulation
data accompanying both expeditions. The horizontal resolution of the used simulations is Δx ≈ 2.5 km (R2B10
grid), and is available with an hourly output frequency. The simulations were performed with the Icosahedral
Non‐hydrostatic modeling framework (ICON) model (Giorgetta et al., 2018; Zängl et al., 2015), and for each day
of the 2‐month data set the simulations where initialized at 0000 UTZ and run for 36 hr. For this simulation the
ICON model was used in its numerical weather prediction setup without parameterizations for convection and
subgrid‐scale orography. Parameterizations for radiation, cloud microphysics, and turbulence were active
(Klocke et al., 2017). The ICON model solves the fully compressible Navier‐Stokes equations with the density ρ
as a prognostic variable. ICON uses an icosahedral‐triangular C grid and has a non‐hydrostatic dynamical core
(Zängl et al., 2015).

These simulations are well suited for learning a coarse‐resolution data‐driven convection scheme, as a high
number of convective cases are present in the tropical Atlantic region. In Figure 1 the spatial distribution of the
average number of convective cells per column (as defined below) in the studied region is shown. Columns
excluded from the training data set as described later in the coarse‐graining section (Section 2.2) are marked in
gray. The figure shows a clear pattern of the ITCZ (compare Stevens, Ament, et al., 2019; Figure 2) with an
increased number of convective cells. Additionally, many convective cells can be found along the coast and over

Figure 1. Average number of high‐resolution convective cells per displayed low‐resolution column and time frame as defined
in Equation 4 in the studied tropical Atlantic region over the entire considered period of time. In the west the coastline of
South America and some Caribbean islands can be seen and in the east the coastline of Africa. The low resolution grid has an
approximate horizontal resolution of Δx ≈ 80 km. Excluded columns are marked in gray.
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mountainous terrain. While many columns over mountainous terrain are filtered out from the data set, there are
still many datapoints to learn from over these areas, as seen in Figure 1.

As a first preprocessing step we discarded the first hour of every day in the data set because of some discontinuous
behavior at the start of each day related to the initialization/spin‐up phase of the simulations. Additionally, we also
cropped the original NARVAL region by 2° on all sides since we noticed some boundary effects in the spatial
patterns as well. The region seen in Figure 1 was already cropped by the mentioned 2°.

To give a short overview of the preprocessing steps described below, Figure 2 depicts an overview of the various
steps used, beginning with the original data set.

2.1. Computation of Output

The selection of input and output variables for the ML models are based on the implementation of the cumulus
scheme in the ECHAM6 model (Nordeng, 1994; Stevens et al., 2013; Tiedtke, 1989). They correspond to the
physical quantities transported by convective processes and a few related quantities such as precipitation. If not
stated differently, we used the following set of variables for the input of the convective scheme

I = {u, v, w, h, qv, ql, qr, qi, qs}.

This set consists of the zonal, meridional, and vertical wind components (u, v, w), as well as the liquid/ice water
static energy (h) and five different tracer species. These tracer species are the specific humidity (qv) and specific
cloud water, cloud ice, rain, and snow content (ql, qi, qr, qs). The liquid/ice water static energy is defined here as

h = cpT + zg − Lv ⋅ (qc + qr) − Ls ⋅ (qi + qs + qg), (1)

with temperature T, altitude z, the specific heat at constant pressure cp, specific graupel content qg, and the latent
heat of evaporation and sublimation Lv and Ls. We chose to not give the ML models any information about their
spatial location or solar insolation in order to force them to learn from the dynamical state. This also enables the
application of the trained models outside of their limited training domain.

Correspondingly, the output fields are

O = {Fsg
u , F

sg
v , F

sg
h , F

sg
qv , F

sg
ql , F

sg
qr , F

sg
qi , F

sg
qs , zcltop, pcltop, ql,detr, qi,detr, P}.

The first eight variables with notation “Fsg
var” are 3D fields and correspond to the subgrid flux component of the

input variables I (excluding w). The remaining variables in the output set are 2D fields, namely cloud top height
(zcltop), cloud top pressure (pcltop), integrated liquid/ice detrainment (ql,detr, qi,detr), and precipitation (P). For the
cloud top level we chose to predict the altitude as well as the pressure, although they contain very similar in-
formation, because our goal was to provide the same output as the ECHAM6 cumulus scheme.

Figure 2. Summary of preprocessing steps. Starting from the original data, first the subgrid fluxes as well as 2D outputs, such
as precipitation, were computed. After this, the data was coarse‐grained and filtered for active convection. As a final
preprocessing step, the data was rescaled and normalized.
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We focused on predicting subgrid fluxes instead of the direct tendencies
because this allowed abiding conservation laws by applying appropriate
boundary conditions (no‐flux at the top and a flux which is consistent with the
surface forcing at bottom). We decomposed variables such as the density (ρ)
into a horizontal spatial average (on the same model level) over the coarse
resolution, denoted by an overline, and a fluctuating component, denoted by a
prime, as ρ = ρ + ρ′. The fluctuating component therefore represents the
departure from the coarse grid average. This enabled us to calculate the
subgrid (i.e., unresolved) vertical advective flux of, say, the variable u, Fsg

u ,
for a given coarse resolution as follows:

Fsg
u = ρwu − ρ w u = ρ w′u′ + w ρ′u′ + u ρ′w′ + ρ′w′u′. (2)

This subgrid momentum flux Fsg
u was calculated as the difference between the

coarse‐grained flux ρwu obtained by first calculating the flux with the high‐
resolution resolved variables, then coarse‐graining it to the coarser resolution,
and the flux calculated with the low‐resolution variables ρ w u (see Equa-
tion 2). The term on the right hand side in Equation 2 results from the fact that
averages over fluctuations are by definition zero. This method is similar to the
one of Yuval et al. (2021), but without neglecting the horizontal density
fluctuations between high‐resolution cells within a coarse resolution target
cell of the coarse‐graining procedure. This is especially important for models

with terrain‐following vertical coordinates, such as the height based terrain following vertical coordinate of the
ICON model (Giorgetta et al., 2018), because horizontally neighboring cells (same vertical level) in the lower
troposphere over land with steep topography can have strongly different height, thus different pressure and
density. By looking into the subgrid variations of ρ we found that, especially in the lowest levels over hetero-
geneous terrain, there are fluctuations of up to 25% of the mean value within a single coarse grid cell. As we are
calculating the subgrid flux from a single snapshot of the dynamics and do not consider differences between
timesteps, the subgrid flux represents the flux difference between the coarsened high‐resolution state and coarse
state due to resolved processes. Here, these resolved processes are cumulus convection and gravity waves since
we only learn from convective columns (method is shown later in this section). Gravity wave drag mainly impacts
higher levels (Kim et al., 2003) and the here developed parameterizations are limited in height (see Figure 3). The
momentum flux due to gravity waves, excited by convection, is a second order effect which we neglect here.

For the cloud top height/cloud top pressure (zcltop/pcltop) we took the height/pressure of the highest cell with
convective clouds found according to the condition formulated in the next section (Equation 4). While there are
different ways to estimate the detrainment of liquid/ice (Arakawa & Schubert, 1974; Zhang & McFarlane, 2019)
we decided to follow Nordeng (1994); Baba and Giorgetta (2020) and calculated the fractional detrainment as

δ = −
1
σ
∂σ
∂z

, (3)

where z is the altitude and σ the fractional cloud area. As such, it was possible to calculate the integrated
detrainment of water and ice by multiplication with the vertical mass flux and integrating along the column.
Before integration, the column was masked according to its temperature (above or below 0°C) (Stevens
et al., 2013) to differentiate between liquid and ice detrainment. For precipitation we cannot assume that it stems
entirely from convective precipitation in convective columns as stratiform and convective precipitation often
occur simultaneously (Houze, 1997; Schumacher & Funk, 2023). Therefore, when coupling the ML parame-
terization to the ICON model we will set the large‐scale precipitation from the model to zero in regions where the
ML parameterization is active. Another approach would be to classify the precipitation in the high‐resolution data
as convective or not, based on thresholds on for example, vertical velocity, precipitation rate or based on the
spatial structure of precipitation clusters. Here, we decided to predict both precipitation types together as the
before mentioned approaches would introduce additional degrees of freedom into the method and therefore
complexity.

Figure 3. Probability distribution of convectively classified cells over
altitude (green large dots) in the high‐resolution data with ICON over the
NARVAL region. The orange dashed line shows the cumulative distribution
function (CDF) and the black dashed line represents the height up to which
99.9% of the convective cells are found. The bottom scale corresponds to the
probability and the top to the cumulative distribution.
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2.2. Coarse‐Graining

The coarse‐graining was done first in the horizontal and afterward in the vertical direction as described in
Grundner et al. (2022) for a data‐driven cloud cover parameterization. The horizontal coarse‐graining from the
R2B10 (Δx ≈ 2.5 km) to an R2B5 (Δx ≈ 80 km) grid was performed with the help of the remapcon function
from the Climate Data Operators (Schulzweida, 2022). At this scale individual convective clouds and smaller
convective systems are coarse‐grained, allowing us to parameterize their average impact on the large‐scale dy-
namics. In the vertical, we reduced the resolution from 58 to 23 levels up to the mentioned limiting height of
∼15.9 km in Figure 3. The vertical coarse‐graining operator works in a similar way as the horizontal averaging.
The high‐resolution cells were averaged weighted by their fractional proportion in the coarse cell (Grundner
et al., 2022). Some low‐resolution columns have a significantly lower base than the high‐resolution cells because
of the more detailed topography in the high‐resolution data. Therefore, it was not possible to compute reasonable
averages with the above described coarse‐graining operator in the lowest model levels. Here, we also adopted the
method from Grundner et al. (2022) and excluded columns with a significant difference between the vertical
extent of low and high‐resolution columns of the data set.

In the high‐resolution data, cells on the same vertical level can be on different geometric heights due to the terrain‐
following coordinate system. An approximation applied here is that the coarse‐graining is first performed in the
horizontal and afterward in the vertical. Therefore the result can be different from coarse‐graining over the low‐
resolution volume (Grundner et al., 2022).

Additionally, we introduce time‐averaging to reduce the noise from instantaneous snapshots of the dynamics as it
was found to reduce model overfitting in Ramadhan et al. (2020). For a column in the data set at time ti, we
average the column variables and fluxes over the time steps ti − 1, ti, ti + 1, corresponding to a moving window of a
three‐hour duration. Physically, the three‐hour temporal averaging should still allow to resolve the life cycle of the
tropical deep convective clouds with a diurnal cycle (Chen & Houze, 1997). A 3 hr window is just about short
enough to resolve the life cycle of such clouds and still allow aminimal smoothing of higher frequency variability.

2.3. Filtering for Convection

In order to learn mainly from columns in which convection has a dominant impact on the overall dynamics we
introduced a filtering of the data. First, individual high‐resolution cells were classified as convective if the
following conditions (Kirshbaum, 2022; Romps & Charn, 2015) are met:

ql + qi > 0.01g kg1, w> 0, B∝ θv − θv > 0, (4)

wherew is the vertical velocity, θv is the virtual potential temperature, and ql /qi are the specific cloud liquid water/
cloud ice content, respectively. Additionally, the buoyancy B has been introduced in conditions (4). In this case
the overline denotes horizontal averaging over approximately 10 km.We chose this averaging scale as convection
becomes partly resolved by grid scale dynamics for resolutions higher than approximately 10 km (Ahn &
Kang, 2018; Arakawa et al., 2011). The averaging was performed with the remapcon function (Schulz-
weida, 2022) to an R2B8 resolution. Next, we classified entire low resolution columns as convective or non‐
convective. For this, the number of convective cells per high‐resolution column was summed up along the
height dimension and coarse‐grained horizontally (as explained above). If the so‐calculated 2D field was equal (or
higher than) 1 for a given column, so that on average all high‐resolution columns inside the coarse column had at
least one convectively classified cell, this coarse column was classified as convective and was added to the
training data set. These columns are henceforth referred to as “convective” columns. A time average over the
entire observed period of this so computed low resolution data is displayed in Figure 1. Furthermore, we added
10% of the non‐convective columns for training so that we ended up with slightly more than 2 million coarse
sample columns. Before the filtering, there were about 5 million low‐resolution and approximately 455 million
high‐resolution columns in the whole data set.

In order to find a limit in altitude to predict unresolved convective effects, we considered that convection in the
atmosphere under normal conditions is limited by the tropopause (Shenk, 1974). Therefore, we checked up to
which height we find convectively classified cells in the data set. The result can be seen in Figure 3. The limiting
height in the figure is drawn at the height up to which 99.9% of the convectively classified cells are found
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(compare dashed orange line). This height is at∼15.9 km, which is reasonable considering the tropical tropopause
height of roughly 12 km to 17 km (Gettelman et al., 2002). Only values below this height are considered as input
and output to the machine learning algorithms.

The general form of the data observed in Figure 3 resembles the expected trimodal distribution of convective
clouds in the tropics (Johnson et al., 1999). The lowest peak corresponds to (shallow) cumulus, the peak at ∼5 km
to cumulus congestus and the highest clouds found are deep cumulonimbus clouds.

2.4. Rescaling and Normalization

For higher numerical stability of the machine learning models and to have the variables on the same scale, we
standardize the 2D fields by subtracting the mean across samples from all 2D variables and dividing by the
standard deviation. The same procedure is done for all 3D variables, but in this case mean and standard deviation
are calculated across the height dimension as well. We also tested normalizing variables by their mean and
standard deviations level by level but observed a decrease in model skill.

Furthermore, before applying the standardization, we use the following nonlinear rescaling for the accumulated
precipitation P per hour:

P′ = ln(1 +
P

1kg m− 2h− 1
). (5)

The reason for this is that precipitation intensities are typically represented by a heavily skewed (gamma) dis-
tribution (Martinez‐Villalobos & Neelin, 2019). This distribution is characterized by a comparatively large
number of low values and very few heavy precipitation events. Without a proper rescaling, ML models would
achieve a low prediction error by predicting zero precipitation regardless of the input (Rasp & Thuerey, 2021).
Additionally, it is well known that coarse GCMs have a bias toward low intensity precipitation events (Moseley
et al., 2016; Rasp et al., 2018). The rescaling should help mitigate some of this problem.

3. Machine Learning Models
As mentioned in the introduction, ML‐based convection parameterizations have been developed using different
kinds of methods. These include RFs (Limon & Jablonowski, 2023; O’Gorman & Dwyer, 2018; Yuval &
O’Gorman, 2020), MLPs (Gentine et al., 2018; Iglesias‐Suarez et al., 2024; Rasp et al., 2018; Yuval et al., 2021),
ensembles of MLPs (Krasnopolsky et al., 2013), Residual Convolutional Neural Networks (CNNs) (Han
et al., 2020, 2023), Residual Neural Networks (ResNets) (Wang et al., 2022), Generative Adversarial Networks
(Nadiga et al., 2022), and Variational Encoders (VAEs)/Variational Auto Encoder Decoders (VEDs) (Behrens
et al., 2022; Mooers et al., 2021). One goal of this study is to evaluate various kinds of machine learning models
on the same data set. Therefore, we first introduce the used models. All models use a vertical column (23 height
levels and nine variables) from the sample data set as input and the column fluxes (23 height levels and eight
variables) plus five 2D variables as output, see above.

We tested four different deep learning architectures: Multilayer Perceptron, CNN, Residual Neural Network (He
et al., 2016), and a CNN with a U‐shaped architecture (U‐Net) (Ronneberger et al., 2015). The MLP family
consists of several fully connected layers with additional optional batch normalization layers and activation
functions (see Section S3 in Supporting Information S1). Furthermore, we introduced a linear model (LinMLP)
which is based on the best found architecture of the MLP class but all nonlinear activation functions are replaced
by linear ones. For the CNN class we decided to consider networks with a first convolutional layer connected to
some number of fully connected layers thereafter. All convolutions are 1D convolutions in the vertical as the data
set consists of variables on different levels due to the typical neglect of horizontal interactions and variability for
parameterized processes in climate models. The ResNet architecture is inspired by Wang et al. (2022), the
network consists of several different blocks with some number of fully connected layers and optional batch
normalization. The input of each block is added to its output to form the final output set. This helps prevent
vanishing gradients and degradation (He et al., 2016). For the gradient‐based optimization of the networks we
chose to use the Adam algorithm (Kingma & Ba, 2014). For the implementation of all deep learning models we
relied on the Pytorch library (Paszke et al., 2019).
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Furthermore, we decided to use a U‐Net architecture, see Figure 4. This network is similar to the ResNet in the
sense that it contains residual connections and that it is constructed out of structurally similar blocks. In contrast to
the ResNet, these blocks use two convolutional layers each instead of an arbitrary number of fully connected
layers. Additionally, this architecture utilizes max pooling and transpose convolution layers to compress and
expand the input in the height dimension. This allows the network to process the input information on multiple
spatial scales. During the compression process (left part of Figure 4) the channel dimension (width in the figure)
grows. The kernel size of the convolutions stays constant but the height dimension shrinks, this effectively in-
creases the receptive field for each consecutive layer in the network. The U‐Net is therefore able to detect patterns
on scales between the models vertical level spacing (∼30 m at the lowest level or up to ∼500 m for the highest
predicted level) and the column height (∼16 km). In the expansion process (right part) the channel dimension
shrinks again. We propose this architecture, which is particularly suited for multiscale modeling, for the given
parameterization problem because of the multiscale nature of moist convection (Majda, 2007). The U‐Net has
favorable properties for our problem as local features can be picked up by the network on a variety of different
scales throughout the downscaling process, and the residual connections help to communicate this information to
the upscale branch of the network. This capability is crucial for tasks that require understanding both local and
global context within the input data, such as in image segmentation (Ronneberger et al., 2015) where the target
output can depend on patterns of varying sizes and resolutions. In the context of convection, the initial layers are
capable of capturing more small‐scale convective systems/flows and the more compressed layers are responsible
for representing deep convection/large‐scale systems.

Besides these deep learning architectures, we trained five different non‐deep learning models. For the imple-
mentation of these we used Scikit‐Learn (Pedregosa et al., 2011). As lowest complexity models we used linear
methods such as Lasso (Tibshirani, 2018) and Ridge (Hoerl & Kennard, 1970) regression. Additionally, we used
three tree‐based models. These include Random Forests (RF) (Breiman, 2001), Extra Trees (ET) (Geurts
et al., 2006), and Gradient Boosted Trees (GBT) (Friedman, 2002). Further information about the different ML
models can be found in Section S2 in Supporting Information S1.

To select an appropriate set of hyperparameters we chose to split the data non‐consecutively into a training/
validation/test set with a fraction of 80%/10%/10% of the data. This corresponds to∼1.6 ⋅ 106 sample columns for
training and ∼2 ⋅ 105 columns for validation/testing. Depending on the architecture we treated the different input
variables as separate channels (for CNN and U‐Net) and otherwise concatenated them in one vector. The output
variables were always concatenated in one vector. For the non‐deep learning algorithms we first did the
hyperparameter optimization (HPO) on a subset of the data from five random days (∼1.6 ⋅ 105 samples) because

Figure 4. Visualization of the used U‐Net architecture. The abbreviations DCB, Conv., Transp. Conv., and BN stand for
double convolution block, convolutional layer, transpose convolutional layer, and batch normalization layer, respectively.
The dotted lines mark the possibility for more blocks depending on the result of the hyperparameter optimization (HPO). The
horizontal lines indicate skip connections. In the lower right of the figure, a more detailed visualization of the double
convolution block is given.
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most of the models have difficulties with handling vast amount of data. The
models identified as best in the HPO where then trained on the whole data set.
An explanation of the different hyperparameters involved in all models can be
found in Section S3 in Supporting Information S1.

4. Results
This sectionwill first introduce amodel evaluation for allMLmodels used and
then focus on a more detailed comparison of the highest performing (offline)
deep and non‐deep learning method in Section 4.1. Afterward, in Section 4.2,
we will investigate what the models have learned and find that, in fact, an
ablated version of the U‐Net (without precipitating tracers as input) learns
physically explainable relations as opposed to the non‐ablated version. This
ablated model, in comparison with the non‐ablated version, will also be tested
in the online stability test section in the end of this chapter in Section 4.3.

The architecture of the best performing model, the U‐Net, is first introduced
in Section 4.1 and the ablation, improving online stability, is described in
Section 4.2.

4.1. Machine Learning Model Benchmarking

First, we focus on the simple aggregated evaluation of the coefficient of
determination (R2) values for all examined model classes. The R2 value is

calculated as 1 minus the mean squared error of the predictions over the variance of the data. We compute the R2

value across variables and levels, a more detailed (per variable/level) comparison is given later in Figure 8. All
models have been hyperparameter‐tuned according to the method described below. Briefly this HPO consisted of
running a large ensemble of models with parameters sampled from predefined search spaces and their perfor-
mance evaluated on a validation set (more details in Section S3 in Supporting Information S1).

Figure 5 displays the R2 values for all models over all variables and levels. On the left hand side of the dashed
green line the deep learning models are shown as opposed to the simpler models on the right hand side.

The R2 value of the Random Forest is the lowest of the examined models. RFs have been used as data‐driven
convection parameterizations with some success (O’Gorman & Dwyer, 2018; Yuval & O’Gorman, 2020) in
idealized settings before. Limitations in the application of RFs for realistic parameterization schemes have been
observed before due to their computational inefficiency, memory requirements, and comparably low complexity
(versus deep neural networks for instance), limiting their capacity to capture high dimensional features (Limon &
Jablonowski, 2023). The GBT model class has a strikingly high R2 value, comparable to the ones of the deep
learning methods. This suggests that these RF‐based parameterization schemes could improve in performance if
they were based on GBT (besides deep learning networks). The Extra Trees model has a similarly low perfor-
mance as the RF. Considering that the ET model is structurally similar to RFs, including an additional element of
randomness as explained above, this is not surprising. The linear models (Ridge, LinMLP, and Lasso) show
relatively high performance compared to that of the RF/ET model with R2 values of 0.68, 0.63, 0.62. The L2‐
regularization term seems to have a higher impact on the generalization capabilities of the linear model compared
to the L1‐regularization in Lasso regression. The generally better performance of the linear models compared to
the tree based models, RF and ET, is surprising and might be connected to the fact that linear models are able to
extrapolate to unseen data points based on the linear relationships learned during training. These tree based
methods, however, are limited to the range of the training data and cannot extrapolate beyond it because they
predict based on averages of similar seen samples. As we are using high‐dimensional data some degree of
extrapolation is very probable (Balestriero et al., 2021). Another point is that in cases of high‐dimensional data
with many uninformative or noisy features, linear models, especially when combined with regularization tech-
niques like Lasso, can perform better by effectively reducing the dimensionality and focusing on the most relevant
features. Random Forests might not be as effective in ignoring these irrelevant features to that extent. Another
option might be that the linear models are being too heavily tuned to the tropical convection problem.More on this
in the discussion.

Figure 5. Coefficient of determination (R2) on a test set for different types
of models. All models were hyperparameter‐optimized, and the best models
were then trained on the whole data set. The deep learning methods are
displayed on the left of the green dashed line and the non‐deep learning
methods on the right of it. The inset in the top right shows a zoomed‐in
version of the R2 for the deep learning models.
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The deep learning models outperform the other methods but, for example, for
the GBT model only by a small amount. While the R2 value for the GBT is
almost as high as the value for the U‐Net, the other nonlinear methods show a
rapid decrease in performance when ordering by their respective R2 value.
Figure 5 shows that the performance difference between the various deep
learning models measured by R2 is negligible. One could suspect that the best
performance of the U‐Net could originate purely by chance. Therefore, we
performed an extensive HPO with over 5,000 ensemble members in total. The
resulting median/upper/lower quartile profiles can be seen in Figure 6. We
varied hyperparameters such as the learning rate, number of neurons/layers/
blocks, or activation functions. More details on the HPO search spaces can be
found in Section S3 in Supporting Information S1. A visualization of the HPO
and the training and validation process in general is shown in Figure S8 in
Supporting Information S1. We notice that the U‐Net has a consistently lower
error than the other models, and the upper quartile of its distribution is on the
same level as the lower quartile of the second best performing model, the
ResNet. The difference between the other model classes is smaller, and the
spread around each median profile is larger than for the U‐Net.

Furthermore, the model complexity of the U‐Net is comparatively low. As it
can be seen in the number of parameters of our network configurations (Table
S1 in Supporting Information S1) and Figure S6 in Supporting Informa-
tion S1, the most complex (judging by number of parameters) deep learning

model is the ResNet with more than four times the number of parameters of the U‐Net. The MLP architecture has
the lowest number of parameters, the U‐Net has the second lowest number before the CNN and ResNet. Despite
this, the U‐Net shows the consistently lowest error on the validation/test set (see Figure 6) over a large set of
hyperparameter configurations, presumably because of its multiscale architecture and the resulting ability to
capture multiscale problems such as convection well.

Based on these results, we will focus on the respectively best performing deep and non‐deep learning models from
now on. These models are the U‐Net and the GBTmodel as seen in Figure 5.We first compare the U‐Net and GBT
flux predictions with the true values for Fsg

u ,F
sg
v ,F

sg
h ,F

sg
qc over all levels. The results can be seen in Figure 7, and a

corresponding plot showing the distribution for the remaining tracer subgrid fluxes can be seen in Figure S1 in
Supporting Information S1. The correlation is always higher for the U‐Net predictions, and for both models the
meridional momentum fluxes are the hardest to predict. This has been noted before for example, for a data‐driven
gravity wave scheme (Espinosa et al., 2022). The diurnal cycle and its annual variability are typically more
pronounced (Giglio et al., 2022) for the meridional wind and can be out of phase in the northern and southern
hemisphere (Ueyama&Deser, 2008). We assume that, therefore, it is a challenge for theMLmodels to predict the
meridional momentum flux receiving as input only the large‐scale state, which my not adequately represent the
nuances of meridional dynamics.

Especially for high values of the flux, both models tend to underestimate the true flux, which can be seen by the
points below the diagonal in plot b. To a similar extent, this trend can also be seen for the fluxes Fsg

u and Fsg
qv . The

mentioned fluxes of the GBT show a slight corresponding overestimation for low flux values. In contrast to that,
the U‐Net data distribution is more symmetric about the main diagonal. This means that there is no or a very small
systematic under‐ or over‐prediction for these values by the U‐Net. In general, the spread around the diagonal is
bigger for the GBT than for the U‐Net. This confirms the better performance of the U‐Net seen in Figure 5 based
on R2 values.

After having examined the model performance aggregated over all levels we now look at the average R2 values of
the 3D variables on individual vertical levels. This is shown in Figure 8, again for the U‐Net and GBT. Some
vertical levels are not shown in the figure because the variation of the variables on these levels is close to zero. We
determined the variables for which this is true by first finding the 99th percentile of their absolute values. Then,
for each variable all levels in which the computed percentile is below 1% of the maximum percentile for the
variable were excluded from the plot.

Figure 6. Root mean squared error during HPO on the validation set of the
four different deep learning methods. The straight thick lines correspond to
the median of the HPO ensemble, the shaded areas are drawn in between the
first and third quartile. Additionally, 10 realizations for each DL method are
shown in similar colors. The legend shows the minimum of the validation
loss for each of the methods. The scheduler of the HPO filters badly per-
forming runs after 30 and 60 epochs, causing the steps in the profiles. For
this task we used the AsyncHyperBandScheduler (Li et al., 2018) of
the Ray Tune library (Liaw et al., 2018).
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Figure 7. Scatter plot for the subgrid fluxes of (a) zonal, (b) meridional momentum, (c) liquid/ice water static energy, and
(d) specific humidity. Data for the U‐Net is shown in green, for the GBT in blue, and the diagonal is marked by a dotted line.
The Pearson correlation coefficient r between the true and the predicted subgrid flux is noted in the lower right corner of each
plot for both U‐Net and GBT.

Figure 8. Average R2 profile for all subgrid flux variables for (a) the U‐Net and (b) GBT model. Data points where the GBT
model actually has a higher R2 than the U‐Net are additionally marked by a red circle.
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This method filters all levels which show significantly less variation compared to all other levels. Looking at
Figure 8 we filtered out the lower tropospheric values for the ice and snow tracers as well as the higher tropo-
spheric values for cloud water and rain tracers. This is reasonable because we do not expect much snow/ice in the
lower troposphere of the tropics, and similarly, the temperatures are too low for cloud water/rain to exist close to
the tropopause.

Comparing the plots in Figure 8, the two models show similar patterns as seen, for example, for the Fsg
v curve, but

the GBT curves are mostly shifted toward lower R2 values compared to the U‐Net. For most variables we find a
clear advantage of the U‐Net in the upper layers and around the height of the planetary convective boundary layer
at ∼1 km. Other than for tracer species on levels in which the corresponding concentration is typically very low,
the models show difficulties to predict the subgrid momentum fluxes compared to other variables, as is partic-
ularly visible for Fsg

v . For subgrid momentum transport in general this has been noticed before in Yuval and
O’Gorman (2023). This problem could arise from the fact that the sign of the subgrid convective momentum flux
depends on the nature of convective organization (LeMone, 1983; Yuval & O’Gorman, 2023), which is not
resolved in the coarse data. A few points are marked by red circles, which correspond to higher R2 value for the
GBT. Most of these are close to the R2 U‐Net value (within an R2 relative deviation of 1.5%) except for the low ice
and snow tracer values. Here we assume that the GBT shows an increased performance due to the small number of
training data and its lower model complexity. Using the U‐Net increases the mean R2 value of all variables. The
highest improvement by using the U‐Net instead of the GBT can be seen for Fsg

v with an average R2 improvement
of 0.19 and the second highest for Fsg

u with a gain of 0.09. In the vertical, the highest average increase in skill is
observed in the boundary layer. On these lower model levels, the dynamics are typically more complex/turbulent
and therefore the higher model complexity of the U‐Net is especially beneficial. This complexity in the planetary
boundary layer arises from different mechanisms such as direct surface forcings, for example, heat and moisture
flux to/from the atmosphere as well as surface drag. Also, the dynamics are inherently more turbulent because of
large wind velocity gradients and shear. Furthermore, diurnal variations and therefore general variability are
much higher close to the surface layer than in the upper troposphere/atmosphere due to the direct surface
interaction.

The 2D fields are also predicted more skillfully by the U‐Net, the R2 values for all five predicted 2D variables are
higher for the U‐Net than for the GBT. As an example, the true and predicted precipitation distribution is shown in
Figure S2 in Supporting Information S1. Even though the R2 values for precipitation are similar (0.897 vs. 0.860),
the U‐Net predicts the extremes of the distribution much more accurately. For instance, the 95th percentile of the
true distribution and the predicted distributions of U‐Net and GBT are approximately 22.28 mm hr− 1,
19.75 mm hr− 1, and 16.83 mm hr− 1. This shows that the U‐Net captures the high precipitation cases much better
than the GBT.

Looking at the spatial distribution of the normalized RMSE across all variables (see Figure S3 in Supporting
Information S1) we notice that both models have a lower error in the region of the ITCZ and an increase in error
toward higher latitudes. This reflects the difference in the abundance of training data as seen in Figure 1.

4.2. Explainability of U‐Net and GBT

Having looked into the prediction results we now want to find out what the models actually have learned in order
to predict the parameterization output. This will be based on the SHapley Additive exPlanations (SHAP)
(Lundberg & Lee, 2017) library which analyzes ML model predictions using a game theoretic approach. A SHAP
value shap(x= x0, y) gives the deviation in an output variable y due to a specific value x0 of the variable x from the
average prediction of y over a given data (sub)set Xb. We used the DeepExplainer class (Lundberg &
Lee, 2017) as an efficient explainer for deep neural networks, and the TreeExplainer/KernelExplainer
class for decision tree‐based models such as GBT.

Figure 9a shows the mean absolute values of the calculated SHAP values for the U‐Net model. These correspond
to feature importances and in this case show that the model mainly focuses on using the precipitating tracer
species to predict the subgrid fluxes. The top plot shows that qr dominates the importance attribution with over
50% of all values. As second most influential feature we see qs, another precipitating tracer species, even though it
is only highly influential in the upper layers. Additionally, one notices that the standard deviation is relatively
large for qr /qs, indicating the ambiguity of the learned relations. This is a first hint that the model learned non‐
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causal relationships between convective precipitation and convective subgrid
fluxes. When the model “sees” coarse‐grained precipitation in the data it
predicts that convective subgrid fluxes must be present. This behavior can
also be observed in a more detailed analysis of the SHAP values (Figure S4 in
Supporting Information S1). Learning this connection is consistent as the link
between convective precipitation and convective fluxes in the tropics is
especially pronounced. Nevertheless, this represents a weakness and non‐
causal link as the ML parameterization would never/rarely encounter
convective precipitation in a coupled setting if it would not predict the effect
of convective fluxes before.

To prevent the model from learning these non‐causal connections we trained
another set of models with less input variables. We left out the precipitation
input tracer species qr and qs. For this ablated model versions we performed a
new HPO. These models will be discussed henceforth. The R2 performance of
both models (U‐Net and GBT) on the test set decreases marginally, by ∼0.03,
by ablating the precipitating tracers as inputs. A third HPO was performed
neglecting horizontal density fluctuations, with the result that the validation
error increased for all model classes by about 4%, and for the MLP only
negligibly. This is a hint that the irreducible error of the models increases by
neglecting density fluctuations.

The feature importances for the ablated U‐Net are displayed in plot b of
Figure 9. A more spread‐out feature importance assignment can be seen in
this plot: the difference between highest and lowest valued feature is only

14% which is much less than 50% as before. This model now does not rely on spurious correlations between
precipitation and convective subgrid fluxes and should generalize better outside the training domain. The general
trend for most variables seen in Figure 9 indicates that the model focuses more on the lower model levels, and the
importance is decreasing with height. For w, ql, and qi this is not the case, the feature importance peaks at higher
model levels. The specific cloud ice content is only present at higher altitudes as already discussed. For the cloud
water content we have very low concentrations at lowmodel levels as clouds generally form in the boundary layer
during daytime (Stull, 1988), and the mean vertical velocity profile also shows higher values at greater altitudes,
indicative of the importance of shear such as on mesoscale convective system organization (Rotunno et al., 1988).

We looked at the feature importance in Figure 9 but did not discuss the influence of an input on the various output
variables. For this, we now first explain the method and then discuss the results. For ease of notation, we focus
here on a single output model with output variable y as before, but this can easily be generalized to higher
dimensional output. To get the average effect of an input variable xi on the output variable y we first define the
fluctuation of xi for sample j as x′ij = xij − 〈xi〉, where the brackets 〈⋅〉 denotes the average value over xi in the set
X. The data set X is a random subset of the whole data set as to save computational costs. Now, we define the
normalized fluctuation as

x̂ij =
x′ij

maxk( |x′ik|)
. (6)

The weighted average effect of xi on y can now be quantified in a similar way as in Beucler et al. (2024) in a vector
S, with

Si = 〈x̂ij ⋅ shap(xij, y)〉j . (7)

A positive Si expresses an increasing/decreasing y for an increasing/decreasing xi independently of other values,
and for a negative Si we have the opposite effect. For a multi‐output model this vector S becomes a 2D matrix Sij
quantifying the influence of the ith input on the jth output. We will refer to the SHAP values obtained by this
method as weighted SHAP values from now on.

Figure 9. Feature importances (i.e., the mean absolute values of the
calculated SHAP values) of input variables for (a) the full U‐Net model, and
(b) the ablated (without qr, qs) U‐Net model. The mean feature importance is
visualized by the height of the bar, and the standard deviation over five
different computations by the errorbars. The x‐axis shows different height
levels for each variable, increasing from left to right. Vertical lines separate
the variables. The integrated fraction of feature importances over all vertical
levels is written above each variable range.
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Applying this method to the trained U‐Net model gives the matrix visualized in Figure 10. We see many
interpretable, vertically local influences (main diagonal patterns) in this figure, for example, controlling for ql,
there is a mainly negative influence of specific humidity qv on Fsg

qv /F
sg
ql visible. As previously observed by Beucler

et al. (2018), this vertically local drying effect is plausibly related to the entrainment of water vapor into
convective plumes and its subsequent downwards advection (Beucler et al., 2018). Moreover, an increase in water
vapor also increases the moisture gradient to the environmental air and leads to the entrainment of drier air. The
local drying effect is seen for levels in the lower to middle troposphere, approximately at 700 m to 5 km.
Furthermore, we see a slightly positive impact and moistening flux of the lower model levels on higher levels.
This is indicative of the decrease in air density for increased water vapor content and the decreased lapse rate for
buoyant air parcels (and therefore higher convective instability). For cloud liquid water ql the opposite effect can
be observed on the convective subgrid fluxes of qv /ql. This learned correlation can be understood by looking at the
condensation process of water vapor. When water condenses in an atmospheric grid cell, latent heat is released
and the air becomes more buoyant. This in turn can lead to more condensation and therefore to moisture
convergence in the area and cloud formation. Furthermore, more liquid water can lead to precipitation. The
evaporation of falling raindrops can consequently lead to an increase in local humidity, especially if the layers
below are far from saturation. Finally, hygroscopic effects could play a role as cloud droplets can act as
condensation nuclei, attracting more water vapor and leading to cloud growth.

A direct comparison with the linearized response functions from Brenowitz and Bretherton (2019) and
Kuang (2018) is difficult as we use different variables and a data set from a non‐idealized simulation (e.g., no
aquaplanet configuration, active diurnal cycle, and spherical simulation domain). Nevertheless, for the influence
of water vapor on the subgrid flux of water vapor and cloud liquid water we see similarities to the response of Q2

Figure 10. Ensemble mean of weighted SHAP values aggregated according to Equation 7 for the U‐Net. The variables qr, qs
were ablated. The height level for each variable is increasing from left to right/from bottom to top. The feature importance
depicted in the lower part of the figure shows the mean absolute SHAP values averaged over all target fluxes. Insets (a–c)
show a zoom into the plot for three specific variable pairs, the colors indicate which inset corresponds to which part of the
large plot.
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(apparent moistening) to the total nonprecipitating water mixing ratio in Brenowitz and Bretherton (2019). For
both analysis methods a vertically local negative influence is visible. In the study Kuang (2018) this response is
similarly traced back to the impact of relative humidity on the specific humidity tendency. Furthermore, we also
observe a positive convective heating response to an increase in moisture (influence of qv on F

sg
h ) as shown in both

studies, although more local in this study as opposed to a non‐local heating of higher layers in response to a
moistening lower troposphere.

Apart from that, the main visible signatures are visualized in the insets of Figure 10. Inset (a) shows the influence
of w on Fsg

h . The main pattern is in the upper layers where we can see primarily a positive super‐ and negative sub‐
diagonal (Sij with j = i − 1 and j = i + 1, respectively). This means that cells with a high vertical velocity have a
positive influence on the subgrid flux in the cell above them and a negative influence below them respectively.
Considering that mesoscale convergence and large scale ascent can initiate/enforce convective cells (Kalthoff
et al., 2009), this seems reasonable. Below the convective region, the atmospheric column becomes more stably
stratified, explaining the negative sub‐diagonal of the figure. In Inset b, a negative diagonal pattern with some
positive signatures above can be observed. Consequently, high horizontal wind speeds imply a positive horizontal
momentum flux to higher levels. This signifies that the U‐Net has learned a downgradient diffusive momentum
flux parameterization. We also see a positive pattern in the sub‐diagonal for higher levels looking at subplot b.
Vertical wind shear has been found to be an essential ingredient for long‐lived and well‐organized convective
storm cells (Doswell & Evans, 2003; Roca et al., 2017; Rotunno et al., 1988). A very similar pattern can be
observed in Inset c), the main difference is that for lower levels there are a few vertically non‐local transport
signatures. These patterns are consistent (with relative standard deviations of max ∼10%) over different re-
alizations of X so that the result here seems not to be dependent on the set X.

As a comparison, the corresponding weighted SHAP values for the GBT are displayed in Figure 11. First, the
GBT feature importances have a much less regular pattern and look more “randomly” distributed. These patterns
show a less coherent picture and are not so easily interpretable. Looking at the aggregated feature importance,
both models weigh the liquid/ice water static energy the least. The GBT model weighs the specific humidity
higher in its predictions with an aggregated importance of 29% compared to the U‐Net with 14%. As most
important features for the U‐Net, on the other hand, we have the vertical velocity w and cloud water content ql.
These two variables are also part of the condition formulated in Equation 4 for convective conditions in a grid cell.
Therefore, it is reasonable that the network learns to pay attention to these inputs.

Since the weighted SHAP values displayed in Figure 10 consistently show vastly different patterns than in
Figure 11, we used the same method for the RF as well and got a similar picture to what is displayed here for the
GBT. In order to rule out a dependence of the obtained results on the Shapley value approximation method, we
also used the KernelExplainer (Lundberg & Lee, 2017) as an alternative to the TreeExplainer. The
resulting weighted SHAP values have almost the same form as for the TreeExplainer class, emphasizing that
our results are independent of the explanation method. We also looked at the standard deviations of all weighted
SHAP value plots and observed that the uncertainty is very low compared to the mean values shown (The
maximum deviation is 0.02%, and 99% of the standard deviation values are below 0.002), further demonstrating
that those interpretation statistics are stable across samples.

For the data in Figure 10, these values are 0.02 and 0.004, respectively. Looking at the scales in both figures, these
uncertainties are very small.

Overall, this indicates that although the predictive performance of the GBT is comparable to that of the U‐Net, it
relies on very different statistical patterns in the data. These patterns are more non‐local and mostly unphysical so
that the resulting model is expected to have less skill in extrapolating outside its training domain.

4.3. Online Stability Tests

In this section we will test the U‐Nets ability to run stable in a coupled setting and consequently test their (global)
extrapolation capabilities. We do not perform an offline extrapolation test with another data set since the hy-
pothesized non‐causality of the full U‐Net would not show any negative impact in this test. For this reason we
decided to couple the developed parameterizations back to the host (ICON) model and thus have a stronger
generalization test. We first couple both the ablated (without precipitation tracer inputs) and the full U‐Net to the
ICON model and observe that the ablated U‐Net shows improved stability compared to the full U‐Net, when
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coupled globally. We also find that the ablated U‐Net gives improved extreme precipitation predictions as
opposed to the full U‐Net, which fails to predict the precipitation distribution accurately.

Coupling data‐driven parameterizations to GCMs is typically intricate and the stability of the developed schemes
is very sensitive to for example, changes in the training data set (Rasp, 2020) or the inclusion of variables on
specific levels and the choice of the loss function (Brenowitz & Bretherton, 2018, 2019). Trial and error is often
used to find stable schemes among the offline trained parameterizations (Wang et al., 2022). Stability issues of
coupled models have been observed, even for idealized setups such as aquaplanet simulations (Brenowitz
et al., 2020; Gentine et al., 2018; Rasp et al., 2018; Yuval & O’Gorman, 2020). Other studies, in which coupled
ML schemes have used more realistic setups, were trained and coupled with superparameterized GCMs (Han
et al., 2023; Iglesias‐Suarez et al., 2024; Wang et al., 2022). A technical advantage of training on these data sets is
that a clear scale separation is artificially introduced and therefore the training targets for the ML algorithms are
well defined. On the other hand, this scale separation influences the emergent dynamics and the embedded SRMs
are themselves idealized as they are 2D models with a limited extent (Brenowitz et al., 2020; Pritchard
et al., 2014).

Introducing a new parameterization into a GCM typically requires a retuning of the host model to for example,
adjust for current compensating biases in the interplay of various parameterization schemes (Grundner
et al., 2023). There are potentially many feedbacks when coupling a new scheme to the GCM which can quickly
lead to unstable configurations or incorrect results. Furthermore, because there are considerable design differ-
ences between storm‐resolving and coarse‐resolution global climate models (Satoh et al., 2019), there could be
distributional shifts between both types of model classes. Substantial distributional shifts have already been
observed within the class of storm‐resolving models (Mooers et al., 2023), so that ML parameterizations trained
on data from a different storm‐resolving model cannot be expected to learn the same relations. Also, by coarse‐
graining high‐resolution fields, disturbances which can be represented on the coarse grid but not accurately

Figure 11. Ensemble mean of weighted SHAP values aggregated according to Equation 7 for the GBT model. The variables
qr, qs were ablated. The feature importance depicted in the lower part of the figure shows the mean absolute SHAP values
averaged over all target fluxes.
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advected by the coarse model can be introduced as noted by Watt‐Meyer et al. (2024). To tackle this problem and
to keep the coarse dynamics close to the coarsened high‐resolution state, they nudged the coarse simulation to a
coarse‐grained high‐resolution reference state continuously and achieved stable coupled runs (with ML‐predicted
tendencies for heat and moisture) for about 35 days with realistic boundary conditions.

Because of these issues and limitations we do not expect our models to show accurate online performance without
some further modifications. Nevertheless, we tried to couple the U‐Net models to the ICON model to test their
stability and therefore our hypothesis about the extrapolation capabilities of the full and ablated U‐Net. For this
coupling we used the FTorch library (Cambridge‐ICCS, 2024) to load our models within ICON and to run them in
inference mode during the time integration. Before the actual coupling we added a preprocess/postprocess layer to
both NNs which normalize all the input variables to zero mean and unit variance and apply a corresponding
inverse transformation for the output variables.

To test the stability of our developed ML parameterizations we created four different ICON configurations:

1. Ablated U‐Net applied for all longitudes and latitudes
2. Full U‐Net applied for all longitudes and latitudes
3. Ablated U‐Net applied for all longitudes and only tropical latitudes
4. Full U‐Net applied for all longitudes and only tropical latitudes

For configuration 1 and 2 the convection schemes have to extrapolate substantially as for example, temperature,
humidity, and also wind patterns differ considerably in the extratropics. Configurations 3 and 4 are applied closer
to their training data set domain, that is, the tropics. We apply the U‐Nets between the Tropic of Capricorn (23.436
16°S) and the Tropic of Cancer (23.436 16°N) while the training domain is approximately defined between 10°S
and 20°N as shown in Figure 1. Outside of the tropics the conventional mass‐flux convection scheme is applied
for these two configurations (3/4). For all coupled simulations (and the reference simulations), we use ICON in its
version 2.6.4, with an R2B5 (Δx ≈ 80 km) horizontal grid and 47 vertical layers. Parameterized processes include
radiation, cloud microphysics, orographic and non‐orographic gravity wave drag, turbulence, and (ML‐based)
convection.

We initialized a simulation from interpolated Integrated Forecasting System analysis data for the 01.01.1979 and
ran the ICON model for 1 month. After this initialization phase we wrote out initial conditions for each day at
0000 UTC. With these initial conditions we started 10 new runs with a length of half a year for each model
configuration (from the 01.02.1979, 02.02.1979, …, 10.02.1979) to test the stability of the ML schemes. For
columns with the ML scheme activated we applied the tendencies for heat, moisture, zonal and meridional wind
which are derived by taking divergence of the ML‐predicted fluxes instead of the ones derived by the conven-
tional mass‐flux scheme. Everywhere else, only the conventional convection parameterization of the ICONmodel
was applied. No switch condition for the activation of our ML scheme was needed as we chose to add 10% of non‐
convective columns to the training data set, as explained in Section 2, so that the U‐Net learned when not to
predict any convective fluxes. An alternative option would be to use the trigger condition from the conventional
cumulus scheme, where convection is triggered for columns with moisture convergence, and some thresholds
regarding humidity and buoyancy must be met (Möbis & Stevens, 2012). We decided to not use such condition
here but we could explore such methods in future work.

A first result of the online simulations is shown for the probability density function of precipitation in Figure 12
and for the spatial distribution of mean precipitation in Figure S7 in Supporting Information S1. In Figure 12, the
distribution of precipitation over the first 2 weeks of simulation over the tropics is displayed for the setup with the
conventional cumulus scheme, the ablated U‐Net (configuration 3), and the full U‐Net (configuration 4). For both,
configuration 3 and configuration 4, we set values of negative precipitation to zero. In future work this could be
avoided by using an activation function with a non‐negative codomain, like the relu‐function, for precipitation.
For the simulations shown here we set the large‐scale precipitation to zero as said in Section 2.

The spatial distribution (monthly means) of precipitation over the region where we have a high‐resolution
reference can be seen in Figure S7 in Supporting Information S1. The spatial mean precipitation patterns show
that the coupled ablated U‐Net results in a much more reasonable spatial distribution of precipitation than the full
U‐Net which heavily underestimates the mean precipitation. Compared to the high‐resolution reference, the
ablated U‐Net produces a spatially more uniform precipitation distribution and has regions with too high mean
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precipitation. The conventional scheme shows a heavy land bias for the mean precipitation and shows too low
precipitation values.

Figure 12 demonstrates the potential and added value of ML parameterizations as the precipitation distribution for
the coarse model coupled with the ablated U‐Net is much closer to the high‐resolution (NARVAL) distribution
than the reference simulation. For the full U‐Net (configuration 4) we see an opposite effect: the distribution does
show even less extreme values than the simulation with the conventional cumulus convection parameterization.
This shows that the full U‐Net, which heavily relies on the precipitation tracers (see Figure 9 and Figure S4 in
Supporting Information S1), struggles to show good online performance. The reason lies in the hypothesized non‐
causal relations to the mentioned precipitation tracers. In coarse‐grained (offline) data, precipitation is highly
informative about convective events and further precipitation due to convective memory but as soon as the
parameterization is coupled, the scheme struggles as the ML model itself has to predict some convective fluxes
and precipitation in the first place.

The values for the 99.99th percentile further show the increased ability of the ablated U‐Net to predict precipi-
tation extremes more accurately and therefore the potential to reduce the common problem of GCMs to predict
these extremes accurately (Stephens et al., 2010). These percentile values are 18.44 mm hr− 1 for the NARVAL
data, 13.07 mm hr− 1 for the ablated U‐Net, 6.67 mm hr− 1 for the reference simulation, and only 1.34 mm hr− 1 for
the full U‐Net.

Looking at the stability of the coupled simulations, Figure 13 displays the global mean surface temperature of all
simulations of configuration 3 and 4 for 180 days. We can see that all simulations of configuration 3/4 are stable
for the displayed period while the simulations with the full U‐Net applied globally (configuration 2) very quickly
become unstable, after about 6–18 hr. Configuration 1 (ablated U‐Net coupled globally) is stable for the first day
and simulations diverge only over the course of half a year as it can be seen for the orange lines in Figure 13. The
simulations are stable for about 115 days on average with two simulations from these configurations staying
stable for all 180 days. For the fully stable simulations, the surface temperature initially drops by about 1 K and
then increases again to a higher value than the initial temperature. By looking at the full 180 days of time

Figure 12. The precipitation distributions of the first 2 weeks over the tropics for the three simulations starting on 01.02.1979
for the full U‐Net (configuration 4) in gray/dark green, the conventional cumulus scheme in green, and the ablated U‐Net
(configuration 3) in orange. Also, the precipitation distribution for the high‐resolution data set (NARVAL) is displayed in
blue. The 99.99th percentiles of each data set are marked by dashed lines in the corresponding color.
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integration, the temperature for configuration 3/4 seems to equilibrate at about 287.8 K/288.2 K (∼14.7°C/15°C)
as seen in the figure. This is not unrealistic but the main point of this figure is to show the coupled stability for
multiple months which is already three times the length of the training data set (2 months). The global mean
temperature of configuration 4 shows a similar trend compared to configuration 3 but becomes stable at slightly
higher temperatures. The reason could lie in the fact that convection is much more infrequent for the full U‐Net
configuration as it can be seen in Figure 12 and heat is therefore transported less efficiently to higher levels.
Comparing these two fully stable simulations to the reference simulation mean in gray, we can see that there is an
initialization shock (the mentioned initial temperature drop) (Bretherton et al., 2022). After this shock, the
seasonal variation appears very similar in both magnitude and phase to the reference simulations. The initial
shock indicates the off‐set, that would have to be addressed by tuning, or nudging as in Watt‐Meyer et al. (2024),
as described earlier.

As all ensemble members of configuration 2 quickly diverge (as opposed to configuration 1, which is stable for
minimally 16.5 days) we conclude that our hypothesis, that the full U‐Net learned non‐causal relationships, gains
more support. However, the ablated U‐Net configuration, does not guarantee stability when coupled globally.

To have a closer look at the dynamics we show the vertically integrated water vapor in Figure 14. A reference
simulation with the conventional cumulus convection scheme is shown in the top row and the other rows are
marked by their configuration number as defined above.

Figure 13. The stability of the ablated versus the full U‐Net in form of a time series of the global mean air temperature on 2 m
height over 180 days. For each defined configuration, the 10 realizations are drawn in orange, purple, blue and green colors,
respectively. Solely for the full U‐Net coupled globally (Configuration 1), a second y‐axis (also in orange) on the right side of
the plot is introduced as this simulations shows a much higher reduction in 2 m Temperature. To make this clearer, arrows are
indicating the corresponding y‐axis for each ensemble. An inset provides a close‐up of the first 24 hr of the dynamics of
configurations 1 and 2: the simulations with the full U‐Net quickly become unstable. The data displayed in the inset has been
saved with an output frequency of 6 min as opposed to the more stable simulations with an output frequency of 6 hr in the
main plot. For all of the data except the inset, a rolling mean over 24 hr was applied. Additionally, multi‐model means over
configurations 1, 3, 4, and the reference ensemble, respectively, are drawn as light green/yellow/violet/red‐brown dashed
lines. These colors are chosen as the complementary colors of the respective ensemble members and are marked in the legend
as the second lower dashed line for each ensemble. For configuration 1, model blow‐ups are marked by red crosses as to not
obscure the other lines.
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For the coupled full U‐Net applied at all latitudes/longitudes we can only see one snapshot after 6 hr in Figure 14
because for the other dates the simulation has already diverged. For the snapshots after 4 days of simulation the
structures with the ML parameterizations still look close to the reference simulation but there can already be seen
some blurring effects in the tropics, especially over the ocean (e.g., over the Pacific). After a month of simulation
configurations 1, 3, and 4 lost most of the structure in the tropics and instead there is a homogeneous high water
vapor accumulation over these latitudes. This blurring effect is also displayed in the zonal mean and standard
deviation plots in the last column. Especially for the ablated U‐Net coupled globally (configuration 1), the
standard deviation in the extratropics is very low. Furthermore, it is visible that for the ML coupled simulations,
the mean water vapor path has a flatter peak compared to the reference and for the coupled full U‐Net, the water
vapor path has, additionally, a smaller magnitude in general. Note that for the ablated U‐Net coupled globally
(configuration 1), Figure 14 shows that the zonal mean water vapor path is less than zero for very high latitudes.
This demonstrates the ML models failure to extrapolate to these latitudes, although, as most of the extratropical
values still look reasonable and this configuration is stable compared to the full U‐Net, this degree of extrapo-
lation could also be considered unanticipated.

The blurring problem is a very common one for data‐driven atmospheric models and can be related to the fact that
ML models minimize a deterministic error and tend to predict some mean state rather than, possibly a more

Figure 14. The vertically integrated water vapor for three simulation snapshot with convection parameterized with the conventional physical cumulus convection
scheme of the ICONmodel as a reference (ref), (1) by the ablated U‐Net, (2) by the full U‐Net, (3) by the ablated U‐Net applied only in the tropics, (4) by the full U‐Net
applied only in the tropics. For row (3, 4) the domain where the ML schemes are applied are marked by orange dashed lines. The last column shows the zonal mean and
standard deviation of the vertically integrated Water Vapor (VIWV) for the last shown date (1979‐03‐01) of every configuration except the unstable one. The y‐axis
corresponds here to the latitudes of the corresponding row.
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realistic, extreme state (Rasp et al., 2023). While this explanation cannot directly be transferred for the smoothing
we see here, as we did not develop a fully data‐driven atmospheric model, the used ML models are also
incentivized to predict mean fluxes due to the used deterministic RMSE.

A similar effect has been observed by Kwa et al. (2023), by applying ML corrections to their coarse GCM they
observed a reduction in tropical variability of precipitation. Alternatively, the existence of the observed blurring
could be caused by the comparably low accuracy of U‐Net at lower levels (see Figure 8) or the U‐Net's failure to
represent convection over steep orography. Outside of the tropics, where the ML parameterization is not applied,
there are still some structures, for example, atmospheric rivers, visible in the configurations 3 and 4.

As we said before, there are many challenges to coupling an offline trained parameterization to a GCM and the
results in Figure 14 show that, although many simulations run stably for a long time, there is still much room to
improve theML algorithms. Nevertheless, we were able to test the stability of our developed data‐driven schemes.
Both the ablated and the full U‐Net support stable simulations when coupled only inside tropical latitudes.
However, coupling the full U‐Net, for which we hypothesized non‐causal relations (see Figure S4 in Supporting
Information S1), leads to model blow‐ups rather quickly when coupled globally, outside the training domain.

5. Conclusions and Discussion
In order to develop an ML‐based parameterization for convection we first filtered, processed, and coarse‐grained
data from high‐resolution simulations with explicit convection. To separate convection from other processes, we
used a filtering method for convective conditions. That ensures that the ML models learn mostly convective
fluxes. We then coarse‐grained the high‐resolution data to the target resolution and calculated the subgrid fluxes
of the needed output quantities. The coarse‐graining was performed without neglecting horizontal density
fluctuations since we used data from amodel with terrain following coordinates and the irreducible error increases
if the model does not have the necessary input information. For the vertical coarse‐graining we had to neglect
some columns from the data set with especially steep orography. However, there are still many columns over
heterogeneous terrain available and most trained models are able to run stable online. Nevertheless, future work
could target including also these column and therefore profit from a orographically more diverse data set.

We found that the U‐Net architecture is a very suitable machine learning model to parameterize convective
subgrid fluxes, which is naturally a multiscale process. The U‐Net outperformed other deep learning models by
only a small margin judging by the R2 metric. However, comparing the offline performance over a broad range of
parameters, the error of the U‐Net was consistently lower than the error of MLP, CNN, and ResNet architectures
(Figure 6), this showed the structural advantage of the U‐Net compared to the other models. A comparatively
lower R2 is achieved by most non‐deep‐learning models except for the Gradient Boosting Trees model. The linear
models show a higher performance compared to the random forest and extra tree regression model. This could be
related to the missing extrapolation capability of these tree based models, the effective feature selection of these
regularized linear models, or, possibly, due to too heavy tuning to tropical convection. We will have to conduct
more experiments in future research to train and test these models globally. Based on our offline evaluation we
cannot claim that the tree‐based models are not able to performwell online, therefore we plan to explore the online
performance of the tree‐based models by coupling them to ICON as well. The coupling of tree‐based models to a
GCM has been done successfully before by, for example, Yuval and O’Gorman (2020); Yuval and O’Gor-
man (2023) (although, in idealized aquaplanet settings). The GBT model had a coefficient of determination of
R2 ≈ 0.84 compared to the U‐Net with R2 ≈ 0.90. Nonetheless, in a direct comparison between GBT and U‐Net,
the best performing non‐deep learning and deep learning model, the U‐Net had an advantage in almost all aspects.
An exception to this is shown in Figure 3 by the R2 value for a few levels for ice, snow, and cloud water tracers.
For snow and ice these exceptions occurred in the lower levels and for cloud liquid water mainly in the higher
ones, where the respective tracer species are rarely observed/have a very low concentration. This demonstrates the
advantage of the lower complexity tree‐based method for sparse data or rather for regions where an interpolation
based on few relevant samples is needed. For the other levels and also for the predicted 2D fields, such as
convective precipitation, we noticed a clear benefit of using the U‐Net architecture. We do not claim exhaus-
tiveness in the choice of ML models/NN architectures, the parameterization could profit from the combination of
specific architectures benchmarked here, such as ResNets and CNNs, or other more advanced model such as
recurrent NNs or Transformers (with the height as time/sequence dimension).
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While the U‐Net shows a high skill in parameterizing multiscale convection, we did not empirically test the
multiscale representation of the NNs. Future research could target testing these multiscale properties by for
example, ablating the most compressed layers and looking at the decrease in accuracy for deep convection or
testing the ability of the model to work on scaled in/outputs. Furthermore, other modifications, like dilated
convolutions (Yu & Koltun, 2015), could be tried to enhance the multiscale processing of the U‐Net.

To get some insight into what the model exactly learned during training we applied the SHAP framework and first
calculated feature importances. These revealed that the U‐Net model focuses strongly on the precipitating tracer
species rain and snow as input variables. Here, the SHAP values exposed that the model learned non‐causal
relations between convective subgrid fluxes and convective precipitation. This was also seen in the figure
showing the weighted SHAP values (Figure S4 in Supporting Information S1), as particularly the rain tracers
showed heavy non‐local influences on subgrid fluxes for liquid/ice water static energy, rain, cloud liquid, and
water vapor tracers. For comparison, the weighted SHAP values for the MLP model can be seen in Figure S5 in
Supporting Information S1. Similar non‐causal connections to precipitating tracer species can be observed in that
figure and, in fact, we found that for all deep learning models with a full input, the precipitating tracer species
show the highest (shap value‐based) feature importance assignment. As a result we performed the same analysis
on an ablated model without water species. A potential solution to be investigated in a future study would be to
restrict the model to learn causal relationships as in Iglesias‐Suarez et al. (2024). Another approach to improve the
predictions of subgrid momentum fluxes specifically would be to model the degree of small scale convective
organization (Shamekh et al., 2023). For higher stability in coupled simulations of the developed ML‐based multi
scale parameterization to a GCM it will be advantageous to use a global training data set. Convectively active
regions in the extratropics would be especially important to include, for example, regions where frontal systems
and extratropical cyclones are common, extratropical monsoon regions, or locations with marine stratocumulus
clouds. Furthermore, it would be important that ML models learn the distributions corresponding to, for example,
the arctic climates so that out‐of‐distribution predictions can be avoided in high latitudes.

By looking at the weighted SHAP values we found that the ablated version of the U‐Net was more physical and
learned physically explainable connections between coarse‐scale variables and subgrid fluxes. For example, there
were patterns indicating local upwards transport of horizontal momentum and energy, moisture convergence, and
the interaction between wind shear and mesoscale convective systems. This strengthens trust in the model as it can
be expected to extrapolate better to data outside its training domain. However, many interpretations of the
weighted SHAP value matrices, besides some objective features like locality, are rather subjective (e.g., mesocale
convergence) and should be generally regarded as one out of many tools to build up trust in the models. The
weighted SHAP values for the GBTmodel were not physically interpretable as they showed very scattered results
and close to no coherent patterns. We applied a different explainer class to test the robustness of this outcome and
saw consistent results. To investigate this further, we did the same analysis for the Random Forest as this model
has been used in other studies before. Here, the weighted SHAP values were similarly scattered as for the GBT
model. This result shows that seemingly well performing models (judging by e.g., R2) can in fact rely on non‐
causal correlations in the data, achieving good results for the “wrong reasons.” Therefore, these models are
most likely not suited for the coupling to a GCM. The emergence of these non‐causal relationships and possible
methods of prevention, besides ablation, should be investigated further in future research.

In the section on online stability tests we coupled the ablated and full U‐Net to the ICON model and showed that,
when coupled globally, the hypothesized non‐causal connections indeed lead to instability within a day for the full
U‐Net; as opposed to the ablated U‐Net which support stable simulations for minimally 16 days (and on average,
115 days). For the ablated U‐Net (and both U‐Net parameterizations applied only in the tropics) we found stable
simulations for at least 180 days. By coupling the ablated U‐Net to the ICON model, we could show that the ML
model is able to predict precipitation extremes more accurately online (see Figure 12) in contrast to the con-
ventional parameterization and the full U‐Net. The stable simulations are showing for example, smoothing biases
already after some weeks. Tracing back the specific output variables responsible for this smoothing bias would be
significant to understanding and minimizing this effect in future research. An approach using a stochastic ML
parameterization could mitigate the smoothing bias, possibly, related to the usage of the RMSE mentioned in
Section 4.3. However, we did not expect perfect results because of distributional shifts between the training data
set and the variable states of the coarse simulation. Furthermore, as our process separation is not perfect and at
least some momentum fluxes from gravity waves will have an impact on the dynamics, we will do some further
tests in the future for example, without a parameterization for non‐orographic gravity wave drag. Another
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possible approach for future research would be to build a combined parameterization for convection and
microphysics to more accurately represent their interaction and the influence of convective updrafts on micro-
physics. For further improvement of the coupled model results it might be necessary to train the models on a
global data set, use climate‐invariant variables (Beucler et al., 2024), or work on more physically constrained
architectures (Beucler et al., 2023). With more physically constrained and robust ML parameterizations, an
extensive validation against a range of climatic conditions to ensure that any improvements in parameterization
translate to more accurate climate representations would be necessary.

Our study leads to the conclusion that interpretability/explainability of ML algorithms is important to investigate
potentially non‐physical mechanisms. Furthermore, we conclude that the U‐Net is the best choice of the examined
model classes as it is very accurate, not too complex, and its predictions can be explained physically after domain
knowledge was applied to ablate spurious correlations. This advantage over other ML‐model classes likely comes
from the ability of the U‐Net to capture multiscale phenomena like convection. In the future, we will expand our
work by training ML models on global high‐resolution data for which we ensure that input variables and fluxes
are output after the dynamical core or respectively, after parameterizations for processes which are neither
resolved for the high‐resolution simulation nor the coarse scale, for example, radiation. By doing this, we will
avoid distributional shifts between the coarse‐grained data set and the coarse simulations.

Data Availability Statement
The code is published under https://github.com/EyringMLClimateGroup/heuer23_ml_convection_parameteri-
zation and preserved (Heuer, 2024). The simulation data used to train and evaluate the machine learning algo-
rithms amounts to several TB and can be reconstructed with the scripts provided in the GitHub repository. Access
to the NARVAL data set was provided by the German Climate Computing Center (DKRZ) The software code for
the ICON model is available from https://code.mpimet.mpg.de/projects/iconpublic.
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