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The Laser Interferometer Space Antenna (LISA) is poised to revolutionize astrophysics and cosmology
in the late 2030s by unlocking unprecedented insights into the most energetic and elusive astrophysical
phenomena. The mission envisages three spacecraft, each equipped with two lasers, on a triangular
constellation with 2.5 million-kilometer arm-lengths. Six interspacecraft laser links are established on a
laser-transponder configuration, where five of the six lasers are offset phase locked to another. The need to
determine a suitable set of transponder offset frequencies precisely, given the constraints imposed by the
onboard metrology instrument and the orbital dynamics, poses an interesting technical challenge. In this
paper we describe an algorithm that solves this problem via quadratic programming. The algorithm can
produce concrete frequency plans for a given orbit and transponder configuration, ensuring that all of the
critical interferometric signals stay within the desired frequency range throughout the mission lifetime, and
enabling LISA to operate in science mode uninterruptedly.
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I. INTRODUCTION

The advent of gravitational-wave astronomy has opened
a new window onto the cosmos, revealing aspects of the
Universe that were previously unobservable [1]. Ground-
based detectors like LIGO [2] and Virgo [3] have already
made monumental discoveries, detecting the ripples in
spacetime caused by merging black holes [4] and neutron
stars [5]. However, these terrestrial observatories are
limited at low frequency by the seismic noise inherent to
Earth and the consequent residual noise of the length and
angular control systems needed to keep the detectors in a
suitable operating point [6].
The LISA mission aims to put a gravitational-wave

detector in space, where these noise sources are marginal,
to observe the low frequency part of the gravitational-wave
spectrum. Transitioning to space-based detectors like LISA
represents a significant leap forward, and promises to
unveil a broader spectrum of cosmic events, including
supermassive black hole mergers and possibly even echoes
from the big bang [7]. LISA consists of three identical
spacecraft (SC), each forming the corners of a near-

equilateral triangle with 2.5 × 106 km arm-lengths. The
formation orbits the Sun, trailing Earth at a distance of 50 to
65 million kilometers (Fig. 1).
Each spacecraft is equipped with two lasers, each

transmitting light to a distant SC and simultaneously
producing beatnotes with the incoming received light.
The vast distances between the SC and the finite telescope
apertures mean that only a tiny fraction of the light
transmitted by one SC is captured by the others.
Consequently, rather than reflecting the weak incoming
light, the system relies on one-way measurements.
Disturbances in the curvature of spacetime caused by

gravitational waves change the light travel time, or the
optical path length, between the spacecraft. These tiny
length changes are imprinted into the phases of the
aforementioned beatnotes. The beatnote phase shifts (i.e.,
the one-way measurements) are recorded by the detection
system, and can be combined in postprocessing along with
other data [8] to reveal the gravitational-wave strain using
time delay interferometry [9,10].
The orbits of the three spacecraft are carefully designed

to maintain the near-equilateral shape of the triangle [11].
However, the relative positions of the spacecraft are not
actively controlled and drift at speeds up to 8 meters per
second. These drifts result in laser beam frequency varia-
tions of up to �8 MHz due to the Doppler effect. A
heterodyne interferometric detection system is thus
employed, capable of tracking the frequency and phase
changes in the MHz beatnotes—which fluctuate by up to
several hertz per second—with microcycle precision over
timescales of thousands of seconds.
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The detection system electronics are designed to operate
in a certain frequency range (e.g., 3 to 30 MHz). To be able
to maintain all of the beatnotes in the desired range, each
laser is phase locked to another one with a programmable
offset frequency, with the exception of one laser that is
chosen as “primary” and locked to an ultrastable optical
reference cavity. Note that, inevitably, some of the locks use
light that has traveled along one of the long arms and thus
picked up a Doppler shift.
This gives rise to the need to design the so-called

frequency plan, i.e., the choice of offset frequencies for
the five laser transponder locks, for a given orbit and
locking configuration. The frequency plan aims to ensure
that all beatnote frequencies stay in the desired range for as
long as possible, thereby maximizing the uptime of the
LISA detector.
Once the laser frequency locking configuration has been

decided from one of the feasible constellation designs,
linear relationships are established yielding the beatnote
frequencies in terms of the Doppler shifts and the offset
frequencies at every orbit time. A viable physical solution
of this system imposes additional constraints on the
beatnotes which translate into linear inequality constraints
for the independent offset variables. Posing the problem
also requires the selection of nine sign combinations for the
variables, and an additional 12 sign choices for the full set
of physical constraints. The final solution is obtained at
every time by solving a quadratic optimization problem on
the offsets given by minimizing the cost function measur-
ing the distance between the beatnote frequencies and the
desired target frequencies. Solving this optimization in a
consistent manner for all times of a given orbit yields the
desired offset frequencies, and thus, the beatnotes time
series that establish the frequency plan.

The paper is structured as follows. Section II introduces
the constraints on the beatnote frequencies and the fre-
quency plan algorithm. In particular, Sec. II C develops a
computational-geometric method to obtain an optimal beat-
note frequency range so that no interruptions happen in the
interspacecraft data links during the mission duration; then
Sec. II D establishes the quadratic optimization algorithm to
obtain the frequency plan satisfying all physical constraints.
An example laser transponder lock configuration and derived
frequency plan is presented in Sec. III. Finally, Sec. IV
provides a summary and conclusions of this investigation.

II. METHOD

A. Beatnote frequencies and constraints

The LISA detector is, in essence, a giant unequal-arm
Michelson interferometer formed by combining several
one-way measurements. Since the inter-SC distances differ
by order of 108 m, the direct combination of the one-way
measurements is dominated by an overwhelming coupling
of laser frequency noise. A virtual equal-length interfer-
ometer, insensitive to laser frequency noise, can be
synthesized in postprocessing using the technique called
time delay interferometry (TDI) [9,10], and a combination
of inter-SC absolute ranging [12,13] and inter-SC clock
synchronization [14].
Each spacecraft contains two optical benches, two

independent laser assemblies (LAs) and test masses
(TMs), and a common clock [called ultrastable oscillator
(USO)]. The onboard clock signal is imprinted into the
onboard lasers via generation of phase-modulation side-
bands. In order for TDI to work, a number of beatnotes are
thus generated and recorded via the onboard interferometric
detection systems:

FIG. 1. Each of the three LISA spacecraft follows an independent heliocentric orbit, trailing behind the Earth by about 20°, with an
inclination of about 1° with respect to the ecliptic plane, resulting in a relatively stable triangular formation inclined by 60° with respect
to the ecliptic. The intersatellite distances drift at a rate of up to 8 m=s, yielding frequency shifts of up to �8 MHz of the laser beams as
they travel through the 2.5 million-kilometer arms.
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(i) six from the six one-way laser links between SC pairs
(known as “intersatellite interferometers” or ISI);

(ii) six from the interference between the two lasers
local to each SC (known as “reference interferom-
eters” or RFI);

(iii) six from the interference between the two lasers
local to each SC, after one of them has reflected off
the nearby TM (known as “test mass interferome-
ters” or TMI).

(iv) In addition, a number of sideband-sideband beat-
notes are tracked to extract the differential onboard
clock signals.

Since Doppler shifts (D1, D2, and D3, see Fig. 1) are
picked up in the inter-SC links, and then coupled from one
laser to another via a transponder lock, these highly
dynamical signals are present in all of the aforementioned
beatnotes. However, a subset of nine beatnotes (three per
SC) is sufficient to fully describe the coupling of the orbital
dynamics to the interferometric signals: the six ISI of the
constellation, and one RFI per SC. All other beatnotes’
orbit-induced dynamics is a copy of one of these nine.
Figure 2 illustrates the beatnotes in question and intro-

duces the nomenclature used to enumerate spacecraft,
lasers, and beatnotes. Spacecraft i contains lasers ij and
ik, which transmit light to the distant SC j and SC k,
respectively (i; j; k∈ f1; 2; 3g). These two lasers are made
to interfere locally and produce an RFI beatnote signal at
frequency Bii. Simultaneously, laser ij is interfered with the
light received from its distant counterpart, laser ji, pro-
ducing an ISI beatnote signal at frequency Bij. We can thus
distinguish between “local beatnotes,”

B11; B22; B33 ð1Þ

formed by interfering the two onboard lasers, and those that
involve a weak beam from a remote spacecraft, which
measure the variations of the inter-SC distances, carry the
gravitational-wave signal, and have much lower signal-to-
noise ratio,

B12; B13; B21; B23; B31; B32: ð2Þ

Let Lij with i; j∈ f1; 2; 3g and i ≠ j refer to the
frequency of laser ij in the constellation of six lasers,
and let DkðtÞ with k∈ f1; 2; 3g refer to the Doppler
frequency shift acquired by propagating along the long
path separating SC i and SC j. The beatnote signal
frequencies are defined as follows:

B11 ¼ L13 − L12; on SC 1

B12 ¼ L21 þD3ðtÞ − L12; on SC 1

B13 ¼ L31 þD2ðtÞ − L13; on SC 1

B21 ¼ L12 þD3ðtÞ − L21; on SC 2

B22 ¼ L21 − L23; on SC 2

B23 ¼ L32 þD1ðtÞ − L23; on SC 2

B31 ¼ L13 þD2ðtÞ − L31; on SC 3

B32 ¼ L23 þD1ðtÞ − L32; on SC 3

B33 ¼ L32 − L31; on SC 3:

ð3Þ

One of the six lasers in the constellation is designated as
primary and is stabilized in its frequency to a reference
cavity. The other five lasers are phase locked with pro-
grammable frequency offsets (O1…O5) to the primary,
either directly or indirectly. Some of these phase locks use
light that has been exchanged between satellites, and has
thus shifted in frequency due to the Doppler effect.
The interferometric detection system electronics, tasked

with tracking these beatnotes, consists of quadrant photo-
receivers [15] and phasemeters [16,17]. In the quadrant
photoreceiver (QPR), an InGaAs quadrant photodiode
produces four photocurrent signals that oscillate at the
beat frequency (Bij) of the two interfering laser beams.
Low-noise transimpedance amplifiers convert the photo-
currents into voltage signals and deliver them to the
phasemeter. In the phasemeter (of which there is one per
inter-SC link), the QPR signals are digitized via analog-to-
digital converters (ADC), and processed by field program-
mable gate arrays (FPGA), implementing digital phase-
locked loops (DPLL), which track the frequency and phase
of the digitized beatnotes and stream the resulting data to an
onboard computer.
The primary reason why frequency planning is necessary

is that, due to the technical limitations of the interferometric
detection system, the frequencies of all the beatnotes to be
detected must fall inside a certain frequency band, [called
the heterodyne frequency band, (fmin, fmax)], whilst

FIG. 2. Nomenclature used to enumerate spacecraft (SC), laser
assemblies (LAs), and beatnotes. In SC i, LA ij and LA ik are
interfered to form the “local” beatnote Bii. In addition, SC i
receives the beams transmitted from the remote LA ji and LA ki,
which are interfered with the local lasers to form the interspace-
craft beatnotes Bij and Bik, respectively.
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undergoing the Doppler-induced frequency drifts (which
vary over time and take both positive and negative sign).
The following considerations, all pertaining to the inter-
ferometric detection system, affect the selection of fmin
and fmax:

(i) The DPLL implemented in the phasemeter FPGA
will fail if the beatnote frequency approaches zero
(this is the lower bound to fmin).

(ii) The residual intensity noise coupling from the lasers
is significant up to a few MHz [18].

(iii) The QPR and the analog electronics of the phase-
meter have a finite bandwidth, limited by the
available components and the capacitance of the
photodidoes.

(iv) The electronic noise of the QPR increases with
frequency due to a combined effect of the input
voltage noise of the first stage preamplifier and the
photodiode capacitance.

(v) To prevent aliasing, the beatnote frequencies cannot
surpass the Nyquist frequency, which is 1=2 of the
sampling frequency of the ADC (40 MHz in the
current design, this is the upper bound to fmax).

(vi) The beatnote frequencies must not cross the fre-
quency of the pilot tone in the phasemeter [17],
which depending on the internal details of the
phasemeter could be at either the lower or at the
upper end of the heterodyne frequency band.

Moreover, the beatnotes local to each spacecraft must
avoid crossing each other in frequency in order to minimize
the impact of crosstalk in the phasemeter. The main goal of
the frequency plan is deriving a suitable set of the offset
frequencies O1ðtÞ…O5ðtÞ for each laser lock to ensure that
all of the beatnotes stay within the (fmin, fmax) range. The
frequency planning therefore depends on:

(i) the Doppler shifts experienced in orbit [D1ðtÞ,
D2ðtÞ, D3ðtÞ],

(ii) the choice of primary laser and locking scheme,
(iii) the choice of fmin and fmax.
For each possible primary laser (out of the six lasers in

the constellation), there exist six different locking schemes
with varying levels of TDI complexity, resulting in 62 ¼ 36
distinct choices. A computational method to derive and
catalog all feasible locking configurations has been devel-
oped along with the frequency planning algorithms
described in this paper.
The remainder of this section is structured as follows.

Section II B introduces the mathematical formulation used
throughout the rest of the section. Section II C introduces a
computational geometry approach to deriving precise
values of fmin and fmax guaranteeing the existence
of a set of transponder offset frequencies that ensure
the uninterrupted operation of the detector throughout
the mission lifetime. Then, in Sec. II D we present the
quadratic optimization algorithm developed to generate
concrete frequency plans.

All of the aforementioned computer algorithms (the
algorithm used to discover and catalog all possible locking
schemes, the one used to derive all feasible values of fmin
and fmax guaranteeing the existence of a satisfactory
frequency plan, and the offset frequency optimizer) have
been independently developed in both C and Python.

B. Mathematical formulation of the constraints
on the beatnote frequencies

We propose a computational geometry approach to pose
the optimization constraints of this problem that will yield
an exact solution to the frequency planning, as opposed
to other approaches used in the past (such as running
optimizers on a set of constant offset frequencies and trying
to find sets of frequencies that allow locking for as long as
possible before switching to a new set of frequencies).
We combine the Doppler shifts D1, D2, and D3 in a

vector D⃗∈R3, the transponder offset frequencies O1, O2,
O3,O4,O5 in a vector O⃗∈R5, and the beatnote frequencies
B11, B12;…, B33 in a vector B⃗∈R9. The laser frequencies
Lij are assumed to be positive, but the quantities Di, Oi,
and Bij can have both signs since they are related to
differences between the former.
The choice of locking scheme establishes a linear

relationship between the transponder laser frequencies
and the primary laser, with the addition of the five offset
frequencies. These relations translate at every time into a
system of nine linear equations for the beatnote frequencies
in terms of the Doppler shifts and offset frequencies, so
there are constant matrices N1, N2 [see Eq. (34) below for
the values of the example of locking scheme N3-L32],
which depend only on the locking configuration and not on
the orbit, such that at every time

B⃗ðtÞ ¼ N1 · D⃗ðtÞ þ N2 · O⃗ðtÞ
9 × 1 9 × 3 3 × 1 9 × 5 5 × 1:

ð4Þ

Because of the nature of the locking configuration, and
thus encoded in the blocks of N1 and N2, the beatnotes can
be classified according to whether they are used to lock a
transponder laser or not. In the former case, the corre-
sponding component of B⃗ is equal up to a sign to the same
component of O⃗, and is called a “locking” beatnote; the
components that are not used in laser locks are called
“nonlocking” beatnotes. The operational distinction
between the two sets is that if any of the five locking
beatnote frequencies passes through a forbidden frequency
range, the respective offset laser lock will temporarily be
lost. Depending on where in the locking chain that beatnote
is located, the loss of lock might ripple through to other
locks. A lost lock means that a reacquisition procedure
must be initiated. A transition through the forbidden region
of one of the nonlocking beatnotes, on the other hand, will
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not cause a transponder laser to drop out of lock. In any
case, a transition of any beatnote through such a forbidden
region will cause an interruption in the science data.
Such interruption may be short and not significantly affect
LISA science. Nevertheless, it is one aim of frequency
planning to minimize the number of such interruptions
to zero.
Given desired target frequencies for the beatnotes, T⃗,

with fmin < jTij < fmax (e.g., 8 MHz if that is a sweet spot
for noise), if there were no additional constraints, one
would optimize for

arg min
O⃗∈R5

kB⃗ − T⃗Tk2; ð5Þ

where B⃗ is given by (4) as a function of O⃗ at every time, and
thus obtain five offset time series solutions, which in turn
yield the beatnote frequency time series. However, the
physical constraints on the beatnote frequencies will result
in constraints on the offset variables, and problem (5) will
turn into a quadratic optimization problem with, in fact,
linear inequality constraints. There are two types of
restrictions on the beatnote frequencies: they must all fall
inside the aforementioned frequency band, i.e.,

fmin ≤ jBijj ≤ fmax ð6Þ

for all i, j, and local beatnotes must avoid crossing, i.e.,

jBijj ≠ jBiij; ð7Þ

for i ≠ j.
The values fmin and fmax are always positive as they refer

to electronically measurable frequencies, i.e., frequencies
−x MHz and þx MHz are indistinguishable for the pha-
semeter. However, in the frequency planning we need to
take into account the signs of the differences of laser
frequencies and deal with the absolute value of each
individual laser frequency (always positive), Doppler shift
(positive or negative), and transponder offset frequency
(positive or negative). So there are two allowed regions for
each frequency difference, and thus beatnote:

− fmax ≤ Bij ≤ −fmin; or

fmin ≤ Bij ≤ fmax: ð8Þ

This condition is illustrated in the diagram of Fig. 3(a).
Hence, we have to consider the possible sign combinations
of B⃗ and O⃗, in particular the signs of the four nonlocking
beatnote components and the signs of the five offset
components (as the locking component signs are obtained
from the latter from at most a fixed sign inversion). We
define tuples σB and σO of lengths 4 and 5, respectively,
with such sign choices, i.e., with elements that can be either
“þ1” or “−1”:

σB ¼ ð�1;�1;�1;�1Þ∈ΣB;

σO ¼ ð�1;�1;�1;�1;�1Þ∈ΣO ð9Þ

(note that, despite the notation, each component sign choice
is independent of the other components). We are denoting
the sets of all such sign combinations as ΣB, ΣO, having
24 ¼ 16; 25 ¼ 32 elements, respectively. A complete sign
choice for the frequency band constraints is a tuple of
length 9 in a set of 29 ¼ 512 possibilities.
The additional constraints (7) arise from the desire to

avoid the crossing, in both the optical and electronic
domains, of the strong RFI or TMI beatnotes, with the
weak ISI beatnotes in the same SC that carries much lower
signal-to-noise ratio. There is always some crosstalk
between phasemeter channels, caused, e.g., by scattered
light or electronic crosstalk in the photoreceivers, harness,
or the phasemeter itself. If the amplitude of the offending
crosstalking beatnote Bii is smaller than the weak ISI
beatnote Bij, this would merely be an occasional and
predictable glitch in the science data streams. If, on the
other hand, the crosstalk of Bii were stronger than Bij, it
would “hijack” the DPLL tracking loop in the phasemeter
as their frequencies cross, and result in important disrup-
tions of the science data stream. This is no fundamental
problem, but would set very strict requirements on scattered
light and electronic crosstalk to make sure that the crosstalk
of Bii is always much weaker than Bij in the phasemeter
channels that are supposed to track the latter.
Therefore it is desirable to avoid any such crossing of

local beatnotes. In other words, wewould like that Eq. (7) is
satisfied at each spacecraft, yielding in total six inequality
conditions in the constellation. Anticipating the geometric
considerations of the following section, we convert these
into linear inequalities, illustrated here for a fixed case of
i ≠ j, jBijj ≠ jBiij (one of six, three possibilities for i, and
two for j). In order to have some margin, e.g., for the GHz

(a)

(b) (c)

FIG. 3. Illustrations of the allowed values of the beatnote
frequencies Bij (a) and the constraints to avoid crosstalk (b).
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clock sidebands and pseudo random noise (PRN) modu-
lation, we demand for some ε > 0,

jjBijj − jBiijj > ε: ð10Þ

This condition is illustrated in the diagram of Fig. 3(b). It
can more conveniently be expressed in terms of Bii − Bij

and Bii þ Bij, as illustrated in the diagram of Fig. 3(c). We
therefore have four separate allowed regions per case i ≠ j:

Bij − Bii > ε and Bij þ Bii > ε; or

Bij − Bii > ε and Bij þ Bii < −ε; or

Bij − Bii < −ε and Bij þ Bii > ε; or

Bij − Bii < −ε and Bij þ Bii < −ε: ð11Þ

Since there are six such beatnote differences in the
constellation, we arrive at 46 ¼ 4096 sign combinations,
which we denote by

σC ¼ ð�1;…;�1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
12×

Þ∈ΣC: ð12Þ

Notice that for a given fixed sign choice of the tuples σB,
σO, only some of the above inequalities are consistent, and
in turn only certain combinations of σC are feasible: for
example, if Bij > 0 and Bii < 0, then only the choice of
Bij − Bii > ε is consistent, reducing the number of feasible
sign combinations for this specific crossing constraint from
4 to 2.

C. Computational geometry algorithm to decide an
optimal heterodyne frequency band (fmin, fmax)

The first step towards solving the minimization (5)
subject to inequalities (6) and (10) is determining which
sign choices σB, σO are feasible, in the sense of allowing a
set of permissible offset frequencies such that the optimi-
zation problem has a solution, and of those feasible ones
which one is more appropriate in some technical sense.
This must be done at a fixed time t, such that the Doppler
shifts are given and fixed. The separate results for each t
can then be combined into solutions for the whole time
interval (e.g., the whole mission duration).
Since the value and sign of the locking beatnotes is fixed

up to sign inversion by the offsets, Eq. (5) can be
considered only for the vector component formed by the
four nonlocking beatnotes, which by abuse of notation we
denote from now on also as B⃗∈R4:

B⃗ðtÞ ¼ M1 · D⃗ðtÞ þ M2 · O⃗ðtÞ:
4×1 4×3 3×1 4×5 5×1:

ð13Þ

Here M1, M2 are the corresponding matrix blocks from
Eq. (4) when reordering the components into locking and

nonlocking variables (see the Results section for an explicit
example). These matrices are constant and given by the
locking configuration, whereas the Doppler shifts are time
series computed from the orbits. The task at hand is then to
find sign choices σB, σO such that there are offsets O⃗ and
nonlocking beatnotes B⃗ both satisfying the constraints (6)
and Eq. (13). This can be solved by computational-
geometrical methods for a fixed time t. The aim is to find
consistent and fixed sign choices for as long a period of
time as possible to minimize the need to switch signs in
order to avoid brief interruptions of the science data streams
and some interspacecraft data links. Rearranging the
previous equation, we are given a fixed vector M1 ·
D⃗ðtÞ∈R4 that must decompose as

M1 · D⃗ðtÞ ¼ B⃗ − M2 · O⃗

4×3 3×1 4×1 4×5 5×1
ð14Þ

for some nonlocking beatnotes and offsets that must lie in
their respective domains of feasibility given by the con-
straints (6), which we denote by B̂ ⊂ R4 and Ô ⊂ R5,
respectively. For a fixed σB, the domain of feasible beatnote
frequencies B̂ is a 4D hypercube, as it is the Cartesian
product of closed intervals ½fmin; fmax� or ½−fmax;−fmin�
for each bounded beatnote component. Likewise, the
corresponding offset domain Ô is a 5D hypercube.
These sets are convex and depend on the specific σB, σO
chosen. The image of a hypercube by a linear trans-
formation is a polytope (i.e., a finite hypervolume limited
by hyperplanes), and the linear image of a convex polytope
is known to be still convex, so −M2 · Ô ⊂ R4 is a convex
polytope. Therefore for a feasible solution to exist we
require that there exist vectors x⃗ and y⃗ such that

M1 ·D⃗ðtÞ¼ x⃗þ y⃗ with x⃗∈B̂; y⃗∈−M2 ·Ô ð15Þ

in 4D space. The next key step is to write this as

M1 · D⃗ðtÞ∈ B̂ ⊕ ð−M2 · ÔÞ; ð16Þ

where⊕ represents the Minkowski sum of two sets, which
is by definition the set given by all the possible linear
combinations of the vectors from each set [19]. This
procedure is useful because the Minkowski sum of two
convex polytopes is again a convex polytope, and this can
be determined efficiently since a fast test exists to verify
whether or not any given 4D point falls inside. As the
Minkowski sum depends only on the sign choices σB, σO,
the locking scheme, and the heterodyne frequency band
(fmin, fmax), the complete time series M1 · D⃗ðtÞ can be
tested at all times to check whether the same sign choices
are feasible and constant throughout the orbit. In particular,
a minimal unique representation of a convex polytope is
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given by the convex hull of a list of points on its boundary
or in its interior, if that list contains all corner points.
The detailed procedure to construct B̂ ⊕ ð−M2ÔÞ is as

follows:
(1) Given σB, the vertices of the hypercube B̂ are

completely determined by ð�f1;�f2;�f3;�f4Þ,
where fi ∈ ffmin; fmaxg; i ¼ 1;…; 4 are chosen in
all possible combinations, and the signs are fixed by
σB, yielding 16 corner points; similarly for Ô given
σO, yielding 32 corner points.

(2) Compute y⃗ ¼ −M2 · O⃗ for every corner point O⃗ of Ô.
(3) Collect the points B⃗þ y⃗, for every corner point B⃗ of

B̂, as candidates for a corner of the Minkowksi sum,
obtaining 512 points of B̂ ⊕ ð−M2ÔÞ.

(4) Construct the convex hull of the 512 points to
eliminate interior points and boundary points that
are not corner points.

A visual example in lower dimension is shown in Fig. 4,
where the beatnote range hypercube is represented by a two-
dimensional square on the plane (in purple) and the offset
hypercube by a three-dimensional orthohedron in space (in
green). The linear map given by matrix −M2 projects down
the latter into the two-dimensional plane, where some of the
corner points may become internal (in blue), thus requiring
the computation of the convex hull to extract a representa-
tion of the vertices of the convex polytope −M2 · Ô.
Software packages like QHULL [20] provide tools to

perform these operations, and moreover provide the normal
equations (in the form of coefficients a1; a2; a3; a4; b) of
the hyperplane faces that define the outer sides of the
convex hull, such as

−a1X1 − a2X2 − a3X3 − a4X4 − b ¼ 0; ð17Þ

so that a point X⃗∈R4 is on the boundary when the left-
hand side is zero, and inside the polytope if it is positive.
With this, the test to check whether M1 · D⃗ðtÞ∈R4 lies

inside the feasibility region B̂ ⊕ ð−M2 · ÔÞ consists of
simply substituting X⃗ðtÞ ¼ M1 · D⃗ðtÞ in Eq. (17) for all
faces of the Minkowski sum. If any result is negative, the
point lies outside the convex hull, and thus for that
particular D⃗ðtÞ no solution exists for the given sign choices
σB, σO and frequency range fmin, fmax. We can encapsulate
this information in the margin function,

mðt; σB; σOÞ
¼ min

i
ð−a1;iX1 − a2;iX2 − a3;iX3 − a4;iX4 − bi ¼ 0Þ

ð18Þ

(the dependence on fmin, fmax is left implicit), where i runs
over the hyperplane equations that define the faces of the
convex hull, and X⃗ðtÞ ¼ M1 · D⃗ðtÞ. This minimum value
represents, in MHz, how far away one is from hitting a
boundary of the feasibility region, where its sign represents
whether the point is inside (positive) or outside (negative)
of the constraining polytope. This margin function can be
employed to check all 512 sign combinations σB, σO at
multiple times t, typically for the whole mission duration.
Define margin functionsm1, m2, m3 which only depend on
the orbit, the locking scheme, and fmin, fmax, as

m1 ¼ max
σO

max
σB

min
t

mðt; σB; σOÞ; ð19Þ

m2 ¼ max
σO

min
t

max
σB

mðt; σB; σOÞ; ð20Þ

FIG. 4. Illustration of the geometrical procedure in reduced dimensions. (a) Minkowski sum example in reduced dimension. In
(a) edges and corners are shown for the sets B̂ (2-D), Ô (3-D), and −M2Ô (projected in 2-D). (b) Convex hull example in reduced
dimension. In (b) the points are all possible sums of one corner from B̂ plus one corner from −M2Ô. The line represents the convex hull
as computed by QHULL, which is the Minkowski sum B̂ ⊕ ð−M2ÔÞ. The test whether a solution exists can now be performed by
checking if M1D⃗ falls in that convex hull.
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m3 ¼ min
t

max
σO

max
σB

mðt; σB; σOÞ; ð21Þ

which fulfill m1 ≤ m2 ≤ m3. The meaning of these func-
tions is as follows: ifm1 is positive there is at least one sign
combination which permits locking at all times without
sign switching, i.e., the optimal situation. If m3 is positive,
the constellation can be locked at all times, but possibly
sign switching is necessary at some point of the mission. If
m3 is negative, there is no feasible solution for at least one
time t (i.e., the specific combination of orbit, locking
scheme, and fmin, fmax is unacceptable since there are times
at which some locks are not feasible). If m2 is positive the
sign switches happen for the nonlocking beatnotes only,
i.e., σO can be held constant for the whole mission duration
but σB cannot, which means that although the laser locks
can be maintained without interruption, there would still be
brief interruptions of some interspacecraft data links and
therefore disruptions of the science data stream.
For a given orbit, locking scheme, and heterodyne fre-

quency range, there are four cases to distinguish (see Fig. 5):
Case 0: m1 ≤ m2 ≤ m3 < 0: At some time t no solution
exists at all.

Case 1: m1 ≤ m2 ≤ 0 < m3: A solution exists for all
times requiring sign switching of both locking and
nonlocking beatnotes.

Case 2: m1 ≤ 0 < m2 ≤ m3: A solution exists for all
times requiring sign switching of only the nonlocking
beatnotes.

Case 3: 0 < m1 ≤ m2 ≤ m3: A solution exists for all
times requiring no sign switching at all.

The conditions m1 ¼ 0, m2 ¼ 0 and m3 ¼ 0 define boun-
dary contours between these cases in the ðfmin; fmaxÞ plane
for a given orbit and locking scheme. These functions thus
provide a method to choose the values of fmin and fmax
such that the corresponding point lies in the region of case
3, and no sign switching is necessary at any point of the
mission. Note, however, that these refer to the carrier-
carrier beatnotes, an extra margin of 1 to 2 MHz should be
foreseen for the clock sidebands. Moreover, the pilot tone
must be taken into account, and adding some more margin
to account for potential variations of the orbits is advisable.
The previous method does not take into account the

additional constraints of Eq. (7), since then the set of
feasible offsets Ô is no longer convex. Hence, it does not
determine the signs σC. This is, however, not a limitation
since, in practice, for parameter sets that allow a solution
without the extra constraints, solutions also exist satisfy-
ing the extra constraints (at most a small extension of the
frequency range is needed). This is due to the fact that
imposing the additional linear inequality constraints for
fixed signs σC restricts the feasibility domain to a
subdomain inside the already discussed convex polytope.
Therefore, the election of the signs σB, σO and the fixing
of fmin, fmax in case 3 by the computational-geometric
method above are necessary, even if not sufficient, to

obtain optimal solutions. Informed by these choices the
quadratic programming algorithm explained in the next
subsection finds initial conditions and feasible optimal
solutions satisfying all constraints with a sign combina-
tion fixed throughout the entire time series, and reports
when no feasible solution exists. Furthermore, it takes
advantage of exploring the possible consistent signs σC (a
subset out of the 4096 cases) in order to get optimal
solution time series that maximize the margin function or
any other metric, e.g., minimizing the beatnote rate of
change root mean square (rms) (of interest to TDI
operations).

D. Offset frequency planning optimization

By the previous discussion we can choose a suitable
frequency range ðfmin; fmaxÞ and sign combination
ðσB; σOÞ, ideally constant for the whole mission duration
if the frequency range is in the region of case 3, which
guarantees the existence of feasible offset frequency
solutions. In order to find the actual values of these offset
frequencies O⃗ðtÞ we propose a geometric optimization
where we minimize the Euclidean distance between the
corresponding beatnote vectors B⃗ðtÞ and target frequencies
T⃗ of our choice, typically optimal values in the detection
chain sensitivity. The figure of merit is then minimizing the
norm of B⃗ − T⃗ by varying O⃗ through the dependency of
Eq. (4), which rearranging terms and squaring yields

kN2 · O⃗ðtÞ − ðT⃗ − N1 · D⃗ðtÞÞk2 → min; ð22Þ

FIG. 5. Contour plots of the feasible frequency ranges for
nonswap configurations, using European Space Agency (ESA)
orbits “OP25_340_10Y3T.XYZ” (ten years). The boundary between
case 0 and case 1 as well as between case 2 and case 3 (bold lines)
is independent of the configuration, whereas the boundary
between case 1 and case 2 (thin lines) depends on the configu-
ration and choice of primary laser.
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i.e., we are minimizing a polynomial of second order in five
variables, the O⃗ components, a typical problem in quadratic
programming of the form

arg min
x⃗

kA · x⃗ − b⃗k2;

with a rectangularmatrixA ¼ N2, vector b⃗ ¼ T⃗ − N1 · D⃗ðtÞ,
and linear inequality constraints on x⃗ ¼ O⃗ðtÞ∈R5.
In order to specify the constraints we need to rewrite the

equations of (8), which state the beatnotes must fall within
the allocated frequency band, and (11), which prevent local
crossing of beatnotes within a spacecraft, in terms of the
offsets frequencies using (4). Optimal solutions can be
found by applying quadratic programming techniques
when the sign is fixed per beatnote, which justifies the
method of the previous section for finding a suitable
σ ¼ ðσO; σBÞ in advance. Recall that σB determines the
sign of the four nonlocking beatnotes, whereas the other
five locking beatnote frequencies are equal to the offset
frequencies up to a sign, encoded in the respective entries of
the matrix N2 which is given by the constellation configu-
ration, so that their sign is completely determined by this
matrix and σO. Thus, for a particular σ and locking scheme,
there are range limits for the offsets (and in turn for the
locking beatnotes) and nonlocking beatnotes,

mini ≤ Oi ≤ maxi; i ¼ 1…5;

minj ≤ Bj ≤ maxj; j ¼ 1…4; ð23Þ

where Bj are the nonlocking beatnotes as in Eq. (13), and
either

mini ¼ −fmax;

maxi ¼ −fmin; ð24Þ

if the corresponding entry in σO is negative, or

mini ¼ fmin;

maxi ¼ fmax; ð25Þ

otherwise; analogously for minj and maxj from σB. The
nine inequalities (23) translate into 18 inequalities that a
quadratic programming algorithm can handle:

Oi ≥ mini;

ðOi ≤ max iÞ → −Oi ≥ −maxi:

Bj ≥ minj;

ðBj ≤ max jÞ → −Bj ≥ −maxj:

ð26Þ

Because of the dependencies of Eq. (13), we obtain the
final 18 inequality constraints on the offset frequencies as
independent variables of the optimization method:

Oi ≥ mini;

−Oi ≥ −maxi:

ðM2 · O⃗Þj ≥ minj − ðM1 · D⃗ðtÞÞj;
−ðM2 · O⃗Þj ≥ −maxj þ ðM1 · D⃗ðtÞÞj; ð27Þ

all ofwhichmust be fulfilled simultaneously tominimize (22).
In addition, the 12 constraints (11) to avoid beatnote

local crossing must be included. There are 4096 sign
combinations, encoded in σC, and the smaller subset of
consistent combinations with respect to the fixed ðσO; σBÞ
must be exhaustively explored in order to select the best
optimization result. Let the 12 possible Bij − Bii and
Bij þ Bii, denoted below as ΔBk; k ¼ 1;…; 12, be written
in terms of the offsets as

ΔBk ¼
X3
i¼1

ðS1ÞkiDi þ
X5
i¼1

ðS2ÞkiOi; ð28Þ

where the matrices S1, S2 are computed from N1, N2 via
substitution of Eq. (13) in Bij − Bii and Bij þ Bii. Then the
additional constraints are

ΔBk ≤ −ε; if ðσCÞk < 0; or

ΔBk ≥ ε; if ðσCÞk > 0; k ¼ 1…12:

Rearranging terms, we get the final 12 linear constraint
inequalities on the offset frequencies as independent
variables that must be added to (27):

−
X5
i¼1

ðS2ÞkiOi ≥ εþ
X3
i¼1

ðS1ÞkiDi; or

X5
i¼1

ðS2ÞkiOi ≥ ε −
X3
i¼1

ðS1ÞkiDi; k ¼ 1…12:

ð29Þ

Therefore, the final frequency planning optimization
problem at a fixed time t can be posed as

argmin
O⃗∈R5

kN2 ·O⃗− T⃗þN1 ·D⃗ðtÞk2
8>>>>>>>><
>>>>>>>>:

Oi≥mini
−Oi≥−maxi; i¼1;…;5;

ðM2 ·O⃗Þj≥minj−ðM1 ·D⃗ðtÞÞj;
−ðM2 ·O⃗Þj≥−maxjþðM1 ·D⃗ðtÞÞj; j¼1;…;4;

ðσCÞkðS2 ·O⃗Þk≥ ε−ðσCÞkðS1 ·D⃗Þk; k¼1;…;12:

ð30Þ

This assumes the following as fixed: the Doppler shifts
D⃗ðtÞ from the orbit, a feasible signs choice ðσO; σBÞ and a
frequency range fmin − fmax (to determine the min and max
bounds of the constraints), target offset frequencies T⃗, and a
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given locking scheme to determine the matrices M1, M2,
S1, S2.
By finding σC so that this optimization reaches a feasible

solution at every time of the mission duration, one obtains
the offset frequencies time series O⃗ðtÞ and thus in turn the
beatnote frequencies B⃗ðtÞ. One can then search over the
possible valid σC that yield such complete solutions and keep
the optimal offset frequencies for a given extra criterium,
e.g., minimizing the beatnote frequency rate of change RMS.
The proposed algorithm has been implemented in C and

in Python, and can be briefly summarized as follows:
Step 1: Fix a locking scheme from the possible con-
figurations and obtain M1, M2, S1, S2.

Step 2: Compute the Doppler shifts D⃗ðtÞ from the
orbit data.

Step 3: For a physically feasible frequency range
fmin − fmax, and every possible sign choice σO, σB,
determine hypercubes B̂; Ô, and compute the convex
hull of the Minkowski sum polytope B̂ ⊕ −M2 · Ô.

Step 4: Compute mðt; σB; σOÞ, Eq. (18), from the
Minkowski sum face equations (17), for all times t
and every sign case of the previous step.

Step 5: From different ranges fmin − fmax, pick one such
thatm1 > 0, Eq. (19), fixing the corresponding σO, σB.

Step 6: Find the subset of sign choices σC ∈ΣC com-
patible with the given σO, σB.

Step 7: For the frequency range fmin − fmax fixed above,
and each compatible σC and time t, solve the opti-
mization problem (30).

Step 8: If more than one feasible solution O⃗ðtÞ is
found for all times for different σC, choose the signs
that yield time series satisfying an additional criterion,
e.g., the beatnote frequencies have the smallest rate of
change RMS, and keep those as final solutions.

The method described above finds feasible time series for
the offset frequencies which are nevertheless optimized with
respect to target frequencies, T⃗, that are constant. This
produces solutions that in practice may oscillate more than
desired, since the target frequencies are not adapted at every
time to match data from the orbit, in particular the target
frequencies may not satisfy all the constraints of the system
(30) at all times. Therefore, it is desirable to introduce a
smoothing procedure.
Once a frequency plan solution is obtained from the

method above, one might be tempted to apply to each offset
frequency time series a variety of smoothing filters, like
averaging neighboring points, but the resulting smoothed-
out series are no longer guaranteed to be feasible solutions to
the optimization problem since at every instant they are
certainly not going to satisfy the functional relation (4) and
the constraints, as the smoothing filters do not take those into
account to produce their output. We thus propose to take
these new filtered-out series as new target frequencies T⃗ðtÞ,
now time varying, and run again the optimization process so
that one obtains the closest feasible solutions to the

smoothed-out ones. By repeating this procedure a number
of iterations (see Fig. 6) the new offset frequency solutions
are significantly smoothed out while complying with the
physical constraints and the dependency relations with the
orbit data at every instant. We take this final output as our
optimal frequency plan solution.
From these smooth solutions, one can then apply

interpolation methods that provide piecewise interpolating
polynomials between any two instants of time while
preserving the values of the original solution and its first
(discrete) derivative at the time nodes. The solutions found
to the frequency planning are typically once per day, e.g.,
corresponding to the time resolution of the orbit data. An
initial approach to obtain solutions at any instant of time
would be to use piecewise linear interpolation, but the
edges at midnight would not be optimal for TDI. Therefore
we now have a postprocessing step to compute interpolat-
ing polynomials with restrictions not to cross constraint
boundaries. A special spline algorithm has been imple-
mented where we combine the piecewise cubic Hermite
interpolating polynomials (PCHIP) method with Bernstein
polynomials to fifth order so that first and second derivative
of the spline are continuous and the spline does not
overswing/underswing the data points. The coefficients
of these interpolating polynomials can be periodically
determined on-ground based on the latest orbit data, and
sent via telecommand/telemetry to the onboard computer

FIG. 6. Flowchart for the procedure of smoothing out the offset
frequency time series solutions obtained from optimization.
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which then reprograms the interferometric detection system
to update the phase-lock loop offsets.

III. RESULTS

We shall now illustrate the general mathematical method
described in the previous section to generate a particular
frequency plan for the locking configuration N3-L32,
Fig. 7, given the orbit data “OP25-340-10Y3T.XYZ” provided
by ESA. This orbit time series spans the whole mission
duration of ten years.
Step 1: The first step is fixing the locking scheme which,

in this particular case, has the laser frequency L32 set as
primary and where the other transponder lasers are locked
according to

L32 ðprimaryÞ;
L23 ¼ L32 þO1 þD1;

L13 ¼ L12 þO2;

L31 ¼ L32 þO3;

L21 ¼ L23 þO4;

L12 ¼ L21 þO5 þD3: ð31Þ
This is a valid locking scheme where the linear system of
dependencies has a unique solution, i.e., all transponder
laser frequencies can be solved for, and thus referenced to
the primary laser frequency, leading to

L32 ðprimaryÞ
L23 ¼ L32 þD1 þO1;

L13 ¼ L32 þD1 þD3 þO1 þO2 þO4 þO5;

L31 ¼ L32 þO3;

L21 ¼ L32 þD1 þO1 þO4;

L12 ¼ L32 þD1 þD3 þO1 þO4 þO5: ð32Þ

The beatnote frequencies for this nonswap case are given

by (3) and thus, in terms of the offset frequencies and
Doppler shifts using (32), they become

B11 ¼ O2

B12 ¼ −O5

B13 ¼ −D1 þD2 −D3 −O1 −O2 þO3 −O4 −O5

B21 ¼ 2D3 þO5

B22 ¼ O4

B23 ¼ −O1

B31 ¼ D1 þD2 þD3 þO1 þO2 −O3 þO4 þO5

B32 ¼ 2D1 þO1

B33 ¼ −O3: ð33Þ

This has the following matrix form according to the
notation of Eq. (4):

0
BBBBBB@

B23

B11

B33

B22

B12

1
CCCCCCA

0
BBBB@

B13

B21

B31

B32

1
CCCCA

¼

0
BBBBBBBBBBBBBBBBBBBBB@

0
BBBBBB@

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1
CCCCCCA

0
BBBBBB@

−1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 −1

1
CCCCCCA

0
BBB@

−1 1 −1
0 0 2

1 1 1

2 0 0

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N1

0
BBBBB@

−1 −1 1 −1 −1
0 0 0 0 1

1 1 −1 1 1

1 0 0 0 0

1
CCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N2

1
CCCCCCCCCCCCCCCCCCCCCA

·

0
BB@

D1

D2

D3

1
CCA

0
BBBBBB@

O1

O2

O3

O4

O5

1
CCCCCCA
:

ð34Þ

FIG. 7. Constellation configuration for the nonswap locking
scheme N3-L32.
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Here the components have been reordered so that the first five entries are the locking beatnotes sorted to yield a diagonal
block, and the last four components are the nonlocking ones in lexicographical order. This determines the matrices N1 and
N2, and M1, M2 by removing the first five rows.
In turn, the differences and sums of beatnote frequencies appearing in the noncrossing constraints of Eq. (28) are

ΔB1 ¼ B12 − B11;

ΔB2 ¼ B13 − B11;

ΔB3 ¼ B21 − B22;

ΔB4 ¼ B23 − B22;

ΔB5 ¼ B31 − B33;

ΔB6 ¼ B32 − B33;

ΔB7 ¼ B12 þ B11;

ΔB8 ¼ B13 þ B11;

ΔB9 ¼ B21 þ B22;

ΔB10 ¼ B23 þ B22;

ΔB11 ¼ B31 þ B33;

ΔB12 ¼ B32 þ B33; ð35Þ

which yield the following matrices S1, S2 from the relations (34):

0
BBBBBBBBBBBBBBBBBBBBBBBB@

ΔB1

ΔB2

ΔB3

ΔB4

ΔB5

ΔB6

ΔB7

ΔB8

ΔB9

ΔB10

ΔB11

ΔB12

1
CCCCCCCCCCCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0

−1 1 −1
0 0 2

0 0 0

1 1 1

2 0 0

0 0 0

−1 1 −1
0 0 2

0 0 0

1 1 1

2 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
S1

·

0
B@

D1

D2

D3

1
CAþ

0
BBBBBBBBBBBBBBBBBBBBBBBB@

0 −1 0 0 −1
−1 −2 1 −1 −1
0 0 0 −1 1

−1 0 0 −1 0

1 1 0 1 1

1 0 1 0 0

0 1 0 0 −1
−1 0 1 −1 −1
0 0 0 1 1

−1 0 0 1 0

1 1 −2 1 1

1 0 −1 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S2

·

0
BBBBBB@

O1

O2

O3

O4

O5

1
CCCCCCA
: ð36Þ

Step 2: The second step is to fix the values of the Doppler
shifts D1ðtÞ; D2ðtÞ; D3ðtÞ at a given time t, obtained from
this example’s orbit data, as in Fig. 1.
Steps 3/4: Next, let us mention one of the possible cases

that the algorithm must explore, and which happens to be
the actual final optimal choice the method achieves for this
example: fix the feasible frequency range to

fmin ¼ 5 MHz; fmax ¼ 25 MHz; ð37Þ

and the offset frequency signs and the nonlocking beatnote
frequency signs to

σO ¼ ð1; 1; 1;−1; 1Þ; σB ¼ ð1; 1;−1; 1Þ: ð38Þ

This means we are considering the following five-dimen-
sional hypercube domain Ô arising from the frequency
ranges of every component of the offset vector:
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Ô ¼ fO⃗∈R5j5 ≤ O1 ≤ 25;

5 ≤ O2 ≤ 25;

5 ≤ O3 ≤ 25;

−25 ≤ O4 ≤ −5;

5 ≤ O5 ≤ 25g: ð39Þ

Similarly, the four-dimensional hypercube domain B̂ from
the frequency ranges of every component of the nonlocking
beatnote vector is

B̂ ¼ fB⃗nonlock ∈R4j5 ≤ B13 ≤ 25;

5 ≤ B21 ≤ 25;

−25 ≤ B31 ≤ −5;

5 ≤ B32 ≤ 25g: ð40Þ

The vertices or corners of Ô are all the possible combi-
nations of the boundary values of the components
Oi; i ¼ 1;…; 5, taking into account the sign choices, i.e.,
the set of 25 vectors,

ÔC ≔ fO⃗∈R5jOi ∈ fðσOÞifmin; ðσOÞifmaxg; i ¼ 1;…; 5g;
ð41Þ

for example ð5; 25; 5;−25; 25Þ. This is a finite set whose
linear image through the map M2∶ R5 → R4 is easily
computed by matrix multiplication. A similar set specifies
the 24 vertices of B̂ for the nonlocking beatnote compo-
nents:

B̂C ≔ fB⃗∈R4jBi ∈ fðσBÞifmin; ðσBÞifmaxg; i ¼ 1;…; 4g:
ð42Þ

Since both −M2 · ÔC and B̂C are comprised of finitely
many vectors inR4, the Minkowski sum B̂C ⊕ ð−M2 · ÔCÞ
is straightforwardly computed by performing all possible
linear combinations between them, e.g.,

0
BBBB@

5

25

−5
5

1
CCCCAþM2 ·

0
BBBBBBB@

5

25

5

−25
25

1
CCCCCCCA

¼

0
BBBB@

−20
50

20

10

1
CCCCA∈ B̂C ⊕ ð−M2 · ÔCÞ:

ð43Þ

Then, through a software package like QHULL, we deter-
mine a complete representative of the convex hull of the
actual convex polytope B̂ ⊕ ð−M2 · ÔÞ by computing the

convex hull of B̂C ⊕ ð−M2 · ÔCÞ. This provides us with
hyperplane equations for all faces, and thus, all the data
needed to evaluate the margin function mðt; σB; σOÞ,
Eq. (18), for the specific Doppler shifts vector
x⃗ ¼ M1 · D⃗ðtÞ.
The green dashed boundary of Fig. 8 represents the

projection to every coordinate plane [in the beatnote
frequency space R4, where the sums of B̂ ⊕ ð−M2 · ÔÞ
happen] of the Minkowski sum boundary just computed.
The frequency band and sign choices are feasible because
the orbit data, represented by the vectors M1 · D⃗ðtÞ, stays
inside this convex domain.
The sign choices σO ¼ ð1; 1; 1;−1; 1Þ and σB ¼

ð1; 1;−1; 1Þ were determined by repeating the above
procedure for all sign combinations, computing the
function m1 from Eq. (19), in other words, they are the
outcome of

arg max
σO ∈ΣO;σB ∈ΣB

min
t

mðt; σB; σOÞ;

which checks whether x⃗ðtÞ ¼ M1 · D⃗ðtÞ lies inside the
corresponding convex hull of the Minkowski sum as
computed above. Exploring different frequency bands
yields Fig. 5, which confirms that our choice of 5–
25 MHz for this example lies in case 3, i.e., m1 > 0 as
explained in Sec. II C, and so this band guarantees that
these σO, σB are constant and do not need to be updated
throughout the whole mission duration for this orbit time
series, avoiding interruptions in the science streams. This
solves step 5 of the method.
Step 5: We fix fmin ¼ 5 MHz and fmax ¼ 25 MHz, as

per the previous steps.
Step 6: In this step we include additional constraint sign

possibilities, leading to the final choice of

σC ¼ ð−1; 1; 1; 1; 1; 1;−1; 1;−1;−1;−1;−1Þ ð44Þ

for this example. This is done by reducing the 4096
possible cases to those that are consistent with the already
fixed σO ¼ ð1; 1; 1;−1; 1Þ; σB ¼ ð1; 1;−1; 1Þ. For exam-
ple, looking at ΔB1 ¼ B12 − B11, with B12 ¼ −O5 and
B11 ¼ þO2 by Eq. (34), we see that ΔB1 ≤ −10, since
O2 ≥ þ5; O5 ≥ þ5 per the values of σO, and therefore
there is no consistent choice possible for ðσCÞ1 but −1. The
components where this sign determination cannot be
concluded in this manner must be explored in the opti-
mization phase in order to choose the best results (step 8).
Step 7: This step is the core of the method, as it performs

the optimization process. This consists of finding offset
frequency values O⃗ that minimize kN2 · O⃗ − T⃗ þ
N1 · D⃗ðtÞk2, where the initial target frequencies are constant
and fixed to the average of fmin and fmax,
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T⃗ ¼ ð−15; 15;−15;−15;−15; 15; 15;−15; 15Þ ð45Þ

(notice the consistency of the last four components with the
signs of σB, and the first five components with σO acted upon
by the upper block ofN2). The explicit function tominimize is
the quadratic polynomial

��N2 · O⃗− T⃗ þN1 · D⃗ðtÞ��2
¼ 8D1O1 þ 4D1O2 − 4D1O3 þ 4D1O4 þ 4D1O5

þ 4D3O1 þ 4D3O2 − 4D3O3 þ 4D3O4 þ 8D3O5

þ 6D2
1 þ 4D3D1 þ 2D2

2 þ 6D2
3 þ 4O2

1 þ 3O2
2

þ 3O2
3 þ 3O2

4 þ 4O2
5 þ 4O1O2 þ 30O2 − 4O1O3

þ−4O2O3 − 90O3 þ 4O1O4 þ 4O2O4 − 4O3O4

þ 90O4 þ 4O1O5 þ 4O2O5 − 4O3O5 þ 4O4O5 þ 2025;

ð46Þ

where the Doppler shifts are considered here as constant
coefficients (fixed at a given time) and the offset frequencies
are the independent variables.
The first ten constraints of (30) come from the offset

frequency band and are those of (39), whereas the next
eight constraints arise from the nonlocking beatnote fre-
quency band, i.e., those substituting B⃗nonlock by M1 · D⃗þ
M2 · O⃗ in (40). Finally, the remaining 12 constraints arise
from (36) via ðσCÞkΔBk ≥ ε with σC given by (44), and
ε ¼ 2 MHz the noncrossing margin for this example.

Taking into account all of the 30 constraints reduces the
feasible solution domain for the offset frequencies, so that it
is no longer the hypercube Ô but a non-necessarily convex
polytope (i.e., a finite region bounded by flat boundaries
that may contain holes). The outer boundary of this fully
constrained domain can be nevertheless seen in Fig. 9,
where the red dashed lines represent the outer boundaries of
this region projected onto the coordinate planes of the offset
space O⃗∈R5. The blue dot represents valid offset frequencies
that are a feasible solution to the optimization problem with
all the parameters as stated above. By projecting this region
to the nonlocking beatnote frequency space B⃗∈R4 through
matrix M2, we can see in Fig. 8 the outer boundary of the
constraining polytope surrounding the orbit data, represented
in this space byM1 · D⃗ðtÞ, which for different times yields the
blue curve. If this latter vector were to lie outside the red-
bounded region, the sign choices and frequency band would
not provide a feasible choice to run the optimization.
The minimization process for every time t of the orbit

time series outputs the final offset frequencies which, after
the smoothing explained at the end of the previous section,
results in the beatnotes time series of Figs. 10(a) and 10(b).
The method employed to solve the optimization of this
example was SCIPY’s sequential least squares program-
ming. We can immediately appreciate that the optimization
in this example makes the local beatnotes B11, B22, B33

almost constant.
The frequency bandmargins of 5–25MHz are also shown

in dotted lines, confirming that the solutions indeed lie inside
the band, taking into account the signs specified by σB for the

FIG. 8. Constraining volumes in the beatnote frequency space for configuration N3-L32 at day 102 of the orbits from
“OP25_340_10Y3T.XYZ”. The green boundary represents the convex hull for a feasible frequency band and beatnote sign choices
since it completely encloses the blue orbit data. The red boundary represents the outer boundary of the full set of constraints at the initial
time, and it must enclose the corresponding orbit point only at that time.
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nonlocking beatnotes, and the signs of the locking beatnotes
given by the upper block of N2 acting on σO. The beatnote
differences jjBijj − jBiijj are shown in Fig. 11(a), where the
noncrossing threshold of 2MHzwas chosen, confirming the
solutions also satisfy these constraints.
Step 8:Finally, the sign σC is optimized to minimize the

RMS of the rates of change of beatnote frequencies
[Fig. 11(b)].

Once this initial solution is found, O⃗inðtÞ, and all the sign
choices have been made, we repeat the optimization
process using as new target frequencies the smoothed-
out time series of the initial solution, see Fig. 6, i.e.,

T⃗ðtÞ ¼ B⃗inðtÞ, with the beatnotes B⃗inðtÞ those correspond-
ing to the solution O⃗inðtÞ. The final output thus consists of
the smoother time series O⃗outðtÞ.

FIG. 9. Constraining domain outer boundaries (in red) for the offset frequencies for configuration N3-L32 at day 102 of the orbits from
“OP25_340_10Y3T.XYZ”.

FIG. 10. (a) Optimized beatnotes for configuration N3-L32. (b) Optimized nonlocking beatnotes for configuration N3-L32.
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These solutions provide values for the offset frequencies
for every day of the orbit time. In this example, for
simplicity, we compute the piecewise cubic Hermite poly-
nomials that interpolate between each pair of days to
produce offset values at a much finer time resolution,
while maintaining the exact values of the original solution
(and its discrete first derivatives) at the daily time break-
points, and avoiding overshooting of the solution beyond
the bandwidth constraint boundaries. For instance, during
the first two days (i.e., for t in between t0 ¼
13074.1406279 and t1 ¼ 13075.1406279), we obtain the
following polynomials:

O1ðtÞ ¼ −0.0006532907752644507ðt − t0Þ3
þ −0.001690277532664028ðt − t0Þ2
þ 0.01309428489022757ðt − t0Þ
þ 14.483126147178096; ð47Þ

O2ðtÞ ¼ 7.538946707463801 × 10−7ðt − t0Þ3
þ 0.00016748847683473178ðt − t0Þ2
þ −0.03788217470242561ðt − t0Þ
þ 8.71039204492068; ð48Þ

O3ðtÞ ¼ 3.822182343196645 × 10−9ðt − t0Þ3
þ 5.212005644189208 × 10−6ðt − t0Þ2
þ −0.007128056477036182ðt − t0Þ
þ 22.227273698100003; ð49Þ

O4ðtÞ ¼ −8.747618260637052 × 10−7ðt − t0Þ3
þ −7.846611974351471 × 10−5ðt − t0Þ2
þ 0.007354898265365506ðt − t0Þ
þ −22.227541666452975; ð50Þ

O5ðtÞ ¼ −3.0812613638353525 × 10−7ðt − t0Þ3
þ −0.00023074876614948003ðt − t0Þ2
þ 0.17372650511784826ðt − t0Þ
þ 15.043307304145314: ð51Þ

Coefficients such as these for fifth order PCHIP-
Bernstein splines are the actual frequency plan data that
must be periodically delivered to the onboard computers for
reconfiguration of the corresponding phasemeters in the
constellation such that they tune the phase-lock loop offsets
accordingly.

IV. CONCLUSION

In this paper, we have described a computational-geo-
metric method, based on the Minkowski sum of convex
polytopes, to study the valid heterodyne frequency ranges
that avoid the need to switch the signs of the laser
transponder offsets throughout the lifetime of the LISA
mission. Choosing a frequency range ðfmin; fmaxÞ belong-
ing to “case 3” described in Sec. II C (Fig. 5) guarantees
that the laser locks can be maintained without interruption
for at least ten years, maximizing the uptime of the LISA
detector and thus the extent of the science data stream.

FIG. 11. (a) Difference between beatnotes for configuration N3-L32. (b) Rate of change of beatnotes for configuration N3-L32.
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This has also allowed us to pose the physical constraints,
given by the feasible frequency bands of each offset and
beatnote and the local noncrossing requirements, in terms
of linear inequality constraints that cut out those geometric
domains. Informed by this geometric interpretation, we
have then proposed a quadratic programming minimization
algorithm to find offset frequencies that make the beatnotes
as close as possible to certain constant target frequencies,
which are then adapted at every time to find a solution as
smooth as possible.
This furnishes us with cubic piecewise polynomials

between any two successive instants of the orbit data that
interpolate the offset frequencies. The coefficients of these
polynomials, computed periodically on-ground based on
the latest orbit data, is the final payload to be transmitted to
the onboard computers in the constellation for in-flight
implementation of the frequency plan.

The methods and algorithms described in this paper are
not exclusive to LISA, but can be applied to other missions
employing similar laser transponder schemes.
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