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Abstract. The inter-annual variability of the global carbon sink is heavily influenced by semi-arid regions. Southern 

hemispheric Africa has large semi-arid and arid regions. However, there is only a sparse coverage of in situ CO₂ 

measurements on the southern hemisphere. This leads to uncertainties in measurement-based carbon flux estimates for these 

regions. Also, dynamic global vegetation models (DGVMs) show large inconsistencies in semi-arid regions. Satellite CO₂ 

measurements offer a spatially extensive and independent source of information about the southern African carbon cycle.  15 

We examine Greenhouse Gases Observing Satellite (GOSAT) CO₂ concentration measurements from 2009 to 2018 in 

southern Africa. We infer CO₂ land-atmosphere fluxes which are consistent with the GOSAT measurements using the 

atmospheric inversion system TM5-4DVar. We find systematic differences between these satellite-based carbon fluxes and 

atmospheric inversions based on in situ measurements pointing towards a limited measurement information content in the 

latter. We use the GOSAT based fluxes and additionally Solar Induced Fluorescence (SIF), a proxy for photosynthesis, as 20 

atmospheric constraints to select DGVMs of the TRENDYv9 ensemble which show compatible fluxes. The selected 

DGVMs allow for studying the vegetation processes driving the southern African carbon cycle. We show that the variability 

of photosynthetic uptake mainly drives the inter-annual variability of the southern African carbon fluxes. The seasonal cycle, 

however, is substantially influenced by enhanced soil respiration due to soil rewetting at the beginning of the rainy season. 

The latter result emphasizes the importance of correctly representing the response of semi-arid ecosystems to soil rewetting 25 

in DGVMs. 

1 Introduction 

The terrestrial carbon sink currently takes up nearly one third of human made greenhouse gases and thereby slows down 

climate change (Friedlingstein et al., 2023). The amount of CO₂ taken up by global ecosystems varies substantially from year 

to year. This inter-annual variability (IAV) reflects the response of ecosystem carbon uptake to varying climate conditions 30 

such as temperature or precipitation fluctuations (Zeng et al., 2005; Zhang et al., 2018; Piao et al., 2020). Current vegetation 
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models struggle in accurately reproducing IAV of the terrestrial carbon sink and an imbalance exists between the modelled 

and measured total global sink estimates (Friedlingstein et al., 2023). The imbalance is even stronger when examining 

carbon fluxes on smaller spatial scales (Bastos et al., 2020) and implies that there is still an insufficient understanding of the 

terrestrial processes driving land carbon exchange. A better understanding is needed to improve climate models and climate 35 

change predictions (Steiner et al., 2020). 

Semi-arid regions contribute substantially to the IAV of the global terrestrial carbon sink. In these regions, precipitation and 

temperature fluctuations heavily impact the IAV of carbon fluxes (Poulter et al., 2014; Ahlström et al., 2015). Africa has 

large areas of semi-arid and arid ecosystems (Williams et al., 2007) and contributes substantially to the global IAV 

(Williams et al., 2007; Valentini et al., 2014; Pan et al., 2020). However, in situ CO₂ measurements in Africa are very sparse 40 

leading to large uncertainties in carbon flux estimates from atmospheric inversions and machine learning approaches 

(Valentini et al., 2014; Ernst et al., 2024). Dynamic Global Vegetation Models (DGVMs), also, show large inconsistencies 

amongst each other and tend to underestimate the inter-annual CO₂ flux variability in semi-arid regions (MacBean et al., 

2021).  

Satellite CO₂ concentration measurements, for example from the Greenhouse Gases Observing Satellite (GOSAT) measuring 45 

CO₂ concentrations since 2009 or the Orbiting Carbon Observatory 2 (OCO-2) launched in 2014, have much denser 

coverage compared to in situ measurements. Previous studies found systematic differences between satellite- and in situ 

measurement-based CO₂ concentrations and fluxes in southern Africa (Mengistu and Mengistu Tsidu, 2020; Taylor et al., 

2022; Byrne et al., 2023). Byrne et al. (2023) attribute these differences mainly to the sparse coverage of in situ CO₂ 

measurements. The studies emphasize the potential of satellite-based atmospheric inversions to provide additional 50 

information and therefore more robust estimates of the carbon fluxes in southern hemispheric Africa, which then enable 

research about processes driving the CO₂ exchange. Metz et al. (2023) demonstrate the potential of combining satellite-based 

CO₂ flux estimates with DGVMs in Australia to decipher soil respiration processes driving the Australian terrestrial CO₂ 

exchange on continental scale. 

Here, we investigate the decadal dataset of GOSAT CO₂ concentrations over southern hemispheric Africa from 2009 to 55 

2018. We run a global inversion with GOSAT and in situ measurements to infer GOSAT satellite-based CO₂ exchange 

fluxes between land and atmosphere and compare the fluxes to flux estimates based on in situ measurements alone, to 

machine learning approaches, and to the TRENDYv9 ensemble of DGVMs. By selecting a subset of DGVMs which match 

the satellite-based carbon fluxes, we analyse the underlying processes driving the IAV and seasonal variability of the 

southern African carbon cycle. 60 
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2 Data and Methods 

2.1 Study region 

Our study region spans southern hemispheric Africa southwards of 10° S including Madagascar (see Fig. 1). This region 

agrees with the region selection in Mengistu and Mengistu Tsidu (2020) taking into account the different climatic conditions 

in the African continent. Northwards of the study region, Africa is influenced by the low pressure system of the inter tropical 65 

convergence zone leading to a tropical wet regime. In the southern Africa, high pressure cells lead to dry conditions and 

cause the existence of the Kalahari Desert (Mengistu and Mengistu Tsidu, 2020). Even though total annual precipitation is 

decreasing southwards, the whole region experiences distinct wet and dry seasons and is influenced strongly by IAV of 

precipitation (Fan et al., 2015; Valentinti et al., 2015). The study region is mainly covered by (woody) savannas, grassland, 

and shrubland (see Fig. 1). 70 

 

Figure 1: Study region southern Africa. The land cover in the study region is given based on MODIS (MCD12C1) data (Friedl and 

Sulla-Menashe, 2022). Additionally, the main region used for the analyses is depicted as a red box. The black dashed boxes show 

the subdivision into a northern and southern region. 

The vegetation is mostly water limited in its growth (Williams et al., 2008) and exposed to large seasonal fires. The fire 75 

season starts in May in the western part of Africa and spreads eastwards to reach southern Africa in September (Edwards et 

al., 2006). Fires on the whole African continent are the largest contributor to and account for more than half of the global fire 

carbon emissions (van Marle et al., 2017; Shi et al., 2015; Valentini et al., 2014). They reduce the African carbon sink 

significantly (Lasslop et al., 2020). We subdivide the study region in a northern, savanna dominated region and a southern 

grass- and shrubland region separated at 17°S, excluding Madagascar.  80 

https://doi.org/10.5194/egusphere-2024-1955
Preprint. Discussion started: 2 September 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

 

2.2 Total column CO₂ measurements 

For our analyses we use column-average dry-air mole fractions of CO₂ (XCO₂, in the following referred to as CO₂ 

concentrations) measured by the Greenhouse Gases Observing Satellite (GOSAT). GOSAT was launched in 2009 and has a 

sub-satellite field of view of 10.5 km radius with a sparse sampling grid. We use GOSAT CO₂ concentration data generated 

by applying the RemoTeC radiative transfer and retrieval algorithm version 2.4.0 (Butz, 2022) as used in Metz et al. (2023). 85 

The retrieval version is based on the preceding RemoTeCv2.3.8 as used in Detmers et al. (2015) and covers the period 

04/2009–06/2019. Moreover, GOSAT CO₂ concentration data generated by the NASA Atmospheric CO₂ Observation from 

Space (ACOS) algorithm version 9 (Lite), available for the period 04/2009-07/2020, is used. In the following the datasets are 

called GOSAT/RemoTeC and GOSAT/ACOS (see Table A1 for more information about the datasets and nomenclature used 

in this study).  90 

For validation purposes, XCO₂ data measured by the Orbiting Carbon Observatory 2 (OCO-2) satellite is used (OCO-

2/OCO-3 Science Team, 2020; Eldering et al., 2017). OCO-2 was launched in 2014 and has a sub-satellite field of view of 

1.3 km x 2.3 km. Furthermore, Collaborative Carbon Column Observing Network (COCCON) XCO₂ data of the Gobabeb 

station (Namibia, Frey et al., 2021; Dubravica, 2021) is taken for comparison. COCCON stations measure XCO₂ using a 

sun-viewing ground-based Fourier transform infrared spectrometer (Frey et al., 2019). 95 

For examining the seasonal variability of CO₂ concentrations in the study region, the global background trend is subtracted 

from the total CO₂ measurements to obtain detrended CO₂ concentrations. For this, we assume a yearly linear increase of 

global atmospheric CO₂ and use the annual mean CO₂ growth rate (GR) published by the National Oceanic and Atmospheric 

Administration (NOAA). The growth rates are based on globally averaged CO₂ concentration measurements of marine 

surface sites (NOAA, 2024). The following equation describes the used background trend: 100 

𝐵𝐺𝑦,𝑚 = BG0 +  ∑ (𝐺𝑅𝑖)𝑦−1
𝑖=2009 +  

m

12
𝐺𝑅𝑦 .         (1) 

Thereby, the increase of the CO₂ concentrations in the previous years from 2009 onwards is described by the second part in 

the equation. The increase within the previous months in the respective year is given by the third part. Both are added to an 

overall offset BG₀ in 2009. This offset is estimated so that the mean of the detrended CO₂ concentrations over the whole time 

period is zero. 105 

 

2.3 Fluxes 

2.3.1 Top-down 

Carbon fluxes can be obtained by assimilating measured CO₂ atmospheric concentrations in an atmospheric inversion. 

Atmospheric inversions typically build on Bayesian optimization i.e. they optimize forward transported CO₂ emissions such 110 

that these agree best with the observations within measurement and model uncertainties, while at the same time not deviating 
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from the prior within given prior uncertainties. For our study, we use three in situ CO₂ measurement based atmospheric 

inversions: the TM5 four-dimensional variational inversion system (TM5-4DVar, (Basu et al., 2013)), NOAA’s modelling 

and assimilation system CarbonTracker (CT2022, (Peters et al., 2007; Jacobson et al., 2023)), and Copernicus Atmosphere 

Monitoring Service (CAMS, (Chevallier et al., 2005; Chevallier et al., 2010; Chevallier et al., 2019)). The models estimate 115 

global CO₂ fluxes based on a set of in situ CO₂ measurements from global monitoring networks (Masarie et al., 2014). 

Thereby, the models use different prior datasets. For example, for the biogenic CO₂ fluxes, TM5-4DVar and CarbonTracker 

build on different implementations of the Carnegie-Ames-Stanford Approach (Randerson et al., 1996) as further described in 

Metz et al. (2023), Weir et al. (2021), and Jacobson et al. (2023), while CAMS uses biogenic fluxes of the ORCHIDEE 

model (Chevallier et al., 2019). Furthermore, the models use different transport models. While TM5-4DVar and 120 

CarbonTracker use the transport model TM5, CAMS uses the LMDZ global atmospheric transport model. All three models 

use ECMWF ERA5 data as meteorological drivers. The output resolution is monthly 3°x2° for TM5-4DVar and 

CarbonTracker2022 and monthly 3.7°×1.81° for CAMS (see Table A1 for more details). The ensemble of the three models is 

referred to as in-situ-only inversions in the following, TM5-4DVar based on in situ measurements is called TM5-4DVar/IS. 

In addition to in situ measurements, satellite CO₂ concentration measurements can be fed into atmospheric inversions. To 125 

this end, we use the model TM5-4DVar and assimilate GOSAT CO₂ concentration measurements together with the in situ 

measurements. Depending on the specific GOSAT dataset used, we refer to these fluxes in the following as TM5-

4DVar/RemoTeC+IS, TM5-4DVar/ACOS+IS, or when using the mean of both TM5-4DVar/GOSAT+IS. More details about 

the TM5-4DVar settings can be found in Metz et al. (2023). For comparison we also draw on data of the OCO-2 Model 

Intercomparison Project (MIP) (Byrne et al., 2023) for the years 2015 to 2018. Within MIP, atmospheric inversions estimate 130 

carbon fluxes assimilating OCO-2 satellite CO₂ data together with in situ data. Thereby, all MIP inversion models use the 

same fossil fuel emission dataset but differ in the chosen datasets for all other prior fluxes (Byrne et al., 2023). We 

specifically make use of the LNLGIS (OCO-2 satellite data with in situ data) and the IS (in situ data only) experiment in the 

following referred to as MIP/OCO-2+IS and MIP/IS, respectively. Like Byrne et al. (2023), we exclude the MIP model LoFI 

as it uses a non-traditional inversion scheme differing from the MIP protocol. MIP/OCO+IS and MIP/IS provide fluxes with 135 

monthly 1°x1° resolution.  

All inversions optimize for biogenic and oceanic fluxes but impose anthropogenic fossil fuel emissions and fire emissions. 

The sum of (imposed) fire and biogenic fluxes yields our net biome productivity (NBP) estimates. In this study, positive 

fluxes denote a release of CO₂ from land into the atmosphere. All fluxes are regridded to monthly 1°x1° fluxes before 

performing the region selection.  140 

By transporting the posterior fluxes after the optimization, atmospheric inversions can model posterior concentration fields, 

which can be interpolated to the time and location of the satellite measurements for comparison. This so-called cosampling is 

used to eliminate sampling errors when comparing modelled concentrations to satellite measurements. We use the modelled 

and co-sampled posterior concentrations of the in-situ-only inversions introduced at the beginning of this section. 
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2.3.2 Bottom-up 145 

We compare the top-down CO₂ fluxes to bottom-up flux datasets from DGVMs as collected by the TRENDY 

Intercomparison v9 project. These TRENDY models give vegetation CO₂ fluxes simulated using a harmonized set of 

meteorological input data (Friedlingstein et al., 2020). We use the NBP, gross primary productivity (GPP), autotrophic 

respiration (RA), and heterotrophic respiration (RH) of 18 DGVMs (see Table A1). We thereby use the following definition: 

𝑁𝐵𝑃 =  𝑁𝐸𝐸 +  𝑓𝑖𝑟𝑒 +  𝑓𝑙𝑢𝑐 =  𝑇𝐸𝑅 –  𝐺𝑃𝑃 +  𝑓𝑖𝑟𝑒 +  𝑓𝑙𝑢𝑐 =  𝑅𝐻 –  𝑁𝑃𝑃 +  𝑓𝑖𝑟𝑒 +  𝑓𝑙𝑢𝑐 ,  (2) 150 

with the total ecosystem respiration (TER) calculated as sum of RA and RH, the fire emissions (fire), the land-use change 

fluxes (fluc), and the net primary productivity (NPP) calculated as GPP – RA. Most of the TRENDY models provide NBP 

fluxes directly. In the case of the models CABLE-POP and DLEM, NBP is calculated as RH-NPP, as both models do not 

provide fire and land-use change fluxes. The spatial resolutions of the model output differ (see Table A1). Therefore, we 

aggregate fluxes on a monthly 1°x1° grid before applying the region selection.  155 

Additionally, we use the FLUXCOM net ecosystem exchange (NEE) product as described in Jung et al. (2020). FLUXCOM 

uses machine learning models and meteorological data to upscale eddy covariance tower CO₂ flux measurements to global 

scale (Tramontana et al., 2016; Jung et al., 2020). To obtain an NBP estimate, we combine the NEE fluxes with fire CO₂ 

emissions provided by the Global Fire Emission Database (GFED, van der Werf et al., 2017). FLUXCOM and GFED are 

provided as 0.08°x0.08° 8-day fluxes and 0.25°x0.25° daily fluxes, respectively, and are aggregated on a monthly 1°x1° grid 160 

before applying the region selection. 

2.4 Other datasets 

To investigate the climatic conditions influencing the carbon fluxes, we use temperature, upper layer soil moisture, and 

precipitation datasets of the European Centre for Medium Range Weather Forecasts (ECMWF) ERA5-land data product 

(Muñoz Sabater et al., 2019; Muñoz Sabater et al., 2021) with monthly resolution on a 0.25°x0.25° spatial grid. ERA5 165 

datasets are aggregated on a 1°x1° grid before performing the region selection. Furthermore, we use Solar Induced 

fluorescence (SIF) measurements by the GOME-2 satellite from 2009 to 01/2018 (Joiner et al., 2023). SIF is considered 

proportional to GPP and can therefore be used as a proxy for CO₂ uptake by photosynthesis (Li et al., 2018). 

 

3 Results 170 

3.1 Monthly CO₂ concentrations by atmospheric inversions 

To access the seasonal and inter-annual dynamics in southern Africa, we detrend the monthly mean CO₂ concentrations 

following Eq. (1) (see Methods Sec. 2.2). The remaining CO₂ enhancements for the study region are shown in Fig. 2. The 

GOSAT measured CO₂ enhancements reveal a clear seasonal cycle with minimum concentration in the first and maximum 
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concentrations in the second half of the year. This general seasonal timing is confirmed by the posterior concentrations of the 175 

in-situ-only inversions. However, yearly reoccurring differences between GOSAT and the in-situ-only based CO₂ 

enhancements from September to November are clearly visible. The difference pattern has already been described by 

Mengistu and Mengistu Tsidu (2020) and has been shown by Taylor et al. (2022). Furthermore, especially in the second half 

of the year, different in-situ-only inversions are not consistent as indicated by the large shading in Fig. 2 Panel (a) (see also 

the individual models in Fig. A1). Reasons for these discrepancies will be further analysed in Sect. 3.3. 180 

Figure 2: Monthly southern African detrended CO₂ concentrations. GOSAT measured and detrended CO₂ concentrations are 

depicted in red. Modelled posterior CO₂ concentrations of three in-situ-only inversions are cosampled on GOSAT and depicted as 

mean in blue. Panel (a) shows the monthly mean CO₂ concentrations. The shading indicates the range among the individual 

ensemble members (GOSAT/ACOS+IS and GOSAT/RemoTeC+IS in red, CT2022, CAMS, and TM5-4DVar/IS in blue). Panel (b) 

shows the mean seasonal cycle 2009–2018 with the standard deviation over the years as shading. 185 

 

For comparison, we additionally use the OCO-2 satellite, which was launched in 2014, and one year of COCCON CO₂ 

column measurements in Namibia. Both datasets show a similar seasonal cycle as seen by GOSAT, i. e. they show 

concentration maxima later in the year than the in-situ-only inversions (see Fig. A1 and Fig. A2). No other total column 

measurement sites (e. g. of the COCCON network or Total Carbon Column Observing Network (TCCON, Wunch et al., 190 

2011)) with coinciding consecutive measurements for more than one year exist in southern hemisphere continental Africa, 

limiting the validation possibilities of satellite total column measurements in this region. 
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3.2 Southern African top-down and bottom-up CO₂ fluxes 

Figure 3: Top-down and bottom-up southern African net CO₂ fluxes. Panel (a) shows the mean monthly net CO₂ fluxes for the 195 
southern African region, Panel (b) shows the mean seasonal cycle of the fluxes over the 2009 to 2018 period. The TM5-

4DVar/GOSAT+IS fluxes are given in red, in-situ-only inversion fluxes are shown in blue. The mean over all TRENDY models is 

given in grey. GFED fire emissions are shown in orange and in combination with FLUXCOM NEE in yellow. The shading 

indicates the range over the GOSAT based fluxes (TM5-4DVar/ACOS+IS and TM5-4DVar/RemoTeC+IS) and the in-situ-only 

inversion fluxes (CT2022, CAMS, and TM5-4DVar/IS) and the standard deviation over the TRENDY ensemble in Panel (a). In 200 
Panel (b) shading indicates the standard deviation over the years. Positive fluxes indicate emissions into the atmosphere. Negative 

fluxes correspond to an uptake of CO₂ into the land surface. 

Assimilating the GOSAT CO₂ concentration measurements in TM5-4DVar, we obtain GOSAT based top-down fluxes in 

monthly resolution for the study region (see methods Sec. 2.3.1). As for the concentrations, a clear seasonal cycle is visible 

(Fig. 3). From January to May CO₂ is taken up by the land surface with a maximum uptake around March. From June to 205 

December, CO₂ is released into the atmosphere and reaches a maximum flux in September to November. A similar timing of 

the seasonal cycle is also captured by the in-situ-only inversion fluxes (CAMS, CT2022, and TM5-4DVar/IS). However, the 

in-situ-only inversions’ seasonal amplitude is smaller than for TM5-4DVar/GOSAT+IS.  

To analyse the found differences between TM5-4DVar/GOSAT+IS and the in-situ-only atmospheric inversions, we evaluate 

the information content provided by the measurements about the southern African carbon fluxes. To this end, we compare 210 

the TM5-4DVar fluxes (TM5-4DVar/IS and TM5-4DVar/GOSAT+IS) to the prior fluxes of the inversion model. From 

Fig. 4 it becomes clear that the in-situ-only fluxes (TM5-4DVar/IS) mainly follow the dynamics of the prior fluxes, whereas 

the GOSAT based fluxes deviate significantly from the prior. This is expected as the sparse coverage of in situ 

measurements in Africa and the southern hemisphere in general provides only little information about the African carbon 

fluxes. In contrast, satellites provide nearly global coverage of CO₂ measurements. Using these measurements in TM5-215 

4DVar, new information about the southern African carbon fluxes can be obtained and lead to a deviation of TM5-

4DVar/GOSAT+IS from the prior. This finding also explains the differences among the three in-situ-only inversions (see 
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shaded range of the in-situ-only inversions in Fig. 3). The inversions assume different prior fluxes, which they follow 

closely, as the information of the in situ data does not substantially inform the inversion. 

Figure 4: Top-down southern African net CO₂ fluxes from TM5-4DVar. In Panel (a), mean monthly net CO₂ fluxes for the 220 
southern African region from the TM5-4DVar prior (grey dotted), the in-situ-only inversion TM5-4DVar/IS (grey solid) and the 

TM5-4DVar/GOSAT+IS inversion (red) are given. Red shading indicates the range of the TM5-4DVar/ACOS+IS and TM5-

4DVar/RemoTeC+IS inversions. Panel (b) shows the mean seasonal cycle 2009–2018 with the standard deviation over the years as 

shading. 

When assimilating OCO-2 satellite measurements instead of GOSAT measurements, the MIP/OCO-2+IS ensemble mean 225 

also shows a larger amplitude of the southern African carbon fluxes compared to in-situ-only inversions and MIP/IS (Fig. 5). 

However, the spread among the MIP/OCO-2+IS models is large, especially during the maximum emissions from September 

to November. Some models show lower emissions similar to the in-situ-only inversions, whereas others agree with TM5-

4DVar/GOSAT+IS. By analysing the performance of the individual models in these three months, we find that three 

MIP/OCO-2+IS models reproduce the OCO-2 measurements the best (see Fig. A3) indicating that the OCO-2 measurements 230 

were given a considerable weight in the inversion and thus, that the optimized fluxes were informed by measurements. At 

the same time, these three inversion models (Baker, CAMS, and TM5-4DVar/OCO+IS) show the largest CO₂ emissions and 

agree best with TM5-4DVar/GOSAT+IS (see Fig.5 and Fig. A3). Concluding, we find that satellite-based inversions, which 

are actually compatible to the satellite measurements, show larger carbon fluxes in southern Africa than in-situ-only 

inversions, which suffer from the limited information provided by the sparse in situ measurements for southern Africa. 235 
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Figure 5: Top-down southern African net CO₂ fluxes from MIP. In Panel (a) mean monthly net CO₂ fluxes for the study region are 

given by TM5-4DVar/GOSAT+IS in red, the MIP/OCO-2+IS ensemble mean in grey, and the mean over three selected MIP 

models (CAMS, TM5-4DVar, and Baker) in black. In-situ-only inversion fluxes are given in blue as mean of CAMS, CT2022 and 

TM5-4Dvar/IS and in black dotted from the MIP/IS ensemble. The shading indicates the range over the GOSAT fluxes (TM5-

4DVar/ACOS+IS and TM5-4DVar/RemoTeC+IS), the MIP ensemble, and the three selected MIP models. Panel (b) gives the mean 240 
seasonal cycle from 2015 to 2018 with shading indicating the range over the MIP ensembles’ models and the standard deviation of 

the TM5-4DVar/GOSAT+IS over the years. 

Next to the in-situ-only inversion fluxes, we compare the TM5-4DVar/GOSAT+IS fluxes to FLUXCOM CO₂ fluxes. As 

FLUXCOM only provides NEE fluxes, we add GFED fire CO₂ emissions to obtain a NBP estimate. In Fig. 3, 

FLUXCOM+GFED only reaches positive monthly fluxes from June to September due to fire emissions occurring during that 245 

time. From October to May it shows a net CO₂ uptake. While the timing of the maximum sink agrees well between 

FLUXCOM+GFED and the inversion fluxes, FLUXCOM+GFED shows a smaller amplitude and an earlier drop in 

emissions compared to TM5-4DVar/GOSAT+IS and in-situ-only inversion fluxes. The tendency of FLUXCOM to report a 

stronger carbon sink on the southern hemisphere compared to other datasets is described in Jung et al. (2020). It is expected 

that the sparsity of eddy-covariance towers in Africa or in similar ecosystems hampers the machine-learning based approach 250 

of FLUXCOM for estimating CO₂ fluxes in the study area. Jung et al. (2020) describe larger uncertainties due to 

representation errors in semi-arid regions.  

Finally, we compare the inversion results to the ensemble of processed based vegetation models of the TRENDYv9 project. 

The mean of the DGVM ensemble in Panel (a) of Fig. 3 shows a smaller amplitude than the GOSAT fluxes and compares 

with the in-situ-only inversion fluxes. However, as indicated by the large standard deviation, the models deviate substantially 255 

from each other. Foster et al. (2024) and Metz et al. (2023) observed a similar large spread among DGVMs for the North 

American Temperate region and Australia, respectively. Both studies highlight the importance of performing a sub-selection 

of DGVMs agreeing well with atmospheric CO₂ measurements. 

https://doi.org/10.5194/egusphere-2024-1955
Preprint. Discussion started: 2 September 2024
c© Author(s) 2024. CC BY 4.0 License.



11 

 

3.3 GOSAT and SIF atmospheric constraints on TRENDY models 

Given the large spread of the TRENDY models, we select DGVMs according to their agreement with the GOSAT based 260 

CO₂ fluxes and SIF. Thereby, we compare the monthly mean DGVM and TM5-4DVar/GOSAT+IS NBP and NEE fluxes 

based on the RMSE of the monthly fluxes and the agreement in the seasonality. For the well matching DGVMs, we 

additionally compare the GPP normalized mean seasonal cycle to the GOME SIF normalized mean seasonal cycle. Only 

models with a timing of the minimum and maximum GPP agreeing within +-1 month with the normalized SIF seasonal cycle 

are selected (see Fig. 6). This ensures the correct seasonal timing of the modelled GPP fluxes. Based on these criteria, we 265 

select the models ORCHIDEE (RMSE NBP: 60.2 TgC/month, RMSE NEE: 68,2 TgC/month), ORCHIDEEv3 (RMSE NBP 

70.2 TgC/month, RMSE NEE: 56.2 TgC/month) and CABLE-POP (RMSE NBP: 78.2 TgC/month, RMSE NEE: 

63.6 TgC/month). The model OCN, which performs well for NBP/NEE, shows larger deviations in the SIF/GPP comparison 

(see Fig. 6) and is therefore not included in the TRENDY selection. 

Figure 6: Seasonal cycle of SIF and selected TRENDY models. The normalized mean seasonal cycle of GOME-2 SIF (2009–270 
01/2018), the three selected DGVMs (ORCHIDEE, ORCHIDEEv3, CABLE-POP) GPP, and OCN GPP (2009–2018) are shown in 

solid black and coloured dotted, respectively. The spatial standard deviation over monthly GOME-2 SIF aggregated on a 1°x1° is 

given as shading. 

The NBP mean over these three models is given in Panels (a) and (b) of Fig. 7. The models reproduce the timing and 

strength of the TM5-4DVar/GOSAT+IS NBP fluxes. Only at the beginning of the emission period around July to September, 275 

the TRENDY selection fluxes are lower. Furthermore, the selection shows a significantly smaller sink in 2012 and smaller 

source in 2016. Note that ORCHIDEE is part of the TRENDY selection and is also used by the in-situ-only inversion CAMS 

as prior flux assumption. This explains why CAMS best matches TM5-4DVar/GOSAT+IS CO₂ fluxes and GOSAT CO₂ 

concentrations in Fig. 3 and Fig. 2, respectively.  

Fire emissions contribute substantially to the seasonality of the southern African carbon fluxes. They largely explain the 280 

beginning of the emission period from July to September (see Fig. 3). Different fire emission data products differ 
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significantly and suggest large uncertainties on the magnitude of the actual fire emissions in our study region (see Fig. A4). 

GFED, which we use for our analyses, shows the largest fire emissions but could even underestimate the actual emissions as 

suggested by current literature for southern hemispheric Africa (Ramo et al., 2021).  

To exclude the influence of fire emission in the comparison, we analyse the monthly NEE fluxes of the TRENDY selection 285 

compared to the TM5-4DVar/GOSAT+IS NBP fluxes with GFED fire emissions subtracted. The subtraction of the fire 

emissions leads to a better agreement between both datasets, especially at the beginning of the emission period suggesting 

that fire fluxes in the DGVMs do not agree to the GFED fire fluxes (see Fig. 7 Panels (c) and (d)). This goes along with large 

uncertainties in DGVM fire fluxes being reported previously (Bastos et al., 2020). 

Figure 7: Annual and mean monthly NBP and NEE fluxes in southern Africa. The NBP fluxes by TM5-4DVar/GOSAT+IS (red) 290 
and selected TRENDY models (black) are given as mean monthly fluxes in Panel (a) and as the mean seasonal cycle in Panel (b). 

Similar to that, Panel (c) and (d) show the monthly NEE fluxes (GFED is subtracted from TM5-4DVar/GOSAT+IS). Additionally, 

the annual (July to June) NEE fluxes of the selected TRENDY models and TM5-4DVar/GOSAT+IS – GFED fluxes are given. The 

shading indicates the standard deviation over the TRENDY models and range of TM5-4DVar/ACOS+IS and TM5-

4DVar/RemoTeC+IS (Panel (a) and (c)) and over the years (Panel (b) and (d)). 295 

Panel (c) in Fig. 7 additionally shows the annual NEE fluxes (July-June) as bars. The absolute difference between TM5-

4DVar/GOSAT+IS and TRENDY annual fluxes is large in some years. These differences are caused by a stronger sink at the 

beginning of 2012 and enhanced emissions at the end of 2013 and 2016 in TM5-4DVar/GOSAT+IS compared to TRENDY. 
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However, while both datasets do not agree on the absolute value of annual fluxes in most of the years, they show a similar 

IAV. Both datasets show a slightly stronger CO₂ uptake from 2010 to 2012. These years were strong and moderate La Nina 300 

years with enhanced rainfall in 2010 and 2011 in the study region compared to the longtime mean (see Fig. A5). 

Additionally, lower than average temperatures led to enhanced surface near soil moisture in 2010/11. The soil moisture 

declined in 2012 to reach the long-term average. In 2015 and 2016, the sink given by the GOSAT and TRENDY selection 

NEE fluxes is small. These two years have been a weak and a strong El Nino year respectively with dry conditions and in 

case of 2016 exceptionally high temperatures (see Fig. A5). These findings agree well with results from Pan et al. (2020) 305 

pointing out that temperature and precipitation extremes impact the African ecosystems heavily and therefore play a key role 

in the African carbon fluxes.  

To conclude, especially the monthly NEE and NBP fluxes, but also the IAV of the selected TRENDY models agree well 

with TM5-4DVar/GOSAT+IS NEE and NBP – although the latter was not a criterion in the selection process of the 

TRENDY models. This suggests that the selected models indeed capture the carbon cycle dynamics even on a decadal time 310 

scale. For this reason, we use the model selection for further investigations of vegetation processes driving the southern 

African carbon cycle. 
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3.4 Seasonal and IAV of TRENDY gross fluxes 

Figure 8: Annual and mean monthly CO₂ net and gross fluxes. The mean monthly fluxes (Panel (a), (c), (e)) and annual anomalies 

(Panel (b), (d), (f)) of NBP, NEE, GPP-RA, and RH of the selected TRENDY models are given in black, grey (dotted), green, and 315 
blue, respectively. The fluxes are given for the whole study region (Panel (a) and (b)), the Savanna dominated northern region 

(north of 17°S, Panel (c) and (d)), and the southern region with grass- and shrubland (Panel (e) and (f)). The annual anomalies are 

calculated by subtracting the individual long-term mean of the annual fluxes. Thereby, a positive GPP anomaly denotes a reduced 

GPP and vice versa. The shading in Panel (a), (c), and (e) indicates the standard deviation over the three selected models 

(ORCHIDEE, ORCHIDEEv3, and CABLE-POP). 320 
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To investigate the vegetation dynamics shaping the seasonal cycle of the southern African CO₂ exchange fluxes, we use the 

selected TRENDY models to further split up the net ecosystem exchange fluxes in the gross fluxes NPP (GPP – RA) and 

RH. The gross and net fluxes are given as mean seasonal cycle and annual anomalies in Fig. 8. In the mean seasonal cycle 

for the whole study region (Panel (a)), we can see a clear difference in timing between RH and GPP-RA. RH increases early 

in September and October, while RA increases one to two months later simultaneously with GPP (see Fig. A6). The 325 

dephasing between RH and GPP-RA leads to a prolonged emission phase in the net CO₂ exchange. It takes place in the 

whole region and occurs in the savanna dominated north (Fig. 8 Panel (c)) and in the grass- and shrublands in the south 

(Panel (e)). The dephasing takes place in every year (see Fig. A7) and is present in all selected TRENDY models. It causes a 

mean CO2 release of 494 TgC during the emission phase, which is about 17% and 18% of the annual total RH and GPP-RA, 

respectively.  330 

When looking at the monthly precipitation over the study region (see Fig. A8) one can identify a distinct drought phase 

occurring in the whole study region. The subsequent start of the rainy season in September and October temporally coincides 

with the early increase in RH. This finding resembles the results of Metz et al. (2023) in Australia, describing an increase of 

soil respiration with the beginning of the rainy season prior to the start of the growing season. The study finds soil respiration 

pulses resulting from rewetting of soils to cause the continental scale increase of soil respiration. Such soil respiration pulses 335 

at local arid sites are discussed in the context of Birch effect (Birch et al., 1964; Jarvis et al., 2007). Thereby the rewetting of 

the soil enables microbial populations to grow and to transform the carbon stored in the soils into CO₂ emissions. CO₂ is then 

released in substantial amounts within a short period of time. Like in Metz et al. (2023), we find short duration emission 

pulses in the daily flux record of a FLUXNET station in the study region. Exemplary annual records of the FLUXNET 

station in the Kruger National Park (Archibald et al., 2009) show CO₂ emission caused by precipitation pulses (see Fig. A9). 340 

This is also reported in Fan et al. (2015) studying a two-year measurement record of carbon fluxes in Kruger National Park 

in more detail. The study finds recurring respiration emission pulses due to precipitation events and attributes them to the 

Birch effect. The TM5-4DVar/GOSAT+IS fluxes indicate an even larger time lag between the increase of soil respiration 

and NPP in some years compared to TRENDY. A by 1–2 months prolonged emission phase (see Figure 7, Panel (c)) takes 

place in years with especially low soil moisture (2013, 2015, 2016, see Fig. A5). This later drop in emissions could either be 345 

caused by a delayed start of the GPP rise in the growing season or enhanced soil respiration due to the drier conditions. It is 

not possible to investigate this further, as none of the TRENDY DGVMs captured the IAV in the timing of the emission 

phase. 

Looking at the annual gross flux anomalies given by the TRENDY selection (Fig. 8, Panel (b)), we see that the IAV of NBP 

and NEE is driven by GPP mainly. Enhanced GPP from 2010 to 2012 leads to a constant stronger uptake of CO₂. In 2017 a 350 

strongly enhanced GPP causes a large CO₂ sink. Reduced GPP in 2013, 2015, and 2016 results in positive NEE anomalies 

associated with a reduced sink in NEE. RH only plays a minor role and mostly slightly counteracts the GPP anomalies. This 

is in contrast to semi-arid Australia, where Metz et al. (2023) found large IAV of RH driven by precipitation anomalies 

during the dry season. The African study region, however, has a distinct and regular dry season every year (see Fig. A8), 

https://doi.org/10.5194/egusphere-2024-1955
Preprint. Discussion started: 2 September 2024
c© Author(s) 2024. CC BY 4.0 License.



16 

 

leading to a smaller influence of RH on IAV. Note that in 2017, GOSAT suggests a much smaller annual CO₂ sink. 355 

However, the discrepancy is mainly caused by a significant difference in the emissions in the second half of the year and 

while both datasets agree well in the phase of carbon uptake (see Fig. 7, Panel (c)). Therefore, the TM5-4DVar/GOSAT+IS 

fluxes support the large GPP anomaly given by the TRENDY models but suggest stronger respiration or fire fluxes at the 

end of 2016. Looking at the subregions (Panels (d) and (f)), one can see that the sinks in 2010-2012 and 2017 are mainly 

driven by the southern grassland region, whereas the comparably large release in 2016 seems to be driven by the whole 360 

African region. These findings agree with the studies of Ciais et al. (2009), Weber et al. (2009), and Williams et al. (2008) 

which identify GPP variability as a major source of African fluxes’ IAV. 

4 Conclusions 

The sparsity of in situ CO₂ concentration and flux measurements cause large uncertainties in carbon flux estimates in the 

southern African region. We show that satellite measurements provide additional information leading to an improvement of 365 

our knowledge about the southern African carbon cycle. Our study demonstrates that satellite measurement based 

atmospheric inversions and SIF can be used as atmospheric constraints for sub-selecting TRENDY DGVMs. This is 

necessary as TRENDY flux estimates show a large spread in our study region.  

Using the selection of TRENDY DGVMs, we find that IAV of NBP and NEE in southern Africa is driven by GPP 

variability. Thereby, enhancements in annual GPP mainly originate in the grass- and shrublands in the southern part of the 370 

study region. The seasonal variability of the southern African carbon fluxes is impacted by soil respiration dynamics, which 

are driven by the onset of the rainy season. Respiration pulses have been reported under the term of the Birch effect for arid 

Africa (Fan et al., 2015) and have been shown to be relevant on continental scale in semi-arid Australia (Metz et al., 2023). 

This enforces the relevance of rain induces CO₂ emissions for the southern African region and semi-arid regions in general. 

Our results emphasize the importance of correctly representing the response of semi-arid ecosystems to soil rewetting in 375 

DGVMs. 

 

 

 

 380 
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Appendix A 

Figure A1: Monthly southern African detrended CO₂ concentrations given by inversions and satellites. Like Fig. 1, but with 

detrended XCO₂ measurements of OCO-2 in black und individual in-situ-only inversions co-sampled on the GOSAT 385 
measurements in dark blue (CT2022 dashed, CAMS dash-dotted, and TM5-4DVar/IS dotted). Panel (a) gives the monthly mean 

CO₂ concentrations, while Panel (b) shows the mean seasonal cycle 2015-2018. The shading indicates the range among 

GOSAT/ACOS and GOSAT/RemoTeC and the range among the three in-situ-only inversions in Panel (a). In Panel (b) the shading 

indicates the standard deviation over the year. 

  390 
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Figure A2: Monthly southern African detrended CO₂ concentrations given by inversions, satellites and COCCON measurements. 

Like Fig. 1, but with detrended XCO₂ measurements of the COCCON stations Gobabeb in black. 

Figure A3: Performance of the individual MIP models. For the MIP/OCO-2+IS inversions 5% of the OCO-2 measurements are 

withheld for validation purposes and modelled XCO₂ co-sampled on the measurements are provided for each model but CSU. The 

mean differences of the OCO-2 measurements and modelled co-samples for each month and model are plotted against the 395 
difference of the monthly TM5-4DVar/GOSAT+IS and individual MIP/OCO-2+IS CO₂ flux. The MIP models Baker, CAMS and 

TM5-4DVar are highlighted in yellow, blue and red. 
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Figure A4: CO₂ fire emissions in southern Africa. The monthly CO₂ fire emissions collected by three fire emission databases 

(GFED in orange, Global Fire Assimilation System (GFAS (Kaiser et al., 2012)) in red and the Fire INventory from NCAR (FINN 400 
(Wiedinmyer et al., 2011)) in purple). 

Figure A5: Climate Anomalies. The annual anomalies of ERA5 precipitation, temperature and upper layer soil moisture are given 

in blue, red, and grey hashed. The annual anomalies are calculated by subtracting the individual long-term mean of the annual 

values. 

Figure A6: Mean monthly CO₂ net and gross fluxes. Like Fig. 8 (a) but additionally with GPP and RA of the TRENDY selection. 405 
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Figure A7: Monthly CO₂ fluxes in northern (Panel (a)) and southern (Panel (b)) subregion. The monthly NEE, NPP (GPP-RA), 

and RH fluxes from the selected TRENDY models are given in black, green, and violet respectively for the northern southern 

African region in Panel (a). The TM5-4DVar/GOSAT+IS - GFED NEE fluxes are additionally shown in red dotted. The same is 410 
given in Panel (b) for the southern subregion. 

 

 

 

 415 
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Figure A8: Monthly precipitation and temperature as mean over southern Africa. The monthly precipitation is given as blue bars 

and the mean temperature as solid red line. 
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Figure A9: Local data from FLUXNET eddy covariance flux tower in Kruger National Park. Daily mean net carbon fluxes 420 
(green), precipitation (blue) and soil moisture (red) measured by the FLUXNET station ZA-Kru (Archibald et al., 2009). Panel (a) 

shows the year 2005, Panel (b) shows 2010. 
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Table A1: Summary of datasets 

1) all TRENDY model data is provided in monthly temporal resolution 425 

The main characteristics and references of the observation and model data are listed. Links to the datasets are provided in the 

Data availability section.  

Description Dataset Resolution References 

GOSAT XCO2 GOSAT/RemoTeC v2.4.0 10.5 km footprint Butz et al., 2011, 2022 
  GOSAT/ACOS v9r(Lite) 10.5 km footprint Taylor et al., 2022, OCO-2 Science Team, 

2019 

Validation XCO2 OCO-2 v11r 1.3×2.3 km footprint Eldering et al., 2017, OCO-2/OCO-3 
Science Team, 2020 

  COCCON Gobabeb local Frey et al., 2021, Dubravica, 2021 

Model XCO2 TM5 − 4DVAR/IS 3°×2°, monthly Basu et al., 2013 

based on in-situ data CarbonTracker CT2022 3°×2°, monthly Peters et al., 2007; Jacobson et al., 2023 

  CAMS v21r1 3.7°×1.81°, monthly Chevallier et al., 2005, 2010, 2019 

In-situ-only inversions TM5 − 4DVAR/IS 3°×2°, monthly Basu et al., 2013 

  CarbonTracker CT2022 1°×1°, monthly Peters et al., 2007; Jacobson et al., 2023 

  CAMS v20r1 3.7°×1.81°, monthly Chevallier et al., 2005, 2010, 2019 

TM5-
4DVar/GOSAT+IS 

TM5-4DVar/RemoTeC+IS and 
TM5-4DVar/ACOS+IS 

3°x2°, monthly Basu et al., 2013 

TM5-4DVar/OCO-

2+IS 

TM5-4DVar of MIP/LNLGIS 1°x1°, monthly Basu et al., 2013; Byrne et al., 2023 

MIP/OCO-2+IS 
MIP/IS 

MIP/LNLGIS experiment 
MIP/IS experiment 

1°x1°, monthly Byrne et al., 2023 

SIF GOME-2 Daily_Averaged_SIF 40 km x 40 km/80 km Joiner et al., 2023 

FLUXCOM FLUXCOM NEE 0.08°×0.08°, 8-days Tramontana et al., 2016; Jung et al., 2020 

+ GFED GFED v4.1s 0.25°×0.25°, monthly Van der Werf et al., 2017 

TRENDYselection ORCHIDEE S3 0.5°x0.5° 1) Krinner et al., 2005 
  ORCHIDEEv3 S3 2°x2° 1) Vuichard et al., 2019 

  CABLE-POP S3 1°x1° 1) Haverd et al., 2018 

TRENDYothers YIBs S3 1°x1° 1) Yue and Unger, 2015 

  OCN S3 1°x1° 1) Zaehle et al., 2010 

 ORCHIDEE-CNP S3 2°x2° 1) Goll et al., 2018 

  JSBACH S3 1.86°x1.88° 1) Reick et al., 2021 

  CLASSIC S3 2.80°x2.81° 1) Melton et al., 2020 

  LPJ S3 0.5°x0.5° 1) Poulter et al., 2011 
  CLM5.0 S3 0.94°x1.25° 1) Lawrence et al., 2019 

  DLEM S3 0.5°x0.5° 1) Tian et al., 2015 

  IBIS S3 1°x1° 1) Yuan et al., 2014 

  ISAM S3 0.5°x0.5° 1) Meiyppan et al., 2015 
  ISBA-CTRIP S3 1°x1° 1) Delire et al., 2020 

  JULES-ES-1.0 S3 1.25°x1.88° 1) Sellar et al., 2019 

  LPX-Bern S3 0.5°x0.5° 1) Lienert and Joos, 2018 

  SDGVM S3 1°x1° 1) Walker et al., 2017 

  VISIT S3 0.5°x0.5° 1) Kato et al., 2013 

ERA5 meteorological 

data 

ERA5-land data  

total precipitation, upper layer 

soil moisture, temperature 

1°×1°, monthly Muñoz Sabater 2019, 2021 

 MODIS MODIS (MCD12C1) data 0.05°x0.05°, 2015 Friedl and Sulla-Menashe, 2022 
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Table A2: Monthly fluxes of TM5-4DVar/GOSAT+IS in southern Africa 

Year Month RT+IS ACOS+IS Mean Year Month RT+IS ACOS+IS Mean 

2009 4 -157.56 -195.50 -176.53 2014 3 -218.74 -194.84 -206.79 

2009 5 -83.13 -102.61 -92.87 2014 4 -160.54 -153.89 -157.21 

2009 6 6.71 6.29 6.50 2014 5 -84.72 -81.25 -82.99 

2009 7 93.92 109.99 101.96 2014 6 30.42 42.46 36.44 

2009 8 163.05 163.17 163.11 2014 7 82.04 99.66 90.85 

2009 9 219.63 198.25 208.94 2014 8 95.93 122.13 109.03 

2009 10 232.99 144.91 188.95 2014 9 215.17 154.74 184.96 

2009 11 140.76 88.81 114.79 2014 10 229.27 176.57 202.92 

2009 12 -32.79 -44.05 -38.42 2014 11 199.23 168.02 183.62 

2010 1 -144.40 -113.34 -128.87 2014 12 36.93 -35.25 0.84 

2010 2 -153.14 -157.85 -155.50 2015 1 -73.64 -86.37 -80.01 

2010 3 -144.99 -172.86 -158.93 2015 2 -139.19 -135.31 -137.25 

2010 4 -74.81 -121.29 -98.05 2015 3 -153.79 -149.43 -151.61 

2010 5 -57.83 -84.45 -71.14 2015 4 -144.28 -131.81 -138.04 

2010 6 24.59 16.57 20.58 2015 5 -62.78 -63.61 -63.19 

2010 7 69.44 86.01 77.73 2015 6 2.16 22.31 12.24 

2010 8 129.28 152.92 141.10 2015 7 49.88 85.39 67.64 

2010 9 208.69 202.44 205.57 2015 8 117.11 107.91 112.51 

2010 10 239.32 194.63 216.98 2015 9 189.95 139.90 164.93 

2010 11 262.58 166.15 214.37 2015 10 225.03 150.79 187.91 

2010 12 57.84 -24.29 16.78 2015 11 259.19 212.22 235.70 

2011 1 -189.14 -146.26 -167.70 2015 12 112.16 78.85 95.50 

2011 2 -229.46 -193.03 -211.24 2016 1 -72.92 -69.47 -71.20 

2011 3 -156.96 -183.26 -170.11 2016 2 -148.67 -155.69 -152.18 

2011 4 -111.27 -115.31 -113.29 2016 3 -176.60 -134.03 -155.32 

2011 5 -70.44 -72.17 -71.31 2016 4 -159.32 -128.91 -144.11 

2011 6 22.49 39.77 31.13 2016 5 -77.83 -56.86 -67.35 

2011 7 88.88 101.56 95.22 2016 6 28.77 72.38 50.58 

2011 8 170.18 183.09 176.63 2016 7 61.68 117.42 89.55 

2011 9 214.57 202.08 208.32 2016 8 111.76 166.74 139.25 

2011 10 215.25 137.67 176.46 2016 9 178.65 176.21 177.43 

2011 11 108.61 83.75 96.18 2016 10 278.49 178.25 228.37 

2011 12 -69.23 -42.93 -56.08 2016 11 344.93 213.55 279.24 

2012 1 -198.76 -174.22 -186.49 2016 12 126.39 48.90 87.64 

2012 2 -204.51 -185.68 -195.09 2017 1 -141.60 -144.98 -143.29 

2012 3 -201.66 -209.21 -205.43 2017 2 -218.16 -157.23 -187.70 

2012 4 -157.34 -149.79 -153.56 2017 3 -266.37 -195.15 -230.76 

2012 5 -85.64 -61.66 -73.65 2017 4 -171.98 -145.48 -158.73 

2012 6 26.99 55.95 41.47 2017 5 -87.55 -94.62 -91.09 

2012 7 81.80 111.87 96.84 2017 6 -4.45 17.30 6.43 

2012 8 105.47 131.05 118.26 2017 7 36.00 108.33 72.17 

2012 9 182.86 156.69 169.77 2017 8 125.62 175.62 150.62 

2012 10 216.78 172.23 194.51 2017 9 191.89 212.30 202.10 

2012 11 130.49 155.95 143.22 2017 10 285.32 197.40 241.36 

2012 12 -29.84 -24.57 -27.20 2017 11 233.14 175.95 204.54 

2013 1 -195.13 -142.42 -168.78 2017 12 3.21 3.05 3.13 

2013 2 -181.41 -141.65 -161.53 2018 1 -131.45 -111.65 -121.55 

2013 3 -150.87 -134.34 -142.60 2018 2 -119.89 -127.09 -123.49 

2013 4 -133.19 -113.00 -123.10 2018 3 -167.60 -135.00 -151.30 

2013 5 -72.44 -40.57 -56.51 2018 4 -208.14 -153.04 -180.59 

2013 6 34.37 52.38 43.38 2018 5 -137.36 -102.90 -120.13 

2013 7 64.78 85.80 75.29 2018 6 -21.20 23.47 1.14 

2013 8 96.91 130.53 113.72 2018 7 29.86 98.30 64.08 

2013 9 176.64 185.33 180.99 2018 8 110.99 163.25 137.12 

2013 10 219.32 178.29 198.80 2018 9 202.02 201.28 201.65 

2013 11 249.06 191.11 220.08 2018 10 182.51 179.17 180.84 

2013 12 202.08 64.14 133.11 2018 11 223.74 184.91 204.33 

2014 1 -79.09 -119.87 -99.48 2018 12 226.30 148.33 187.31 

2014 2 -187.16 -169.20 -178.18      

The monthly fluxes of TM5-4DVar/RemoTeC+IS (‘RT+IS’), TM5-4DVar/ACOS+IS (ACOS+IS), and the mean of both is 

given in TgC/month for the whole study region.  430 
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Data availability. GOSAT/RemoTeC2.4.0 XCO2 data can be obtained from Zenodo https://doi.org/10.5281/zenodo.7648699 

(Butz, 2022) (last access: 2024-05-15). GOSAT/ACOS data are available at 

https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_Level2/ACOS_L2_Lite_FP.9r/ (last access: 2020-07-28). OCO-

2 data are available at https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Standard_11r/summary (last access: 2023-06-28). 

CarbonTracker CT2022 CO2 fluxes and concentrations can be downloaded from 435 

https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2022/fluxes/monthly/ (last access: 2023-04-17) and 

https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2022/molefractions/co2_total_monthly/ (last access: 2024-06-07), 

respectively. CAMS concentrations and fluxes can be found at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-

global-greenhouse-gas-inversion (last access: 2021-10-07). GFAS emissions records are available at https://apps.ecmwf.int/ 

datasets/data/cams-gfas/ (last access: 2020-11-13). CAMS and GFAS data were generated using Copernicus Atmosphere 440 

Service Information [2021], and neither the European Commission nor the European Centre for Medium-Range Weather 

Forecasts (ECMWF) is responsible for any use that may be made of the information it contains. The MIP data can be 
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available at https://www.geo.vu.nl/~gwerf/GFED/GFED4/ (last access: 2020-07-10). FINN data were retrieved from the 
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access: 2020-11-18). ERA5-land data records contain modified Copernicus Atmosphere Service Information [2021] 
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