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A SHUBIN PSEUDODIFFERENTIAL CALCULUS ON

ASYMPTOTICALLY CONIC MANIFOLDS

THOMAS KRAINER

Abstract. We present a global pseudodifferential calculus on asymptotically
conic manifolds that generalizes (anisotropic versions of) Shubin’s classical
global pseudodifferential calculus on Euclidean space to this class of noncom-
pact manifolds. Fully elliptic operators are shown to be Fredholm in an asso-
ciated scale of Sobolev spaces, and to have parametrices in the calculus.

1. Introduction

In [13] Shubin introduced a global pseudodifferential calculus on Euclidean space
Rd that is modeled on the quantum harmonic oscillator

∆ + |y|2 : S (Rd)→ S (Rd),

where ∆ =
∑d

j=1D
2
yj

is the positive Laplacian in R
d. Its symbol is p(y, η) =

|y|2 + |η|2, and the main idea in Shubin’s calculus is to remove the distinction
between variables and covariables on the level of symbols and consider symbol
estimates of the form

|∂α(y,η)p(y, η)| . (1 + |y|+ |η|)µ−|α|, (1.1)

where for the harmonic oscillator µ = 2. Smooth functions p(µ)(y, η) ∈ C
∞(R2d \

{(0, 0)}) that are jointly homogeneous in (y, η) in the sense that

p(̺y, ̺η) = ̺µp(y, η), ̺ > 0, (y, η) 6= (0, 0),

give rise to symbols of order µ ∈ R after multiplication by an excision function
χ ∈ C∞(R2d) of the origin, and classical symbols are those with an asymptotic
expansion

p(y, η) ∼
∞
∑

j=0

χ(y, η)p(µ−j)(y, η),

where p(µ−j) is jointly homogeneous of degree µ − j. The classical symbol p(y, η)

is fully elliptic if p(µ)(y, η) is invertible for (y, η) ∈ R2d \ {(0, 0)}.
The Shubin calculus has many desirable properties of a pseudodifferential calcu-

lus [10, 14]: It is closed with respect to taking compositions and formal adjoints;
it comes with a scale of Sobolev spaces, and fully elliptic operators are Fredholm
in that Sobolev space scale; finally, fully elliptic operators have parametrices in the
calculus modulo regularizing remainders that are integral operators with kernels in
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2 THOMAS KRAINER

S (Rd × Rd). On the other hand, the Shubin calculus does not have good pertur-
bation and invariance properties. For example, from the symbol estimates (1.1) it
is easy to see that the only differential operators in the Shubin calculus are those
with polynomial coefficients, which reveals that the calculus is not well-behaved
with respect to changes of coordinates.

In this paper we present a pseudodifferential calculus that generalizes and ex-
tends the Shubin calculus from Rd to asymptotically conic manifolds. When spe-
cialized to Rd our calculus is broader than the Shubin calculus, which is necessary
to overcome the restrictions with respect to coordinate changes; in particular, our
calculus contains many more differential operators on Rd than Shubin’s calculus,
and it enjoys improved perturbation properties. Our approach is quite different
from the quadratic scattering calculus [15] which is also modeled on generalizations
of the harmonic oscillator to such manifolds.

More precisely, we define here a family of pseudodifferential calculi on asymptoti-
cally conic manifolds whose members are distinguished by the anisotropic treatment
of covariables and coefficient growth at infinity. Fully elliptic model operators on
Rd for this family are generalized anharmonic oscillators of the form

∆m + |y|2n : S (Rd)→ S (Rd)

for m,n ∈ N as considered in the pseudodifferential calculus in [1, 2], see also [10].
To define our pseudodifferential calculus we use Mellin pseudodifferential operators
with respect to the radial variable near infinity. In order to deal with tempered
distributions, the symbols of these Mellin operators are required to be holomorphic
in the radial covariable. Mellin pseudodifferential operators with holomorphic sym-
bols are an important ingredient in Schulze’s pseudodifferential operator theory on
singular manifolds [12], and they are utilized in that theory for quantizing symbols
near the singularities rather than at infinity as in our situation. We are nonethe-
less able to take advantage in this paper of some techniques that were originally
developed for Schulze’s theory [3, 4, 12]. We also previously developed a Mellin
pseudodifferential calculus for the functional analysis of ordinary differential oper-
ators of Fuchs type with unbounded operator coefficients in [8] that relates to the
present work as well.

In this paper we focus on the construction of the calculus and the investigation of
ellipticity, parametrices, and the Fredholm property. In forthcoming work we plan
to analyze resolvent families, trace asymptotics, and ζ-functions for fully elliptic
operators in our calculus with the goal to extend results about the spectral theory
of such operators [5, 10, 11] from Rd to asymptotically conic manifolds.

2. Asymptotically conic manifolds and operators

Let M0 be a smooth compact manifold of dimension d with boundary Z, and let
U be a collar neighborhood of Z in M0 so that U ∼= (12 , 1]x ×Z with the boundary
Z at x = 1. We then get a noncompact C∞-manifold M of dimension d by gluing
M0 to [1,∞)× Z along the common boundary Z:

M =M0 ⊔Z ([1,∞)× Z).

Pick a C∞-function x : M → R such that 0 < x ≤ 1
2 on M0 \ U , and such that x

coincides with the projection to the first factor in U ∼= (12 , 1]× Z, and on the end
[1,∞)×Z. A (model) asymptotically conic metric on M is a Riemannian metric g
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that for large x≫ 1 on the end can be written in the form

g = dx2 + x2gZ (2.1)

for some Riemannian metric gZ on Z. If (Z, gZ) = (Sd−1, gSd−1) is the unit sphere
in Rd with its standard metric, then the metric g for large x ≫ 1 corresponds to
the Euclidean metric in Rd written in polar coordinates (the manifold M is then
asymptotically Euclidean). The positive Laplace-Beltrami operator on M with
respect to g for large x≫ 1 is given by

∆g = D2
x − i

d− 1

x
Dx +

1

x2
∆gZ = x−2

[

(xDx)
2 − i(d− 2)(xDx) + ∆gZ

]

,

and for the L2-space with respect to g on M we find that

L2([R,∞)× Z, g) = x−
d
2L2([R,∞)× Z, dx

x
dz) = x−

d
2L2

b([R,∞)× Z)

for R ≫ 1 large enough, where dz is the Riemannian density with respect to the
metric gZ . As the methods in our paper are based on the Mellin transform on the
asymptotically conic end with respect to the variable x, and the space L2

b based
on Haar measure on R+ is the preferred space for working with this transform, we
adopt the point of view that the geometric L2-space is a weighted L2

b space, thus
declaring L2

b to be the base space for all considerations in this paper.
We next give some examples for the type of differential operators we aim to

analyze on M and discuss some features of our approach:

Harmonic oscillator. Let V ∈ C∞(M) be a potential such that V = x2 for large
x≫ 1. The resulting operator ∆g +V is an analogue of the harmonic oscillator on
M . For large x we find

∆g + V = x−2A = x−2
[

(xDx)
2 − i(d− 2)(xDx) + ∆gZ + x4

]

. (2.2)

Our goal is to prove Fredholmness results for such operators on M in appropriate
scales of weighted Sobolev spaces. We are going to construct a pseudodifferential
calculus on M in which such operators are fully elliptic, and the calculus contains
the (Fredholm) inverses and parametrices.

To illustrate the associated notion of ellipticity in the calculus consider the op-
erator A from (2.2). It has the usual homogeneous principal symbol given by

σσψ(A) = (xξ)2 + |ζ|2gZ

for large x≫ 1, which is invertible for nonzero covectors. We are rescaling σ = xξ,
which is familiar from the b-calculus (but here for large values of x) and is based
on the Mellin correspondence xDx

∼= σ, and consider instead

b σσψ(A) = σ2 + |ζ|2gZ .

The b-principal symbol is oblivious to the potential V , which enters A as x4 for large
x. The point now is to include that term as an extra parameter in the principal
symbol, which gives the extended principal symbol

σσe(A) = σ2 + |ζ|2gZ + τ4,

where τ ≥ 0 is an extra covariable that is the receptacle for x. The extended
principal symbol has mixed homogeneities which are dealt with anisotropically.
Note that

σσe(A)(̺
2ζ, ̺2σ, ̺τ) = ̺4 σσe(A)(ζ, σ, τ), ̺ > 0,
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so σσe(A) is anisotropic homogeneous of order 4 with respect to the anisotropy vector
~ℓ = (2, 2, 1) ∈ N3. The extended principal symbol is thus completely determined
by restriction to an anisotropic hemisphere

|σ|2 + |ζ|2gZ + τ4 = 1, τ ≥ 0,

and when further restricting to τ = 0 (the “equator” of the hemisphere) we get

σσe(A)
∣

∣

τ=0
= b σσψ(A)

on the cosphere |σ|2+|ζ|2gZ = 1. Invertibility of σσe(A) for large x≫ 1 together with
ordinary ellipticity on M constitutes the notion of full ellipticity in our calculus.
Clearly A is fully elliptic, and we then find that

∆g + V : xαH
s;~ℓ(M)→ xα−2

H
s−4;~ℓ(M) (2.3)

is Fredholm for all α, s ∈ R, with kernel and cokernel contained in S (M) in-

dependent of these values. The Sobolev spaces H s;~ℓ(M) are associated to the
pseudodifferential calculus. There is a version of the calculus for any anisotropy

vector of the form1 ~ℓ = (ℓ1, ℓ1, ℓ3) ∈ N3, where in this case ~ℓ = (2, 2, 1). As the
first index appears twice, we generally shorten notation to H s;(ℓ1,ℓ3)(M). The reg-
ularity parameter s ∈ R controls both smoothness and growth/decay at infinity in
the Sobolev space scale, while the weight α ∈ R allows for additional fine-tuning of

growth. It is always true that xαH s;~ℓ(M) →֒ xα
′

H s′;~ℓ(M) for s ≥ s′ and α ≤ α′,
and we have

S (M) =
⋂

s∈R

H
s;~ℓ(M), S

′(M) =
⋃

s∈R

H
s;~ℓ(M).

Moreover,

H
s
ℓ1
comp(M) ⊂H

s;(ℓ1,ℓ3)(M) ⊂ H
s
ℓ1

loc(M)

for all s ∈ R. In the case of the harmonic oscillator we have ℓ1 = 2 and ℓ3 = 1, so
smoothness in (2.3) is only shifted by 2 as expected.

Anharmonic oscillator. Let V ∈ C∞(M) be such that V = x2n for large x ≫ 1,
and consider a generalized anharmonic oscillator of the form (∆g)

m + V , see [1] in
caseM = Rd. Here m,n ∈ N are arbitrary. Rewriting ∆g in terms of xDx for large
x as above shows that

(∆g)
m + V = x−2mA = x−2m

[(

(xDx)
2 +∆gZ

)m
+ l.o.t

]

+ V

= x−2m
[(

(xDx)
2 +∆gZ

)m
+ x2(n+m) + l.o.t

]

.

In this case
b σσψ(A) =

(

σ2 + |ζ|2gZ
)m

and

σσe(A) =
(

σ2 + |ζ|2gZ
)m

+ τ2(m+n),

where again τ ≥ 0. Let ~ℓ = (ℓ1, ℓ1, ℓ3) = (m+ n,m+ n,m) ∈ N3. Then

σσe(A)(̺
ℓ1ζ, ̺ℓ1σ, ̺ℓ3τ) = ̺2m(m+n) σσe(A)(ζ, σ, τ), ̺ > 0,

1The calculus on the model space R+ × Z for the noncompact end allows for more general

decoupled anisotropies ~ℓ = (ℓ1, ℓ2, ℓ3) ∈ N3 that assign different weights to the factors R+ and
Z, as well as to the growth in x. Such operators are needed elsewhere and are therefore included
here, but they are not relevant for the calculus on M .
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which is of order 2m(m + n) with respect to our choice of ~ℓ. When restricted to
τ = 0 we again recover b σσψ(A), but with a different order convention:

b σσψ(A)(̺
ℓ1ζ, ̺ℓ1σ) = ̺2m(m+n) b σσψ(A)(ζ, σ), ̺ > 0.

While A is of order 2m with respect to the standard notion of order, we adopt the

point of view that relative to the anisotropy vector ~ℓ = (m+n,m+n,m) the order
of A is 2m(m+ n). As A is elliptic in the usual sense over the compact part of M ,
and σσe(A) is invertible for large x≫ 1 (for nonzero (σ, ζ, τ)), we find that

(∆g)
m + V : xαH

s;(m+n,m)(M)→ xα−2m
H

s−2m(m+n);(m+n,m)(M)

is Fredholm for all s, α ∈ R, with kernel and cokernel contained in S (M). Adding a
spectral parameter does not change the result, which confirms as expected that the
essential spectrum of (∆g)

m + V is empty, and that eigenfunctions decay rapidly
at infinity.

While it would be natural to first simplify the anisotropy vector ~ℓ = (ℓ1, ℓ1, ℓ3) ∈
N3 by removing any common factors so that gcd(ℓ1, ℓ3) = 1, we have chosen to
allow arbitrary (not necessarily coprime) anisotropy vectors for our analysis.

Differential operators in the calculus. Fix any anisotropy vector ~ℓ = (ℓ1, ℓ1, ℓ3) ∈
N3. A differential operator in the calculus of order µ ∈ ℓ1N0 is a differential operator
A on M of “usual” order µ

ℓ1
, and for large x ≫ 1 on the noncompact end, and in

coordinates on Z, we can write A in the form

A =
∑

ℓ1|α|+ℓ1j+ℓ3k≤µ

aα,j,k(x, z)x
kDα

z (xDx)
j ,

where the coefficients aα,j,k(x, z) are C∞, and, for every i and β, the derivatives
(xDx)

iDβ
z aα,j,k(x, z) are bounded as z varies in compact subsets of the chart and

x ≥ R≫ 1.
Full ellipticity of A first requires A to be elliptic on M in the usual sense that

the homogeneous principal symbol is invertible. We observe that the homogenous
principal symbol satisfies

σσψ(A)(y, ̺
ℓ1η) = ̺µ σσψ(A), ̺ > 0,

for all (y, η) ∈ T ∗M \0, and we consider A to be of anisotropic order µ with respect

to ~ℓ. For large x≫ 1 with A in coordinates written as above we find that

σσψ(A)(z, x, ζ, ξ) =
∑

ℓ1|α|+ℓ1j=µ

aα,j,0(x, z)ζ
α(xξ)j ,

and after rescaling

b σσψ(A)(z, x, ζ, σ) =
∑

ℓ1|α|+ℓ1j=µ

aα,j,0(x, z)ζ
ασj .

The extended principal symbol is

σσe(A)(z, x, ζ, σ, τ) =
∑

ℓ1|α|+ℓ1j+ℓ3k=µ

aα,j,k(x, z)ζ
ατkσj

for τ ≥ 0, which is anisotropic homogeneous of order µ with respect to ~ℓ. The
operator A is fully elliptic if σσe(A)(z, x, ζ, σ, τ) is invertible for all (z, x) with x≫ 1
large enough, and all (ζ, σ, τ) 6= 0, and the inverse is bounded when restricted to
the anisotropic hemisphere |ζ|2ℓ3 + |σ|2ℓ3 +τ2ℓ1 = 1, τ ≥ 0, as z varies over compact
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sets and x ≥ R ≫ 1. Since we did not compactify the end x→ ∞ we need such a
boundedness condition on the inverse of σσe(A) as x → ∞. In the examples of the
harmonic and anharmonic oscillator, the coefficients aα,j,k do not depend on x for
large x, so this extra boundedness assumption is automatically fulfilled.

If A is fully elliptic it is Fredholm in the associated Sobolev spaces

A : xαH
s;~ℓ(M)→ xαH

s−µ;~ℓ(M)

for all s, α ∈ R, with kernel and cokernel contained in S (M). The presence of extra
powers of x as in the harmonic and anharmonic oscillator leads to an additional
shift in the weight parameter α.

2.1. Step- 1

ℓ1
polyhomogeneous pseudodifferential operators. Our pseudo-

differential calculus associated with ~ℓ = (ℓ1, ℓ1, ℓ3) ∈ N3 is a refinement of the
ordinary step- 1

ℓ1
polyhomogeneous operator calculus on M . The purpose of this

section is to set notation, and primarily to explain our point of view regarding the

order of operators with respect to ~ℓ. The manifold M can be any (open) smooth
manifold with a positive density here.

By Lµ;ℓ1(M) we denote all operators A : C∞
c (M)→ C∞(M) with the following

properties:

• For any φ, ψ ∈ C∞
c (M) with supp(φ) ∩ supp(ψ) = ∅, the operator φAψ is

an integral operator on M with a C∞-kernel function.
• Let κ : U → Ω, with Ω ⊂ Rd open, be any local chart, and φ, ψ ∈ C∞

c (U).
Then the push-forward φAψ to Ω is given by

κ∗[φAψ]u(y) = (2π)−d
∫

Rd

eiyηa(y, η)û(η) dη, u ∈ C∞
c (Ω),

where the local symbol a(y, η) satisfies the estimates

|Dα
y ∂

β
η a(y, η)| .

[

(1 + |η|2)
1

2ℓ1

]µ−ℓ1|β|

locally uniformly with respect to y ∈ Ω.

We call A classical and write A ∈ Lµ;ℓ1cl (M) if the local symbols a(y, η) have an
asymptotic expansion

a(y, η) ∼
∞
∑

j=0

χ(η)a(µ−j)(y, η),

where χ ∈ C∞(Rd) satisfies χ ≡ 0 near η = 0 and χ ≡ 1 for large |η|, and the
a(µ−j)(y, η) are anisotropic homogeneous of degree µ− j with respect to ℓ1 in the
sense that

a(µ−j)(y, ̺
ℓ1η) = ̺µ−ja(µ−j)(y, η), ̺ > 0.

The homogeneous principal symbol σσψ(A) of A is defined on T ∗M \ 0 and is
(anisotropic) homogeneous of order µ with respect to ℓ1 in the fibers.

Clearly Lµ;ℓ1(M) = L
µ
ℓ1 (M), and Lµ;ℓ1cl (M) are the step- 1

ℓ1
polyhomogeneous

pseudodifferential operators of usual order µ
ℓ1

on M .
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3. The calculus on R+ × Z

We are going to need various types of operators and operator families that depend
anisotropically on covariables and parameters. To set notation, let RN = Rn1 ×
. . .× Rnq with N = n1 + . . .+ nq, and let ~ℓ = (ℓ1, . . . , ℓq) ∈ Nq be arbitrary. Let

|y|~ℓ =

( q
∑

j=1

|yj|
2
∏

k 6=j ℓk

)
1

2ℓ1···ℓq

,

〈y〉~ℓ =

(

1 +

q
∑

j=1

|yj |
2
∏

k 6=j ℓk

)
1

2ℓ1···ℓq

for y = (y1, . . . , yq) ∈ R
N , where |yj | is the Euclidean norm of yj ∈ R

nj for each j.
The function | · |~ℓ is C

∞ on RN \ {0} and positive, and is anisotropic homogeneous
of degree 1, i.e.,

|(̺ℓ1y1, . . . , ̺
ℓqyq)|~ℓ = ̺ |(y1, . . . , yq)|~ℓ, ̺ > 0.

The anisotropic ~ℓ-spheres |y|~ℓ = R for any R > 0 are compact C∞ hypersurfaces of

RN . The anisotropic Japanese bracket 〈·〉~ℓ smoothes the singularity at the origin
of | · |~ℓ. We have Peetre’s inequality

〈y + y′〉s~ℓ ≤ 2|s|〈y〉s~ℓ 〈y
′〉
|s|
~ℓ
,

and there exist constants c, C > 0 such that

c〈y〉
1

ℓ1+...+ℓq ≤ 〈y〉~ℓ ≤ C〈y〉
ℓ1+...+ℓq ,

where the standard Japanese bracket 〈·〉 corresponds to ~ℓ = (1, . . . , 1).

For the remainder of this section, we fix a positive density dz on Z. The basic
Hilbert space on R+ × Z is

L2
b(R+ × Z) = L2(R+ × Z,

dx
x
dz).

For notational brevity we will write out the calculus for operators acting between
scalar function spaces, but it equally works for operators acting between sections
of vector bundles that are pull-backs to R+ ×Z of Hermitian vector bundles on Z.

3.1. Operator families on Z. Z is a closed, compact manifold of dimension

dimZ = f , where f = d−1. Fix ~ℓ = (ℓ1, ℓ2, ℓ3) ∈ N3. For µ ∈ R let Lµ;
~ℓ(Z;R×R+)

denote the parameter-dependent pseudodifferential operator families

A(σ, τ) : C∞(Z)→ C∞(Z), (σ, τ) ∈ R× R+,

of the following kind:

• For any φ, ψ ∈ C∞(Z) with supp(φ) ∩ supp(ψ) = ∅ we have

[φA(σ, τ)ψ]u(z) =

∫

Z

k(σ, τ ; z, z′)u(z′) dz′, u ∈ C∞(Z),

with integral kernel

k(σ, τ ; z, z′) ∈ S (R× R+;C
∞(Z × Z)), (3.1)

where dz′ is the previously fixed smooth positive density on Z.
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• For φ, ψ ∈ C∞(Z) with compact supports in the same local chart κ : U →
Ω, the push-forward of φA(σ, τ)ψ to Ω ⊂ Rf is given by

κ∗[φA(σ, τ)ψ]u(z) = (2π)−f
∫

Rf

eizζa(z, ζ;σ, τ)û(ζ) dζ, u ∈ C∞
c (Ω),

where the symbol a(z, ζ;σ, τ) ∈ C∞(Ω×Rf×R×R+) satisfies the estimates

|Dα
z ∂

β
ζ ∂

γ
σ∂

δ
τa(z, ζ;σ, τ)| . 〈(ζ, σ, τ)〉

µ−ℓ1 |β|−ℓ2|γ|−ℓ3|δ|
~ℓ

(3.2)

locally uniformly with respect to z ∈ Ω.

The regularizing families

L−∞(Z;R× R+) =
⋂

µ∈R

Lµ;
~ℓ(Z;R× R+)

are independent of the anisotropy vector ~ℓ and consist of operator families with
integral kernels (3.1).

We write Lµ;
~ℓ

cl (Z;R×R+) for the subclass of classical operator families, i.e., the
local symbols a(z, ζ;σ, τ) are classical symbols in the sense that

a(z, ζ;σ, τ) ∼
∞
∑

j=0

χ(ζ;σ, τ)a(µ−j)(z, ζ;σ, τ),

where χ ∈ C∞(Rf ×R×R+) is an excision function of the origin, and the a(µ−j) ∈

C∞(Ω× [
(

Rf × R× R+

)

\ 0]) are anisotropic homogeneous of degree µ− j:

a(µ−j)(z, ̺
ℓ1ζ; ̺ℓ2σ, ̺ℓ3τ) = ̺µ−ja(k)(z, ζ;σ, τ), ̺ > 0.

Every A(σ, τ) ∈ Lµ;
~ℓ

cl (Z;R × R+) has an invariantly defined parameter-dependent

homogeneous principal symbol σσ(A)(z, ζ;σ, τ) on (T ∗Z ×R×R+) \ 0 that satisfies

σσ(A)(z, ̺ℓ1ζ, ̺ℓ2σ, ̺ℓ3τ) = ̺µ σσ(A)(z, ζ;σ, τ), ̺ > 0.

We equip both Lµ;
~ℓ(Z;R× R+) and L

µ;~ℓ
cl (Z;R× R+) with their canonical Fréchet

topologies. We reiterate that for the global calculus on the noncompact manifold
only ℓ1 = ℓ2 is relevant.

Properties of the calculus. The operator calculus has the expected properties, which
follows with the standard proofs. Composition of operators yields

Lµ1;~ℓ
(cl) (Z;R× R+)× L

µ2;~ℓ
(cl) (Z;R× R+)→ Lµ1+µ2;~ℓ

(cl) (Z;R× R+),

and in the classical case σσ(AB) = σσ(A)σσ(B).
Likewise, the formal adjoint with respect to the L2-inner product on Z gives a

map

Lµ;
~ℓ

(cl)(Z;R× R+) ∋ A(σ, τ) 7→ A∗(σ, τ) ∈ Lµ;
~ℓ

(cl)(Z;R× R+),

and in the classical case σσ(A∗) = σσ(A)∗.
Parametrices to parameter-dependent elliptic elements exist and are constructed

in the usual way. Here A(σ, τ) ∈ Lµ;
~ℓ

cl (Z;R × R+) is parameter-dependent elliptic

if σσ(A) is invertible on (T ∗Z × R× R+) \ 0. This is equivalent to the existence of

a parameter-dependent parametrix B(σ, τ) ∈ L−µ;~ℓ
cl (Z;R× R+) such that both

A(σ, τ)B(σ, τ) − I, B(σ, τ)A(σ, τ) − I ∈ L−∞(Z;R× R+).
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Holomorphic families and kernel cut-off. We need operator families

A(σ, τ) : C∞(Z)→ C∞(Z)

that depend holomorphically on σ ∈ C in the entire complex plane. We write

Mµ;~ℓ
O,(cl)(Z;R+) to denote such holomorphic families so that, when restricted to

lines parallel to the real axis, the function

R ∋ γ 7→ A(σ + iγ, τ) ∈ Lµ;
~ℓ

(cl)(Z;R× R+), (σ, τ) ∈ R× R+,

is locally bounded.
Restricting to different lines ℑ(σ) = γ in the complex plane gives families that

are related by asymptotic expansions

A(σ + iγ, τ) ∼
∞
∑

j=0

(iγ)j

j!
∂jσA(σ, τ)

in Lµ;
~ℓ

(cl)(Z;R×R+), which hold locally uniformly with respect to γ ∈ R. In partic-

ular,

Mµ;~ℓ
O (Z;R+) ∩ L

µ′;~ℓ(Z; {ℑ(σ) = γ} × R+) =Mµ′;~ℓ
O (Z;R+)

for µ′ ≤ µ and any γ ∈ R. Restriction to the real line thus gives a well-defined map

Mµ;~ℓ
O,(cl)(Z;R+)/M

−∞
O (Z;R+)→ Lµ;

~ℓ

(cl)(Z;R× R+)/L
−∞(Z;R× R+).

This map is an isomorphism. Its inverse is given by the kernel cut-off operator

H(φ) : Lµ;
~ℓ

(cl)(Z;R× R+)→Mµ;~ℓ
O,(cl)(Z;R+). (3.3)

Here φ ∈ C∞
c (R) is arbitrary with φ ≡ 1 near zero, and the kernel cut-off operator

is defined as H(φ)A = Ft→σφ(t)F
−1
σ→tA, which can be written as an oscillatory

integral

[H(φ)A](σ + iγ, τ) =
1

2π

∫∫

e−itsetγφ(t)A(σ − s, τ) dtds (3.4)

for σ + iγ ∈ C and τ ≥ 0. The standard regularization procedure applied to

this integral shows that H(φ)A ∈Mµ;~ℓ
O,(cl)(Z;R+) (the analyticity follows by direct

verification of the Cauchy-Riemann equations). Moreover,

A(σ, τ) − [H(φ)A](σ, τ) =
1

2π

∫∫

e−its(1 − φ(t))A(σ − s, τ) dtds

=
ik

2π

∫∫

e−its
1− φ(t)

tk
[∂kσA](σ − s, τ) dtds

for any k ∈ N0, and so A(σ, τ) − [H(φ)A](σ, τ) ∈ L−∞(Z;R × R+). The kernel
cut-off operator H(φ) is a continuous map between the Fréchet spaces (3.3).

Holomorphic families of parameter-dependent pseudodifferential operators which
are then utilized as operator-valued symbols and the kernel cut-off construction
originate from Schulze’s theory of pseudodifferential operators on manifolds with
conical and more general singularities [12]. The oscillatory integral representation
of the kernel cut-off operator and detailed proofs of the above claims can be found,
e.g., in [6, Section 3] (for a different symbol class, but the arguments carry over as
stated there).
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Lemma 3.5. Let A ∈Mµ;~ℓ
O (Z;R+). Then there exist Aj ∈M

−∞
O (Z;R+) such that

Aj → A in Mµ′;~ℓ
O (Z;R+) as j →∞ for every µ′ > µ. The Aj ∈M

−∞
O (Z;R+) can

be explicitly constructed to depend linearly and continuously on A ∈Mµ;~ℓ
O (Z;R+).

Proof. Let φk be a partition of unity subordinate to some finite covering of Z by
coordinate charts, and let ψk be supported in the same coordinate neighborhood
as φk with ψk ≡ 1 in a neighborhood of the support of φk, k = 1, . . . , N . Write

A(σ, τ) =
N
∑

k=1

φkA(σ, τ)ψk +R(σ, τ),

where R(σ, τ) ∈ M−∞
O (Z;R+). Each operator φkA(σ, τ)ψk is the pull-back of a

local operator from an open set in Rf with a symbol ak(z, ζ;σ, τ) that is holomorphic
in σ ∈ C and satisfies the estimates (3.2) when restricted to lines {σ + iγ; σ ∈ R},
and these estimates hold locally uniformly with respect to the imaginary part γ ∈ R.
The claim of the lemma thus reduces to the corresponding statement for such local
symbols a(z, ζ;σ, τ). For brevity, we denote the real anisotropic local symbol class

that is based on the estimates (3.2) by Sµ;
~ℓ, and the holomorphic symbols by Sµ;

~ℓ
O .

Let a(z, ζ;σ, τ) ∈ Sµ;
~ℓ

O be arbitrary, and let χ ∈ C∞(Rf × R × R) be such that
χ ≡ 0 for |(ζ, σ, τ)|~ℓ ≤ 1 and χ ≡ 1 for |(ζ, σ, τ)|~ℓ ≥ 2, and let

bj(z, ζ;σ, τ) = χ
(

ζ

jℓ1
, σ
jℓ2
, τ
jℓ3

)

a(z, ζ;σ, τ) ∈ Sµ;
~ℓ, j ∈ N,

where a is restricted to σ ∈ R. Then bj → 0 as j → ∞ in Sµ
′;~ℓ for every µ′ > µ,

and a − bj ∈ S−∞. Now let cj = H(φ)bj ∈ S
µ;~ℓ
O with the kernel cut-off operator

(3.4) (at the level of local symbols, z and ζ are extra parameters in the formula).
Then bj − cj ∈ S−∞, and by the continuity of the kernel cut-off operator we have

cj → 0 in Sµ
′;~ℓ

O for µ′ > µ. The lemma then follows with

aj = a− cj ∈ S
µ;~ℓ
O ∩ S−∞ = S−∞

O .

�

3.2. Residual operators. Let Hs
b = Hs

b (R+×Z) be the standard b-Sobolev space
of smoothness s ∈ R based on L2

b = L2
b(R+ × Z) on R+ × Z. Then

S0(R+ × Z) =
⋂

s,α∈R

xαHs
b (R+ × Z),

where S0(R+ × Z) is the space of C∞ functions that are rapidly decreasing as
x→∞ and vanish to infinite order at x = 0.

Let Ψ−∞
G (R+ × Z) denote the space of all continuous operators

G : S0(R+ × Z)→ S0(R+ × Z)

with the following properties:

• G has a formal adjoint G∗ with respect to the L2
b-inner product, and both

G and G∗ are continuous maps

G, G∗ : S0(R+ × Z)→ S0(R+ × Z).
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• For every α ∈ R, both G and G∗ extend by continuity to continuous oper-
ators

G, G∗ : xαHs
b (R+ × Z)→ xα

′

Hs′

b (R+ × Z)

for all s, s′ ∈ R, and every α′ ≤ α.

Lemma 3.6. Let G ∈ Ψ−∞
G (R+ × Z) be arbitrary.

(a) x−βGxβ ∈ Ψ−∞
G (R+ × Z) for all β ∈ R.

(b) Let ω ∈ C∞
c (R+) be such that ω ≡ 1 near x = 0. Then

(1− ω)G, G(1− ω) : xαHs
b → xα

′

Hs′

b

for all s, s′, α, α′ ∈ R.

Proof. Part (a) follows at once from the mapping properties in the definition. For
(b) we note that

x−β(1− ω) : xα
′

Hs′

b → xα
′

Hs′

b

is continuous for all β ≥ 0, and so

(1− ω)G = xβ [x−β(1− ω)]G : xαHs
b → xα

′+βHs′

b

for all s, s′ ∈ R and all α′ ≤ α and β ≥ 0. As β ≥ 0 is arbitrary we obtain the
asserted mapping properties for (1− ω)G. The claim for G(1 − ω) then follows by
considering the adjoint, or by arguing as above by writing

G(1− ω) = xβ [x−βGxβ ][x−β(1− ω)]

for arbitary β ≥ 0 and using (a). �

By Lemma 3.6, the operators (1 − ω)G and G(1 − ω) are integral operators of the
form

∫

R+×Z

g(x, z, x′, z′)u(x′, z′)
dx′

x′
dz′

with kernels

g(x, z, x′, z′) ∈ S0([R+ × Z]× [R+ × Z]) = S0(R+ × Z)⊗̂πS0(R+ × Z).

The kernels of residual operators G thus exhibit rapid decay as x, x′ →∞. We do
not control their behavior as x → 0 and x′ → 0 beyond the mapping properties
stated in the definition of these operators as our focus lies on the behavior at infinity.

3.3. Mellin pseudodifferential operators on R+×Z. We review some aspects
of the standard Mellin pseudodifferential calculus on R+ × Z, see [3, 4, 7, 12].

Let Lm(Z;R) be the usual (isotropic) space of pseudodifferential operators of
order m ∈ R on Z that depend on the parameter σ ∈ R. We consider an operator-
valued symbol p(x, σ) ∈ C∞(R+, L

m(Z;R)) and associate with it the Mellin pseu-
dodifferential operator

op
M
(p) : C∞

c (R+ × Z)→ C∞(R+ × Z)

given by

[op
M
(p)u](x) =

1

2π

∫

R

∫ ∞

0

( x

x′

)iσ

p(x, σ)u(x′)
dx′

x′
dσ.
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We use here the convention
(

Mu
)

(σ) =

∫ ∞

0

x−iσu(x)
dx

x
, σ ∈ R,

(

M−1v
)

(x) =
1

2π

∫

R

xiσv(σ) dσ, x > 0,

for the Mellin transform and its inverse. If

p ∈ C∞
B (R+, L

m(Z;R)),

where C∞
B (R+, F ) stands for the C

∞-functions g on R+ with values in the Fréchet
space F such that all derivatives (xDx)

jg are bounded on R+, then

op
M
(p) : Hs

b (R+ × Z)→ Hs−m
b (R+ × Z)

is continuous for all s ∈ R. If the operator-valued symbol extends with respect to
σ to an entire function such that

p(x, σ)
∣

∣

ℑ(σ)=γ
∈ C∞

B (R+, L
m(Z;R))

locally uniformly with respect to γ ∈ R, i.e., if

p(x, σ) ∈ C∞
B (R+,M

m
O (Z)),

then

op
M
(p) : xαHs

b (R+ × Z)→ xαHs−m
b (R+ × Z)

is continuous for all s, α ∈ R, and gives rise to a continuous operator

op
M
(p) : S0(R+ × Z)→ S0(R+ × Z). (3.7)

This is not true without analyticity in the covariable σ, and is based on

x−βop
M
(p)xβ = op

M
(pβ) : C

∞
c (R+ × Z)→ C∞(R+ × Z), (3.8)

where pβ(x, σ) = p(x, σ − iβ) for every β ∈ R.
Standard Mellin pseudodifferential operators with holomorphic symbols form a

well-behaved calculus of operators acting in the spaces (3.7) (and extended to larger
spaces, such as the weighted Hs

b -spaces, by continuity). One of the features of the
calculus is the availability of explicit oscillatory integral formulas for analyzing for-
mal adjoints and compositions of operators. We recall the statements and formulas.

Formal adjoints. Let p(x, σ) ∈ C∞
B (R+,M

m
O (Z)). Then the formal adjoint of

op
M
(p) with respect to the L2

b-inner product on R+ × Z is given by

[op
M
(p)]∗ = op

M
(p⋆) : S0(R+ × Z)→ S0(R+ × Z),

where p⋆ ∈ C∞
B (R+,M

m
O (Z)). For every N ∈ N

p⋆(x, σ) =
1

2π

∫∫

y−iηp(xy, σ + η)∗
dy

y
dη

=

N−1
∑

k=0

1

k!
[(−xDx)

k∂kσp](x, σ)
∗ + rN (x, σ)

(3.9)

with

rN (x, σ) =
1

2π

∫ 1

0

(1 − θ)N−1

(N − 1)!

∫∫

y−iη[(−xDx)
N∂Nσ p](xy, σ + θη)∗

dy

y
dηdθ.

(3.10)
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We have rN (x, σ) ∈ C∞
B (R+,M

m−N
O (Z)). The adjoints that appear with the

operator-valued symbols in these formulas refer to the L2-inner product on Z.

Composition. Let pj(x, σ) ∈ C
∞
B (R+,M

mj

O (Z)). Then the composition

op
M
(p1) opM(p2) = op

M
(p1#p2) : S0(R+ × Z)→ S0(R+ × Z)

with p1#p2 ∈ C
∞
B (R+,M

m1+m2

O (Z)). For every N ∈ N

p1#p2(x, σ) =
1

2π

∫∫

y−iηp1(x, σ + η)p2(xy, σ)
dy

y
dη

=

N−1
∑

k=0

1

k!
[∂kσp1](x, σ)[(xDx)

kp2](x, σ) + rN (x, σ)

(3.11)

with

rN (x, σ) =
1

2π

∫ 1

0

(1− θ)N−1

(N − 1)!

∫∫

y−iη[∂Nσ p1](x, σ + θη)[(xDx)
Np2](xy, σ)

dy

y
dηdθ.

(3.12)

We have rN ∈ C
∞
B (R+,M

m1+m2−N
O (Z)).

Anisotropic Mellin calculus. The anisotropic operator calculus on R+ ×Z is based

on an anisotropy vector ~ℓ = (ℓ1, ℓ2, ℓ3) ∈ N
3. The first two parameters ℓ1 and ℓ2

are associated with Z and R+, respectively. Only the case ℓ1 = ℓ2 is relevant for
building the final calculus on M ; however, the case ℓ1 6= ℓ2 on R+ × Z is needed
in other contexts. If ℓ1 6= ℓ2 the isotropic Mellin calculus reviewed above does not
suffice, and we need an anisotropic version.

The starting point for the anisotropic Mellin calculus is the parameter-dependent
class Lm;(ℓ1,ℓ2)(Z;R). The local symbols in coordinate patches for Z for these
operator families are a(z, ζ;σ) such that

|Dα
z ∂

β
ζ ∂

γ
σa(z, ζ;σ)| . 〈(ζ, σ)〉

m−ℓ1|β|−ℓ2|γ|
(ℓ1,ℓ2)

.

This is similar to, but simpler than, the estimates (3.2) for the operator fami-

lies discussed in Section 3.1. The associated holomorphic class is M
m;(ℓ1,ℓ2)
O (Z).

Anisotropic Mellin pseudodifferential operators are based on operator-valued sym-
bols

p(x, σ) ∈ C∞
B (R+,M

m;(ℓ1,ℓ2)
O (Z)),

and the operators op
M
(p) again act between the spaces (3.7). The statements and

formulas for formal adjoints and compositions above remain valid when the isotropic

class of holomorphic symbols is consistently replaced by M
m;(ℓ1,ℓ2)
O (Z).

What changes in the anisotropic situation are the b-Sobolev spaces on R+ ×
Z. For s ∈ R pick any R(σ) ∈ Ls;(ℓ1,ℓ2)(Z;R) that is invertible with R−1(σ) ∈
L−s;(ℓ1,ℓ2)(Z;R), and define

H
s;(ℓ1,ℓ2)
b (R+ × Z) = Closure of C∞

c (R+ × Z) with respect to the norm

‖u‖
H

s;(ℓ1,ℓ2)

b

= ‖op
M
(R)u‖L2

b
.

This space does not depend on the choice of R(σ), is localizable in coordinate
patches on Z (as a mixed anisotropic Mellin-Fourier Sobolev space), and, for ℓ1 =
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ℓ2 = 1, reproduces the standard (isotropic) b-Sobolev space of smoothness s ∈ R.
By localizing we furthermore obtain the inclusions

H
s(ℓ1+ℓ2)
b (R+ × Z) →֒ H

s;(ℓ1,ℓ2)
b (R+ × Z) →֒ H

s
ℓ1+ℓ2

b (R+ × Z), s ≥ 0,

H
s

ℓ1+ℓ2

b (R+ × Z) →֒ H
s;(ℓ1,ℓ2)
b (R+ × Z) →֒ H

s(ℓ1+ℓ2)
b (R+ × Z), s < 0.

(3.13)

Reductions of order as used in the definition of the spaces can be constructed by
adding an extra parameter λ ∈ R to the calculus, and then choosing a parameter-

dependent elliptic operator R(σ, λ) ∈ L
s;(ℓ1,ℓ2,ℓ1)
cl (Z;R × R) (quantized from an

invertible principal symbol on [T ∗Z × R × R] \ 0, e.g., |(ζ, σ, λ)|s(ℓ1,ℓ2,ℓ1), where

an arbitrary Riemannian metric on Z is used to measure the lengths of covec-
tors ζ ∈ T ∗Z). Then there exists a parameter-dependent parametrix R̃(σ, λ) ∈

L
−s;(ℓ1,ℓ2,ℓ1)
cl (Z;R× R), sufficiently refined so as to satisfy

R(σ, λ)R̃(σ, λ) − I, R̃(σ, λ)R(σ, λ) − I ∈ C∞
c (R× R, L−∞(Z)).

For |λ0| ≫ 0 large enough, R(σ) := R(σ, λ0) ∈ Ls;(ℓ1,ℓ2)(Z;R) is then invertible

with inverse R−1(σ) = R̃(σ, λ0) ∈ L−s;(ℓ1,ℓ2)(Z;R).

Anisotropic Mellin operators op
M
(p) with p(x, σ) ∈ C∞

B (R+,M
m;(ℓ1,ℓ2)
O (Z)) are

continuous in the anisotropic b-Sobolev spaces

op
M
(p) : xαH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xαH

s−m;(ℓ1,ℓ2)
b (R+ × Z)

for all s, α ∈ R.
The definition of the residual class Ψ−∞

G (R+ × Z) in Section 3.2 is based on
mapping properties in the scale of standard b-Sobolev spaces with weights. The
inclusions (3.13) between the anisotropic and isotropic b-Sobolev spaces show that
we obtain the same residual operator class if we instead base the definition on the

analogous mapping properties in anisotropic weighted spaces xαH
s;(ℓ1,ℓ2)
b (R+×Z).

3.4. Definition of the calculus on R+×Z. The class Ψµ;
~ℓ

(cl)(R+×Z) of (classical)

pseudodifferential operators of order µ ∈ R relative to the given anisotropy vector
~ℓ = (ℓ1, ℓ2, ℓ3) ∈ N3 consists of operators of the form

A = op
M
(p) +G : S0(R+ × Z)→ S0(R+ × Z) (3.14)

with G ∈ Ψ−∞
G (R+ × Z), and p(x, σ) is an operator-valued holomorphic Mellin

symbol of the form

p(x, σ) = a(x, σ, x)

for some

a(x, σ, τ) ∈ C∞
B (R+,M

µ;~ℓ
O,(cl)(Z;R+)). (3.15)

Note that the variable x enters twice in p(x, σ): Once as a parameter, which is the
crucial feature of the calculus, and once as an extra variable to allow for additional
dependence on x.

(1) For the analysis of operators it is relevant that the scalar function

τ ∈M ℓ3;~ℓ
O,cl(Z;R+),

which shows that the operator of multiplication by x belongs to Ψℓ3;
~ℓ

cl (R+×

Z). More generally, xj ∈ Ψjℓ3;
~ℓ

cl (R+ × Z) for j ∈ N.
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(2) Observe that

(xDx)p(x, σ) = (xDxa)(x, σ, x) + (τDτa)(x, σ, x)

= [(xDx + τDτ )a](x, σ, x),

and

(xDx + τDτ )a ∈ C
∞
B (R+,M

µ;~ℓ
O,(cl)(Z;R+)).

Thus

(xDx)
j∂kσp(x, σ) = [(xDx + τDτ )

j∂kσa](x, σ, x)

with

(xDx + τDτ )
j∂kσa ∈ C

∞
B (R+,M

µ−kℓ2;~ℓ
O,(cl) (Z;R+))

for all j, k ∈ N0. In particular,

〈x〉−
µ+
ℓ3 p(x, σ) ∈ C∞

B (R+,M
µ;(ℓ1,ℓ2)
O (Z)),

where µ+ = max{µ, 0}, which shows that

op
M
(p) : S0(R+ × Z)→ S0(R+ × Z)

as is implicitly claimed in (3.14).
(3) The map (a, u) 7→ op

M
(p)u is continuous in

C∞
B (R+,M

µ;~ℓ
O (Z;R+))×S0(R+ × Z)→ S0(R+ × Z).

Thus, if aj ∈ C∞
B (R+,M

−∞
O (Z;R+)) with aj → a ∈ C∞

B (R+,M
µ′;~ℓ
O (Z;R+))

as j →∞ for µ′ > µ, then op
M
(pj)u→ op

M
(p)u in S0(R+ ×Z) as j →∞

for every u ∈ S0(R+ × Z), where pj(x, σ) = aj(x, σ, x).
The existence of such approximating sequences aj for every operator-

valued symbol a ∈ C∞
B (R+,M

µ;~ℓ
O (Z;R+)) follows from Lemma 3.5. The

operators op
M
(pj) then are all standard (smoothing) Mellin pseudodiffer-

ential operators with holomorphic symbols, and the properties of Mellin
pseudodifferential calculus are applicable to these operators, in particular
the oscillatory integral formulas for compositions and adjoints as reviewed
in Section 3.3. Such approximation arguments are used to prove that com-

positions and formal adjoints are well-behaved for the class Ψ∗;~ℓ
(cl)(R+ ×Z).

The extended principal symbol. Taylor expansion with respect to τ in (3.15) gives
an asymptotic expansion

a(x, σ, τ) ∼
∞
∑

j=0

τ jaj(x, σ),

viewed merely as an expansion in C∞(R+, L
µ;(ℓ1,ℓ2)
(cl) (Z;R)) that depends smoothly

on the parameter τ ∈ R+, where

aj(x, σ) =
1

j!
∂jτa(x, σ, 0) ∈ C

∞(R+, L
µ−jℓ3;(ℓ1,ℓ2)
(cl) (Z;R)).

In particular,

p(x, σ) ∼
∞
∑

j=0

xjaj(x, σ) (3.16)
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in C∞(R+, L
µ;(ℓ1,ℓ2)
(cl) (Z;R)). If a is classical, then p(x, σ) ∈ C∞(R+, L

µ;(ℓ1,ℓ2)
cl (Z;R))

is classical, and the parameter-dependent principal symbol σσ(p)(z, x, ζ, σ) is defined
on R+ × [(T ∗Z × R) \ 0] and satisfies

σσ(p)(z, x, ̺ℓ1ζ, ̺ℓ2σ) = ̺µ σσ(p)(z, x, ζ, σ), ̺ > 0.

We let
b σσψ(A) := σσ(p) on R

+ × [(T ∗Z × R) \ 0]. (3.17)

As the quantization of p(x, σ) leading to A is based on the Mellin transform, b σσψ(A)
is a rescaled version of the usual principal symbol σσψ(A) of A on R+ ×Z (see also
Lemma 3.23, but note that we allow ℓ1 6= ℓ2 here). The relation is given by

σσψ(A)(z, x, ζ, ξ) =
b σσψ(A)(z, x, ζ, xξ),

which is the same relation by rescaling as between the b-principal symbol and the
ordinary principal symbol of a b-pseudodifferential operator on a manifold with
boundary [9].

The operator-valued symbol a also has a parameter-dependent principal symbol
σσ(a)(z, x, ζ, σ, τ) of its own on R+ × [(T ∗Z × R × R+) \ 0] that is anisotropic
homogeneous in the sense that

σσ(a)(z, x, ̺ℓ1ζ, ̺ℓ2σ, ̺ℓ3τ) = ̺µ σσ(a)(z, x, ζ, σ, τ), ̺ > 0.

The expansion (3.16) for p(x, σ) shows that

σσ(p)(z, x, ζ, σ) = σσ(a)(z, x, ζ, σ, 0). (3.18)

We define

σσe(A) = σσ(a) on R+ × [(T ∗Z × R× R+) \ 0]. (3.19)

Relation (3.18) shows that this extended principal symbol of A captures b σσψ(A).
We take a fiberwise view to explain this further: For every (x, z) ∈ R+ × Z, the
extended principal symbol σσe(A) is determined by its values on a closed anisotropic
hemisphere

|ζ|2ℓ2ℓ3 + |σ|2ℓ1ℓ3 + |τ |2ℓ1ℓ2 = 1, τ ≥ 0,

by homogeneity (an arbitrary Riemannian metric is used to measure the length of
ζ ∈ T ∗

z Z). When restricting to τ = 0 we obtain the anisotropic cosphere

|ζ|2ℓ2ℓ3 + |σ|2ℓ1ℓ3 = 1,

and the extended principal symbol σσe(A) restricted to that cosphere then matches
b σσψ(A). The relevant principal symbol for the calculus on R+×Z is the extension
of b σσψ(A) from the cosphere bundle to the hemisphere bundle over R+ × Z, given
by σσe(A).

As σσ(a) determines a(x, σ, τ) modulo C∞
B (R+,M

µ−1;~ℓ
O,cl (Z;R+)) (that this is in-

deed the case in the holomorphic category of operator-valued symbols uses the
kernel cut-off operator (3.3)), the extended principal symbol σσe(A) determines A

modulo Ψµ−1;~ℓ
cl (R+ × Z).

Lemma 3.20. Let a ∈ C∞
B (R+,M

−∞
O (Z;R+)). Then op

M
(p) ∈ Ψ−∞

G (R+ × Z).

Proof. We need to verify the defining mapping properties. By assumption on
a(x, σ, τ) we have

xβp(x, σ) = xβa(x, σ, x) ∈ C∞
B (R+,M

−∞
O (Z))
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for every β ≥ 0, and consequently

xβop
M
(p) : xαHs

b (R+ × Z)→ xαHs′

b (R+ × Z)

for all s, s′ ∈ R and all α ∈ R. Thus

op
M
(p) : xαHs

b (R+ × Z)→ xα
′

Hs′

b (R+ × Z)

for all s, s′, α ∈ R and all α′ ≤ α.
Similarly, for β ≥ 0, we next want to prove that

xβop
M
(p⋆) : xαHs

b (R+ × Z)→ xαHs′

b (R+ × Z)

for all s, s′ ∈ R and all α ∈ R, and thus

[op
M
(p)]∗ = op

M
(p⋆) : xαHs

b (R+ × Z)→ xα
′

Hs′

b (R+ × Z)

for all s, s′, α ∈ R and all α′ ≤ α. Here p⋆(x, σ) is the Mellin symbol of the formal
adjoint operator and is given by (3.9). Now

[xβop
M
(p⋆)]∗ = op

M
(p)xβ = xβop

M
(pβ)

by (3.8), where pβ(x, σ) = p(x, σ−iβ) = a(x, σ−iβ, x). By assumption on a(x, σ, τ)
we have

xβpβ(x, σ) ∈ C
∞
B (R+,M

−∞
O (Z)),

and from the standard Mellin calculus we get that

[xβop
M
(pβ)]

∗ = [xβop
M
(p⋆)]∗∗ = xβop

M
(p⋆) : xαHs

b (R+ × Z)→ xαHs′

b (R+ × Z)

for all s, s′ ∈ R and all α ∈ R as desired. �

Proposition 3.21. The calculus Ψ⋆;
~ℓ(R+×Z) is asymptotically complete. Suppose

Ak = op
M
(pk) +Gk ∈ Ψµk;~ℓ(R+ × Z)

with µk ≥ µk+1 → −∞ as k →∞, where

pk(x, σ) = ak(x, σ, x), ak(x, σ, τ) ∈ C
∞
B (R+,M

µk;~ℓ
O (Z;R+)),

and Gk ∈ Ψ−∞
G (R+ × Z). Then there exists

a(x, σ, τ) ∈ C∞
B (R+,M

µ0;~ℓ
O (Z;R+))

with

a(x, σ, τ) ∼
∞
∑

k=0

ak(x, σ, τ)

in the sense that

a(x, σ, τ) −
N−1
∑

k=0

ak(x, σ, τ) ∈ C
∞
B (R+,M

µN ;~ℓ
O (Z;R+))

for every N ∈ N0, and with A = op
M
(p) ∈ Ψµ0;~ℓ(R+ × Z), p(x, σ) = a(x, σ, x), we

then have

A−
N−1
∑

k=0

Ak ∈ ΨµN ;~ℓ(R+ × Z)

for all N ∈ N0.
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Proof. We need to show the existence of an operator-valued symbol a(x, σ, τ) with
the prescribed asymptotic expansion. To do so, we first forget about the analyticity
with respect to σ ∈ C and consider

ak(x, σ, τ) ∈ C
∞
B (R+, L

µk;~ℓ(Z;R× R+)).

The usual Borel argument in coordinates then shows that there exists b(x, σ, τ) ∈

C∞
B (R+, L

µ0;~ℓ(Z;R× R+)) such that

b(x, σ, τ) −
N−1
∑

k=0

ak(x, σ, τ) ∈ C
∞
B (R+, L

µN ;~ℓ(Z;R× R+))

for every N ∈ N0. Now let

a(x, σ, τ) = [H(φ)b](x, σ, τ) ∈ C∞
B (R+,M

µ0;~ℓ
O (Z;R+))

with the kernel cut-off operator H(φ) from (3.3). Then

b(x, σ, τ) − [H(φ)b](x, σ, τ) ∈ C∞
B (R+, L

−∞(Z;R× R+)),

and thus

a(x, σ, τ) −
N−1
∑

k=0

ak(x, σ, τ)

∈ C∞
B (R+,M

µ0;~ℓ
O (Z;R+)) ∩ C

∞
B (R+, L

µN ;~ℓ(Z;R× R+))

= C∞
B (R+,M

µN ;~ℓ
O (Z;R+)).

�

Proposition 3.22. For every A ∈ Ψµ;
~ℓ

(cl)(R+ × Z) and every β ∈ R we have

x−βAxβ ∈ Ψµ;
~ℓ

(cl)(R+ × Z), and

x−βAxβ −A ∈ Ψµ−ℓ2;
~ℓ

(cl) (R+ × Z).

In particular, σσe(A) = σσe(x
−βAxβ) in the classical case.

Proof. For the residual class this is proved in Lemma 3.6, while by (3.8) we have
x−βop

M
(p)xβ = op

M
(pβ) with

pβ(x, σ) = p(x, σ − iβ) = a(x, σ − iβ, x).

Here a(x, σ, τ) is an operator-valued symbol as stated in (3.15), and we have

a(x, σ − iβ, τ) ∼
∞
∑

j=0

(−iβ)j

j!
∂jσa(x, σ, τ)

in that symbol class, which implies the claim. �

Lemma 3.23. Let ℓ1 = ℓ2. Then

Ψµ;
~ℓ

(cl)(R+ × Z) ⊂ L
µ;ℓ1
(cl) (R+ × Z).

In the classical case, the homogeneous principal symbol σσψ(A) of A as an element

of Lµ;ℓ1cl (R+ ×Z), and the b-principal symbol b σσψ(A) defined in (3.17), are related
by

σσψ(A)(z, x, ζ, ξ) =
b σσψ(A)(z, x, ζ, xξ).
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Proof. This is a consequence of the equivalence of phase functions based on either
the Fourier or Mellin transform for the pseudodifferential quantization map. An
explicit relationship is given by what is called Mellin quantization in Schulze’s
theory [12]. Gil, Schulze, and Seiler [3, 4] construct Mellin quantization maps

Q : a(x, ξ) 7→ p(x, σ) Q̃ : p(x, σ) 7→ a(x, ξ)

on the level of (operator-valued) symbols that are explicitly given by oscillatory
integral representations such that

op
M
(p) = op(a(x, xξ)) +R.

The remainder term R is smoothing and is also given explicitly. Here op refers to the
usual Kohn-Nirenberg quantization. This formula is to be read as either p = Q(a)
and then also R = R(a) when passing from the Kohn-Nirenberg quantized operator

to the Mellin operator, or as a = Q̃(p) and R = R(p) vice versa. The maps Q and Q̃
are inverses of each other modulo regularizing (operator-valued) symbols, and there

are explicit asymptotic expansions for p = Q(a) in terms of a, and for a = Q̃(p) in
terms of p, which only involve ξ- or σ-derivatives of a or p, respectively, powers of
ξ or σ, and certain universal combinatorial coefficients; in particular, according to
these expansions, p and a differ by lower-order terms. The construction and proofs
in an anisotropic setting can also be found in [7]. �

3.5. Compositions and formal adjoints.

Lemma 3.24. Let p(x, σ) = a(x, σ, x) with a(x, σ, τ) ∈ C∞
B (R+,M

µ;~ℓ
O (Z;R+)) be

arbitrary, and let µ ≤ 0. For j ∈ N0 with µ+ ℓ3j ≤ 0 we have

op
M
(p), [op

M
(p)]∗ : xαH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα−jH

s−(µ+ℓ3j);(ℓ1,ℓ2)
b (R+ × Z)

for all s, α ∈ R.

Proof. By assumption on µ and j, we have

xjp(x, σ) ∈ C∞
B (R+,M

µ+ℓ3j;(ℓ1,ℓ2)
O (Z)).

and consequently op
M
(p) has the desired mapping properties. Now

xj [op
M
(p)]∗ = [op

M
(p)xj ]∗ = [xjop

M
(pj)]

∗

with pj(x, σ) = p(x, σ − ij) = a(x, σ − ij, x), and we have

a(x, σ − ij, τ) ∈ C∞
B (R+,M

µ;~ℓ
O (Z;R+)).

Consequently,

xjpj(x, σ) ∈ C
∞
B (R+,M

µ+ℓ3j;(ℓ1,ℓ2)
O (Z)),

and thus the same is true for the operator-valued symbol of the formal adjoint,
which implies that

xj [op
M
(p)]∗ = [xjop

M
(pj)]

∗ : xαH
s;(ℓ1,ℓ2)
b (R+×Z)→ xαH

s−(µ+ℓ3j);(ℓ1,ℓ2)
b (R+×Z).

�

Theorem 3.25. Let A = op
M
(p) + G ∈ Ψµ;

~ℓ

(cl)(R+ × Z). Then the formal adjoint

of A with respect to the L2
b-inner product belongs to Ψµ;

~ℓ

(cl)(R+×Z). More precisely,
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suppose that p(x, σ) = a(x, σ, x) with a(x, σ, τ) ∈ C∞
B (R+,M

µ;~ℓ
O (Z;R+)). Let then

a⋆(x, σ, τ) ∈ C∞
B (R+,M

µ;~ℓ
O (Z;R+)) be arbitrary with asymptotic expansion

a⋆(x, σ, τ) ∼
∞
∑

k=0

1

k!
[(−xDx − τDτ )

k∂kσa](x, σ, τ)
∗ (3.26)

within this operator-valued symbol class, where the ∗ operator that appears in the
asymptotic terms in (3.26) is the formal adjoint with respect to the L2-inner product
on Z. Then there exists G′ ∈ Ψ−∞

G (R+ × Z) such that

A∗ = op
M
(a⋆(x, σ, x)) +G′ ∈ Ψµ;

~ℓ

(cl)(R+ × Z).

In the classical case we find that σσe(A
∗) = σσe(A) (or fiberwise adjoints when the

operators are acting in sections of the pull-back to R+ × Z of a Hermitian vector
bundle on Z).

Proof. Observe that an operator-valued symbol a⋆(x, σ, τ) with the prescribed as-
ymptotic expansion (3.26) exists by Proposition 3.21.

We first consider a(x, σ, τ) ∈ C∞
B (R+,M

−∞
O (Z;R+)). In particular, the formu-

las (3.9) and (3.10) for the formal adjoint from the standard Mellin calculus are
applicable to op

M
(p). We get that [op

M
(p)]∗ = op

M
(p⋆) with the symbol p⋆(x, σ)

explicitly given by (3.9), and for every N ∈ N we have

p⋆(x, σ) =

N−1
∑

k=0

1

k!
[(−xDx)

k∂kσp](x, σ)
∗ + rN (x, σ)

=

N−1
∑

k=0

1

k!
[(−xDx − τDτ )

k∂kσa](x, σ, x)
∗ + rN (x, σ)

= pN(x, σ) + rN (x, σ),

where

rN (x, σ) =
1

2π

∫ 1

0

(1− θ)N−1

(N − 1)!

∫∫

y−iηaN (xy, σ + θη, xy)∗
dy

y
dηdθ.

Here

aN (x, σ, τ) = (−xDx − τDτ )
N∂Nσ a(x, σ, τ).

For any j ∈ N0 we now consider xjrN (x, σ). In view of the analyticity of the
symbols we can shift integration to the complex η-plane in the formula for rN (x, σ)
and get

xjrN (x, σ) =
1

2π

∫ 1

0

(1 − θ)N−1

(N − 1)!

∫∫

y−iηxjaN (xy, σ + θη, xy)∗
dy

y
dηdθ

=
1

2π

∫ 1

0

(1 − θ)N−1

(N − 1)!

∫∫

y−iη(xy)jaN (xy, σ + θ(η − ij), xy)∗
dy

y
dηdθ

=
1

2π

∫ 1

0

(1 − θ)N−1

(N − 1)!

∫∫

y−iη[τ jaN ](xy, σ + θ(η − ij), xy)∗
dy

y
dηdθ.

The map C∞
B (R+,M

µ′;~ℓ
O (Z;R+))→ C∞

B (R+,M
µ′−Nℓ2+jℓ3;~ℓ
O (Z;R+)) given by

a(x, σ, τ) 7→ τ jaN (x, σ, τ)
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is continuous for all µ′ ∈ R and j,N ∈ N0. The oscillatory integral formula for
xjrN (x, σ) implies that, for any given µ′ ∈ R, j0 ∈ N0, and µ0 < 0, there exists
N0 ∈ N sufficiently large such that, for N ≥ N0 and 0 ≤ j ≤ j0, the map

C∞
B (R+,M

µ′;~ℓ
O (Z;R+)) ∋ a(x, σ, τ) 7→ xjrN (x, σ) ∈ C∞

B (R+,M
µ0;(ℓ1,ℓ2)
O (Z))

is continuous. Consequently, for a(x, σ, τ) ∈ C∞
B (R+,M

µ′;~ℓ
O (Z;R+)), we get

op
M
(rN ) : xαH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα−jH

s−µ0;(ℓ1,ℓ2)
b (R+ × Z)

for all α, s ∈ R. The same reasoning shows that the map

C∞
B (R+,M

µ′;~ℓ
O (Z;R+)) ∋ a(x, σ, τ) 7→ xjrN (x, σ − ij) ∈ C∞

B (R+,M
µ0;(ℓ1,ℓ2)
O (Z))

is continuous for N ≥ N0 and 0 ≤ j ≤ j0, and consequently

[op
M
(rN )]∗ = x−j [op

M
(xjrN (x, σ − ij))]∗ :

xαH
s;(ℓ1,ℓ2)
b (R+ × Z)→ xα−jH

s−µ0;(ℓ1,ℓ2)
b (R+ × Z)

for all α, s ∈ R as well.

Now let a ∈ C∞
B (R+,M

µ;~ℓ
O (Z;R+)). By Lemma 3.5 there exists a sequence

aν ∈ C∞
B (R+,M

−∞
O (Z;R+)) such that aν → a in C∞

B (R+,M
µ′;~ℓ
O (Z;R+)) as ν →∞

for µ′ > µ. Let u, v ∈ C∞
c (R+ × Z) be arbitrary. Then

〈op
M
(a(x, σ, x))u, v〉L2

b
←− 〈op

M
(aν(x, σ, x))u, v〉L2

b

= 〈u, [op
M
(aν(x, σ, x))]

∗v〉L2
b
= 〈u, (op

M
(pN,ν) + op

M
(rN,ν))v〉L2

b

−→ 〈u, (op
M
(pN ) + op

M
(rN ))v〉L2

b

for N ∈ N large enough, and op
M
(rN ) and [op

M
(rN )]∗ have the mapping properties

in the anisotropic b-Sobolev spaces stated above. In particular, [op
M
(a(x, σ, x))]∗ =

op
M
(pN ) + op

M
(rN ).

Consequently, if a⋆(x, σ, τ) has the asymptotic expansion (3.26), then G0 =
[op

M
(a(x, σ, x)]∗ − op

M
(a⋆(x, σ, x)) satisfies

G0, G
∗
0 : xαH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα

′

H
s′;(ℓ1,ℓ2)
b (R+ × Z)

for all α, s, s′ ∈ R, and all α′ ≤ α by Lemma 3.24 and the mapping properties of
op

M
(rN ) (as N → ∞), which shows that G0 ∈ Ψ−∞

G (R+ × Z). The theorem is
proved. �

Theorem 3.27. Let Aj = op
M
(aj(x, σ, x)) +Gj ∈ Ψ

µj ;~ℓ

(cl) (R+ × Z), j = 1, 2, with

aj(x, σ, τ) ∈ C
∞
B (R+,M

µj ;~ℓ

O,(cl)(Z;R+)).

Then the composition A1A2 ∈ Ψµ1+µ2;~ℓ
(cl) (R+ × Z). More precisely, if a1#a2 ∈

C∞
B (R+,M

µ1+µ2;~ℓ
O,(cl) (Z;R+)) has the asymptotic expansion

(a1#a2)(x, σ, τ) ∼
∞
∑

k=0

1

k!
[∂kσa1](x, σ, τ)[(xDx + τDτ )

ka2](x, σ, τ), (3.28)

then there exists G ∈ Ψ−∞
G (R+ × Z) such that

A1A2 = op
M
((a1#a2)(x, σ, x)) +G.

In the classical case we have σσe(A1A2) = σσe(A1)σσe(A2).
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Proof. The composition G1G2 ∈ Ψ−∞
G (R+ × Z) in view of the defining mapping

properties of the residual class. We next prove that the compositions

op
M
(a1(x, σ, x))G2 and G1opM(a2(x, σ, x))

are residual as well. Let ω ∈ C∞
c (R+) with ω ≡ 1 near x = 0, and write

aj(x, σ, τ) = ω(x)aj(x, σ, τ) + (1− ω)(x)aj(x, σ, τ) = aj,0(x, σ, τ) + aj,∞(x, σ, τ).

For K > 0 large enough we have

aj,0(x, σ, x), x
−Kaj,∞(x, σ, x) ∈ C∞

B (R+,M
µj ;(ℓ1,ℓ2)
O (Z)),

and consequently

op
M
(aj,0(x, σ, x)) : x

αH
s;(ℓ1,ℓ2)
b (R+ × Z)→ xαH

s−µj ;(ℓ1,ℓ2)
b (R+ × Z),

op
M
(aj,∞(x, σ, x)) : xαH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα+KH

s−µj ;(ℓ1,ℓ2)
b (R+ × Z)

for all s, α ∈ R. By the mapping properties of G1 we obtain

G1opM(a2,0(x, σ, x)) : x
αH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα

′

H
s′;(ℓ1,ℓ2)
b (R+ × Z)

for all s, s′ ∈ R and all α′ ≤ α, and

G1opM(a2,∞(x, σ, x)) : xαH
s;(ℓ1,ℓ2)
b (R+ × Z)→ xα

′

H
s′;(ℓ1,ℓ2)
b (R+ × Z)

for all s, s′ ∈ R and all α′ ≤ α+K, and so also for all α′ ≤ α, which shows that

G1opM(a2(x, σ, x)) : x
αH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα

′

H
s′;(ℓ1,ℓ2)
b (R+ × Z).

for all s, s′ ∈ R and all α′ ≤ α. Because

G2 : xαH
s;(ℓ1,ℓ2)
b (R+ × Z)→ xα

′

H
s′+µ1;(ℓ1,ℓ2)
b (R+ × Z)

we get

op
M
(a1,0(x, σ, x))G2 : xαH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα

′

H
s′;(ℓ1,ℓ2)
b (R+ × Z)

for all s, s′ ∈ R and α′ ≤ α, and similarly

G2 : xαH
s;(ℓ1,ℓ2)
b (R+ × Z)→ xα

′−KH
s′+µ1;(ℓ1,ℓ2)
b (R+ × Z)

and

op
M
(a1,∞(x, σ, x))G2 : xαH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα

′

H
s′;(ℓ1,ℓ2)
b (R+ × Z),

and so

op
M
(a1(x, σ, x))G2 : xαH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα

′

H
s′;(ℓ1,ℓ2)
b (R+ × Z)

for all s, s′ ∈ R and all α′ ≤ α. For the formal adjoints we have

[G1opM(a2(x, σ, x))]
∗ = [op

M
(a2(x, σ, x))]

∗G∗
1,

[op
M
(a1(x, σ, x))G2]

∗ = G∗
2[opM(a1(x, σ, x))]

∗,

and because [op
M
(aj)(x, σ, x)]

∗ ∈ Ψ
µj ;~ℓ

(cl) (R+ × Z) by Theorem 3.25 we obtain with

the above that both op
M
(a1(x, σ, x))G2 and G1opM(a2(x, σ, x)) are residual.

It remains to consider the composition op
M
(a1(x, σ, x))opM

(a2(x, σ, x)). We first
consider

aj(x, σ, τ) ∈ C
∞
B (R+,M

−∞
O (Z;R+)).
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We can then compose op
M
(a1(x, σ, x))opM

(a2(x, σ, x)) = op
M
(c(x, σ)) by the stan-

dard Mellin pseudodifferential calculus, and the formulas (3.11) and (3.12) apply.
For every N ∈ N

c(x, σ) =

N−1
∑

k=0

1

k!
[∂kσa1](x, σ, x)[(xDx + τDτ )

ka2](x, σ, x) + rN (x, σ)

= cN (x, σ) + rN (x, σ).

We further decompose

rN (x, σ) = rN,0(x, σ) + rN,∞(x, σ)

with

rN,0(x, σ) =
1

2π

∫ 1

0

(1− θ)N−1

(N − 1)!

∫∫

y−iη·

[∂Nσ a1](x, σ + θη, x)[(xDx + τDτ )
Na2,0](xy, σ, xy)

dy

y
dηdθ,

rN,∞(x, σ) =
1

2π

∫ 1

0

(1− θ)N−1

(N − 1)!

∫∫

y−iη·

[∂Nσ a1](x, σ + θη, x)[(xDx + τDτ )
Na2,∞](xy, σ, xy)

dy

y
dηdθ,

where a2,0 = ωa2 and a2,∞ = (1− ω)a2 as above.

Let µ′
1, µ

′
2 ∈ R, j0 ∈ N0, and µ0 < 0 be arbitrary.

We first analyze rN,0(x, σ): For 0 ≤ j ≤ j0 write

xjrN,0(x, σ) =
1

2π

∫ 1

0

(1 − θ)N−1

(N − 1)!

∫∫

y−iη·

[τ j∂Nσ a1](x, σ + θη, x)[(xDx + τDτ )
Na2,0](xy, σ, xy)

dy

y
dηdθ.

Because

C∞
B (R+,M

µ′
2;
~ℓ

O (Z;R+)) ∋ a2(x, σ, τ) 7→ a2,0(x, σ, x) ∈ C
∞
B (R+,M

µ′
2;(ℓ1,ℓ2)

O (Z))

is continuous we see from the formula that there exists N0 ∈ N such that for all
N ≥ N0 and all 0 ≤ j ≤ j0 the maps

(a1, a2) 7→ xjrN,0(x, σ) and (a1, a2) 7→ xjrN,0(x, σ − ij)

are continuous in

C∞
B (R+,M

µ′
1;
~ℓ

O (Z;R+))× C
∞
B (R+,M

µ′
2;
~ℓ

O (Z;R+))→ C∞
B (R+,M

µ0;(ℓ1,ℓ2)
O (Z)),

and so

op
M
(rN,0), [opM(rN,0)]

∗ = x−j [op
M
(xjrN,0(x, σ − ij))]

∗ :

xαH
s;(ℓ1,ℓ2)
b (R+ × Z)→ xα−jH

s−µ0;(ℓ1,ℓ2)
b (R+ × Z)

for all α, s ∈ R.
We next want to show the same mapping properties for op

M
(rN,∞) for N suffi-

ciently large. Pick K > 0 large enough such that

C∞
B (R+,M

µ′
2;
~ℓ

O (Z;R+))∋a2(x, σ, τ) 7→ x−Ka2,∞(x, σ, x)∈C∞
B (R+,M

µ′
2;(ℓ1,ℓ2)

O (Z))
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is continuous. We use the analyticity of the operator-valued symbols in the oscilla-
tory integral formula for rN,∞(x, σ) to shift the integration contour and write for
every 0 ≤ j ≤ j0

xjrN,∞(x, σ) =
1

2π

∫ 1

0

(1− θ)N−1

(N − 1)!

∫∫

y−iη·

[τ j+K∂Nσ a1](x, σ + θ(η − iK), x)[x−K(xDx + τDτ )
Na2,∞](xy, σ, xy)

dy

y
dηdθ.

This formula shows that we can find N0 ∈ N such that for N ≥ N0 and 0 ≤ j ≤ j0
the maps

(a1, a2) 7→ xjrN,∞(x, σ) and (a1, a2) 7→ xjrN,∞(x, σ − ij)

are continuous in

C∞
B (R+,M

µ′
1;
~ℓ

O (Z;R+))× C
∞
B (R+,M

µ′
2;
~ℓ

O (Z;R+))→ C∞
B (R+,M

µ0;(ℓ1,ℓ2)
O (Z)),

so op
M
(rN,∞) and [op

M
(rN,∞)]∗ have the desired mapping properties. We conclude

that

op
M
(rN ), [op

M
(rN )]∗ : xαH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα−jH

s−µ0;(ℓ1,ℓ2)
b (R+ × Z)

for all α, s ∈ R.

Now let aj(x, σ, τ) ∈ C∞
B (R+,M

µj ;~ℓ

O,(cl)(Z;R+)). By Lemma 3.5 there exist se-

quences aj,ν ∈ C∞
B (R+,M

−∞
O (Z;R+)) such that aj,ν(x, σ, τ) → aj(x, σ, τ) as ν →

∞ in C∞
B (R+,M

µj ;~ℓ

O,(cl)(Z;R+)) for µ
′
j > µj .

For every u ∈ S0(R+ × Z) and N ∈ N large enough

op
M
(a1(x, σ, x))opM

(a2(x, σ, x))u ←− op
M
(a1,ν(x, σ, x))opM

(a2,ν(x, σ, x))u

= op
M
(cN,ν)u+ op

M
(rN,ν)u −→ op

M
(cN )u+ op

M
(rN )u.

So op
M
(a1(x, σ, x))opM

(a2(x, σ, x)) = op
M
(cN ) + op

M
(rN ) for N large enough,

and op
M
(rN ) has the mapping properties previously shown. Consequently, if the

operator-valued symbol a1#a2 ∈ C∞
B (R+,M

µ1+µ2;~ℓ
O,(cl) (Z;R+)) has the asymptotic

expansion (3.28), then

G0 = op
M
(a1(x, σ, x))opM

(a2(x, σ, x)) − op
M
((a1#a2)(x, σ, x))

satisfies

G0, G
∗
0 : xαH

s;(ℓ1,ℓ2)
b (R+ × Z)→ xα

′

H
s′;(ℓ1,ℓ2)
b (R+ × Z)

for all α, s, s′ ∈ R and all α′ ≤ α by Lemma 3.24 and the mapping properties of
op

M
(rN ) (as N →∞). The theorem is proved. �

3.6. Ellipticity and parametrices on R+ × Z.

Definition 3.29. The operator A = op
M
(a(x, σ, x)) + G ∈ Ψµ;

~ℓ
cl (R+ × Z) with

a(x, σ, τ) ∈ C∞
B (R+,M

µ;~ℓ
O,cl(Z;R+)) is fully elliptic if σσe(A)(z, x, ζ, σ, τ) is invertible

for all (z, ζ, σ, τ) ∈ [T ∗Z × R× R+] \ 0 and all x > 0, and the inverse

|σσ−1
e (A)(z, x, ζ, σ, τ)|

is bounded as x varies in R+ and (z, ζ, σ, τ) ∈ T ∗Z×R×R+ with |ζ|2ℓ2ℓ3
gZ (z)+|σ|

2ℓ1ℓ3+

|τ |2ℓ1ℓ2 = 1, z ∈ Z, where gZ is a Riemannian metric on Z.
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Theorem 3.30. Let A ∈ Ψµ;
~ℓ

cl (R+ × Z) be fully elliptic. The there exists P ∈

Ψ−µ;~ℓ
cl (R+ × Z) such that AP − I, PA− I ∈ Ψ−∞

G (R+ × Z).

Proof. By assumption

a(x, σ, τ) ∈ C∞
B (R+, L

µ;~ℓ
cl (Z;R× R+))

is parameter-dependent elliptic, uniformly with respect to x ∈ R+. There exists a
parameter-dependent parametrix

b(x, σ, τ) ∈ C∞
B (R+, L

−µ;~ℓ
cl (Z;R× R+))

such that ab− 1, ba− 1 ∈ C∞
B (R+, L

−∞(Z;R× R+)). Replacing b by H(φ)b with

the kernel cut-off operator (3.3) gives b ∈ C∞
B (R+,M

−µ;~ℓ
O,cl (Z;R+)) such that

ab− 1, ba− 1 ∈ C∞
B (R+,M

−∞
O (Z;R+)).

Now B = op
M
(b(x, σ, x)) ∈ Ψ−µ;~ℓ

cl (R+ × Z), and AB − I, BA − I ∈ Ψ−1;~ℓ
cl (R+ ×

Z) by Theorem 3.27. By the composition theorem and asymptotic completeness
(Proposition 3.21) the formal Neumann series argument is applicable which yields

the desired parametrix P ∈ Ψ−µ;~ℓ
cl (R+ × Z). �

4. The calculus on M

Let M be an asymptotically conic manifold as described in Section 2. On M we
fix a positive density that on the noncompact end for large x ≫ 1 is given by
dx
x
dz, where dz the positive density associated with an arbitrary (but henceforth

fixed) Riemannian metric gZ on the cross-section Z. Let L2
b(M) be the L2-space

associated with that density, which is the base space for our analysis on M . While
we are going to discuss the details of the calculus for scalar-valued functions here,
we point out that the constructions equally work for operators acting in sections of
vector bundles over M . On the noncompact end, a Hermitian vector bundle E is
isometric to the pull-back of a Hermitian vector bundle on Z (where Z is identified
as x = 1)

E
∣

∣

[1,∞)×Z
∼= π∗E

∣

∣

Z
, π : [1,∞)× Z → Z.

Such an isometry can be obtained by parallel transport with respect to a compatible
connection on E along the integral curves of the vector field ∂x. The calculus on the
noncompact end is then defined as acting in sections of pull-back bundles from Z,
and is based on quantizations of symbols, as discussed in Section 3, but now taking
values in operators on Z that act in sections of vector bundles over Z. There is
invariance with the requirement that the transition map, as well as its inverse, which
relate different isomorphisms E

∣

∣

[1,∞)×Z
∼= π∗E

∣

∣

Z
, are operators in the calculus of

order 0.

Throughout this section the anisotropy vector ~ℓ = (ℓ1, ℓ1, ℓ3) ∈ N
3 is fixed.

4.1. Residual operators. For s ∈ R let Hs
b (M) denote the space of all u ∈

Hs
loc(M) such that for some φ ∈ C∞

c (M) with φ ≡ 1 when x ≤ 1
2 and φ ≡ 0 for

x ≥ 3
4 , we have

(1− φ)u ∈ Hs
b (R+ × Z).
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Recall that x is globally defined on M , see Section 2. Observe that we use this
b-Sobolev space to control behavior of functions as x → ∞ here, while typically
b-Sobolev spaces are utilized to control behavior as x→ 0.

This b-Sobolev space Hs
b (M) can be given a Hilbert space structure; it is realized

as a quotient of the direct sum of Hs(2M0)×H
s
b (R+×Z), where 2M0 =M0⊔ZM0

is the double of the compact manifold M0 with boundary Z, see Section 2, by
identifying tuples modulo the kernel of the map (v, w) 7→ φv + (1 − φ)w. We have

H0
b (M) = L2

b(M), continuous embeddings xαHs
b (M) →֒ xα

′

Hs′

b (M) for s ≥ s′

and α ≤ α′ (compact if both inequalities are strict), and duality [xαHs
b (M)]′ ∼=

x−αH−s
b (M) with respect to the extended L2

b-inner product. Moreover,

S (M) =
⋂

s,α∈N0

x−αHs
b (M), S

′(M) =
⋃

s,α∈N0

xαH−s
b (M).

The class Ψ−∞
G (M) of residual operators on M is defined to consist of all operators

G : S (M)→ S (M)

that are integral operators with kernels in S (M ×M) with respect to the b-density
on M . In terms of the b-Sobolev spaces, G ∈ Ψ−∞

G (M) if and only if

G : xαHs
b (M)→ xα

′

Hs′

b (M)

is continuous for all s, s′, α, α′ ∈ R.
Observe that with G also G∗ ∈ Ψ−∞

G (M). Moreover, xβG, Gxβ ∈ Ψ−∞
G (M) for

all β ∈ R.

4.2. Definition and properties of the calculus on M . The class Ψµ;
~ℓ

(cl)(M)

consists of all continuous operators

A : S (M)→ S (M)

with the following properties:

• For all φ, ψ ∈ C∞
c (M) with supp(φ) ∩ supp(1− ψ) = ∅ we have

φA(1 − ψ), (1− ψ)Aφ ∈ Ψ−∞
G (M).

• For all φ, ψ ∈ C∞
c (M), the operator φAψ ∈ Lµ;ℓ1(cl) (M), see Section 2.1.

• There exists an R ≫ 1 depending on A such that, for all φ, ψ ∈ C∞
c (M)

with both supp(1− φ) and supp(1− ψ) contained in x > R, we have

(1 − φ)A(1 − ψ) ∈ Ψµ;
~ℓ

(cl)(R+ × Z).

By Lemma 3.23 we have Ψµ;
~ℓ

(cl)(M) ⊂ Lµ;ℓ1(cl) (M). In particular, every A ∈ Ψµ;
~ℓ

cl (M)

has a homogeneous principal symbol σσψ(A) on T
∗M \ 0, where

σσψ(A)(y, ̺
ℓ1η) = ̺µ σσψ(A)(y, η), ̺ > 0.

Moreover, for R≫ 1 large enough, we can restrict A to an operator

C∞
c ({x > R}) ∼= C∞

c ((R,∞), C∞(Z))→ C∞((R,∞), C∞(Z)) ∼= C∞({x > R}),

and by assumption on A can find a(x, σ, τ) ∈ C∞
B (R+,M

µ;~ℓ
O,cl(Z;R+)) and G ∈

Ψ−∞
G (R+ × Z) such that

[Au](x) = [op
M
(a(x, σ, x))u](x) + [Gu](x), x > R,
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for u ∈ C∞
c ((R,∞), C∞(Z)). For x > R we then define

σσe(A) = σσ(a)(z, x, ζ, σ, τ)

for (ζ, σ, τ) 6= 0 as in (3.19). We have

σσe(A)(z, x, ̺
ℓ1ζ, ̺ℓ1σ, ̺ℓ3τ) = ̺µ σσe(A)(z, x, ζ, σ, τ), ̺ > 0,

and

σσψ(A)(z, x, ζ, ξ) = σσe(A)(z, x, ζ, xξ, 0). (4.1)

We then consider the tuple

σσ(A) := (σσψ(A), σσe(A)),

where σσe(A) only makes sense for x > R ≫ 1 with R depending on A, and where
both σσψ(A) and σσe(A) are coupled by (4.1), to be the full principal symbol of

A ∈ Ψµ;
~ℓ

cl (M). Observe that σσ(A) determines A modulo Ψµ−1;~ℓ
cl (M). It follows

from the properties discussed below that

0 −→ Ψµ−1;~ℓ
cl (M) −→ Ψµ;

~ℓ
cl (M) −→ Σµ;

~ℓ −→ 0

is split-exact, where a right-inverse of the symbol map σσ : Ψµ;
~ℓ

cl (M) −→ Σµ;
~ℓ is

given by patching quantization maps for Lµ;ℓ1cl (M) and Ψµ;
~ℓ

cl (R+ × Z) (for large
x > R≫ 1) with a partition of unity on M .

The following statements are immediate consequences from the definition and

the properties of both Lµ;ℓ1(cl) (M) and Ψµ;
~ℓ

(cl)(R+ × Z):

(1) For any φ, ψ ∈ C∞
c (M) we have φLµ;ℓ1(cl) (M)ψ ⊂ Ψµ;

~ℓ

(cl)(M).

(2) For any φ, ψ ∈ C∞
c (M) with both supp(1 − φ) and supp(1 − ψ) contained

in x > 1 we have

(1 − φ)Ψµ;
~ℓ

(cl)(R+ × Z)(1− ψ) ⊂ Ψµ;
~ℓ

(cl)(M).

(3) For any β ∈ R we have x−βΨµ;
~ℓ

(cl)(M)xβ ⊂ Ψµ;
~ℓ

(cl)(M). If A ∈ Ψµ;
~ℓ

cl (M), then

σσ(x−βAxβ) = σσ(A).

The last property makes it possible to consider the calculus with weights xγΨµ;
~ℓ

(cl)(M)

for γ ∈ R. For A ∈ xγΨµ;
~ℓ

cl (M) we define σσ(A) := σσ(x−γA).

Theorem 4.2. Let A ∈ xγΨµ;
~ℓ(M). Then the formal adjoint A∗ with respect to

the L2
b-inner product on M belongs to xγΨµ;

~ℓ(M). If A ∈ xγΨµ;
~ℓ

cl (M) then also

A∗ ∈ xγΨµ;
~ℓ

cl (M), and we have σσ(A∗) = σσ(A)∗ (fiberwise adjoints).

Proof. It suffices to consider the case γ = 0. Write

A = φAψ + (1− φ)A(1 − ψ̃) +G,

where G ∈ Ψ−∞
G (M) and φ, ψ, ψ̃ ∈ C∞

c (M) real-valued with both supp(1− φ) and

supp(1 − ψ̃) contained in x > R, where R ≫ 1 is large, and ψ̃ ≺ φ ≺ ψ (we write
g ≺ f when f ≡ 1 in a neighborhood of the support of g).

Now φAψ ∈ Lµ;ℓ1(cl) (M) with [φAψ]∗ = ψA∗φ ∈ Lµ;ℓ1(cl) (M), and as both φ and

ψ have compact support we get [φAψ]∗ ∈ Ψµ;
~ℓ

(cl)(M), and in the classical case

σσ([φAψ]∗) = φσσ(A)∗. Similarly, for R ≫ 1 large enough, (1 − φ)A(1 − ψ̃) ∈
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Ψµ;
~ℓ

(cl)(R+ × Z), and by Theorems 3.25 and 3.27 we have [(1 − φ)A(1 − ψ̃)]∗ =

(1 − ψ̃)A∗(1 − φ) ∈ Ψµ;
~ℓ

(cl)(R+ × Z). In the classical case, σσ([(1 − φ)A(1 − ψ̃)]∗) =

(1− φ)σσ(A)∗. In conclusion,

A∗ = [φAψ]∗ + [(1− φ)A(1 − ψ̃)]∗ +G∗ ∈ Ψµ;
~ℓ

(cl)(M)

with σσ(A∗) = φσσ(A)∗+(1−φ)σσ(A)∗ = σσ(A)∗ in the classical case as claimed. �

We note that Theorem 4.2 implies that every A ∈ xγΨµ;
~ℓ(M) gives a continuous

operator

A : S
′(M)→ S

′(M).

Note that we consistently use the fixed density onM to trivialize the density bundle,
and hence identify functions and densities.

Theorem 4.3. Let Aj ∈ xγjΨ
µj ;~ℓ

(cl) (M), j = 1, 2. Then the composition A1A2

belongs to xγ1+γ2Ψµ1+µ2;~ℓ
(cl) (M), and in the classical case σσ(A1A2) = σσ(A1)σσ(A2)

with componentwise multiplication. The residual class Ψ−∞
G (M) is an ideal in the

calculus.

Proof. It suffices to consider γ1 = γ2 = 0.

For any A ∈ Ψµ;
~ℓ(M) there exists K > 0 sufficiently large such that

A : xαH
s
ℓ1

b (M)→ xα+KH
s−µ
ℓ1

b (M) (4.4)

is continuous for all α, s ∈ R. To see this write

A = φAψ + (1 − φ)A(1 − ψ̃) +G

with appropriate φ, ψ, ψ̃ ∈ C∞
c (M) and G ∈ Ψ−∞

G (M) as in the proof of Theo-
rem 4.2. Now

φAψ : xαH
s
ℓ1

b (M)→ xα+KH
s−µ
ℓ1

b (M)

for all s, α ∈ R and all K ≥ 0 because φ and ψ have compact support. Moreover, G
maps any weighted b-Sobolev space into any other weighted b-Sobolev space across
the full range of weight and regularity parameters. Finally,

(1− φ)A(1 − ψ̃) = op
M
(a(x, σ, x)) + G̃,

where G̃ ∈ Ψ−∞
G (M), and we have

x−Ka(x, σ, x) ∈ C∞
B (R+,M

µ;(ℓ1,ℓ1)
O (Z))

for K ≥ µ+

ℓ3
; note that the supports of both 1−φ and 1− ψ̃ are contained in x > R

with R≫ 1 sufficiently large. Consequently,

x−K(1− φ)A(1 − ψ̃) : xαH
s
ℓ1

b (M)→ xαH
s−µ
ℓ1

b (M)

for all α, s ∈ R and K ≥ µ+

ℓ3
, and the claimed mapping property (4.4) for these

values of K follows.
The mapping properties (4.4) for A combined with the characterizing mapping

properties for Ψ−∞
G (M) now show that AG,GA ∈ Ψ−∞

G (M) for all A ∈ Ψµ;
~ℓ(M)

and G ∈ Ψ−∞
G (M).

We next consider the composition A1A2:
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• Let φ, ψ ∈ C∞
c (M) be arbitrary with supp(φ) ∩ supp(1 − ψ) = ∅, and let

φ̃ ∈ C∞
c (M) with φ ≺ φ̃ and supp(φ̃) ∩ supp(1 − ψ) = ∅. Recall from the

proof of Theorem 4.2 that we write φ ≺ φ̃ if φ̃ ≡ 1 in a neighborhood of
supp(φ). Then

φA1A2(1− ψ) = φA1[φ̃A2(1− ψ)] + [φA1(1 − φ̃)]A2(1− ψ),

where [φ̃A2(1− ψ)], [φA1(1 − φ̃)] ∈ Ψ−∞
G (M). By the already proven ideal

property of Ψ−∞
G (M) we obtain that φA1A2(1 − ψ) ∈ Ψ−∞

G (M). In the

same way we prove that (1− ψ)A1A2φ ∈ Ψ−∞
G (M).

• Let φ, ψ ∈ C∞
c (M) be arbitrary. Pick functions φ1, ψ1 ∈ C∞

c (M) with
φ, ψ ≺ φ1 ≺ ψ1. Then

φA1A2ψ = [φA1ψ1][φ1A2ψ] + [φA1(1 − φ1)]A2ψ.

We have [φA1ψ1][φ1A2ψ] ∈ Lµ1+µ2;ℓ1
(cl) (M) with σσψ([φA1ψ1][φ1A2ψ]) =

φψ σσψ(A1)σσψ(A2) in the classical case, while [φA1(1−φ1)]A2ψ ∈ Ψ−∞
G (M)

with compactly supported Schwartz kernel.
• Pick R ≫ 1 sufficiently large such that both A1 and A2, when restricted
to x > R, arise as restrictions of operators in the calculus on R+ × Z
discussed in Section 3. Let then φ, ψ ∈ C∞

c (M) be arbitrary such that
both supp(1−φ) and supp(1−ψ) are contained in x > R. Let furthermore
φ1, ψ1 ∈ C∞

c (M) with (1 − φ), (1 − ψ) ≺ 1 − φ1 ≺ 1 − ψ1, and both
supp(1 − φ1) and supp(1− ψ1) still contained in x > R. Then

(1 − φ)A1A2(1 − ψ) = [(1− φ)A1(1− ψ1)][(1− φ1)A2(1− ψ)]

+ (1 − φ)A1[φ1A2(1 − ψ)].

We have [(1 − φ)A1(1 − ψ1)][(1 − φ1)A2(1 − ψ)] ∈ Ψµ1+µ2;~ℓ
(cl) (R+ × Z) by

Theorem 3.27, and in the classical case

σσe([(1− φ)A1(1 − ψ1)][(1 − φ1)A2(1− ψ)]) = (1− φ)(1 − ψ)σσe(A1)σσe(A2).

We also have (1 − φ)A1[φ1A2(1 − ψ)] ∈ Ψ−∞
G (M) with Schwartz kernel

supported in {x > R}×{x > R}, and so this operator is also in Ψ−∞
G (R+×

Z).

The theorem is proved. �

4.3. Ellipticity and parametrices. As we did with the calculus on R+×Z in Sec-
tion 3, we restrict the discussion of full ellipticity and the existence of parametrices
in the calculus on M to classical pseudodifferential operators.

Definition 4.5. (1) The operator A ∈ Ψµ;
~ℓ

cl (M) is fully elliptic if σσψ(A) is
invertible on T ∗M \0, and if, for sufficiently largeR≫ 1, σσe(A)(z, x, ζ, σ, τ)
is invertible for all (z, ζ, σ, τ) ∈ [T ∗Z × R×R+] \ 0 and all x ≥ R, and the
inverse

|σσ−1
e (A)(z, x, ζ, σ, τ)|

is bounded for x ≥ R and (z, ζ, σ, τ) ∈ T ∗Z×R×R+ with |ζ|2ℓ3
gZ (z)+ |σ|

2ℓ3 +

|τ |2ℓ1 = 1, z ∈ Z, where gZ is any Riemannian metric on Z.

(2) A ∈ xγΨµ;
~ℓ

cl (M) is fully elliptic if x−γA ∈ Ψµ;
~ℓ

cl (M) is fully elliptic.
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Theorem 4.6. Let A ∈ xγΨµ;
~ℓ

cl (M) be fully elliptic. Then there exists a parametrix

P ∈ x−γΨ−µ;~ℓ
cl (M) such that AP − I, PA− I ∈ Ψ−∞

G (M).

Proof. We have existence of parametrices in the local calculus on R+ × Z, see
Theorem 3.30, and in the standard calculus for step- 1

ℓ1
polyhomogeneous pseudo-

differential operators, and in view of the algebra properties of the calculus onM the
standard patching argument is applicable to obtain a parametrix P as asserted. �

4.4. Sobolev spaces, elliptic regularity, and Fredholm operators.

Proposition 4.7. For µ ≤ 0 every T ∈ Ψµ;
~ℓ(M) is a continuous operator

T : L2
b(M)→ L2

b(M).

The operator T is compact for µ < 0.

Proof. We have already addressed boundedness of operators in b-Sobolev spaces in
the proof of Theorem 4.3. Because µ ≤ 0 we have

T : xαH
s
ℓ1

b (M)→ xαH
s−µ
ℓ1

b (M)

for all s, α ∈ R. In particular, T : L2
b(M)→ L2

b(M) is continuous.
To show the compactness of T for µ < 0 it suffices to prove that (T ∗T )N :

L2
b(M)→ L2

b(M) is compact for some N ∈ N. By the spectral theorem for compact

selfadjoint operators we then obtain that |T | = [(T ∗T )N ]
1

2N : L2
b(M) → L2

b(M) is
compact, and in view of the polar decomposition T = U |T | : L2

b(M) → L2
b(M) we

see that T is compact as well.

By Theorem 4.2 and Theorem 4.3 we have (T ∗T )N ∈ Ψ2µN ;~ℓ(M) for every

N ∈ N, and so x(T ∗T )N ∈ Ψ2µN+ℓ3;~ℓ(M). ForN > − ℓ3
2µ we have s = − 2µN+ℓ3

ℓ1
> 0,

and we get a continuous operator x(T ∗T )N : L2
b(M)→ Hs

b (M). Consequently,

(T ∗T )N : L2
b(M)→ x−1Hs

b (M)

is continuous, and because the embedding x−1Hs
b (M) →֒ L2

b(M) is compact, the
operator (T ∗T )N : L2

b(M)→ L2
b(M) is compact. �

Proposition 4.8. For every s ∈ R there exists an operator R ∈ Ψs;
~ℓ(M) that is

invertible with inverse R−1 ∈ Ψ−s;~ℓ(M).

Proof. Pick an asymptotically conic metric g on M that is of the form (2.1) for
large x≫ 1. On [T ∗M × R× R+] \ 0 we consider the function

p(y, η, λ, τ) =
(

[g(xη, xη)]ℓ3 + λ2ℓ3 + τ2ℓ1
)

s
2ℓ1ℓ3 .

Then p is invertible and satisfies

p(y, ̺ℓ1η, ̺ℓ1λ, ̺ℓ3τ) = ̺sp(y, η, λ, τ), ̺ > 0.

Moreover, for large x ≫ 1, we have (y, η) ≡ (z, x, ζ, ξ) and g(xη, xη) = (xξ)2 +
gZ(ζ, ζ).

The symbol p(y, η, λ, τ) is a parameter-dependent elliptic principal symbol as-
sociated with the calculus of pseudodifferential operator families on M that de-
pend on the parameters (λ, τ). Quantizing yields an operator family P (λ, τ) ∈
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Ls;
~ℓ

cl (M ;R × R+) in that calculus with parameter-dependent principal symbol p.
We now define

[Q0(λ)u](y) = [P (λ, x(y))u](y), u ∈ C∞
c (M).

Then Q0(λ) is a pseudodifferential operator family in the calculus Ls;ℓ1cl (M ;R) of
operators that depend on the parameter λ ∈ R. The parameter-dependent principal
symbol is q(y, η, λ) = p(y, η, λ, 0), which shows that Q0(λ) is parameter-dependent
elliptic.

For large x≫ 1 we have

p(y, η, λ, τ) ≡ p(z, x, ζ, ξ, λ, τ)

=
(

[(xξ)2 + gZ(ζ, ζ)]
ℓ3 + λ2ℓ3 + τ2ℓ1

)
s

2ℓ1ℓ3

=
(

[σ2 + gZ(ζ, ζ)]
ℓ3 + λ2ℓ3 + τ2ℓ1

)
s

2ℓ1ℓ3

∣

∣

∣

σ=xξ
.

The latter is a parameter-dependent elliptic extended principal symbol, and there

exists an operator family Q1(λ) ∈ Ψs;
~ℓ

cl (R+ × Z;R) in the calculus on R+ × Z that
depends on the parameter λ ∈ R with

σσe(Q1) =
(

[σ2 + gZ(ζ, ζ)]
ℓ3 + λ2ℓ3 + τ2ℓ1

)
s

2ℓ1ℓ3 .

The calculus on R+×Z with parameter λ ∈ R is built from symbols with additional
symbolic dependence on λ, and an inspection of the arguments from Section 3 shows
that this calculus is well-defined. Let φ, ψ, ψ̃ ∈ C∞

c (M) with ψ̃ ≺ φ ≺ ψ and ψ̃ ≡ 1
on x ≤ L, where L≫ 1 is sufficiently large. Let then

Q(λ) = φQ0(λ)ψ + (1− φ)Q1(λ)(1 − ψ̃) ∈ Ψs;
~ℓ

cl (M ;R),

where Ψs;
~ℓ

cl (M ;R) is the global calculus on M that depends on an additional pa-
rameter λ ∈ R. By construction Q(λ) is fully elliptic with parameter, and thus

there exists T (λ) ∈ Ψ−s;~ℓ
cl (M ;R) such that

Q(λ)T (λ)− I, T (λ)Q(λ)− I ∈ Ψ−∞
G (M ;R).

The parameter-dependent residual class Ψ−∞
G (M ;R) consists of operator families

G(λ) such that

G(λ) ∈ S (R,L (xαHs
b (M), xα

′

Hs′

b (M)))

for all s, s′, α, α′ ∈ R. This characterization via mapping properties shows that for
any G(λ) ∈ Ψ−∞

G (M ;R) there exists G′(λ) ∈ Ψ−∞
G (M ;R) such that

(I +G(λ))−1 = I +G′(λ)

for large |λ| ≫ 0. Consequently, for |λ0| ≫ 0 large enough, the operator

R := Q(λ0) ∈ Ψs;
~ℓ

cl (M)

is invertible with inverse R−1 = T (λ0)(I + G′(λ0)) ∈ Ψ−s;~ℓ
cl (M) for some G′(λ) ∈

Ψ−∞
G (M ;R). �

Definition 4.9. Pick any invertible operator R ∈ Ψs;
~ℓ(M) with R−1 ∈ Ψ−s;~ℓ(M),

and define

H
s;~ℓ(M) = {u ∈ S

′(M); Ru ∈ L2
b(M)}
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with inner product 〈u, v〉
H s;~ℓ := 〈Ru,Rv〉L2

b
. This is a Hilbert space, and while

the inner product depends on R, different choices of operators R yield the same

Sobolev space with equivalent norms. Moreover, S (M) ⊂ H s;~ℓ(M) is dense for
every s ∈ R.

We also consider the weighted spaces xαH s;~ℓ(M) for α, s ∈ R.

Theorem 4.10. (a) Every A ∈ xγΨµ;
~ℓ(M) is continuous in

A : xαH
s;~ℓ(M)→ xα+γH s−µ;~ℓ(M)

for all s, α ∈ R.

(b) The embedding xαH s;~ℓ(M) →֒ xα
′

H s′;~ℓ(M) is continuous for s ≥ s′ and
α ≤ α′. Furthermore, the embedding is compact for s > s′ and α ≤ α′.

(c) The L2
b-inner product extends to a continuous and perfect sesquilinear pairing

〈·, ·〉 : xαH
s;~ℓ(M)× x−αH

−s;~ℓ(M)→ C

for all s, α ∈ R.
(d) We have

H
s
ℓ1
comp(M) ⊂H

s;~ℓ(M) ⊂ H
s
ℓ1

loc(M)

for all s ∈ R, and

S (M) =
⋂

s∈R

H
s;~ℓ(M) and S

′(M) =
⋃

s∈R

H
s;~ℓ(M).

Proof. Parts (a)–(c) follow from Propositions 4.7 and 4.8 and the algebra properties
of the calculus. For (d) note that for s ≥ 0 we have

x
− s

ℓ3H
s
ℓ1

b (M) →֒H
s;~ℓ(M) →֒ x−jH

s−jℓ3
ℓ1

b (M)

for 0 ≤ j ≤ s
ℓ3
, j ∈ N0, and for s < 0 we have

xjH
s+jℓ3

ℓ1

b (M) →֒H
s;~ℓ(M) →֒ x−

s
ℓ3H

s
ℓ1

b (M)

for 0 ≤ j ≤ − s
ℓ3
, j ∈ N0. �

Theorem 4.11. Let A ∈ xγΨµ;
~ℓ

cl (M) be fully elliptic.

(a) For all s, α ∈ R the operator

A : xαH
s;~ℓ(M)→ xα+γH s−µ;~ℓ(M)

is Fredholm.
(b) Let u ∈ S

′(M) such that Au ∈ xαH
s;~ℓ(M) for some α, s ∈ R. Then u ∈

xα−γH s+µ;~ℓ(M).
(c) The decompositions

xαH
s;~ℓ(M) = ker(A)⊕ ran[A∗ : xα−γH s+µ;~ℓ(M)→ xαH

s;~ℓ(M)],

xα+γH s−µ;~ℓ(M) = ker(A∗)⊕ ran[A : xαH
s;~ℓ(M)→ xα+γH s−µ;~ℓ(M)]

are topologically direct sums, and ker(A), ker(A∗) ⊂ S (M) are independent of
s, α ∈ R.
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(d) Let π = π2 = π∗ ∈ Ψ−∞
G (M) be the L2

b-orthogonal projection onto ker(A), and

π̃ = π̃2 = π̃∗ ∈ Ψ−∞
G (M) be the L2

b-orthogonal projection onto ker(A∗). The
Moore-Penrose inverse (pseudoinverse) of A

P = (π +A∗A)−1A∗ = A∗(π̃ + AA∗)−1 ∈ x−γΨ−µ;~ℓ
cl (M),

and PA = I−π and AP = I− π̃. The projection operators AP, PA ∈ Ψ0;~ℓ
cl (M)

are (formally) selfadjoint, and their continuous extensions to the weighted Sobo-
lev spaces are the projections onto the ranges of A and A∗ in the direct decom-
positions of the spaces given above.

Proof. Parts (a) and (b) follow from Theorem 4.6 and Theorem 4.10. To prove (d)
note that both

(π +A∗A), (π̃ +AA∗) ∈ x2γΨ2µ;~ℓ
cl (M)

are fully elliptic and formally selfadjoint with

ker(π + A∗A) = {0} = ker(π̃ +AA∗).

To see the latter observe that both kernels are contained in S (M) by elliptic
regularity (b), and (π +A∗A) : S (M)→ S (M) is injective since

〈(π +A∗A)u, u〉L2
b
= ‖πu‖2L2

b
+ ‖Au‖2L2

b
, u ∈ S (M),

and likewise for (π̃ +AA∗). The Fredholm property implies that the range of each
of

(π +A∗A), (π̃ +AA∗) : xαH
s;~ℓ(M)→ xα+2γ

H
s−2µ;~ℓ(M)

is closed for any α, s ∈ R, and by duality of the Sobolev space scale with respect
to the L2

b-inner product and injectivity of the formal adjoints we then obtain that
these operators are surjective, hence invertible.

Let Q ∈ x−2γΨ−2µ;~ℓ
cl (M) be a parametrix for (π +A∗A) such that

(π +A∗A)Q = I +GR, Q(π +A∗A) = I +GL, GL, GR ∈ Ψ−∞
G (M).

Then
(π +A∗A)−1 = Q −QGR +GL(π +A∗A)−1GR.

Now GL(π+A
∗A)−1GR ∈ Ψ−∞

G (M) as this operator satisfies the defining mapping

properties of the residual class, and so (π+A∗A)−1 ∈ x−2γΨ−2µ;~ℓ
cl (M), and likewise

(π̃ +AA∗)−1 ∈ x−2γΨ−2µ;~ℓ
cl (M). Thus

P = (π +A∗A)−1A∗ = A∗(π̃ +AA∗)−1 ∈ x−γΨ−µ;~ℓ
cl (M)

as asserted. Both (d) and (c) follow. �
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