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In this companion article to [HKK24], we apply the theory of equivariant
Poincaré duality developed there in the special case of cyclic groups Cp of prime
order to remove, in a special case, a technical condition given by Davis–Lück
[DL24] in their work on the Nielsen realisation problem for aspherical manifolds.
Along the way, we will also give a complete characterisation of Cp–Poincaré
spaces as well as introduce a genuine equivariant refinement of the classical no-
tion of virtual Poincaré duality groups which might be of independent interest.

Figure 1: A wall tiling at the Alhambra, in Granada, Spain, with symmetry group “p3”1
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1 Introduction

A famous question due to Jakob Nielsen [Nie32] in geometric topology is the following: can
any finite subgroup G ⊂ π0hAut(Σg) be lifted to an actual continuous group action on Σg ,
for Σg a closed oriented surface of genus g ≥ 0? This turns out to be possible, with Nielsen
settling the case of G finite cyclic, and Kerckhoff [Ker83] the general case.

In high-dimensions, asking for too direct a generalisation of Nielsen’s question inevitably
results in wrong statements as there is simply no reason why a general homotopy equivalence
h : M → M should be homotopic to any homeomorphism. However, rigidity phenomena
in the theory of closed aspherical manifolds - closed connected manifolds with contractible
universal covers - give some hope in generalising Nielsen’s and Kerckhoff’s results in this
direction. This question may thus fairly be called the “generalised Nielsen realisation problem
for aspherical manifolds” and has been investigated quite intensively, see for example [RS77;
DL03; BW08; Lüc22; DL24].2

Unfortunately, even the hypothesis of closed aspherical manifolds is not quite adequate,
and we refer to [Wei23] for a delightful survey of counterexamples. Nevertheless, it turns out
to be quite easy to dodge all potential reasons for counterexamples (for example, the failure
for the existence of necessary group extensions due to Raymond–Scott [RS77]) by asking a
slight variation of the generalised Nielsen problem:

Question 1.1. Let M be an aspherical manifold with fundamental group π and consider an
extension of groups 1→ π → Γ→ G→ 1 where G is finite of odd order3. Does the π-action
on the universal cover M̃ of M extend to a Γ-action such that

M̃H ≃

{
∗ if H ≤ Γ, and H is finite;

∅ if H ≤ Γ, and H is infinite?

Equivalently, does the π-action on the universal cover of M extend to a Γ-action in a way
such that the resulting Γ-space models EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin, the universal space for proper Γ-actions?

Provided the answer to Question 1.1 is yes, one may construct a G-action on M by us-
ing the residual action on π\M̃ . For an account of the relation of Question 1.1 to the gen-
eralized Nielsen realization problem in terms of homomorphisms G → π0(hAut(M)) ∼=
Out(π1(M)), we refer the reader to the introduction of [DL24].

In this article, we give a positive answer to Question 1.1 in the very special situation when
M is high-dimensional, π is hyperbolic, G = Cp for p odd, and if the extension is what
we call pseudofree, i.e. if each nontrivial finite subgroup F ⊂ Γ satisfies NΓF = F . Geo-
metrically, this predicts that any Γ–manifold model M̃ must have discrete fixed points (see
Remark 4.1.5), whence the name. One of our main results is the following:

2For completeness, we mention here that there is also a large body of work on the Nielsen realisation problem
for not necessarily aspherical 4–manifolds, c.f. for instance [FL24; BK23; Lee23; Kon24], which has a much
more geometric flavour.

3Taking G to be of odd order implies that certain UNil-valued obstructions vanish, see [DL24, Thm. 1.16.] or
[Wei23, Sec. 6.4.].
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Theorem A. Consider a group extension

1→ π → Γ→ Cp → 1 (1)

for an odd prime p. Suppose that

(1) π = π1(M) for a closed orientable4 aspherical manifold M of dimension at least 5,

(2) π is hyperbolic,

(3) Γ is pseudofree.

Then there exists a cocompact Γ-manifold model for EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin.

To the best of our knowledge, the most general existence result for manifold models for
EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin that does not refer to specific differential geometric constructions is due to Davis-
Lück [DL24, Thm. 1.16], whose methods are mainly surgery– and K–theoretic. They prove
Theorem A under an additional necessary group homological “Condition (H)” (c.f. Condi-
tion 1.3) on Γ which is previously considered mysterious. This Condition (H) was discovered
by Lück in [Lüc22] as necessary for the existence of manifold models for EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin, but was also
used to construct certain models for EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin which satisfy some kind of equivariant Poincaré
duality. Davis-Lück then show in which situations these can actually be turned into equiv-
ariant manifolds. Condition (H), however, seems complicated and hard to verify. Our main
contribution to this problem is to show that, in the situation of Theorem A, Condition (H)
is actually automatic, and we achieve this by locating it in the more conceptual context of
equivariant Poincaré duality as developed in [HKK24]. We hope that these techniques will
allow us to go beyond the pseudofree situation where Davis-Lück applies, so that in the fu-
ture we might be able to construct group actions on aspherical manifolds with nondiscrete
fixed point sets. As will be clear later, our main input to remove Davis-Lück’s Condition (H),
Theorem C, does not refer to discrete fixed points at all.

To round off our commentary on Theorem A, it should also be noted that, in principle, the
theorem reduces the geometric problem to a purely algebraic one of producing the appropri-
ate group extension under the given hypotheses on p and π. As explained e.g. in [DL24, p.1],
there is an obstruction measuring when a homomorphism Cp → Out(π) is induced by an
extension (1). It vanishes for hyperbolic groups as they have trivial center. For the Nielsen
realisation problem, Theorem A thus has the following implication.

Corollary 1.2. Let M be a closed orientable aspherical manifold with hyperbolic fundamental
group of dimension at least 5, p an odd prime, and α : Cp → Out(π1M) a homomorphism.
Then the Nielsen realisation problem for α admits a solution, provided the associated extension
Γ is pseudofree.

Before moving on to elaborate on equivariant Poincaré duality as used in this work, we
first state the aforementioned Condition (H) and recall the argument of [Lüc22, Lemma 1.9]
as to why it is necessary for the conclusion of Theorem A to hold. This shows that Condition

4Orientability is assumed only to simplify the exposition, and can be removed with some care.
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(H) is not merely an artefact of the proof strategy of [DL24] but is rather a point that must
be dealt with in one way or another.

For a pseudofree extension (2), a result of Lück–Weiermann [LW12] (c.f. Theorem 4.1.4)
shows that the subspace EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1 of points in EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin with nontrivial isotropy is discrete,
more precisely, EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1 ≃
∐

F∈M Γ/F where F runs through a set of representatives of
conjugacy classes of nontrivial finite subgroups. Writing HΓ

∗ (X) := H∗(XhΓ;Z) for the
integral Borel homology of a space X with Γ–action, the condition may be stated as:

Condition 1.3 (Condition (H)). For each finite subgroup F ̸= 1 of Γ, the composite

HΓ
d (EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin, EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1)
∂−→ HΓ

d−1(EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin
>1) ≃

⊕
F ′∈M

Hd−1(BF ′)
projF−−−→ Hd−1(BF )

is surjective.

To see why condition (H) is necessary for the existence problem, suppose that there exists
a d-dimensional cocompact manifold model N for EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin. Let us assume for simplicity that
N is smooth and that Γ acts smoothly preserving the orientation. As mentioned before,
the singular part N>1 of N of points with nontrivial isotropy is discrete if the extension is
pseudofree. Denote by Q the complement of an equivariant tubular neighbourhood of N>1

in N with boundary ∂Q. Then the Γ-action on Q is free and the quotient pair (Γ\Q,Γ\∂Q)

is a compact d-manifold with boundary. See §1 for an illustration. Thus, for every path
component L of Γ\∂Q, we obtain the commutative diagram

Hd(Γ\Q,Γ\∂Q) Hd−1(Γ\∂Q) Hd−1(L)

HΓ
d (EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin, EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1) HΓ
d−1(EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1) Hd−1(BF ).

≃

proj

proj

The left vertical arrow is an equivalence using excision and that homology of (Γ\Q,Γ\∂Q)

agrees with Borel homology of (Q, ∂Q) as the Γ-action is free. The fundamental class of
(Γ\Q,Γ\∂Q) gets sent to a fundamental class of each boundary component along the upper
composite, and so the top composite is surjective. Moreover, note that each component L of
Γ\∂Q is obtained as the quotient of a sphere by a free action of the isotropy group F of the
corresponding fixed point in N>1. Recall that for any free F -action on a (d − 1)–sphere S

for a finite group F , the map F\S → BF is is (d − 1)–connected and induces a surjection
on homology up to degree d− 1 so the right vertical map is surjective. Together this shows
that the bottom composite is surjective in each component.

1.1 Equivariant Poincaré duality

Equivariant Poincaré duality is fundamentally about understanding group actions on mani-
folds. The notion of a G-equivariant Poincaré complex is designed to satisfy more or less all
the homological or cohomological constraints that a smooth G-manifold satisfies. In particu-
lar, satisfying equivariant Poincaré duality can obstruct the existence of certain group actions
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Figure 2: Discs around the singular part for the symmetry group p3

on manifolds. This philosophy is old and has been quite successful, and we exploited it in
[HKK24] to generalise some classical nonexistence results5 using new methods.

In this article, we want to carry across a different point: equivariant Poincaré duality does
not only obstruct, but is also quite useful to construct group actions on manifolds. The testing
ground we chose to demonstrate our claim is Question 1.1. Here, we will only employ the
theory of equivariant Poincaré duality for the group G = Cp, and since this case is much
simpler than for general compact Lie groups, we hope that it will demystify the more abstract
discussions in [HKK24]. In particular, we can keep the level of equivariant stable homotopy
theory used throughout at a minimum, while still showing some standard manipulations. We
hope that readers with an interest in geometric topology and homotopy theory might find
this to be a useful first exposition to categories of genuine G-spectra and their uses.

Equivariant Poincaré duality for the group Cp

Our first theoretical goal is to give a characterisation of Cp-Poincaré duality that is adapted
to our application on the Nielsen realisation problem. In [HKK24] we showed that if X is a
Cp-space, then the following hold:

(1) If X is Cp-Poincaré, then the underlying space Xe and the fixed points XCp are
nonequivariantly Poincaré (c.f. [HKK24, Thm. C]).

(2) Even if X is assumed to be a compact (i.e. equivariantly finitely dominated) Cp-space,
requiring Xe and XCp to be nonequivariantly Poincaré is not sufficient to guarantee
that X is Cp-Poincaré (c.f. [HKK24, Cor. 5.1.16]).

In this article, we identify the precise additional condition needed to ensure that X is Cp–
Poincaré in the situation of (2).

Theorem B (c.f. Theorem 3.3.3). Let X be a compact Cp-space. Denote by ε : XCp → Xe the
inclusion of the fixed points, and assume that both XCp and Xe are nonequivariantly Poincaré.
Let DXCp ∈ Fun(XCp ,SpBCp) be the dualising sheaf of the fixed point space. Then X is
Cp-Poincaré if and only if the cofibre of the adjunction unit morphism in Fun(XCp ,SpBCp)

DXCp → ε∗ε!DXCp

5See also the references therein for more results of this type.
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pointwise lies in Sp
BCp

Ind ⊆ SpBCp , the stable full subcategory generated by the image of
Ind

Cp
e : Sp→ SpBCp .

More details on the terms appearing in the theorem may be found in the material leading
up to Theorem 3.3.3. In effect, this result gives an interpretation of the genuine equivariant
notion of Poincaré duality purely in terms of nonequivariant and Borel equivariant prop-
erties. The method of proof is based on various cellular manoeuvres in equivariant stable
homotopy theory developed in §3, which might be of independent interest. Armed with this
characterisation, we may now return to the modified Nielsen Question 1.1 as we explain next.

Genunine virtual Poincaré duality groups and the proof of Theorem A

Suppose we are given an extension of groups

1→ π → Γ→ Cp → 1 (2)

so that there exists a cocompact Γ-manifold N modeling the Γ-homotopy type EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin. Under
reasonable assumptions, we might expect that the Cp-space π\N is Cp-Poincaré. Motivated
by this expectation, we will call Γ a genuine virtual Poincaré duality group if π\EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin is a
Cp-Poincaré space. In fact, we define the notion of a genuine virtual Poincaré duality group
in a broader context in §4 and we hope that it can be a useful supplement to the classical
theory of virtual Poincaré duality groups that appear for example in [Bro94]. In any case,
using Theorem B, we will show our main result:

Theorem C (c.f. Theorem 5.1.4). For the extension (2), assume that EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin is compact. If

(1) for each nontrivial finite subgroup F ⊂ Γ, the group WΓF is a Poincaré duality group;

(2) the group π is a Poincaré duality group,

then Γ is a genuine virtual Poincaré duality group.

The significance of this result is that we relate the new notion of genuine virtual Poincaré
duality groups, which enjoys good conceptual properties, with the classical notion of
Poincaré duality groups, which is easier to check. It will turn out that, in the situation of
Theorem A, the group Γ satisfies the conditions of Theorem C, and so we see that π\EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

is Cp-Poincaré. In particular, this opens up the way for an equivariant fundamental class
analysis (c.f. [HKK24, §4.5]) on the problem at hand, yielding the following:

Theorem D. Let Γ be as in Theorem A. Then Γ satisfies Condition (H).

A proof of this, and the more general Proposition 5.2.3, will be given in §5.2. Taking this
for granted for the moment, we may now provide the proof of Theorem A.

Proof of Theorem A. This is now a direct consequence of [DL24, Theorem 1.4]. The group
theoretic assumptions therein are satisfied by Lemma 5.1.1, whereas Condition (H) is shown
to hold in Theorem D.
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Structural overview

We recall in §2 some notions and constructions from the theory of equivariant Poincaré
duality [HKK24] that will be pertinent to our purposes. Next, in §3, we work towards proving
Theorem B, and for this, it will be necessary to develop some theory on compact objects in
Cp–genuine spectra. This we do in §§3.1and 3.2, which might be of independent interest.
Having set up the requisite basic theory, we return to the problem at hand and define the
notion of genuine virtual Poincaré duality groups in §4, refining the classical notion of virtual
Poincaré duality groups. Therein, we will also prove a characterisation result tailored to our
needs. Finally, we put together all the elements and prove Theorems C and D in §5.

Conventions

This paper is written in the language of∞–categories as set down in [Lur09; Lur17], and so
by a category we will always mean an∞–category unless stated otherwise.

Acknowledgements

We are grateful to Wolfgang Lück and Shmuel Weinberger for numerous helpful conver-
sations and encouragements on this project. All three authors are supported by the Max
Planck Institute for Mathematics in Bonn. The second and third authors write this article as
part of their PhD-thesis. The third author would like to thank the University of Toronto for
its hospitality where parts of this article were written.

2 Recollections

There will be two types of equivariance in this paper, each playing a distinct role. The first
kind will be defined for an arbitrary Lie group, which is covered in §2.1; the second kind,
covered in §2.2, will be defined only for finite groups (in fact, it is defined more generally
for compact Lie groups as in [HKK24]) and is the one that supports stable homotopy the-
ory and the theory of equivariant Poincaré duality in §2.3. More details on the materials in
§§2.2and 2.3 together with references to the original sources may be found in [HKK24].

2.1 Equivariant spaces

Throughout, let Γ be a Lie group.

Notation 2.1.1. Let O(Γ) be the topological category of homogeneous Γ–spaces, the full
topological subcategory of the category of topological Γ-spaces on objects isomorphic to
Γ/H for closed subgroups H ≤ Γ.

Definition 2.1.2. The category SΓ of Γ–spaces is defined as the category of presheaves
Psh(O(Γ)) := Fun(O(Γ)op,S).
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Construction 2.1.3 (Fundamental adjunctions). Genuine equivariant spaces participate in
many adjunctions, the fundamental one that we will need being the following: let α : K → Γ

be a continuous homomorphism of Lie groups. By left Kan extension and restriction along
the (opposite) induction functor IndOα : O(K)op → O(Γ)op, we obtain the adjunction

Indα := (IndOα )! : SK SΓ : Resα := (IndOα )
∗.

Specialising to the two cases of α = ι : H ↣ Γ being a closed subgroup and α = θ : Γ ↠ Q

being a continuous surjection of Lie groups with kernel N , the adjunction above yields the
following two adjunctions which we have given special notations

IndΓH := Indι : SH SΓ : ResΓH := Resι

N\(−) := Indθ : SΓ SQ : inflQΓ := Resθ .

Importantly, in the special case of a continuous surjection θ : Γ ↠ Q, we have an adjunction
ResOθ : O(Q)op ⇌ O(Γ)op : IndOθ , and so inflQΓ = (IndOθ )

∗ ≃ (ResOθ )!.

Observation 2.1.4. In particular, suppose we have homomorphisms of Lie groups ι : N ↣ Γ

and θ : Γ ↠ Q which are injective and surjective, respectively, and such that the composite
θ ◦ ι : N → Q is also surjective. Writing π for the kernel of θ, we thus see that ker(θ ◦ ι) =
N ∩ π. Since for composable homomorphisms of Lie groups α and β we have Indα◦β ≃
Indα ◦ Indβ , we see that in this case, there is a natural equivalence of functors SN → SQ

π\IndΓN (−) ≃ (N ∩ π)\(−).

Construction 2.1.5 (Singular parts). Denote by s : Osing(Γ) ⊆ O(Γ) the full subcategory
on the orbits Γ/H with H nontrivial. We then get the adjunction

Psh(Osing(Γ)) Psh(O(Γ)) = SΓs!
s∗

by restricting and left Kan extending along s. We abbreviate (−)>1 = s!s
∗, writing

ε : X>1 → X for the adjunction counit. Note that for an orbit Γ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/H ∈ SΓ we have
Γ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/H>1 ≃ ∅ if H = e and ε : Γ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/H>1 → Γ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/HΓ/H is an equivalence otherwise. We refer to
X>1 as the singular part of X and think of ε : X>1 → X as the inclusion of all points with
nontrivial isotropy.

Notation 2.1.6. In the special case of Γ = Cp, we have Osing(Cp) = {Cp/Cp} ≃ ∗, so
that Psh(Osing(Cp)) ≃ S . In this case, one can work out that s! just assigns a space to the
constant diagram as an object in SCp . Moreover, s∗X = XCp , and so we will also write
X>1 ∈ SCp as XCp interchangeably in this case.

Fact 2.1.7. Let Γ and Q be groups, N ≤ Γ a normal subgroup and p : Γ → Q a surjective
group homomorphism. If Q acts on the topological space X , then there is a natural Γ/N -
equivariant homeomorphism

N\X ∼= p(N)\X.

8



Here, X is considered as a Γ-space via p, and p(N)\X is considered as a Γ/N -space via
Γ/N → Q/p(N). Specialising to orbit categories, we obtain the commutative diagram

O(Q) O(Γ)

O(Q/p(N)) O(Γ/N).

ResO

IndO IndO

ResO

Applying Psh(−) with the (−)! functoriality, we get an equivalence of functors

N\ inflQΓ (−) ≃ infl
Q/p(N)
Γ/N p(N)\(−) : SQ → SΓ/N .

Fact 2.1.8. Given any discrete groupΓ and aΓ–spaceX , as well as a proper normal subgroup
N ⊂ Γ such that the N -action on X is free, the inclusion X>1 → X induces equivalences

(N\X)>1 ≃←− (N\X>1)>1 ≃−→ N\X>1.

Indeed, all functors involved commute with colimits, and the statement is clearly true for
orbits, out of which every Γ–space may be built via colimits.

2.2 Genuine equivariant stable homotopy theory

Let G be a finite group. The stable category SpG of genuine G–spectra is a refinement of the
category SpBG of spectra with G–action with better formal properties. This is a refinement
in that SpBG sits fully faithfully in the category SpG, in fact in two different ways. One way
to define SpG, following Barwick, is as the category MackG(Sp) := Fun×(Span(FinG), Sp)

of G–Mackey functors in spectra. A good introduction to the materials in this subsection
may be found, for instance, in [MNN17, Part 2].

The category of genuine equivariant spectra is valuable as it is a particularly conducive
environment for inductive methods enabled by many compatibility structures between these
categories for different groups, expressed in terms of various adjunctions. Moreover, SpG
should also be thought of as the “universal category of equivariant homology theories” on
SG. For example, there is a symmetric monoidal colimit–preserving functor Σ∞

+ : SG → SpG
which is the analogue of the suspension spectrum functor nonequivariant spectra, and SpG
is generated under colimits by {Σ∞

+ G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H}H≤G.

Fact 2.2.1 (Restriction–(co)induction). For a subgroup H ≤ G, we have the adjunctions

SpG SpHResGH

IndGH

CoindGH

where moreover, there is a canonical equivalence of functors IndGH ≃ CoindGH classically
known as the Wirthmüller isomorphism.
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Fact 2.2.2 (Genuine fixed points). There is a functor (−)G : SpG → Sp called the genuine
fixed points functor which, from the Mackey functors perspective, is given by evaluating at
G/G ∈ FinG. This participates in an adjunction

infleG : Sp SpG : (−)G

where infleG preserves compact objects and is the unique symmetric monoidal colimit pre-
serving functor from Sp to SpG. For every subgroup H ≤ G, we may also define the genuine

H–fixed points functor (−)H as the composite SpG
ResGH−−−→ SpH

(−)H−−−→ Sp.

Fact 2.2.3 (Borel fixed points). There is a standard Bousfield (co)localisation

SpG SpBGβ∗
β!

β∗

where β∗X ≃ Xe, β!β∗X ≃ EG+ ⊗X , and β∗β
∗X ≃ F (EG+, X). This well–known pair

of adjunctions may for example be worked out from combining [MNN17, Thm. 3.9, Prop.
6.5, Prop. 6.6, Prop. 6.17]. Under the Mackey functors perspective, β∗ is given by evaluating
at G/e ∈ FinG. In particular, we see that SpBG embeds into SpG in two different ways,
as mentioned above. Via the functor β∗ as well as the homotopy orbits (−)hG, homotopy
fixed points (−)hG, and Tate fixed points (−)tG functors SpBG → Sp, we may also obtain
the functors (−)hG, (−)hG, (−)tG : SpG → Sp which also fit in a fibre sequence of functors
(−)hG → (−)hG → (−)tG. In particular, these functors only depend on the underlying
spectrum with G–action.

Fact 2.2.4 (Geometric fixed points). There is a symmetric monoidal colimit–preserving func-
tor ΦG(−) : SpG → Sp called the geometric fixed points which is uniquely characterised by
sending Σ∞

+ G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H to 0 when H ⪇ G and to S when H = G. For a subgroup H ≤ G, we

may also define ΦH as the functor SpG
ResGH−−−→ SpH

ΦH

−−→ Sp. The collection of functors
ΦH : SpG → Sp for all H ≤ G is jointly conservative.

The geometric fixed points functor participates in an adjunction

ΦG : SpG Sp :ΞG

where ΞG is fully faithful. For E ∈ Sp, ΞGE ∈ SpG is concretely given by the G–Mackey
functor which assigns E to G/G and 0 to all G/H for H ⪇ G.

Furthermore, using that Sp is the initial presentably symmetric monoidal stable category,
it is also not hard to see that ΦGinfleG ≃ idSp.

Next, we recall the standard decomposition in the special case of genuine Cp–spectra,
which is all that we will need in our work.

Fact 2.2.5 (Cp–stable recollement). Let G = Cp. In this case, some of the adjunctions we
have seen fit into a stable recollement (also called split Verdier sequence)

10



Sp SpCp
SpBCp

ΞCp β∗
ΦCp β!

β∗

in that the top two layers of composites are fibre–cofibre sequences of presentable stable
categories. This may be deduced, for example, from a combination of [MNN17, §6.4] and
[CDH+23b, §A.2]. From this, one obtains for every E ∈ SpCp

a pullback square

ECp ΦCpE

EhCp EtCp

⌟

of spectra (c.f. for instance [MNN17, Thm. 6.24] or [CDH+23b, Prop. A.2.12]).

2.3 Equivariant Poincaré duality

Let G be a finite group. We briefly recall the theory of G-equivariant Poincaré duality
spaces, which is built upon the notion of G–categories. Recall that the category CatG of
G–categories is defined as Fun(O(G)op,Cat), akin to the category of G–spaces. This cate-
gory admits an internal functor category Fun(C,D) for each pair C,D ∈ CatG. This satisfies

Fun(C,D)(G/H) ≃ FunH(ResGH C,ResGH D),

where the latter is the category of H–functors from ResGH C to ResGH D. A very important
G-category for us is the G-category SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp of genuine G-spectra given by SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp(G/H) = SpH .

Since SG is a full subcategory of CatG, we may view a G–space X as an object in CatG
For a G-space X we denote the unique map to the point by

X : X → ∗.

Write SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpX = Fun(X,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) for the category of equivariant local systems on X . Explicitly, that
amounts to specifying a local system of H-spectra XH → SpH for each subgroup H ⊂ G

plus compatibilities. Colimit, restriction and limit of local systems give two adjunctions

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpX SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp.

X!

X∗

X∗

One should think of the colimit X!E of an equivariant local system E on X as equivariant
homology of X twisted by E and similarly of the limit as equivariant twisted cohomology.

The following is a recollection from [HKK24, Sec. 4.1.]. A compact G-space X admits an
equivariant dualising spectrum DX ∈ FunG(X, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) which comes together with a collapse
map c : SG → X!DX . These are uniquely characterised by the property that the induced
capping map

c ∩ξ (−) : X∗(−)→ X!(DX ⊗−) (3)

11



is an equivalence. Applying fixed points and homotopy groups, the collapse map really cor-
responds to a class in twisted equivariant homology such that capping with it induces an
equivalence between equivariant cohomology and twisted equivariant homology. Let us just
mention that there is the larger class of twisted ambidextrous G-spaces for which an equiva-
lence of the form (3) exists.

Definition 2.3.1. A compact (or twisted ambidextrous) G-space X is called G-Poincaré if
the dualising spectrum DX takes values in Pic(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp).

Notation 2.3.2. Let ξ ∈ FunG(X, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) be a local system of G-spectra on the G-space X . For
an H-fixed point y ∈ XH , i.e. a map y : G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H → X , using the composition

FunG(X, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)
y∗−→ FunG(G/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/HG/H, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) ≃ SpH

we obtain an H-spectrum that we will denote by ξ(y).

Note that a compact (or twisted ambidextrous) G-space X is G-Poincaré if and only if for
each y ∈ XH the value DX(y) ∈ SpH is an invertible H-spectrum.

Theorem 2.3.3 ([HKK24, Thm 4.2.9.]). Let X be a G-Poincaré space. Then for each closed
subgroup H ≤ G, the space XH is a (nonequivariant) Poincaré space. Moreover, its dualising
spectrum is given as the composite

XH DX−−→ SpH
ΦH

−−→ Sp.

Example 2.3.4 ( [HKK24, Cor. 5.1.16.]). Let p be an odd prime and k ≥ 1 an integer. There
exists a compact Cp-space X for which Xe is contractible while XCp ≃ RP 2k. None such
Cp-space is Cp-Poincaré. In particular, there are compact G-spaces such that all fixed points
are nonequivariant Poincaré spaces which are not themselves G-Poincaré.

3 Poincaré duality for the group Cp

In this section, we investigate equivariant Poincaré duality for the groupCp more closely. Our
goal is to prove Theorem B (c.f. Theorem 3.3.3) which gives a somewhat computable condition
on a compact Cp-space X to be Cp-Poincaré assuming that Xe and XCp are nonequivariant
Poincaré spaces. This amounts to checking that DX : X → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp lands in invertible objects.

Since invertibility is a pointwise condition and since we already know thatDXe : Xe → Sp

lands in invertible objects, it suffices to show that DX(x) ∈ SpCp
is invertible for every

x ∈ XCp . Moreover, from our hypothesis and Theorem 2.3.3, we already know that DX(x)e

and ΦCpDX(x) are invertible spectra. This consideration leads us to record the following
well–known observation.

Lemma 3.0.1. Let E ∈ SpCp
be such that Ee and ΦCpE are invertible. Then:

E is invertible ⇐⇒ E is dualisable ⇐⇒ E is compact.

12



Proof. In SpCp
, dualisablity and compactness are equivalent, and invertible spectra are du-

alisable. So it suffices to show that if E is dualisable, then it is invertible, i.e. that the
counit E ⊗ E∨ → SCp is an equivalence. But this can be checked after applying (−)e and
ΦCp(−), which are jointly conservative. As both of these functors are symmetric monoidal,
the counit for E is sent to the counit for Ee and ΦCpE, both of which we assumed to be
equivalences.

Thus, by virtue of Lemma 3.0.1, our task at hand is tantamount to ensuring that the Cp-
spectrum DX(x) is compact for every x ∈ XCp . To this end, we will employ various cellular
manoeuvres in §3.1 to obtain “compact approximations” to any Cp–spectrum; we then char-
acterise compactness of a Cp–spectrum with vanishing geometric fixed points through its
underlying Borel-Cp-spectrum in §3.2. Lastly, we combine all these in §3.3 to obtain the
promised recognition principle for Cp-Poincaré spaces.

Remark 3.0.2. Our work on Cp-spectra heavily drew inspiration from at least two sources.
The first one being [Kra20], which gives a nice computation of the Picard group of SpCp

, and
whose methods we expand on. The second one is [KMS21], which gives another compactness
(or dualisability) criterion for Cp-spectra. Our approach is not exactly tailored to the methods
in the latter source, and we will not need to refer to them, but it might be possible that they
give another way of proving the main results in this section.

3.1 Cellular manoeuvres and compact approximations

Recall that a Cp-spectrum is finite if it lies in the stable subcategory of SpCp
generated by

Σ∞
+ Cp/eCp/eCp/eCp/eCp/eCp/eCp/eCp/eCp/eCp/eCp/eCp/eCp/eCp/eCp/eCp/eCp/e = Ind

Cp
e S and Σ∞

+ Cp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/CpCp/Cp = infl
Cp
e S. A Cp-spectrum is compact if and only if it is

a retract of a finite Cp-spectrum.

Lemma 3.1.1 (Tucking the free part). Let X ∈ SpCp
be such that Xe is bounded below and

such that πk(Xe) is a finitely generated abelian group for k ≤ N for some N . Then there is a
fiber sequence

F → X → Y

in SpCp
such that F is finite, Y e is N -connected and ΦCpX → ΦCpY is an equivalence.

Proof. Note that if A → B and B → C are maps of Cp-spectra whose fibers are compact
with trivial geometric fixed points, then the compositionA→ C satisfies the same condition.
Thus, by induction it suffices to consider the case where N = 0 and Xe is −1-connected.
Pick a finite set of generators {fi : S→ Xe} of π0(Xe). Then the composition

f =

(⊕
i

IndS
⊕

i Indfi−−−−−→ IndXe c−→ X

)
,

where c denotes the counit, induces a surjection on π0 upon applying (−)e. Now define Y

to be the cofiber of f and F its source. This finishes the proof since IndS is compact and
satisfies ΦCpIndS ≃ 0.
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Remark 3.1.2. Unlike taking the appropriate connective covers, the procedure of tucking
cannot be used in general to kill the homotopy groups of Xe. The reason is that the effect
on the next higher homotopy group is quite brutal. However, if Xe is (l− 1)-connected and
πlX

e is a finitely generated free Z[Cp]-module, then the proof of Lemma 3.1.1 shows that
we can kill πlXe while making sure that the next higher homology group is unchanged. On
the other hand, tucking preserves the geometric fixed points whereas the aforementioned
connective covers do not.

Lemma 3.1.3. Let Q be a compact spectrum, E a Cp-spectrum and f : Q → ΦCpE a map.
Then there exists a compactCp-spectrumF , a map g : F → E, and an identificationΦCpF ≃ Q

under which ΦCpg = f .

Proof. First we reduce to the case where E is compact. Write E = colimi∈I Ei as a filtered
colimit of compact Cp–spectra. As ΦCp commutes with colimits and Q is compact, there is
some i ∈ I for which f : Q→ ΦCpE factors through the compact spectrum ΦCpEi. If now F

is a compact Cp-spectrum together with a map F → Ei which induces the map Q→ ΦCpEi

on geometric fixed points, then the composite F → Ei → E satisfies the claim.
Now assume that E is compact. Then there exists k ∈ Z such that each map Q → T to a

k-connected spectrum T is nullhomotopic. By Lemma 3.1.1, we can find U ∈ SpCp
together

with a map E → U that has compact fiber and that induces an equivalence on geometric
fixed points, such that U e is (k−1)-connected. Thus, ΣU e is k-connected, and consequently
also ΣUhCp is k-connected. Note that U is compact as well.

Consider the following diagram where the lower horizontal maps form a fiber sequence
and the square is cartesian by Facts 2.2.3 and 2.2.5.

Q ΦCpE

UCp ΦCpU

UhCp U tCp ΣUhCp

≃0

a

b

⌟

The nullhomotopy of the long bent arrow induces the dashed morphism a, which in turn
determines the dashed morphism b. By the adjunction from Fact 2.2.2, the map b is adjoint to
a map q : infleCp

Q→ U which induces the map Q→ ΦCpU on geometric fixed points. This
fits into a fibre sequence F → E → cofib(q) where the map E → cofib(q) is induced by the
map E → U from above. Note that F is compact as E is compact, U is compact as observed
above, and infleCp

preserves compactness. On geometric fixed points, under the identification
ΦCpE

≃−→ ΦCpU , this gives

ΦCpF ≃ fib(ΦCpE → cofib(Q→ ΦCpE)) ≃ Q
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as desired. Clearly, this identifies the map ΦCpF → ΦCpE with f .

Corollary 3.1.4. If E is a Cp-spectrum with ΦCpE compact, then there exists a finite Cp-
spectrum F and a map g : F → E which induces an equivalence on geometric fixed points.

Proof. Set f = idΦCpE in Lemma 3.1.3.

The following lemma will be useful later.

Lemma 3.1.5. Consider a cospan X
f−→ Z

g←− Y in SpCp
where f and g induce equivalences

on geometric fixed points. Additionally suppose ΦCpX ∈ Sp is compact. Then there exists a
commutative square

F Y

X Z

g

f

with F compact such that all maps are equivalences on geometric fixed points.

Proof. Let E = X ×Z Y and find a fiber sequence F → E → E′ with F compact and
ΦCpE′ ≃ 0 as provided by Corollary 3.1.4. Then the outer quadrilateral in the diagram

F

E Y

X Z

has the desired properties.

3.2 Compact and induced Cp-spectra

In this section we characterise compactness for Cp-spectra with trivial geometric fixed points
through their underlying BorelCp-spectrum. Notice thatCp–spectra with vanishing geomet-
ric fixed points have the following crucial properties.

Lemma 3.2.1 (CoBorel compactness). Let X be a Cp-spectrum with ΦCpX ≃ 0. Then

(1) for every Y ∈ SpCp
the map (−)e : MapSpCp

(X,Y ) → MapSpBCp (Xe, Y e) is an
equivalence;

(2) the Cp-spectrum X is compact in SpCp
if and only if Xe is compact in SpBCp .

Proof. We use the notations from Fact 2.2.5. Observe by Fact 2.2.5 that ΦCpX ≃ 0 is equiva-
lent to the condition that the adjunction counit β!β∗X → X is an equivalence. Now for
(1), just note that MapSpCp

(X,Y )
≃←− MapSpCp

(β!β
∗X,Y )

≃−→ MapSpBCp (β∗X,β∗Y )

as claimed. For (2), note that β! : Sp
BCp → SpCp

preserves and detects compactness
as it is fully faithful and admits the colimit preserving right adjoint β∗. This shows that
Xe = β∗X ∈ SpBCp is compact if and only if X ≃ β!β

∗X ∈ SpCp
is compact.
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Notation 3.2.2. Following the notation from [NS18, Def. I.3.7], we write Sp
BCp

ind ⊆ SpBCp

for the smallest idempotent–complete stable subcategory generated by the image of the func-
tor IndCp

e : Sp → SpBCp . Similarly, we write SpindCp
⊆ SpCp

for the smallest idempotent–
complete stable subcategory containing the image of IndCp

e : Sp → SpCp
. By Lemma 3.2.1

(1), the functor (−)e : SpCp
→ SpBCp restricts to a fully faithful functor SpindCp

→ Sp
BCp

ind ,
which is also essentially surjective (and so is an equivalence) since (−)e = β∗ is essentially
surjective and β! and β∗ are compatible with Ind

Cp
e .

Lemma 3.2.3. As full subcategories of SpBCp , we have the equality

(Spω)BCp ∩ Sp
BCp

ind = (SpBCp)ω.

Thus, if E ∈ SpCp
with ΦCpE = 0, then E is compact if and only if Ee ∈ (Spω)BCp ∩ SpBCp

ind .

Proof. The inclusion (Spω)BCp ∩ Sp
BCp

ind ⊇ (SpBCp)ω is clear since (SpBCp)ω is generated
under finite colimits and retracts by Σ∞

+ Cp/e ≃ Ind
Cp
e S. For the converse, we use that

(SpBCp)ω ↪→ (Spω)BCp ↠ stmodCp(S) := (Spω)BCp/(SpBCp)ω

is a fibre sequence of small stable categories (c.f. for instance [CDH+23a, Lem. A.1.8]) and
that for X,Y ∈ (Spω)BCp we have the formula (c.f. for instance [Kra20, Lem. 4.2])

mapstmodCp (S)
(X,Y ) ≃ (Y ⊗DX)tCp ,

where DX is the pointwise Spanier–Whitehead dual in (Spω)BCp .
Observe that for any X ∈ SpBCp and Y ∈ Sp

BCp

ind one has
(
Y ⊗ map(X,S)

)tCp ≃ 0

owing to the fact that (−)tCp vanishes on Sp
BCp

ind and that SpBCp

ind ⊆ SpBCp is a tensor–ideal.
Therefore, for Z ∈ (Spω)BCp ∩ Sp

BCp

ind , we see that

mapstmodCp (S)
(Z,Z) ≃ (Z ⊗DZ)tCp ≃ 0

and so Z is in the kernel of the functor (Spω)BCp → stmodCp(S). Hence, by the fibre
sequence above, we see that Z ∈ (SpBCp)ω as required.

The statement about compact Cp-spectra follows by combining the first part with
Lemma 3.2.1 (2).

3.3 Recognising Cp-Poincaré spaces

Construction 3.3.1 (Contravariant functoriality of dualising spectra). Consider a map
f : Y → X in SωCp

. We explain how to construct a canonical “wrong–way” map

BCf : DX −→ f!DY . (4)

Combining the contravariant functoriality of cohomology from [HKK24, Construction 3.4.1]
with the defining property of the dualising spectrum, we obtain the natural transformation

X!(DX ⊗−) ≃ X∗(−)
BCf

∗−−−→ Y∗f
∗(−) ≃ Y!(DY ⊗ f∗(−)) ≃ X!(f!DY ⊗−)
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By the classification of colimit preserving functors, see [Cno23, Corollary 2.30] or [HKK24,
Theorem 2.1.37], this is induced by a map BCf : DX → f!DY .

Now consider X ∈ SωCp
. For the inclusion ε : XCp → X of the singular part from Con-

struction 2.1.5 we thus obtain a map BCε : DX → ε!DXCp . Applying ε∗ yields the map

ε∗BCε : ε∗DX −→ ε∗ε!DXCp , (5)

which may be viewed as a morphism in the nonparametrised functor category
Fun(XCp ,SpCp

) ≃ FunCp(X
Cp ,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) - this equivalence may be obtained by applying

[HKK24, Lem. 2.1.16] to the adjunction infleG : S ⇌ SG : (−)G.

The wrong–way map (5) satisfies the following key vanishing result permitting our char-
acterisation of Cp–Poincaré spaces. By virtue of the lemma, the cofibre of (5) may be viewed
as measuring the “geometric free part” of the dualising sheaf DX .

Lemma 3.3.2. Let X ∈ SωCp
and let ν : SpCp

→ D be an exact functor which vanishes on
SpindCp

. Then the map
ν(ε∗DX) −→ ν(ε∗ε!DXCp )

in Fun(XCp ,D) induced by (5) is an equivalence.

Proof. We have to show, for any x ∈ XCp , that the map ν(DX(x))
≃−→ ν(f!DXCp (x)) is

an equivalence. First, let us show that for any compact Cp-space X the map ε : XCp → X

induces an equivalence
ν(X∗(−))

≃−−→ ν(X
Cp
∗ ε∗(−)).

If ε : XCp → X is an equivalence, this is a tautology. The class of spaces for which the
assertion is true is moreover stable under pushouts, retracts and contains Y = Cp/e, as

0 ≃ ν(∅∗ϵ∗(−)) ≃ ν(Cp/e∗
(−)) ≃ ν(Cp/e

!
(−)) ≃ ν(Ind

Cp
e (−)) ≃ 0.

Using that X∗ ≃ X!(DX ⊗ −) and X
Cp
∗ ϵ∗ ≃ X

Cp

! (DXCp ⊗ ϵ∗−) ≃ X!(ϵ!DXCp ⊗ −) we
obtain the equivalence

ν(X!(DX ⊗−))
≃−−→ ν(X!(ε!DXCp ⊗−)).

Now consider a fixed point x : ∗ → XCp (which we also view as x : ∗ → X). Note that
the projection formula provides an equivalence, natural in E ∈ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpX

X!(E ⊗ x!(SCp)) ≃ X!x!(x
∗E) ≃ x∗E = E(x).

Thus, for any x ∈ XCp , the map ν(DX(x))
≃−−→ ν(ϵ!DXCp (x)) is an equivalence, whence

the result.

We are now ready to prove our main result characterising Cp–Poincaré spaces. Note that,
unlike Lemma 3.3.2, the key characterising property is given solely in terms of DXCp and
does not involve DX .
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Theorem 3.3.3. Let X be a compact Cp-space for which Xe and XCp are (nonequivariant)
Poincaré spaces. Then X is Cp-Poincaré if and only if the cofiber

cofib(DXCp → ε∗ε!DXCp )
e ∈ Fun(XCp , SpBCp)

pointwise lies in the stable subcategory Sp
BCp

ind ⊆ SpBCp .

Proof. As Xe is assumed to be Poincaré the specta DX(y) = DXe(y) ∈ Sp are invertible
for all y ∈ Xe. Furthermore, as XCp is Poincaré we know that ΦCpDX(x) = DXCp (x) is
invertible for all x ∈ XCp . It now follows from Lemma 3.0.1 that X is Cp-Poincaré if and
only if the Cp-spectrum DX(x) is compact for all points x ∈ XCp .

Note that all maps in the bottom right cospan in the diagram

F DXCp (x)

DX(x) ε!DXCp (x)

g′

f ′

g

f

(6)

induce equivalences on geometric fixed points: the map f by Lemma 3.3.2, and the map g

by [HKK24, Lem. 4.2.3]. We can use Lemma 3.1.5 to complete (6) to a commutative square
of Cp-spectra where F is compact and all maps are equivalences on geometric fixed points.
Consider the exact functor

ν =

(
SpCp

(−)e−−−→ SpBCp → SpBCp/Sp
BCp

ind

)
.

Note that as g′ and f ′ are maps between compact Cp-spectra that induce an equivalence on
geometric fixed points, Lemma 3.2.3 shows that ν(cofib(f ′)) ≃ ν(cofib(g′)) ≃ 0, so ν(f ′)

and ν(g′) are equivalences.
Let us first assume that X is Cp-Poincaré. It follows from Lemma 3.3.2 that ν(cofib(f)) ≃

0, so also ν(f) is an equivalence. Thus, ν(g) is an equivalence from which we obtain
ν(cofib(g)) ≃ 0, proving one direction of the claim.

For the other direction, assume ν(cofib(g)) ≃ 0, i.e. that ν(g) is an equivalence. As
before, as ν(f) and ν(f ′) are equivalences we obtain that ν(cofib(g′)) ≃ 0. By definition of
ν, this means cofib(g′)e ∈ Sp

BCp

ind . Now, F ∈ SpCp
and DX(x) ∈ SpCp

both have compact
underlying spectra. Hence, it follows from Lemma 3.2.3 that cofib(g′) ∈ SpCp

is compact.
But then DX(x) is compact too, as was to be shown.

4 Genuine virtual Poincaré duality groups

In this section, we define a refinement of the classical notion of virtual Poincaré duality groups.
Recall that a Poincaré duality group is a discrete group π such that Bπ is a Poincaré space,
and a group is a virtual Poincaré duality group if it contains a Poincaré duality group of finite
index. In this case, every finite index torsionfree subgroup will be a Poincaré duality group.
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Now, if Γ is a discrete group and π a finite index torsionfree normal subgroup, then the
space Bπ can be enhanced to a Γ/π-space in a canonical way by viewing it as the quotient
π\EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin of the universal space for the family of finite subgroups of Γ. One might naturally
wonder if that Γ/π-space is Γ/π-Poincaré, in which case we call Γ a genuine virtual Poincaré
duality group. In fact, we will give a slightly more general definition that also includes the
case where Γ is a Lie group. Heuristically, genuine virtual Poincaré duality groups are those
which capture the homotopical properties of groups for which the universal space of proper
actions admits a smooth manifold model.

4.1 Universal spaces for proper actions

Let us first collect some examples and constructions for universal spaces for proper actions
from the literature.

Definition 4.1.1. Let Γ be a Lie group. By Cpt we denote the family of compact subgroups
of Γ. The universal space for proper actions is the universal space for the family Cpt, and is
denoted by EΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCpt.

If Γ is discrete, the family of compact subgroups of Γ agrees with the family of finite
subgroups, and we denote it by Fin.

Example 4.1.2 ([Abe78], Thm 4.15.). Assume the Lie group Γ acts properly, smoothly and
isometrically on a simply connected complete Riemannian manifold M with nonpositive
sectional curvature. Then M with its Γ-action provides a model for EΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCpt.

Example 4.1.3 ([MS02, Theorem 1]). Suppose, Γ is a hyperbolic (discrete) group. Then a
barycentric subdivision of the Rips complex of Γ for sufficiently high δ > 0 for a word metric
on Γ provides a finite Γ-CW model for EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin. In particular, the Γ-space EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin is compact.

More examples for geometrically interesting models for the universal spaces for proper
actions can be found in the survey [Lüc05] and the references therein. For the next statement,
recall that for a subgroupH ≤ Γ, its normaliser is defined asNΓH := {g ∈ Γ | gHg−1 = H}
and its Weyl group as WΓH := NΓH/H .

Theorem 4.1.4 (Lück-Weiermann’s decomposition, [LW12, Thm. 2.3, Cor. 2.10]). Let Γ be a
discrete group such that each nontrivial finite subgroup is contained in a unique maximal finite
subgroup. LetM be a set of representatives of conjugacy classes of maximal finite subgroups of
Γ. Then the square ∐

F∈M IndΓNΓF
ENΓFENΓFENΓFENΓFENΓFENΓFENΓFENΓFENΓFENΓFENΓFENΓFENΓFENΓFENΓFENΓFENΓF EΓ

∐
F∈M IndΓNΓF

ENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFin EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

(□)

is a pushout in SΓ.

19



Remark 4.1.5. To prove Theorem 4.1.4 one checks that (□) is a pushout on all fixed points
by distinguishing the three cases H = 1, H ̸= 1 finite and H infinite. Examples of groups for
which it applies are discrete groups Γ for which there exists π torsionfree and an extension

1→ π → Γ→ Cp → 1.

If Γ is assumed pseudofree, then we see that EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin
>1 is discrete.

Example 4.1.6. Let us give an illustrative geometric example. Consider the group Γ = p3,
the symmetry group of the wallpaper depicted in Figure 1, with its action on the euclidean
plane. This action is isometric and has finite stabilisers, so by Example 4.1.2 it is a model for
the universal space of proper action of p3.

Note that the translations form a normal torsionfree subgroup of p3 of index 3. We can
apply Theorem 4.1.4 to obtain that the subspace of the plane with nontrivial Γ-isotropy is
Γ-homotopy equivalent to

∐
F IndΓNΓF

ENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFin. Now from the picture it is easy to read off
that the singular part is indeed discrete and consists of three Γ-orbits. We conclude that Γ
has precisely three conjugacy classes of nontrivial finite subgroups, and each such nontrivial
finite F ⊂ Γ satisfies NΓF = F .

Figure 3: Three points with C3-symmetry, corresponding to three conjugacy classes of finite
subgroups of p3.

4.2 Equivariant Poincaré duality for groups

For the following, a closed subgroup π ⊂ Γ of a Lie group is cocompact if the topological
space π\Γ is compact. If π ⊂ Γ is normal, this is equivalent to Γ/π being a compact Lie
group.

Definition 4.2.1. Let Γ be a Lie group and let π ⊂ Γ be a cocompact torsionfree discrete
normal subgroup. We write

BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ := π\EΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCpt ∈ SΓ/π

for the quotient of EΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCpt by the action of π.

The following definition is supposed to capture the homological properties of Lie groups Γ
that admit a cocompact smooth manifold model for EΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCptEΓCpt (and a discrete torsionfree normal
cocompact subgroup). If Γ is torsionfree, it reduces to Γ being a Poincaré duality group.
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Here, and only here we refer to Poincaré duality for compact Lie groups as also developed
in [HKK24], but the reader mainly interested in discrete group actions can assume Γ to be
discrete throughout.

Definition 4.2.2. Let Γ be a Lie group. Then Γ is called a genuine virtual Poincaré duality
group if it has a cocompact torsionfree normal subgroup, and if for any such cocompact
torsionfree normal subgroup π ⊂ Γ, the Γ/π-space BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ is a Γ/π-Poincaré space.

Proposition 4.2.3. Suppose Γ is a Lie group with torsionfree cocompact normal subgroups
π, π′ ⊂ Γ whose intersection is again cocompact. Then

BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ is Γ/π-Poincaré ⇐⇒ BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′ is Γ/π′-Poincaré.

Proof. If suffices to consider the case where π ⊆ π′. Note that the normal subgroup
π′/π ⊆ Γ/π acts freely on BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ. Applying [HKK24, Corollary 4.3.13], we see that BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ

is Γ/π-Poincaré if and only if (π′/π)\BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ ≃ BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′BΓπ
′ is Γ/π′-Poincaré.

Note that, in general, the intersection of two cocompact subgroups is not again cocompact,
e.g. for Z,

√
2Z ⊂ R. In the case where Γ is discrete, the intersection of two finite index

subgroups is again finite, from which we obtain the following result.

Corollary 4.2.4. Suppose, Γ is a discrete group. Then the following are equivalent.

(1) The group Γ is a genuine virtual Poincaré duality group.

(2) There exists some torsionfree finite index normal subgroup π ⊂ Γ such that the Γ/π-space
BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ is Γ/π-Poincaré.

5 Extensions by Cp

In this section, we study genuine virtual Poincaré duality groups sitting in an extension

1→ π → Γ→ Cp → 1 (7)

more closely. In §5.1 we will prove the characterisation from Theorem C; in §5.2 we will use
this to prove property (H) for pseudofree extensions.

5.1 Characterisation of genuine virtual Poincaré duality groups

Lemma 5.1.1. Consider an extension of groups of the form (7) where π is torsionfree. WriteM
for a complete set of representatives of the conjugacy classes of nontrivial finite subgroups of Γ.

(1) If F ≤ Γ is a nontrivial subgroup with π ∩ F = e (e.g. F is finite), then the composition
of F ↣ Γ→ Cp is an isomorphism. In particular, F is a maximal finite subgroup of Γ.

(2) There is an equivalence of spaces

BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp ≃

∐
F∈M

BWΓF.
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Proof. Point (1) follows as the kernel of Γ→ Cp is torsionfree, so every finite subgroup of Γ
will inject into Cp. For (2), observe that if π acts freely on a Γ-space Y , then the map

(π\Y >1)Cp → (π\Y )Cp

is an equivalence by Fact 2.1.8. Thus, since applying (π\−)Cp to the top row in the pushout
square (□) yields the map of empty spaces, we get an identification

BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp ≃

(
π\

∐
F∈M

IndΓNΓF
ENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFin

)Cp

≃
∐

F∈M
(π\IndΓNΓF

ENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFin)
Cp .

Consider the surjective composition of group homomorphisms NΓF ⊂ Γ→ Cp. By Obser-
vation 2.1.4, we get

π\IndΓNΓF
ENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFin ≃ (π ∩NΓF )\ENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFin.

Now note that, by (1), the only finite subgroups ofNΓF are e andF . This impliesENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFin ≃
inflNΓF

WΓF
EWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓF . Also, the composition π ∩ NΓF ⊂ NΓF → WΓF is an isomorphism.

Indeed, it is injective, as it has at most finite kernel and π is torsionfree, and it is surjective
as NΓF is generated by F and π ∩NΓF , and F maps to zero in WΓF . We thus obtain

(π ∩NΓF )\ENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFin ≃ (π ∩NΓF )\ inflWΓF
NΓF

EWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓFEWΓF ≃ infleCp
BWΓF,

the second equivalence being an instance of Fact 2.1.7 for G = NΓF , Q = WΓF and N =

NΓF ∩ π. This finishes the proof of the second assertion.

Lemma 5.1.2. In the situation of Lemma 5.1.1, for each x : ∗ → BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp there is a pullback

T BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp

∗ BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ

a

p j

b

(8)

of Cp-spaces where T is a disjoint union of Cp-orbits and has exactly one fixed point. Further-
more, x ≃ as where s : ∗ → T denotes the section coming from the fixed point of T .

Proof. Note that the π-actions on EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin as well as on EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin
>1 are free, so that by [HKK24,

Lem. 2.2.38] we have a cartesian square

EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin
>1 infl

Cp

Γ BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp

EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin infl
Cp

Γ BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ.

⌟
j (9)
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Now, recallin Fact 2.1.8, we have BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp ≃ π\EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1. The point x gives rise to a map of
Γ-spaces h : ∗ → infl

Cp

Γ BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp , and so by [HKK24, Lem. 2.2.39.], we get a commuting square

Γ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/FΓ/F EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin
>1

∗ infl
Cp

Γ BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp

f

h=π\f

(10)

for F a subgroup with π\(Γ/F ) ≃ ∗ (so that F is nontrivial) and π ∩ F = e. From
Lemma 5.1.1 we now learn that the map F ⊂ Γ → Cp is an isomorphism. Hence, F can
be used to define a section s : Cp → Γ. We will now construct the following diagram.

Restricting the pullback (9) along s, we obtain the outer cartesian square of Cp-spaces in

ResΓCp

∐
F ′∈M Γ/NΓF

′ ResΓCp
EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1 ResΓCp
infl

Cp

Γ BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ

Cp

∗ ResΓCp
EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin ResΓCp

infl
Cp

Γ BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ.

≃

(A) (B) j (C)

≃

≃ ≃

Here, the lower equivalence in square (A) comes from the observation that for any
group G, the space EGFinEGFinEGFinEGFinEGFinEGFinEGFinEGFinEGFinEGFinEGFinEGFinEGFinEGFinEGFinEGFinEGFin becomes equivariantly contractible when restricted to a fi-
nite subgroup. The upper equivalence combines Theorem 4.1.4 with the observation, that
ResΓCp

IndΓNΓF
ENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFinENΓFFin → ResΓCp

IndΓNΓF
∗ = ResΓCp

Γ/NΓF is an equivalence, which is
checked easiest by looking at the map on underlying spaces and Cp-fixed points. The square
labeled (B) is obtained by restricting the pullback (9) along the section s : Cp → Γ. By
virtue of s being a section of Γ→ Cp, and as inflation is nothing but restriction along a sur-
jective group homomorphism, we have Res

Cp

Γ infl
Cp

Γ ≃ idSCp
, explaining the identifications

in square (C). It now follows from Lemma 5.1.3 below that the upper left corner has exactly
one fixed point, as required.

To see the last statement that x ≃ as, observe that the section s was chosen to identify Cp

with a specific finite subgroup F ⊂ Γ having the property that the composition

∗ eF−−→ ResΓCp
Γ/F

ResΓCp
f

−−−−−→ ResΓCp
EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1 → BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp

is the point x by (10).

Lemma 5.1.3. Let Γ be a group for which each nontrivial finite subgroup is contained in a
unique maximal finite subgroup. Then for maximal finite subgroups F, F ′ ⊆ Γ we have that
F acts freely on Γ/NΓF

′ if F and F ′ are not conjugate and (Γ/NΓF
′)F = ∗ if F and F ′ are

conjugate.

Proof. Suppose there is f ∈ F\e and g ∈ Γ such that fgNΓF
′ = gNΓF

′. Then g−1fg ∈
NΓF

′ so the subgroup generated by F ′ and g−1fg is finite. By maximality of F ′, we obtain
g−1fg ∈ F ′. The nontrivial element f lies in both maximal finite subgroups F and gF ′g−1
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of Γ which agree by uniqueness. This shows that the F -action on Γ/NΓF
′ is free if F and

F ′ are not conjugate.
In the other case it suffices to show that (Γ/NΓF )F = ∗. One fixed point is clearly given

by eNΓF . Suppose that there are f ∈ F\e and g ∈ Γ such that fgNΓF = gNΓF . The
argument from above shows that F = gFg−1, i.e. g ∈ NΓF .

We now come to the proof of our main characterisation result for genuine virtual Poincaré
duality groups coming from Cp–extensions.

Theorem 5.1.4. Consider an extension of groups

1→ π → Γ→ Cp → 1

where π is a Poincaré duality group, and assume that the Γ-space EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin is compact. Then the
following are equivalent.

(1) The group Γ is a genuine virtual Poincaré duality group.

(2) For each nontrivial finite subgroup F ⊂ Γ, the Weyl group WΓF is a Poincaré duality
group.

Proof. First of all, note that since π\(−) preserves compact objects – it admits a right adjoint
with a further right adjoint – the Cp-space BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ = π\EFinΓ is compact. As such, BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ

Cp is
also compact.

To prove that (1) implies (2), recall that by Lemma 5.1.1 we get an equivalence

BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp ≃

∐
F∈M

BWΓF (11)

where F runs through a set M of representatives of the conjugacy classes of nontrivial
finite subgroups. If a space is Poincaré, then each individual component is Poincaré. So
we learn that WΓF is a Poincaré duality group for each F ∈ M. As conjugate subgroups
have isomorphic Weyl groups, this implies that the conclusion holds for each nontrivial finite
subgroup F .

To prove that (2) implies (1), since BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp is compact by the first paragraph, there must

only be finitely many components in the decomposition (11). By the hypothesis of (2), each
component is Poincaré, implying that BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ

Cp is (nonequivariantly) Poincaré. We are thus in
the situation of Theorem 3.3.3. To apply it, we have to show that for allx ∈ BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ

Cp , the cofiber
of the map DBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ

Cp (x)e → j!DBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp (x)e lies in the perfect subcategory Sp

BCp

ind ⊂ SpBCp

generated by induced spectra, where j : BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ
Cp → BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ denotes the inclusion.

For ease of notation, let us write X := BΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπBΓπ in the following. From Lemma 5.1.2, we get a
cartesian square of Cp-spaces

T XCp

∗ X

a

⌟
p j

b
s

(12)

24



where T = ∗
∐

S and S is a disjoint union of free Cp-orbits where, furthermore, the point x
corresponds to the image of the composite as, where s : ∗ → T denotes the section coming
from the fixed point of T .

Now observe that the map DXCp (x) → j∗j!DXCp (x) identifies with the map
s∗a∗DXCp → s∗p∗p!a

∗DXCp ≃ colimT a∗DXCp induced by the unit id → p∗p!. The de-
composition T ≃ S

∐
∗ now provides a splitting

colim
T

a∗DXCp ≃ s∗a∗DXCp ⊕ colim
S

a∗DXCp |S

and the induced map

s∗a∗DXCp → s∗a∗DXCp ⊕ colim
S

a∗DXCp |S (13)

is an equivalence on the first component by functoriality of colimits. The Cp-spectrum
colimS a∗DXCp |S is induced as S is free. Together this shows that the cofiber of the
map s∗a∗DXCp → s∗a∗j∗j!DXCp lies in the subcategory Sp

BCp

ind ⊂ SpBCp as was to be
shown.

Remark 5.1.5. Instead of explicitly identifying the map ϵ : DXCp (x)→ j∗j!DXCp (x) in the
last step of the argument above, one can also finish the proof using the following trick. Using
the splitting (13), one can reduce to showing that the cofiber of a selfmap f of the invertible
spectrum DXCp (x) is induced. As j is an equivalence on Cp-fixed points, one sees that
ΦCp(ϵ) is an equivalence. This implies that the selfmap f in question also is an equivalence
on geometric fixed points. The Burnside congruences show that cofib(f)e is n-torsion for
n congruent to 1 mod p, in particular n coprime to p. But every compact spectrum with
Cp-action which is n-torsion for n coprime to p vanishes in stmod(Cp), so it is induced.

5.2 Condition (H)

In this section we will prove an abstract version of Condition (H) for general Cp-Poincaré
spaces with discrete fixed points and see how this implies Condition (H) from Condition 1.3.
Essential for this is the theory of singular parts and equivariant fundamental classes, espe-
cially the gluing class, introduced in [HKK24, §4.5]. Let us recall the relevant notions and
constructions here.

Construction 5.2.1 ([HKK24, Cons. 4.5.4]). For ξ ∈ FunG(X,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp), there is a preferred map
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(X!ξ)
hG → Σ(X>1

! ε∗ξ)hG. It is defined as the blue composite in the commuting diagram

(X>1
! ε∗ξ)hG (X>1

! ε∗ξ)hG (X>1
! ε∗ξ)tG Σ(X>1

! ε∗ξ)hG

(X!ξ)hG (X!ξ)
hG (X!ξ)

tG

QhG QhG

Σ(X>1
! ε∗ξ)hG

⌜
≃

≃

, (14)

where the horizontal and vertical sequences are cofiber sequences and where we used the
shorthand Q := cofib

(
X>1

! ε∗ξ → X!ξ
)
. By [HKK24, Lemma B.0.1], the red and blue com-

posite in (14) are equivalent up to a sign.

Construction 5.2.2 (Gluing classes, [HKK24, Cons. 4.5.5]). Let X ∈ SG be a G-Poincaré
space with dualising spectrum DX ∈ FunG(X, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) and collapse map c : SG → X!DX . The
gluing class of X is defined to be the composite

S
can−−→ ShG

G
chG−−→ (X!DX)hG −→ Σ(X>1

! ε∗DX)hG,

where the last map is the blue composite from (14). The linearised gluing class is obtained by
postcomposing with the map induced by S→ Z

Σ(X>1
! ε∗DX)hG → Σ(X>1

! ε∗DX ⊗ Z)hG.

We now specialise to the case G = Cp. Recall from Construction 2.1.5 that for X ∈ SCp ,
we have X>1 ≃ XCp coming from the fact that X>1 ≃ XCp .

Proposition 5.2.3 (Abstract condition (H)). Let X be a Cp-Poincaré space with discrete fixed
points such that each component of Xe has positive dimension. Then the linearised gluing class

S→ Σ(X>1
! ε∗DX ⊗ Z)hCp

≃←−
⊕

y∈XCp

Σ(DX(y)⊗ Z)hCp

maps a generator of π0(S) ≃ Z to a generator of π0Σ(DX(y)⊗Z)hCp ≃ Z/p in each summand.

Recollections 5.2.4 (InvertibleCp-spectra and group (co)homology). For the proof of Propo-
sition 5.2.3, recall the following facts about the homology of invertible Cp-spectra. Recall that
for an abelian group with G-action M , writing M [d] for the corresponding object in ModBG

Z

concentrated in degree d, we have

π∗M [d]hG ≃ H∗−d(G;M), π∗M [d]hG ≃ Hd−∗(G;M), π∗M [d]tG ≃ Ĥd−∗(G;M).

For E ∈ Pic(SpCp
) there are integers de and df such that Ee ⊗ Z ≃ Z[de] after forgetting

the Cp-action and ΦCpE ⊗ Z ≃ Z[df ]. We write Z for the trivial Cp-representation and
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Zσ for the sign C2-representation. From [Kra20, Sec. 8.1.] and elementary group homology
computations we obtain Table 1. In each case, if de + 1 ≤ df , another group homological
computation together with Table 1 shows that the map

πdf (E
e ⊗ Z)tCp → πdf−1(E

e ⊗ Z)hCp

is an isomorphism between cyclic groups of order p.

de − df even de − df odd

p odd
π∗E

e ⊗ Z ≃ Z[de]
impossible

πdf (E
e ⊗ Z)tCp ≃ Z/p

p = 2
π∗E

e ⊗ Z ≃ Z[de] π∗E
e ⊗ Z ≃ Zσ[de]

πdf (E
e ⊗ Z)tCp ≃ Z/p πdf (E

e ⊗ Z)tCp ≃ Z/p

Table 1: Homological information on invertible Cp-spectra

Observation 5.2.5. Consider a map f : Y → X in SG. We claim that there is a commuting
diagram of functors SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpX → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpΦP̃

X!Φ X!f!f
∗Φ

ΦX! ΦX!f!f
∗,

c

≃ ≃

c

(15)

where the vertical maps are the Beck-Chevalley transformations, which are equivalences as
the geometric fixed points functor Φ: SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpΦP̃ from [HKK24, Construction 2.2.31] pre-
serves parametrised colimits, and the horizontal maps are induced by the adjunction counit
c : f!f

∗ → id. This follows immediately from [Hil24, Lemma 2.2.6], again using that Φ pre-
serves parametrised colimits. Importantly, the top map (and hence also the bottom map) is
an equivalence by [HKK24, Lem. 4.2.3].

Notice also that, by naturality of Beck-Chevalley transformations, if we have a decompo-
sition Y = Y1Y1Y1Y1Y1Y1Y1Y1Y1Y1Y1Y1Y1Y1Y1Y1Y1

∐
Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2, the right vertical map in (15) is compatible with this splitting.

Proof of Proposition 5.2.3. By construction, the gluing class factors through the map

(X>1
! ε∗DX ⊗ Z)tCp → Σ(X>1

! ε∗DX ⊗ Z)hCp

which happens to be an isomorphism on π0 using Recollection 5.2.4 and thatX>1 is a discrete
Cp-space (so that df = 0) with trivial Cp-action. It thus suffices to show that the gluing class
maps to a generator in each summand of

π0(X
>1
! ε∗DX ⊗ Z)tCp ≃

⊕
y∈XCp

π0(DX(y)⊗ Z)tCp ≃
⊕
XCp

Z/p.

We have the following commutative diagram.
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S X>1
! DXCp X>1

! DXCp

ΦCpS ΦCp(X!DX) ΦCp(X>1
! ε∗DX) ΦCp(X>1

! ε∗DX ⊗ infleCp
Z)

StCp (X!DX)tCp (X>1
! ε∗DX)tCp (X>1

! ε∗DX ⊗ Z)tCp

ShCp (X!DX)hCp

≃

c
Cp
X

≃ ≃

id

ΦCpcX

≃

c
tCp
X

≃

c
hCp
X

The rightmost part is induced by the ring map S → Z. The violet square is obtained from
Observation 5.2.5 applied to f = ε : XCp ≃ X>1 → X and DX , using the equivalence
ΦCpDX ≃ DXCp from Theorem 2.3.3 and εCp = idXCp .

By definition, the blue route recovers the gluing class. Following the upper route to the
same object gives a class having the desired properties. Indeed, on π0 the upper route reads

Z
⊕

XCp Z
⊕

XCp Z

⊕
XCp Z

⊕
XCp Z

⊕
XCp Z/p

∆

≃

≃

proj

where proj refers to the sum of the projection maps Z → Z/p. Here, all maps in sight
preserve the individual summands of

⊕
XCp Z: the only potentially nonobvious case is the

vertical red map, which is dealt with in Observation 5.2.5.

Proof of Theorem D. Recall that Condition (H) from Condition 1.3 asks about surjectivity of
the upper composite in the diagram

HΓ
d (EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin, EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1) HΓ
d−1(EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1) HF
d−1(∗)

H
Γ/π
d (π\EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin, π\EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1) H
Γ/π
d−1(π\EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1) H
Γ/π
d−1(∗),

∂

≃ ≃ ≃

∂

where the right horizontal maps are induced from the the projection onto the F -component
in the splittingEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin

>1 =
∐

F ′∈M Γ/F ′. We may thus equivalently show surjectivity of the
lower horizontal composite. Denote X = π\EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin, which is Cp-Poincaré by Theorem 5.1.4
since in this case, WΓF ∼= {e} and EΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFinEΓFin is compact by Example 4.1.3.

Now by definition, the bottom composite in the diagram above is obtained by postcom-
posing cofib(X>1

! ϵ∗DX ⊗Z→ X!DX ⊗Z)hCp → Σ(X>1
! ϵ∗DX ⊗Z)hCp with projection to

a component of XCp . Thus, by Proposition 5.2.3 and with the alternative description of the
gluing class via the red route in Construction 5.2.1, we obtain the required surjectivity.
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