
A neural network approach to running high-precision atomic computations

Pavlo Bilous,1, ∗ Charles Cheung,2 and Marianna Safronova2

1Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
2Department of Physics and Astronomy, University of Delaware, Delaware 19716, USA

(Dated: August 2, 2024)

Modern applications of atomic physics, including the determination of frequency standards, and
the analysis of astrophysical spectra, require prediction of atomic properties with exquisite accuracy.
For complex atomic systems, high-precision calculations are a major challenge due to the exponen-
tial scaling of the involved electronic configuration sets. This exacerbates the problem of required
computational resources for these computations, and makes indispensable the development of ap-
proaches to select the most important configurations out of otherwise intractably huge sets. We have
developed a neural network (NN) tool for running high-precision atomic configuration interaction
(CI) computations with iterative selection of the most important configurations. Integrated with
the established pCI atomic codes, our approach results in computations with significantly reduced
computational requirements in comparison with those without NN support. We showcase a number
of NN-supported computations for the energy levels of Fe16+ and Ni12+, and demonstrate that our
approach can be reliably used and automated for solving specific computational problems for a wide
variety of systems.

I. INTRODUCTION

Accurate modeling of electronic correlations in atoms
and ions is a ubiquitous problem in modern atomic
physics. It is typically addressed using the configuration
interaction (CI) approach [1], which consists in expand-
ing the wave function of the searched electronic states
|Ψ⟩ =

∑
α cα |Φα⟩ in a fixed basis |Φα⟩ (usually Slater

determinants or configuration state functions). The un-
known coefficients cα for each state and the state energies
Eα are then obtained as solutions to the eigenvalue prob-
lem for the Hamiltonian matrix Hαβ = ⟨Φα|Ĥ|Φβ⟩. For
accurate computations, the required basis set |Φα⟩ can
become huge, posing high demands both on the hard-
ware and the atomic codes, which need to be highly effi-
cient and parallelized. Even then, the required precision
remains often beyond the computational feasibility.

In a recent work [2], an algorithm using a neural net-
work (NN) was demonstrated to tackle big CI compu-
tations for the GRASP2018 general relativistic atomic
structure package [3]. In this approach, one large CI
computation is replaced by a number of smaller ones on
a subsequently growing sub-basis. The basis growth is
managed by a NN classifier that receives the basis state
quantum numbers as input. In each iteration, it predicts
the important basis states from the full set, i.e. those
with weights wα = |cα|2 exceeding a specified cutoff x.
They are then included in the CI computation that yields
the energy and the coefficients cα. The latter are used
to give the NN feedback on its prediction and retrain it.
The “importance” cutoff x is decreased from iteration
to iteration, leading to convergence of the energy to its
“true” value on the full set. In Ref. [2], otherwise un-
feasible computations for the ground state energy of the

∗ pavlo.bilous@mpl.mpg.de

Re and Os atoms were performed. The results were com-
pared with Ref. [4], where the CI problem was simplified
down to a tractable scale using experimental data for
electronic transition and excitation energies. The com-
parison showed a good agreement leading to the conclu-
sion that the NN-supported algorithm yielded reliable
results.

Unfortunately, in many cases, there are no experimen-
tal data to carry out such benchmarks as in Ref. [2]. This
is especially the case in the domain of highly charged
ions, which has yet to be thoroughly explored, but has
recently been of great interest, due to its promising appli-
cations [5]. Therefore, it is necessary to have at hand an
independent systematic ab initio approach, which would
ensure the validity of the NN-supported computations.
Further analysis of the computations in Ref. [2] suggests
that the required NN-related part was itself computa-
tionally demanding. The usual dense NN architectures
failed, and only switching to a deep convolutional archi-
tecture tailored specifically to the structure of the input
data (in Ref. [2], configuration state functions) led to a
stable behavior. Even on a GPU, the training of such
NN took time comparable with the atomic computation
in each iteration.

Here, we introduce significant algorithmic improve-
ments and simplifications to the approach from Ref. [2],
making the computational overhead beyond the actual
CI computations negligible. Instead of using the GRASP
package [3] to implement CI, we use the pCI code package
developed in Ref. [6] to carry out extremely large-scale
parallel CI computations. This package can be also used
in combination with the coupled-cluster method and has
demonstrated exceptional accuracy for a wide variety of
many-electron systems, including neutral atoms, highly-
charged ions, and negative ions [7–13]. With the new
implementation, the NN part needs only tens of min-
utes on a single CPU, which is negligible in comparison
to the large-scale CI computation. We also generalize

ar
X

iv
:2

40
8.

00
47

7v
1

 [
ph

ys
ic

s.
at

om
-p

h]
 1

 A
ug

 2
02

4

mailto:pavlo.bilous@mpl.mpg.de

2

the method from computations for only one electronic
level (e.g. the ground state as in Ref. [2]) to many lev-
els at once, i.e., yielding the electronic transition ener-
gies. The latter are undoubtedly of superior relevance
in atomic physics and its applications. The computa-
tions performed in this work contained up to 17 levels
at once. Importantly, we show how the obtained results
can be verified using an alternative approach to perform
large CI computations “by parts” without the NN. The
developments in this work promote the NN-supported
algorithm to a generic practical tool for high precision
atomic computations.

As demonstration, we perform calculations of the en-
ergy levels on particularly large basis sets for the highly
charged Fe16+ and Ni12+ ions. While Fe16+ is directly
relevant for understanding the astrophysical spectra, the
Ni12+ ion possesses a clock transition between its ground
and second excited state, and thus has potential in
metrology. These ambitious applications require high
precision of a few cm−1, which we achieve in our com-
putations using the two complementary algorithms, with
and without a NN. In these cases, obtaining a high level
of accuracy requires the use of very large basis sets, with
both large number of partial waves and large principal
quantum numbers. The procedure to increase the basis
set to numerical completeness at the required precision
level is usually extremely costly in terms of computa-
tional resources. It also requires submission of a large
number of multiple runs that limits such computations
to a few exceptional cases. In the present work, we show
that the NN-supported algorithm can solve the problem
of the basis set increase with complete NN automation,
as well as drastic reduction of the computer resource re-
quirements, enabling future automated basis set upscal-
ing for increased accuracy of computations.

The article is structured as follows. In Section II, we
present the details of our CI computations and, in partic-
ular, the alternative approach to perform large CI com-
putations by parts, without NN support. In Section III,
we describe in detail our NN-supported algorithm and
highlight the improvements with respect to Ref. [2]. Sec-
tion IV contains the demonstration computations for the
Ni12+ and Fe16+ ions. We finish the article by summa-
rizing our conclusions in Section V.

II. CI COMPUTATIONS

All calculations are carried out using the CI method to
correlate all valence electrons. We construct one-electron
orbitals from solutions of the Hartree-Fock-Dirac (HFD)
equations in the central field approximation. The basis
set is designated by the highest principal quantum num-
ber for each included partial wave. For example, 17g
means that all orbitals up to n = 17 are included for the
spdfg partial waves.
The CI many-electron wave function is obtained as a

linear combination constructed from all distinct states

and possessing a given total angular momentum and par-
ity:

|Ψk⟩ =
∑
α

ckα |Φα⟩ . (1)

Here the index α labels the involved Slater determinants
|Φα⟩, whereas k enumerates the many-electron states.
The energies and wave functions are determined from the
time-independent many-electron Schrödinger equation

Ĥ |Ψk⟩ = Ek |Ψk⟩ . (2)

We construct one-electron basis orbitals from solutions
of the HFD equations in the central field approxima-
tion. In general, we start by building core orbitals for
the ground state configuration. Then we freeze those
orbitals and construct valence orbitals for a few excited
states. Virtual orbitals are then built from the HFD or-
bitals. A list of configurations defining the CI space is
then obtained from all possible single (S) and double (D)
excitations to any orbital in our basis set from a few se-
lected reference configurations (typically the ground state
and a few excited states). The Hamiltonian is then con-
structed and diagonalized to obtain the desired eigenval-
ues and eigenvectors.
This procedure is completed for increasing basis sets

(increasing principal quantum number n or partial wave
l) to identify the convergence pattern towards the most
accurate results. This process is repeated until (1) either
the energies have converged, or (2) the computation be-
comes too large for the available computational resources.
Once the energies have converged as in (1), we consider
our computations to be completed; otherwise, we treat
(2) via a method optimizing and reducing the size of the
CI space.

A. Upscaling the basis set

For computations of basis sets that cannot be run di-
rectly on currently available computational resources, we
opt to reduce the size of the CI space by selecting only the
most important configurations for subsequent calcula-
tions via some cutoff x. From a previously completed di-
rect CI calculation, a configuration subspace correspond-
ing to only the most important configurations can be
generated. The importance of a configuration is deter-
mined by its weight wα = |cα|2. An optimal cutoff x
is determined by balancing the number of configurations
obtained from the cut, and the subsequent energy differ-
ence between the direct run and the cut run. This cutoff
x is typically chosen such that the resulting energy differ-
ence is minimized for any resulting energy level. This en-
ergy difference is then subtracted from the results of the
subsequent CI calculation involving an increased princi-
pal quantum number n or increased partial wave l. We
refer to this procedure of systematically increasing the
basis set from a selected list of important configurations
as upscaling the basis set.

3

As an example, we describe the process of upscaling
the 17h basis set to the 20h basis set. In this case, we
have completed the CI calculation for the 17h basis set,
but 20h was not possible. Here, a cut log10 x = −10 is
used to reduce the size of the 17h basis set, with the re-
sulting subspace consisting of only the most important
configurations (we will denote it as 17h cut). This cut
reduces the size of the CI space from 242 924 relativistic
configurations (41 071 940 Slater determinants) to 89 861
(13 345 491). We then construct a list of configurations
obtained from increasing 17h to 20h and merge this list
to the 17h cut list. The resulting configuration list con-
tains 17h cut + (20h − 17h). The CI procedure is then
executed using this basis set to obtain the desired ener-
gies from the 20h basis set. However, it is important then
to also subtract the energy difference due to the cut that
was made to the 17h basis. So the final energy in the 20h
calculation is E20h = E17h cut+(20h−17h) − E17h cut−17h.
In this way, we are able to approximate the exact CI re-
sults of the 20h basis by performing much smaller com-
putations. We note that this procedure is still very time
consuming and still requires both large memory and CPU
allocations.

III. NN-SUPPORTED ALGORITHM

In this section, we discuss a powerful alternative to
the direct CI described above. We introduce our NN-
supported iterative algorithm illustrated schematically in
Fig. 1, and highlight the improvements with respect to
Ref. [2]. Here, we work not with the basis Slater determi-
nants, but instead with relativistic configurations, which
are constructed from the determinants. The weight of
each configuration Γ is obtained from the individual ba-
sis coefficients as wk

Γ =
∑

α∈Γ |ckα|2, where, as before, k
labels the considered energy level. We perform our com-
putations for all levels of interest at once, and aggregate
their weights in one weight as wΓ = maxk w

k
Γ. Given a

large “full” set of configurations not tractable with the di-
rect CI, the algorithm aims at forming an approximative
CI subset of the most relevant configurations in the sense
of their weight wΓ. This approximative set (the “current”
CI expansion) is improved with iterations by including
further configurations from the remaining “pool”, con-
sisting of configurations from the full set which are cur-
rently not included in the CI expansion.

A. “Starting” stage

At the beginning, we need to form an initial CI expan-
sion, which serves as data for the initial NN training. We
assume that before our algorithm starts, a computation
on a smaller sub-basis of the full basis has already been
performed. For instance, a computation for a smaller
number of virtual orbitals can serve this purpose. Alter-
natively, the results of another NN-supported computa-

tion can be employed.
We construct the “starting” CI space by combining the

initial CI space with a number of configurations chosen
randomly from the remainder of the full basis. This set
of randomly chosen configurations is needed for (a) the
NN to explore the data not represented in the preceding
computation, and for (b) mitigation of possible bias to-
wards the “important” class of the training data. Note
that the CI coefficients for the random selection are not
yet known, and therefore a CI computation is performed
at this step to calculate them. In case the obtained set is
too big, a part of the sub-basis from the previous compu-
tation with weights below some cutoff y can be omitted
at this stage. We stress that this omission is done only for
this particular CI computation step, since the aim is only
evaluation of the CI coefficients for the random selection.
The CI expansion obtained at the described ”starting”
stage is schematically shown to the left in Fig. 1.

B. Iterations

We now enter the NN-supported iterations shown in
Fig. 1 in the box to the right. At step (A), we assume
that the CI expansion contains configurations from the
“starting” stage described above or from the previous it-
eration [finished at (F)]. In the latter case, we distinguish
between the configurations added directly in the previ-
ous iteration and the ones present in the CI expansion
before (the latter are denoted as “old”). Each iteration
is characterized by its own importance cutoff x, which
is decreased during the computation. At step (B), the
newly added configurations in the CI expansion are dis-
tributed into the two importance classes with respect to
the current cutoff x. At the next step (C), the NN is re-
trained on the obtained data and predicts new important
configurations from the pool.
At step (D), we randomly select a number of configu-

rations discarded by the NN, since the NN needs some
feedback on them at the next iteration. This “balancing”
is characterized by the ratio rbal between the number of
the randomly included configurations and the number of
configurations classified by the NN as important. For
larger rbal values, the NN performs better in the next it-
eration, but the current CI expansion includes randomly
selected and thus mostly irrelevant configurations, mak-
ing the computational overhead larger. For small rbal val-
ues, the computational overhead in the current iteration
decreases, but in the next iteration, the NN may per-
form poorly, suggesting many irrelevant configurations.
In Ref. [2], the value rbal = 1 was used, whereas in the
present work, the choice rbal = 0.5 is sufficient. We note
that in the very last iteration, rbal = 0 can be chosen
since no NN retraining follows.
At step (E), the current CI expansion is “cleaned up”

by removing the configurations belonging to the “unim-
portant” class from step (D). We note that since the cut-
off x is iteratively decreased, and the NN state evolves

4

Old

"Starting" stage

Old

Newly added
in previous
iteration

(A)

Old

(B)

Old

(C)

Old

Rand.

(D)

Old

Im
po

rta
nt

Rand.

(E)
Rand.

(F)

From a
"smaller"
comput-n

Random

NN-discarded

NN-discarded

NN-discarded

NN-
picked

NN-
picked

NN-
pickedIm

po
rta

nt

Im
po

rta
nt

Unim
p.

Unim
p.

Unim
p.

Im
po

rta
nt

cu
to

ff
x =

>

NN-
pickedIm

po
rta

nt

FIG. 1. Schematic representation of the iterative NN-supported algorithm described in the text. The thin big ellipse denotes
the full set of configurations (potentially intractable with a direct CI approach). The subsets shown with thick ellipses are
all included in the current CI expansion. The blue color denotes configurations for which the CI expansion coefficients have
been already evaluated. The green (red) color depicts the important (unimportant) configurations with respect to the current
cutoff x — this is established either directly (if the CI coefficients are known) or using the NN. Note that the different shades
of red are irrelevant. The algorithm begins with the “starting” stage (shown to the left) which assumes that a direct or NN-
supported computation has been previously performed on a partial subset of the full set. A number of random configurations
is additionally included, and a CI computation is performed yielding the coefficients for the included configurations. The
algorithm then enters stage (A) of the NN-supported iterations (shown in the box to the right). The CI expansion contains
some configurations either from the “starting” stage or the previous iteration [finished at stage (F)]. In the latter case, we
distinguish between the configurations added directly in the previous iteration and the ones present in the CI expansion before
— the latter are denoted as “Old”. At stage (B), we split the set of the “newly added” configurations into the important and
unimportant classes with respect to the current cutoff x, and thus form a training set for the NN. The NN is trained and applied
to classification of configurations from the pool at stage (C). At stage (D), a number of additional “balancing” configurations
is randomly selected. At stage (E), the unimportant configurations are removed from the current CI expansion, whereas the
NN-predicted and the “balancing” ones are included. At stage (F), the CI computation on the formed CI set is performed,
finishing the iteration. The energy obtained at (F) is monitored to terminate the algorithm once convergence is achieved.

with further training, these removed configurations may
be classified by the NN as important and re-included in
future iterations. The CI expansion is now enriched with
the new configurations, and the CI computation is per-
formed at step (F), yielding the energy levels and the
CI expansion coefficients. The convergence of the ener-
gies is monitored and the algorithm is stopped once the
targeted precision is achieved.

C. NN architecture and training

For each relativistic configuration, the input data con-
sist of populations of the electronic orbitals. We convert
this discrete input to a binary format by directly trans-
forming the integer orbital populations to their binary
code. Each binary digit is then treated as a feature in
the transformed data. After this transformation, some of
the resulting features may turn out to be trivial, i.e. con-
stant (0 or 1) across the whole dataset, and are deleted.
The NN output consists of 2 numbers interpreted as the
probabilities of the input configuration to be important
or unimportant. The probabilities are guaranteed to sum
up to 1 by using the softmax activation function in the
NN output layer.

With fixed input and output structure, there remains
freedom in choice of the internal NN architecture. In
contrast to Ref. [2], where convolutional NNs were used,
here, we employ the usual dense NNs [14]. In all com-
putations, we include 4 hidden layers, each with a few
tens to a few hundreds of neurons, resulting in a num-
ber of trainable parameters of the order of 105 (concrete
sizes of the input and the NN layers will be specified for
each example separately). The NN is trained to minimize
the categorical cross-entropy loss using the Adam opti-
mization algorithm [15]. The training is stopped based
on the NN performance monitored on 20% of the data
held out randomly from the training set. The described
functionality is leveraged using the Python library Ten-
sorFlow [16].

D. Algorithm improvements

Here, we explicitly highlight the main improvements
with respect to the algorithm developed in Ref. [2].

5

1. Grouping basis states in relativistic configurations

A crucial change with respect to Ref. [2] consists in
treating the basis states in groups of Slater determi-
nants corresponding to relativistic configurations instead
of considering them individually. The weight of a config-
uration Γ is the sum of the individual weights of the par-
ticipating basis states wk

Γ =
∑

α∈Γ |ckα|2. In this case, all
information distinguishing the basis states within a sin-
gle relativistic configuration is discarded. This has two
major advantages. This significantly simplifies the input
structure and reduces the number of features (the dataset
“width”) without harming the quality of the results, and
this strongly reduces the amount of data (the dataset
“length”) and is advantageous for large computations.
The resulting data are well compatible with the common-
place dense NN architecture. This leads to a stable and
well reproducible computation flow and results, without
the need of introducing a deep convolutional block as in
Ref. [2].

Another advantage of switching to relativistic config-
urations is a unification of computations performed in
the basis of Slater determinants (used in the present
work) and configuration state functions (used in Ref. [2]).
Specifically for our atomic code package [6], this choice
also corresponds to the standard input/output mecha-
nism.

2. Multilevel optimization

In this work, we obtain all energy levels of interest in
one computation, rather than optimizing them one by
one, as described in Ref. [2]. We achieve this by switch-
ing from individual weights wk

Γ for each k-th energy level
to an “aggregated” weight wΓ = maxk w

k
Γ for each rela-

tivistic configuration Γ. With this choice, a configuration
becomes important if it is important for at least one en-
ergy level. We note that other aggregation approaches
tailored to a specific computation can be employed here.

A special challenging situation occurs in computations
for the Ni12+ ion due to an extreme closeness of its 1st
and 2nd excited states, lying approximately 600 cm−1

apart. Optimization for each level separately in an in-
dependent computation based on the algorithm from
Ref. [2] led to a wrong ordering of the levels and difficul-
ties in their identification. In our improved algorithm, all
levels are optimized, preventing such mixing due to poor
quality energies. This makes our approach practical also
in such peculiar situations.

3. Starting from a prior computation
(direct or NN-supported)

In our algorithm, each iterative computation starts not
from scratch as in Ref. [2], but from the output of a

prior (direct or NN-supported) computation. This ap-
proach is compatible with the standard basis expansion
procedures in atomic computations, e.g. increasing the
highest principal quantum number n for the included vir-
tual orbitals. More importantly, the information from the
previous computation is reused for the starting training
of the NN classifier. This resolves the issue of the “start-
ing” iteration, in which the NN is not yet trained, and
thus unable to predict important basis states. In Ref. [2],
random basis states were drawn from the full set and in-
cluded in the computation as the initial training dataset.
A great disadvantage of such approach is strongly un-
balanced data due to the lack of important basis states
in the random selection. This severely contributes to in-
stabilities, which had to be tackled in Ref. [2] at a high
computational cost, but are circumvented in this work.
With this improvement, there is also no need to manually
select a so-called “primary set” to be explicitly included
in each iteration as in Ref. [2].

IV. DEMONSTRATION COMPUTATIONS

In this section, we demonstrate our approach by per-
forming computations on particular basis sets for:

A) 5 lowest Ni12+ levels (belonging to the ground state
fine structure);

B) 5 lowest even states of the Fe16+ ion;

C) 17 lowest odd states of the Fe16+ ion.

These examples cover the most relevant aspects of the
NN-supported computations. We concentrate here on
obtaining high precision results using the improved ver-
sion of the algorithm, and refer to Ref. [2] for further
demonstration and discussions of the basic procedure.

A. Numerical results

1. Five lowest states of Ni12+

We start with a demonstration of our NN-supported
approach for computations of the five lowest energy lev-
els of Ni12+, which all belong to the ground state fine
structure. Such ions with optical narrow transitions are
of particular importance to the development of highly-
charged-ion clocks [5]. We consider Ni12+ with a closed
core [1s2 2s2 2p6] and ground state configuration 3s2 3p4

with 6 valence electrons. The core can be accounted for
using the coupled-cluster approach as in e.g. Ref [17], so
here we focus on making the 6-electron CI computation
complete with respect to the basis set convergence.

The full basis is constructed by SD excitations from the
reference electronic configurations 3s2 3p4, 3s 3p4 3d and
3s2 3p2 3d2 to the orbitals up to 22spdfgh20ikl, resulting
in 862 788 relativistic configurations (208 827 180 Slater

6

determinants). For this set of orbitals, the number of
features after the binary transformation of the input data
(see Section III C) is 575. We use 4 hidden NN layers
of sizes 150, 75, 45, 20, resulting in 102 107 trainable
NN parameters. We perform a full CI computation on
a restricted subset of 171 644 configurations (24 064 676
Slater determinants) obtained by limiting the basis set
to 17spdfg, and use it as the starting point for the NN-
supported computation.

In Table I, we compare the energies of the lowest 5
levels evaluated using the direct CI computation (per-
formed using the basis upscaling technique described
in Section IIA) and obtained for iterations of the NN-
supported approach. The latter are labeled by their cut-
off value x; the “starting” stage is also presented. The
final energy value in the NN-supported algorithm is ob-
tained by exponential extrapolation of the values in the
iterations (discussed in more detail later in the text).
The energies Ek

direct from the direct CI computation are
shown in Hartree units, whereas the energies obtained in
the NN-supported algorithm are counted from the cor-
responding Ek

direct values and are measured in cm−1. It
is seen that in the subsequent iterations with decreasing
importance cutoff x, the energies Ek

i are refined and con-
verge eventually to the values Ek

direct with the targeted
precision of a few cm−1. The resulting basis set from
the NN consists of 145 490 configurations, a factor of ap-
proximately 6 times less than that of the full basis set.
Note that the energy differences between the levels ob-
tained using the two computation methods agree within
an error of 1 cm−1 smaller than for the individual lev-
els. We attribute this cancellation effect to the similarity
of the considered levels, since they all belong to the fine
structure of the same electronic state.

2. Five even energy levels of Fe16+

Next, we compute the 5 lowest even-parity energy lev-
els of the highly charged Fe16+ ion. Here, we consider
all 10 electrons to be active, and allow SD excitations
to vacancies in all orbitals up to 24h starting from 3
reference configurations 1s2 2s2 2p6, 1s2 2s2 2p5 3p, and
1s2 2s 2p6 3s. This leads to 649 195 relativistic configu-
rations, corresponding to 48 174 193 Slater determinants,
which is beyond our computational capabilities for a di-
rect CI computation on the full set. The number of data
features is in this case 469, and 4 hidden NN layers of size
469, 469, 234 and 117, respectively, were used, resulting
in 578 571 trainable NN parameters. The “starting” set is
constructed as follows. We begin with a subset of 204 487
relativistic configurations obtained from the full basis by
restricting the virtual orbitals by 17g. We perform a
full CI computation on this set, and then omit all non-
relativistic configurations with weights below 10−11. The
resulting subset consists of 133 276 relativistic configura-
tions, corresponding to 9 148 479 Slater determinants. In
Table II, we summarize the results of our computations

in the same manner as in the previous section. The final
approximative CI expansion contains 207 604 relativistic
configurations.

3. 17 odd energy levels of Fe16+

We proceed now to the lowest 17 odd states of the
Fe16+ ion, and target a challenging number of energy
levels computed at the same time. As in the preced-
ing section, we construct the full basis by allowing SD
excitations for all 10 electrons to higher orbitals up to
24h. The reference configurations are now 1s2 2s2 2p5 3s,
1s2 2s2 2p5 3d, and 1s2 2s 2p6 3p. This gives 947 766 rel-
ativistic configurations (94 527 257 Slater determinants)
in the full basis set. The same number of features is
present in the NN input data and the same NN structure
was used here as in the computations for the even Fe16+

levels described in the previous section. We perform a
prior full CI computation on a sub-basis of 296 993 rel-
ativistic configurations (24 115 133 Slater determinants)
constructed in the same way as for the even Fe16+ lev-
els. The results are shown in Table III. The final ap-
proximative CI expansion consists of 351 452 relativistic
configurations.

B. Extrapolation of energies

In the cases described above, and shown in Tables I—
III, the final level energies are obtained via exponen-
tial extrapolation of the values yielded in each NN-
supported iteration. This procedure is based on the
observation that after a few first iterations, the energy
change ∆E[i] = Ei − Ei+1 between adjacent iterations
starts decreasing by a factor

∆E[i]

∆E[i+ 1]
= κ , (3)

which is approximately constant. Once κ is obtained
numerically from linear fitting of log (∆E[i]) as shown
in Fig. 2, this allows us to formally sum up all energy
changes ∆E[i] beyond our iterations and obtain the final
result. From Fig. 2, it is seen that in the few first itera-
tions, the described pattern is not yet established. These
apparent outliers are not included in the extrapolation
procedure. Though the assumption given by Eq. (3) is
satisfied not at all precisely, our demonstrations show
that it is sufficient to improve the energy precision and
avoid further costly iterations on a larger CI expansion.
This is especially the case for the Ni12+ example, since
all energy levels belong to the fine structure of the same
electronic (ground) state and behave similarly in the NN-
supported computation. We stress that the extrapolation
approach is applicable only to the energies and does not
influence the CI expansion, e.g. the wave function, itself.

7

Level k Configuration Ek
direct, Hartree

Ek
i − Ek

direct, cm
−1

Start -10.0 -10.5 -11.0 -11.5 -12.0 Final

0 3s23p4 3P2 -1457.78467907 1294.4 257.3 88.8 35.5 18.4 9.3 3.8

1 3s23p4 3P1 -1457.69624247 1266.1 195.4 73.5 30.6 16.4 8.2 2.7

2 3s23p4 3P0 -1457.69337789 1309.3 256.3 91.6 37.0 20.1 9.9 3.6

3 3s23p4 1D2 -1457.56972999 1458.1 238.1 88.1 35.8 19.2 9.7 3.6

4 3s23p4 1S0 -1457.33747811 1506.4 248.6 94.4 39.5 21.8 11.1 3.8

TABLE I. Comparison of the 5 lowest energy levels of Ni12+ between completed direct CI computation (performed on basis
parts using the basis upscaling technique) and iterations of the NN-supported algorithm. The final approximative CI expansion
has a size of 145 490 relativistic configurations.

Level k Configuration Ek
direct, Hartree

Ek
i − Ek

direct, cm
−1

Start -9.5 -10.0 -10.5 -11.0 -11.5 -12.0 Final

0 2p6 1S0 -1148.40541049 2074.8 523.6 294.5 133.1 31.0 5.0 1.5 0.2

1 2p53p 3S1 -1120.64481897 1829.3 672.7 453.0 196.5 48.8 11.4 5.0 2.4

2 2p53p 3D2 -1120.51593721 1800.5 523.6 330.7 141.5 33.0 6.1 2.3 0.9

3 2p53p 3D3 -1120.45669580 1798.6 522.9 298.6 129.1 28.5 5.3 1.9 0.6

4 2p53p 1P1 -1120.41525162 1827.4 581.6 361.9 157.6 36.9 7.1 3.0 1.5

TABLE II. Comparison of the 5 lowest even energy levels of Fe16+ between completed direct CI computation (performed on
basis parts using the basis upscaling technique) and iterations of the NN-supported algorithm. The final approximative CI
expansion has a size of 207 604 relativistic configurations.

Level k Configuration Ek
direct, Hartree

Ek
i − Ek

direct, cm
−1

Start -9.5 -10.0 -10.5 -11.0 -11.5 -12.0 Final

0 2s22p53s 2 -1121.76048561 2263.9 866.8 658.0 252.9 71.6 17.3 7.2 3.0

1 2s22p53s 3P1 -1121.69077098 2282.1 877.0 667.8 255.5 72.6 17.7 7.3 3.0

2 2s22p53s 1P1 -1121.25287031 2175.6 877.2 661.8 264.7 74.2 18.7 8.0 3.4

3 2s22p53d 3P1 -1118.92128256 2286.3 829.2 594.5 245.5 70.2 14.4 5.0 0.9

4 2s22p53d 3P2 -1118.85451593 2299.9 837.6 591.5 253.3 67.5 15.0 4.8 0.2

5 2s22p53d 3F4 -1118.85179744 2329.5 853.0 599.7 260.1 68.1 16.2 5.1 -0.0

6 2s22p53d 3F3 -1118.82459374 2362.7 859.1 621.7 254.6 74.2 15.6 5.7 1.5

7 2s22p53d 1D2 -1118.76136360 2363.2 858.6 618.1 255.5 72.7 15.5 5.5 1.1

8 2s22p53d 3D3 -1118.72173088 2375.2 857.8 605.0 260.3 67.9 16.0 4.9 -0.1

9 2s22p53d 3D1 -1118.55136331 2371.3 855.5 608.8 259.8 71.0 15.9 5.1 0.2

10 2s22p53d 3F2 -1118.36202727 2308.3 838.7 598.3 267.1 77.5 17.0 5.5 0.0

11 2s22p53d 3D2 -1118.33212227 2296.9 855.9 587.0 264.7 72.7 16.3 5.6 0.6

12 2s22p53d 1F3 -1118.31283417 2317.1 866.8 596.1 271.4 76.5 17.5 6.2 0.7

13 2s22p53d 1P1 -1118.05785037 2373.0 859.3 607.3 267.8 76.2 17.2 5.5 -0.1

14 2s2p63p 3P1 -1115.59428826 2317.9 971.2 731.6 306.2 89.5 24.7 8.3 0.0

15 2s2p63p 3P2 -1115.50892176 2275.1 939.9 712.2 286.2 88.2 23.1 8.1 0.8

16 2s2p63p 1P1 -1115.43721159 2309.4 964.9 730.6 293.6 90.6 24.3 8.8 1.2

TABLE III. Comparison of the 17 lowest odd energy levels of Fe16+ between completed direct CI computation (performed on
basis parts using the basis upscaling technique) and iterations of the NN-supported algorithm. The final approximative CI
expansion has a size of 351 452 relativistic configurations.

C. NN training

Here we discuss the evolution of the NN performance
with the training epochs. The three panels in Fig. 3 rep-

resent the NN training process for the three computations
described in the previous section. For each case, we show
the iterations of the NN-supported algorithm separated

8

Start 1 2 3 4
Iteration i

4

6

8

10
lo

g 2
(

E
[i

]
1

cm
1

)
Ni12 +

Start 1 2 3 4 5
Iteration i

2

4

6

8

10

12
Fe16 + even

Start 1 2 3 4 5
Iteration i

4

6

8

10

12

Fe16 + odd

FIG. 2. Extrapolation procedure for energies obtained in the iterations of the NN-supported algorithm for the three compu-
tations described in Section IVA is shown in the corresponding panels. Here, ∆E[i] = Ei − Ei+1 is the change of the level
energies obtained in adjacent iterations indexed as i and i+1. The first iterations in which the pattern given by Eq. (3) is not
yet established, are marked with a black cross and omitted in extrapolation. As shown in color, each energy level k has its own
value ∆Ek[i], which all behave very similarly in the context of the extrapolation procedure.

by vertical dashed lines and labelled by the importance
cutoff log10 x at the top of each panel. The NN per-
formance is measured by the classification accuracy, i.e.
the fraction of the configurations classified correctly. It
is evaluated prior to the training on the whole training
data, and after each epoch on 20% configurations held
out from the training set. This accuracy is monitored
to early-stop the NN training for the current iteration of
the NN-supported algorithm if no progress is achieved.
In this work, we use “early stopping with patience” and
terminate the training not immediately after the epoch
with the lower accuracy, but in case 5 further epochs have
not led to an improvement. The NN is then reset back to
its state immediately after the epoch in which the best
accuracy was achieved.

The plots in Fig. 3 show the typical patterns of the NN
training in our algorithm. In each iteration, the starting
accuracy prior to training (shown by the points lying di-
rectly on the vertical dashed lines) is lower since the NN
is either yet untrained (in the very first iteration) or has
switched from an iteration with a different importance
cutoff x. The accuracy then grows strongly already after
the first training epoch and is refined in further epochs
until the best NN performance is achieved. The slight
accuracy decline in the last 5 epochs is attributed to the
early stopping method used with patience=5. Although
these epochs are shown in Fig. 3, they do not partic-
ipate in the NN evolution, since it is reset to its best
state achieved in the iteration. We note that in the first
iteration, higher accuracy is typically achieved due to
training on the data obtained in an independent (direct
or NN-supported) CI computation. This contrasts with
the training procedure in Ref. [2], where the first NN
training was performed on a random selection from the

pool, leading to unstable NN performance and necessity
to switch to the convolutional architecture.

D. Computational resources

We now shift attention to the amount of used com-
putational resources, as well as the total execution time
of the calculations. Since both our NN-supported al-
gorithm and the basis upscaling approach without NN
involve many internal iterations, we stick to the repre-
sentative case of Ni12+ for comparison of the required
computational effort. In Table IV, we list the number
of processors and required amount of memory per pro-
cessor, as well as the runtime for each calculation for the
respective basis sets. All computations are done with the
maximum amount of available computational resources
at the time. We find a total speedup of about 4 times
of the NN-supported approach with respect to the direct
CI with basis upscaling. Note that this only takes into
account the runtime of the actual calculations with the
CI atomic code, excluding any time to prepare basis sets
and construct configuration lists (both with and without
NN). The total time it takes to prepare the calculations
is much lower in the case of the NN-supported approach,
since here much fewer CI runs are performed in total,
whereas the NN operation introduces no significant com-
putational overhead.

V. CONCLUSIONS

We have built upon the NN-based approach developed
in Ref [2] and introduced significant developments and

9

0 20 40 60
Epoch

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

-10
.0

-10
.5

-11
.0

-11
.5
-12

.0

Ni12 +

0 25 50 75 100
Epoch

-9.
5

-10
.0

-10
.5

-11
.0
-11

.5
-12

.0

Fe16 + even

0 25 50 75 100
Epoch

-9.
5

-10
.0

-10
.5

-11
.0
-11

.5
-12

.0

Fe16 + odd

FIG. 3. Evolution of the NN classification accuracy with the training epochs for the three computations described in Section IVA
is shown in the corresponding panels. For each case, iterations of the NN-supported algorithm are shown separated by the
vertical dashed lines and labelled by their importance cutoff x at the top.

simplifications for its use with the pCI code package [6].
The improved algorithm operates on groups of Slater de-
terminants corresponding to relativistic electronic con-
figurations. The computation is performed for many
levels at once, and starts from another (direct or NN-
supported) computation. These improvements allow us
to refrain from a computationally demanding convolu-
tional architecture, as in Ref. [2], and use a simple dense
NN. We have successfully demonstrated the validity and
accuracy of the results obtained using our NN-supported
algorithm compared to the direct large-scale CI calcula-
tions for energy levels of the highly charged Ni12+ and
Fe16+ ions. For the cases considered in this work, a di-
rect CI computation on the full basis is not feasible. In-
stead, all direct CI calculations (i.e. without NN) were
performed on partial sets using the basis upscaling tech-
nique. It has been shown that the NN-supported com-
putation can be completed with significantly reduced ex-
ecution time in comparison with basis upscaling. The
demonstrated NN-supported basis set convergence pro-

cedure can now be automated to provide accurate results
for a wide variety of systems for astrophysics and the de-
velopment of atomic clocks.

ACKNOWLEDGEMENTS

We thank Florian Marquardt, Ian Grant, Per Jönsson,
Adriana Pálffy and Chunhai Liu for helpful discussions.
This work was supported by the US NSF Grant No.
PHY-2309254 and US Office of Naval Research Grant
No. N00014-20-1-2513. The calculations in this work
were done through the use of Information Technologies
resources at the University of Delaware, specifically the
high-performance Caviness and DARWIN computer clus-
ters.

REFERENCES

[1] I. P. Grant, Relativistic Quantum Theory of Atoms
and Molecules: Theory and Computation (Springer New
York, New York, NY, 2007).

[2] P. Bilous, A. Pálffy, and F. Marquardt, Phys. Rev. Lett.
131, 133002 (2023).

[3] C. Froese Fischer, G. Gaigalas, P. Jönsson, and
J. Bieroń, Computer Physics Communications 237, 184
(2019).

[4] P. Filianin, C. Lyu, M. Door, K. Blaum, W. J. Huang,
M. Haverkort, P. Indelicato, C. H. Keitel, K. Kromer,
D. Lange, Y. N. Novikov, A. Rischka, R. X. Schüssler,
C. Schweiger, S. Sturm, S. Ulmer, Z. Harman, and
S. Eliseev, Phys. Rev. Lett. 127, 072502 (2021).

[5] M. G. Kozlov, M. S. Safronova, J. R. Crespo López-
Urrutia, and P. O. Schmidt, Rev. Mod. Phys. 90, 045005
(2018).

[6] C. Cheung, M. Safronova, and S. Porsev, Symmetry 13
(2021), 10.3390/sym13040621.

[7] C. Shah, M. Togawa, M. Botz, J. Danisch, J. J. Goes,
S. Bernitt, M. Maxton, K. Köbnick, J. Buck, J. Selt-
mann, M. Hoesch, M. F. Gu, F. S. Porter, T. Pfeifer,
M. A. Leutenegger, C. Cheung, M. S. Safronova, and
J. R. Crespo López-Urrutia, The Astrophysical Journal
969, 52 (2024).

[8] C. Shah, S. Kühn, S. Bernitt, R. Steinbrügge, M. Togawa,
L. Berger, J. Buck, M. Hoesch, J. Seltmann, M. G. Ko-

http://dx.doi.org/10.1103/PhysRevLett.131.133002
http://dx.doi.org/10.1103/PhysRevLett.131.133002
http://dx.doi.org/10.1016/j.cpc.2018.10.032
http://dx.doi.org/10.1016/j.cpc.2018.10.032
http://dx.doi.org/ 10.1103/PhysRevLett.127.072502
http://dx.doi.org/10.1103/RevModPhys.90.045005
http://dx.doi.org/10.1103/RevModPhys.90.045005
http://dx.doi.org/10.3390/sym13040621
http://dx.doi.org/10.3390/sym13040621
http://dx.doi.org/ 10.3847/1538-4357/ad454b
http://dx.doi.org/ 10.3847/1538-4357/ad454b

10

Direct CI

Basis num procs mem per core time (hr)

17g 1124 8.3 4

22g 1124 17.7 13

17h 1124 15.1 9.5

20h 704 14.4 10.5

22h 850 13.1 10

17i 840 29.4 27

20i 704 25.2 25

17k 840 17.8 19

20k 810 28.3 34

17l 640 29.7 47

18l 1350 15.4 10.5

19l 1056 20.4 15.5

20l 1000 25.3 24

17ha 800 3.7 2.5

20ha 640 5.9 2

17ia 900 5.9 4

20ia 950 9.3 4.5

20ib 900 7 2

17ka 950 8.8 6.5

17lb 1350 8 2

18lb 576 11.5 5.5

19lb 660 13.9 5.5

Total — — 283.5

NN-supported CI

Iteration num procs mem per core time (hr)

Start 640 21.7 2.5

-10 640 21.1 2.2

-10.5 640 22.4 5.3

-11 640 24.7 11.1

-11.5 640 27.8 19.7

-12 640 31.5 30.5

Total — — 71.2

TABLE IV. Computational resources and execution time
for each computation required to obtain the final energies
for Ni12+. For each computation, the “num procs” column
lists the number of CPU cores, and the “mem per core” col-
umn lists the total amount of required memory in GiB. The
superscripts “a” and “b” indicate runs done with a cutoff
log10 x = −10 and log10 x = −9, respectively.

zlov, S. G. Porsev, M. F. Gu, F. S. Porter, T. Pfeifer,
M. A. Leutenegger, C. Cheung, M. S. Safronova, and
J. R. Crespo López-Urrutia, Physical Review A 109
(2024), 10.1103/physreva.109.063108.

[9] S. Eustice, D. Filin, J. Schrott, S. Porsev, C. Che-
ung, D. Novoa, D. M. Stamper-Kurn, and M. S.
Safronova, Physical Review A 107 (2023), 10.1103/phys-
reva.107.l051102.

[10] C. C. . M. S. S. David R. Leibrandt, Sergey G. Porsev,
Nature Communications 15, 5663 (2024).

[11] S. Kühn, C. Cheung, N. S. Oreshkina, R. Steinbrügge,
M. Togawa, S. Bernitt, L. Berger, J. Buck, M. Hoesch,
J. Seltmann, F. Trinter, C. H. Keitel, M. G. Kozlov,
S. G. Porsev, M. F. Gu, F. S. Porter, T. Pfeifer, M. A.
Leutenegger, Z. Harman, M. S. Safronova, J. R. C.
López-Urrutia, and C. Shah, Physical Review Letters
129 (2022), 10.1103/physrevlett.129.245001.

[12] E. B. Norrgard, D. S. Barker, S. P. Eckel, S. G. Por-
sev, C. Cheung, M. G. Kozlov, I. I. Tupitsyn, and M. S.
Safronova, Physical Review A 105 (2022), 10.1103/phys-
reva.105.032812.

[13] C. Walter, S. Spielman, R. Ponce, N. Gibson, J. Yukich,
C. Cheung, and M. Safronova, Physical Review Letters
126 (2021), 10.1103/physrevlett.126.083001.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing (MIT Press, 2016) http://www.deeplearningbook.

org.
[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” (2017), arXiv:1412.6980 [cs.LG].
[16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,”
(2015), software available from tensorflow.org.

[17] S. G. Porsev, U. I. Safronova, M. S. Safronova, P. O.
Schmidt, A. I. Bondarev, M. G. Kozlov, I. I. Tupitsyn,
and C. Cheung, Phys. Rev. A 102, 012802 (2020).

http://dx.doi.org/ 10.1103/physreva.109.063108
http://dx.doi.org/ 10.1103/physreva.109.063108
http://dx.doi.org/ 10.1103/physreva.107.l051102
http://dx.doi.org/ 10.1103/physreva.107.l051102
http://dx.doi.org/https://doi.org/10.1038/s41467-024-49241-w
http://dx.doi.org/10.1103/physrevlett.129.245001
http://dx.doi.org/10.1103/physrevlett.129.245001
http://dx.doi.org/ 10.1103/physreva.105.032812
http://dx.doi.org/ 10.1103/physreva.105.032812
http://dx.doi.org/ 10.1103/physrevlett.126.083001
http://dx.doi.org/ 10.1103/physrevlett.126.083001
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1412.6980
https://www.tensorflow.org/
https://www.tensorflow.org/
http://dx.doi.org/10.1103/PhysRevA.102.012802

	A neural network approach to running high-precision atomic computations
	Abstract
	Introduction
	CI computations
	Upscaling the basis set

	NN-supported algorithm
	``Starting'' stage
	Iterations
	NN architecture and training
	Algorithm improvements
	Grouping basis states in relativistic configurations
	Multilevel optimization
	Starting from a prior computation(direct or NN-supported)

	Demonstration computations
	Numerical results
	Five lowest states of Ni12+
	Five even energy levels of Fe16+
	17 odd energy levels of Fe16+

	Extrapolation of energies
	NN training
	Computational resources

	Conclusions
	Acknowledgements
	References
	References

