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ABSTRACT
We study and describe the reshaping of ultrashort and broadband mid-IR optical pulses in an ambient atmosphere. While all pulse propaga-
tion undergoes dispersion and absorption, which causes pulse reshaping, the effects are strongly pronounced for broadband radiation in the
mid-IR due to the orders of magnitude greater oscillator strengths of molecular constituents of our atmosphere. A noticeable macroscopic
impact is a transition of the measured autocorrelation function from squared hyperbolic secant to Lorentzian, which we fully explain based
on pulse propagation, including molecular free induction decay. Electro-optical sampling directly reveals the light wave response to atmo-
spheric molecular free induction decay, and a Kramers–Kronig-based propagation model thoroughly explains the observation. The findings
are essential for applications in sensing, standoff detection, high-energy pulse propagation, and energy delivery.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0218225

I. INTRODUCTION

Mid-IR optical pulses1,2 are crucial for modern science and for
applications due to the scaling of the mid-IR interaction with matter,
the much higher absorption cross section, and the anomalous dis-
persion. Examples are the ultrasensitive detection3–5 of volatiles5–7

in biochemistry, agriculture,8 environment,9,10 or medicine.11–17

The interplay of anomalous dispersion with linear or nonlin-
ear propagation offers opportunities to process materials or to
exploit soliton dynamics for pulse shaping,18,19 communication,20,21

or energy delivery.22,23 Furthermore, the ponderomotive scaling
of light–matter interaction 24–27 provides fascinating avenues for
attosecond science,28–32 x-ray generation,33–39 and plasma and par-
ticle physics.40–42 However, the extensive oscillator strengths, the
multitude of absorption lines and their phase profiles also present a
tremendous challenge since pulse propagation is massively altered
compared to the near-IR or visible, and a reliable prediction of
achievable target parameters requires intricate modeling. Compared
to the near-IR, the absorption lines are far more intricate due to
the pronounced vibrational and rotational degree of freedom of

molecules, which is temperature, pressure, and humidity depen-
dent. Clearly, propagation effects can be mitigated by removing the
humidity of air or a vacuum environment, but at the expense of
experimental complication. Such a solution is entirely impractical
when long-distance target energy delivery is warranted for appli-
cations such as remote sensing with light detection and ranging
(LIDAR)43 or laser-induced breakdown spectroscopy (LIBS).44

Previous approaches to describe linear propagation with ana-
lytical models45 or simplified dispersion formulas46 were only suc-
cessful for narrowband light and do not describe the propagation of
ultrashort mid-IR pulses,47 which will involuntarily lead to strong
pulse modulation.48 The increased interest in mid-IR LIDAR and
LIBS applications has even prompted studies on nonlinear atmo-
spheric propagation of intense mid-IR pulse filaments.49–52 The
theoretical description relies on extensive data from the HITRAN
database,53,54 but most models do restrict the degrees of free-
dom. For instance, including linear vibrational motion works well
for CO2,55–57 N2,48 or CH3CN,58 but even including the simple
fundamental bending mode of the top-hat H–O–H molecule at
47.8 THz59 results in a far more complex spectrum;57 see Fig. 1.
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FIG. 1. (a) Measured mid-IR electric field after 2.5 m of propagation in the atmosphere. The water vibrational mode is illustrated close to the induced echo, and the retrieved
mid-IR spectrum is shown in the inset. (b) Water vibrational mode induced absorption spectrum.

Another challenge is high-precision pulse characterization in the
mid-IR.60 For instance, a simple intensity autocorrelation lacks the
required sensitivity to detect background or temporal pedestals,
and it is ambiguous as it represents a large class of pulse shapes.61

Thus, we employ electro-optical sampling (EOS)2,62 to investigate
why the hyperbolic secant pulse envelope from a mode-locked
laser modifies to a Lorentzian upon propagation through the
atmosphere.63–65

In this work, we build on our recent study,62 which demon-
strated the high spectral and phase sensitivity of our EOS scheme
in detecting water absorption signatures during mid-IR field atmo-
spheric propagation. We now explore the impact of water absorption
lines on ultrashort mid-IR pulses within the 6–8 μm wavelength
range and present a robust model that accurately predicts the electric
field distortions caused by atmospheric propagation. The strong cor-
relation between our measurements and simulations confirms that
water is the predominant absorption component in this wavelength
range. This finding is consistent with the absorption cross sections
of various atmospheric elements listed in the HITRAN database.53,54

The methodology for generating and field-resolved detection
of mid-IR pulses is outlined in Ref. 62. The ultrashort broadband
mid-IR pulses are produced in a BGGSe nonlinear crystal through
differential frequency generation (DFG), combining the 1.56 and
2.0 μm femtosecond outputs from a multicolor Er:fiber laser. These
mid-IR pulses, with a pulse energy of 21 pJ and a duration of 91 fs,
are separated from the near-infrared pulses, collimated to ∼2 mm in
diameter, and propagated a few meters in the air to study their atmo-
spheric propagation. The 1.56 μm pulses, post-DFG, are recycled to
generate the sampling pulses required for field-resolved EOS detec-
tion. A normal dispersion solid core photonic crystal fiber broadens
the 1.56 μm pulses after the DFG process, and a pair of fused sil-
ica wedges compress the near-infrared pulses down to 20 fs.62 By
measuring the polarization change induced by the distorted mid-IR
pulses in the near-infrared pulses within a 30 μm thin GaSe crys-
tal, we can achieve field-resolved detection of the distorted mid-IR

pulses and measure frequency- and time-resolved absorption lines
with extremely high sensitivity.

II. DESCRIPTION OF MID-IR ELECTRIC FIELD
PROPAGATION IN THE ATMOSPHERE

Humidity significantly influences the propagation of ultrashort
pulses in the atmosphere. To comprehend how these pulses reshape
during propagation, we have devised a numerical model based on
Kramers–Kronig transformations and the HITRAN database. This
model accurately mimics the distortions caused by water molecules,
allowing us to quantify water absorption cross sections. Considering
factors such as humidity, temperature, pressure, path length, and air
composition, we calculate linear dispersion and absorption. Using
EOS, we compare our simulations with mid-IR electric-field wave-
forms. Interactions between mid-IR electric fields and molecules
result in resonant absorption and re-emission of radiation, gener-
ating interference, sometimes called dark waves.57 We depict the
vibrational modes of atmospheric water, showing both the distorted
spectrum and the electric field of mid-IR pulses post-atmospheric
propagation. Quantum mechanically, molecules rephase upon inter-
action, producing forward-scattered light pulses or photon echoes.66

Rephasing, periodic for linear molecules such as CO2, becomes more
complex for anisotropic top-hat molecules such as water.

Our model replicates the field distortions caused by water
molecules using Kramers–Kronig transformations, HITRAN-
derived 53,67–70 water absorption cross sections, and Hartmann–Tran
absorption line profiles for improved accuracy.69 First, the imag-
inary part of the complex refractive index is calculated from
HITRAN. Here, we have used the Hartmann–Tran profiles to
consider second-order effects such as molecular collisions, which
enhance the accuracy compared to Voigt profiles. Then, the
Kramers–Kronig (KK) transformations are applied to determine the
real part of the complex refractive index.70 The complex dielectric
function is obtained for N2: 78.084%, O2: 20.946%, CO2: 0.0413%,
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O3: 0.01%, and CH4: 0.000 16% and weighted with the correspond-
ing ratios. Afterward, the complex dielectric function is reduced
by a weighting factor corresponding to the partial pressure of the
water vapor content, calculated from the vapor-pressure equation71

ln ( pσ
pc
) =

Tc
T (a1ϑ + a2ϑ1.5

+ a3ϑ3
+ a4ϑ3.5

+ a5ϑ4
+ a6ϑ7.5

), where pσ

is the vapor-pressure and pc and Tc are the pressure and tem-
perature at the critical point, respectively. ϑ = 1 − T⁄Tc and ai
are the empiric adjustable parameters given in Ref. 71. Once the
complex dielectric function is calculated for the correct humidity,
we describe the complex electrical field propagation in the spectral
domain E(ω, d) = E(ω, 0)ei ω

c

√

ε(ω)d, with E(ω, 0) being the input
electrical field amplitude and the spectral phase being included as
an exponential containing the corresponding complex dielectric
function ε(ω), the propagation length d, and the speed of light c.
Due to the extremely low peak intensity of the propagating mid-IR
pulses (∼0.01 MW/cm2), the free space propagation in atmospheric
air is simulated in the small-signal limit, neglecting nonlinear
propagation effects such as optical Kerr and plasma effects.

Our model uses a hyperbolic secant pulse envelope with sinu-
soidal electric field and is matched to the EOS measurement. The
spectral phase is included in the fourth order, resulting in a 124 fs
FWHM duration pulse. The simulated ambient conditions are 24 ○C
at 1 bar atmospheric pressure. Figure 2 shows the results of EOS
field-resolved measurements (color) and predicted fields from our
pulse propagation model (gray). The model achieves an excellent
match with the measurements for an extensive range of parameters,
and even the intricate post-pulse electric field structures are well cap-
tured. The excellent match provides confidence to assess that, for
example, rotational modes of water induce the post pulses, and the
temporal position and amplitude of these features directly depend
on the water vapor density.

With our atmospheric propagation code validated, we applied
the model to investigate the propagation of broadband mid-IR
pulses since we previously noticed that a Lorentzian shape best fits

the measured autocorrelation (AC) trace in the mid-IR.64 Note that
a Lorentzian function is indicative of lifetime broadening; thus, it
elicits the question whether the strong absorption and modulation
of the broadband spectrum explain the Lorentzian AC shape since a
hyperbolic secant squared (HSS) is expected from the mode-locked
laser.63 To settle the question and address claims that the observed
line shape originated from pulse-to-pulse fluctuations rather than
strong water absorption, we applied an EOS measurement and our
pulse propagation model. Briefly, the input is a 206-fs pulse with
spectrum centered at 46.8 THz and residual chirp described by GDD
= 840 fs2 and TOD = −11 520 fs3, analog to Ref. 64. We simulate
propagation in the laser system, equivalent to 3300 mm, for relative
humidity ranging from 0% to 40%. Figure 3(a) shows how humidity
modifies the AC trace, and Fig. 3(b) provides retrieved FWHM dura-
tions from Lorentzian and HSS fits together with the respective mean
square error [MSE or second-order moment; Fig. 3(c)]. We find that
increasing relative humidity leads to a significant pulse pedestal and,
consequently, to reshaping the autocorrelation function. For low
humidity values below 20%, the HSS fits best with the smallest MSE.
Note that a Lorentzian will also fit with a larger MSE, but without
physical justification. Figure 3(c) shows that the MSE is much lower
for higher humidity values, above 20%, for the Lorentzian fit. This
is in excellent agreement with our previous observation.64 Note that
the Lorentzian fit acquires a higher MSE for humidity values above
35% due to the development of a small pedestal around 1 ps. Based
on the simulation, we confirm the previous findings and the physical
explanation that the temporal pulse reshaping to a Lorentzian AC is
due to increased absorption and dispersion under relative humidity
of 40%.

III. MOLECULAR FREE INDUCTION DECAY
The primary pulse shape is affected by absorption from ran-

domly oriented oscillators, with the extended tail of the electro-optic

FIG. 2. Comparison between the measured and simulated mid-IR electric field propagation for different atmospheric humidity conditions. (a) Measured mid-IR electric field
propagation through 2.5 m with 1% humidity (light green), 10% humidity (dark green), 20% humidity (light blue), 30% humidity (blue), and 40% humidity (dark blue). The
corresponding simulated electric fields for 2.5 m propagation at the same humidity values are in gray. The inset shows one of the generated echoes at 40% humidity,
measured (light blue) and simulated (black). (b) Spectral densities were retrieved from the measured electric fields (from light green to dark blue) and the corresponding
simulated spectra (in gray).
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FIG. 3. (a) Simulated autocorrelation traces for relative humidity values from 0% (yellow) to 40% (purple). The black dashed line shows the measured autocorrelation trace
in Ref. 64. (b) Simulated autocorrelation FWHM values with Lorentzian fit (purple curve) and HSS shape (green curve). The gray line shows the simulated pulse FWHM
values for different relative humidity values. (c) The MSE values were calculated by fitting the Lorentzian (purple dots) and HSS functions (green dots) to the simulated
autocorrelation traces shown in (a).

sampling signal primarily stemming from a single polarization com-
ponent of forward-scattered light. Capturing the omnidirectional
energy dispersion of free-induction decay presents a general chal-
lenge, and we note that our measurement mainly captures the
electric field’s polarization on-axis. Figure 4(a) displays spectro-
temporal modulation of the propagating pulse and free-induction
decay over 10 ps, with the mid-IR electric field frequency shifted
to 46.9 THz to maximize water absorption line influence. While
temporal delay assessment in linear molecules such as CO2 relies
on quasi-equidistant rotational transitions, the additional rotational

freedom in top-hat H2O molecules impacts the optical field sig-
nificantly. Nevertheless, high-resolution EOS measurements enable
distinguishing individual transitions and exploring complex relax-
ation processes through time–frequency analysis of echo spectra.
Figure 4(a) presents short-time window Fourier transform (STFT)
and Wigner–Ville transform (WVT) results. We note that the STFT
analysis should be understood as a set of 2D distributions since
the spectral resolution depends on the choice of temporal win-
dow width. The WVT is shown as it provides the best compro-
mise between spectral and temporal resolution. We first show that

FIG. 4. Temporal and spectral evolution of molecular dynamics. (a) Short-time-windowed Fourier transform (STFT, top) and Wigner–Ville transform (WVT, bottom) of the EOS
measurement at 35% humidity. The insets show the marginals (red lines) with the measured (black lines) spectrum and EOS trace. (b) Simulated (blue) spectral content from
0 to 600 ps in steps of 100 ps with water absorption peaks (gray).
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spectral distributions with long time windows and high spectral res-
olution are shown in a longer time range up to 600 ps from simulated
data in Fig. 4(b).

For instance, the STFT analysis shows how the center of mass
of the spectral distribution shifts as a function of time, emphasiz-
ing the chirp of the instantaneous frequency. The normalized STFT
gives excellent insights into the time–frequency dependence of the
complex couplings and reveals the rotational and modal distribu-
tion. In contrast, the WVT barely shows the complex chirp dynamics
and energy redistribution within the 43–53 THz energy band, but it
reveals rotational and fractional revivals.

IV. SUMMARY
We investigated the propagation of ultrashort and broadband

mid-IR radiation in air with a field-resolved technique, capturing
both amplitude and phase information. The field-resolved measure-
ment allowed the development of a simple numerical model to accu-
rately describe the propagation, including dispersion and absorption
induced by top hat molecules such as water. A time–frequency anal-
ysis provides further insights into the free-induction decay and how
molecular rovibrational dynamics redistribute energy in the opti-
cal field upon propagation. The propagation model explains the
previous observation that the macroscopic pulse autocorrelation
reshapes to a Lorentzian function arising from the complex free-
induction decay. The excellent match between the model and the
experimental methodology allows us to accurately predict the atmo-
spheric propagation of ultrashort and broadband infrared radiation.
Although we have considered only linear propagation effects, we
have demonstrated that water is the dominant component in the
atmospheric propagation within the 6–8 μm wavelength range. This
information can simplify nonlinear calculations for LIDAR and LIBS
applications. The strong agreement between measurements and sim-
ulations in the small signal limit paves the way for future studies
implementing nonlinear effects.
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