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Abstract: The mononuclear phagocyte system includes monocytes, macrophages, some dendritic cells,
and multinuclear giant cells. These cell populations display marked heterogeneity depending on
their differentiation from embryonic and bone marrow hematopoietic progenitors, tissue location,
and activation. They contribute to tissue homeostasis by interacting with local and systemic immune
and non-immune cells through trophic, clearance, and cytocidal functions. During evolution, they
contributed to the innate host defense before effector mechanisms of specific adaptive immunity emerged.
Mouse macrophages appear at mid-gestation and are distributed throughout the embryo to facilitate
organogenesis and clear cells undergoing programmed cell death. Yolk sac, AGM, and fetal liver-derived
tissue-resident macrophages persist throughout postnatal and adult life, supplemented by bone marrow-
derived blood monocytes, as required after injury and infection. Nobel awards to Elie Metchnikoff
and Paul Ehrlich in 1908 drew attention to cellular phagocytic and humoral immunity, respectively. In
2011, prizes were awarded to Jules Hoffmann and Bruce Beutler for contributions to innate immunity
and to Ralph Steinman for the discovery of dendritic cells and their role in antigen presentation to T
lymphocytes. We trace milestones in the history of mononuclear phagocyte research from the perspective
of Nobel awards bearing directly and indirectly on their role in cellular immunity.

Keywords: mononuclear phagocyte system; immunity; macrophages; dendritic cells; multinucleated
giant cells; Nobel prizes; phagocytosis; plasma membrane receptors; homeostasis; history

1. Introduction

In keeping with the overall scope of the present review, we trace the growth of the
subject during 50-year periods over the past 150 years in relation to selected Nobel awards,
first awarded in 1901, in Physiology and Medicine, Chemistry and Physics (Figure 1A–D).
Apart from the awards directly relevant to mononuclear phagocytes (MPs) in 1908 and
2011, we also note selected prizes in Immunology, Microbiology and Infectious diseases, as
well as in Biochemistry/Metabolism, Genetics, Cell Biology, and methodologic advances
which contributed substantially to their study (Figure 2).

During the mid-19th century, Charles Darwin laid the groundwork for his theory of
the origin of species and for natural selection as the driver of evolution [1]. Before the first
Nobel awards, Rudolph Virchow had already put forward a cell-based theory of health and
disease [2,3], soon followed by the stunning achievements of Louis Pasteur in chemistry,
microbiology, and vaccinations [4]. Also in the later 19th century, Claude Bernard became a
major influence in physiology and experimental medicine through his concept of the stable
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“milieu interieur” [5], later termed Hom(e)ostasis by Walter Cannon [6]. These and other
investigators influenced the thinking of Metchnikoff, a zoologist interested in embryology
before his conversion to ”natural immunity” and comparative pathology [7]; Metchnikoff
and Ehrlich shared Nobel awards in 1908 for their contributions to cellular and humoral
immunity [8–14]. Other Nobel laureates in the early decades of the 20th century included
the following (Table 1 and Figure 2):

• Emil von Behring, who received the first Nobel Prize for Physiology and Medicine in
1901 for introducing serum therapy as a passive vaccination against diphtheria and
tetanus [15];

• Robert Koch, famed for his studies on tuberculosis and tuberculin-induced delayed
hypersensitivity [16];

• Ramon Y. Cajal [17], who adapted Golgi’s silver staining method to map the intricate
distribution of neurons in exquisite detail;

• Tuberculosis [18] and the non-neuronal microglia of the brain, identified by Pio del
Hortega [19], have remained major topics of macrophage research to the present day.
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Figure 1. Selected historical figures who contributed to understanding the role of mononuclear
phagocytes in cellular immunity. (A) Years 1870–1920, (B,C) 1920–1970, and (D) 1970–2020. See text
and attachments for details. In this manuscript, we use the French spelling Elie Metchnikoff instead
of the Russian version Ilya Metchnikov.

Table 1. Selection of Nobel awards in Physiology or Medicine and Chemistry and Physics which bear
indirectly or directly on mononuclear phagocytes.

Year Names Topic Comment

1901 Von Behring Diphtheria Antibodies

1905 Koch TB Cell-mediated

1908 Metchnikoff, Ehrlich Phagocytosis, Receptors Cell-mediated and antibodies

1912 Carrel Work on vascular suture and the transplantation of
blood vessels and organs Cell culture

1913 Richet Anaphylaxis Cell-mediated and antibodies

1919 Bordet Complement Humoral

1930 Landsteiner Blood groups Antibodies
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Table 1. Cont.

Year Names Topic Comment

1931 Warburg Respiration Metabolism

1945 Fleming, Chain, Florey Penicillin Antibiotics

1950 Kendall, Reichstein, Hench Corticosteroids Anti-inflammatory
1951 Theiler Yellow fever vaccine Adaptive

1952 Waksman Streptomycin Antibiotic TB

1953 Krebs, Lipmann Citric acid cycle, coenzyme A Metabolism

1954 Enders, Weller, Robbins Polio virus Isolation

1960 Burnet, Medawar Self and non-self, tolerance Cell-mediated, transplantation

1966 Rous, Huggins Viral malignancy Magnetic beads macrophage isolation

1972 Edelman, Porter Antibodies Structure

1974 Claude, de Duve, Palade Cell structure Cell biology, transmission EM

1975 Baltimore, Dulbecco, Temin Viral replication NF-κB pathway

1976 Blumberg, Gajdusek Hepatitis, Prions Infection

1980 Benacerraf, Dausset, Snell Histocompatibility antigens Genetics

1982 Bergstrom, Samuelsson, Vane Prostaglandins Regulatory

1984 Jerne, Kohler, Milstein Monoclonal antibodies Specific targeting

1985 Brown, Goldstein Cholesterol Scavenger receptor

1987 Tonegawa Genetic control of antibodies Lymphocytes

1990 Murray, Thomas Transplantation Cell-mediated

1994 Gilman, Rodbell G-proteins Signalling

1996 Doherty, Zinkernagel MHC peptide recognition Cell-mediated and lymphocytes

1998 Furchgott, Ignarro, Murad NO Effector metabolite

1999 Blobel Protein signal peptide Membrane transport

2001 Hartwell, Hunt, Nurse Regulators of cell cycle Cell cycle

2002 Brenner, Horvitz, Sulston Genetics of organ development, programmed cell
death Evolution, C. elegans

2005 Marshall, Warren Helicobacter pylori infection Peptic ulcers

2008 Zur Hausen, Barre-Sinoussi, Montagnier HPV and HIV CD4 depletion, opportunistic infection

2011 Hoffmann, Beutler, Steinman Insect, TNF, TLR, DCs Innate immunity and antigen presentation

2012 Gurdon, Yamanaka Reprogramming differentiation iPSC

2013 Rothman, Schekman, Sudhof Vesicular trafficking Cell biology

2016 Ohsumi Autophagy Macrophages

2018 Allison, Honjo Cancer immunotherapy Checkpoint inhibitors

2019 Ratcliffe, Kaelin, Semenza Oxygen sensing Respiratory burst

2020 Houghton, Alter, Rice Hepatitis C virus Virus

2021 Patapoutian, Julius Receptors for temperature and touch Receptor biology

2022 Paabo Genomes of extinct hominins and human evolution Evolution and genetics

Chemistry and Physics

1902 Fischer Sugar and purine synthesis Biochemistry

1946 Stanley, Northrop Tobacco mosaic virus crystallization Viral structure

1948 Tiselius Electrophoresis Method

Pauling Protein bonds Structural Biology/Chemistry

1958 Sanger Proteins Sequence

1962 Perutz, Kendrew Protein Structure Analytic

1972 Anfinsen Ribonuclease Protein strucure

1980 Berg, Gilbert, Sanger DNA Sequencing

1982 Klug Crystallography Protein structure

1993 Mullis, Smith PCR and mutagenesis Nucleic acid
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Table 1. Cont.

Year Names Topic Comment

2004 Ciechanover, Hershko, Rose Protein ubiquitination Degradation

2009 Ramakrishnan, Steitz, Yonath Ribosome Structural biology

2008 Shimomura, Chalfie, Tsien Green fluorescent protein Detection, microscopy
2012 Lefkowitz, Kobilka GPCRs Signalling

2018 Arnold, Smith, Winter Enzymes, phage display of peptides and
antibodies Directed evolution

2020 Charpentier, Doudna Genome editing CRISPR

2022 Bertozzi, Meldal, Sharpless Click chemistry and biorthogonal chemistry Protein and therapeutics

Metchnikoff (1845–1916) can be justly considered to be the grandfather of macrophage
research. His life has been documented in several readable biographies [14,20]. Born in the
Ukraine, he worked in Russia on vaccines for anthrax before joining the Pasteur Institute in
Paris [21]. His putative Eureka moment with marine invertebrates at Messina [22] consoli-
dated his interest in macrophages and large phagocytic cells, both sessile and migratory,
which responded to chemotactic stimuli generated by microbial invasion. By the use of
microscopy and cell staining, he identified, among other observations, intracellular acid-
fast Mycobacteria of unusual appearance within multinucleated macrophage giant cells
in tuberculous granulomata, emphasizing host–pathogen interactions. Anticipating the
later discovery of the microbiome [23], he postulated the intoxication of the host by delete-
rious products derived from intestinal bacteria [14] in contrast with beneficial flora such
as Lactobacilli, which he advocated could promote human health in the form of yoghurt.
Metchnikoff was prescient also in his fascination with aging, coining the term gerontol-
ogy [24]. His remarkable insights into host–pathogen interactions extended to studies with
his colleague Emile Roux on an experimental model of syphilis in primates [25]. He wrote
several monographs on comparative pathology [7], expanding on lectures at the Pasteur
Institute, and had a memorable meeting with Tolstoy, an ardent anti-vivisectionist, who had
written a moving short story, The death of Ivan Illich, based on Metchnikoff’s brother [26].
His collaborators and successors at the Pasteur Institute [21] included Emile Roux [25],
Alexandre Besredka [27], and Waldemar Haffkine [28]. Jules Bordet [29] subsequently
received a Nobel award (Figure 1A) for the discovery of complement and Clemens von
Pirquet [30] contributed to acute hypersensitivity allergic reactions; Charles Richet, a French
physician who coined the term anaphylaxis, was awarded a Nobel Prize in 1913 [31].
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Figure 2. Selected milestones of mononuclear phagocyte research and cellular immunity. Note
indirect contributions of numerous Nobel awards. Asterisks indicate Nobel Prize laureates. Abbrevi-
ations: RES: reticulo-endothelial system, MPS: mononuclear phagocyte system, AdGPCRs: adhesion
G-protein coupled receptors [32–52].
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In contrast with Metchnikoff’s citation for his Nobel award in cellular immunity,
Paul Ehrlich (1854–1915) was cited for his work on humoral immunity [53] and his “side
chain” cellular receptor theory of antibody induction [54]. He also used newly developed
dyes [55] for differential staining of eosinophilic granulocytes, basophilic/mast cells, and
polymorphonuclear neutrophilic leukocytes, initially called “microphages” by Metchnikoff.
Finally, Ehrlich also performed seminal studies on the role of complement in humoral
defense under the direction of antibodies. If the Nobel judges were hoping to reconcile
the two opposing immunology camps through a joint award, they did not succeed at the
time. Ironically, we now know that both sides were correct in that cellular and humoral
immunity, as well as innate and acquired immunity, are closely interrelated in function.
The cellular faction (Metchnikoff and his colleagues from the Pasteur Institute) favored the
innate “unspecific” character, whereas the humoral faction (Emil von Behring, Paul Ehrlich,
and colleagues) favored the humoral “specific” character as most critical. We now know
that both the innate “unspecific”, as well as the acquired “specific” immune response are
composed of both cellular and humoral components and that successful immunity depends
on a highly regulated interplay between innate and adaptive immune responses.

2. The Reticulo-Endothelial System (RES)

In a comprehensive review in 1924, Ludwig Aschoff drew together the findings of
many investigators who studied the intravital clearance of carmine particles by tissue
macrophages in the liver (Kupffer cells), spleen, bone marrow, lymph nodes, and the
lungs [56]; often forgotten later, an uptake by macrophages was also observed in en-
docrine organs, namely the adrenal and pituitary glands [56]. Walter Cannon [57] and
Hans Selye [58] studied the importance of adrenaline in stress responses mediated by the
sympathetic nervous system. Impressed by Metchnikoff’s work, Almroth Wright showed
that agglutinins (antibodies) made particles and cells “tasty for eating”, coining the term
opsonins/opsonization, enhancing phagocytosis in vivo and in vitro [59]. Much later,
leukocyte receptors were shown to bind the Fc region of selected IgG antibodies, (originally
defined by Rodney Porter and Gerald Edelman [60], who received Nobel awards for their
structural studies); similar opsonic cell activation by distinct phagocyte complement recep-
tors was observed for complement-derived C3bi, activated by IgG or IgM antibodies bound
to cellular or microbial antigens [61], or via an alternative carbohydrate pathway [62].
IgE antibodies bound to allergens can induce histamine release from mast cells via FcR,
triggering anaphylaxis [63]. Almroth Wright’s attempts to ”stimulate the phagocytes” to
cure disease was spoofed by George Bernard Shaw in his play, The Doctor’s Dilemma [64].
We return to the characterization and functions of these opsonic leukocyte receptors below.

Following the belated appreciation of Gregor Mendel’s seminal discoveries on the
genetic inheritance of discrete traits [65], Archibald Garrod coined the term “Inborn errors
of metabolism” [66], revealing the great value of rare genetic diseases in deciphering patho-
physiology in humans and other species. Later examples of discovery of dominant genes
involved in myeloid phagocytes include chronic granulomatous disease [67], interferon
receptor deficiencies [68], pyrinopathies [69], and lysosomal storage diseases [70]. An ex-
ample of striking macrophage-related research is notable during this period; Peyton Rous,
the discoverer of the Rous sarcoma virus, for which he received a Nobel Prize for many
decades later, used the magnetic separation of Kupffer cells after the uptake of magnetic
beads [71]. Florence Sabin, the first female medical graduate from Johns Hopkins and then
member of the Rockefeller Institute, studied macrophage involvement in tuberculosis [72],
as did Arthur Dannenberg, later at Johns Hopkins [73]. Also at Rockefeller was Nobel
laureate Karl Landsteiner, discoverer of the ABO blood group antigen polymorphism [74].
In a landmark study, Merrill Chase and Landsteiner definitively showed that delayed hy-
persensitivity depended on the adoptive transfer of cells rather than passive immunization
with serum antibodies [75].

At the same time, Howard Florey, Ernst Chain, and their colleagues at the Sir William
Dunn School of Pathology in Oxford, followed up two earlier discoveries by Alexander
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Fleming of the bacteriolytic enzyme, lysozyme [76,77], and of an uncharacterized penicillium
mold product with antibacterial activity [78]. This culminated in the clinically effective
and safe antibiotic, penicillin, for which these three investigators shared a Nobel Prize [79].
Having, in his mind, solved the problem of bacterial infection, Florey, who edited an influential
textbook on general pathology [80], turned, in the 1950s, to the host cellular response. He
assigned his students, George Mackaness [81], James Gowans [82], and Henry Harris [83]
the task of defining the role of macrophages, lymphocytes, and neutrophils, respectively. We
shall pick up their subsequent contributions later. Another major figure in the history of
immunological tolerance and organ transplantation, Peter Medawar, a zoology student at
Oxford, built on his wartime studies of skin transplants in severely burnt patients in Glasgow,
to investigate fetal tolerance to paternal antigens, culminating in a Nobel award with Leslie
Brent and Rupert Billingham [84,85]; this was followed by a distinguished career, although
handicapped by a premature stroke, as Director of the National Institute for Medical Research
(NIMR) laboratory at Mill Hill in London. This became a major center for immunologic
research over three quarters of a century [86] before moving recently to the Crick Institute.
From a macrophage perspective, we single out the long-standing research interest at Mill Hill
in influenza viral infection, the discovery of interferon by Alick Isaacs and Jean Lindenmann
in the 1950s [87], and the groundbreaking studies by Philip D’Arcy Hart, who identified the
role of mycobacterial inhibition of the phagosome fusion with lysosomes in the pathogenesis
of tuberculosis [88]. John Humphrey and Deirdre Grennan made seminal contributions to
the capture of capsulated bacteria, such as pneumococci, by spleen macrophages through
polysaccharide recognition, important in T lymphocyte-independent initiation of immunity
to infection [89]. Avrion Mitchison was a student of Medawar, working on transplantation
rejection and later with George Snell and others on the use of inbred mouse strains, MHC
expression, and T and B cell interactions [90]. Brigitte Askonas and Emil Unanue worked on
antigen presentation, to be discussed below.

3. The Mononuclear Phagocyte System (MPS)

We return to Rockefeller in the 1960s, by now a university, in the runup to the estab-
lishment of the laboratory of the influential phagocyte research group by James G. Hirsch
(neutrophils) [91], soon followed by Zanvil A. Cohn (monocytes and macrophages) [92], and
later Ralph M. Steinman (dendritic cells) [93]. This myeloid leukocyte biology group emerged
from the earlier recruitment to the Rockefeller Institute of the microbiologist René Dubos,
whose benign presence persisted in the laboratory long after he turned his talents to ecol-
ogy [94]. A French agrarian-trained admirer and later biographer of Pasteur, he joined Selman
Waksman as a student at Rutgers University to investigate the interactions and antibacterial
properties of soil organisms [94]. Waksman later won a Nobel award for streptomycin, which
transformed the clinical treatment of tuberculosis [95]. A graduate student in the laboratory
of Waksman, Albert Schatz, had first isolated streptomycin and both were jointly granted a
patent for this drug. Waksman alone received the Nobel Prize in 1952 [96].

Dubos himself developed earlier antibiotics, gramicidin and tyrothricin, which unfor-
tunately proved too toxic for clinical use [94]. After early spells at Rockefeller with Oswald
Avery of DNA fame and at Harvard, Dubos returned to Rockefeller to study M. tuberculosis
and Bacillus Calmette-Guérin (BCG) interactions with the host. He pioneered studies of
the anaerobic flora of the gut and produced germ-free mice long before the microbiome
became a general concern in immunity [23]. Dubos admired Metchnikoff, whose portrait
took pride of place in his office and inspired all members of the phagocyte research group.

The range of research topics of this group has been documented in several books and
reviews by Carol Moberg, secretary sequentially to Dubos [94], Hirsch [91], Cohn [92], and
Steinman [93]. Hirsch was mainly interested in the study of neutrophil degranulation, phase
contrast, electron microscopy of phagocytosis in a variety of species, and the bactericidal
properties of histones [97]. His group made important contributions to morphologic
studies of the intracellular infection of macrophages by a range of pathogens, including
Legionnaire’s disease [98] and toxoplasmosis [99]. After early studies on the isolation
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of human monocytes [100], Cohn turned to the isolation and characterization of mouse
peritoneal macrophages in cell culture. Both Hirsch and Cohn were influenced by the cell
biological studies of Nobel laureates George Palade [101] and Christian de Duve [102] on the
pancreatic secretory pathway and lysosomal digestion, respectively. The Cohn laboratory
studied a range of cellular and immune functions, including phagocytosis, endocytosis,
membrane traffic and recycling, cell fusion, lysosomal digestion and permeability; the
group established that macrophages were not only “professional” phagocytes [103], but also
potent secretory cells of enzymes, reactive oxygen and nitrogen species, and arachidonate
metabolites [92]. Cohn’s interest turned to human macrophage infection by intracellular
pathogens, such as tuberculosis, leprosy [104], Leishmaniasis [105], and HIV [106]. The
Steinman–Cohn discovery of dendritic cells (DCs), culminating in the Nobel award to
Steinman a few days after his death, will be dealt with below.

It is hard to overstate the international impact of this laboratory in macrophage
research at the time, punctuated by a series of Leiden conferences organized by a Dutch
collaborator, Ralph van Furth [107–110]. After a discussion at one of these meetings, it was
decided that the term RES was no longer appropriate, and the family of cells was renamed
the mononuclear phagocyte system [111].

3.1. Enter the Lymphocytes

Metchnikoff seems to have overlooked the lymphocyte in his observations and thought
that after capture by phagocytes in organs such as spleen, the agglutinins, termed “antikör-
per” (antibodies) by Ehrlich, which were detected in blood after immunization, were also
products of phagocytes [112]. James Gowans and his group at the Dunn School demon-
strated the role of lymphatic recirculation and the delivery of smaller lymphocytes, rather
than macrophages, to blood through the thoracic duct [82,113]. Florey, Gowans, and their
students Alvin Volkman and Vincent Marchesi did, however, trace non-recirculating bone
marrow-derived blood monocytes and macrophages directly to peripheral organs [114,115].
It seems remarkable that the thymus had no identified function until relatively late, when
Jacques Miller published his first papers [116,117]. He also discovered T and B cell col-
laboration together with Jon Sprent [118]. The existence and properties of B (bursa/bone
marrow), and thymus-derived lymphocytes and their heterogeneity (Th1, Th2, and even
later, helper and cytotoxic, let alone memory, effector, and regulatory T lymphocyte sub-
populations, as well as innate lymphoid cells) were only established after the 1960s. Their
role in adaptive immunity dominated the awarding of Nobel prizes until 2011 (Table 1). It
is interesting to compare these awards with those discoveries selected in published reviews
of T [119] and B lymphocytes [120], as well as antibodies [121].

We emphasize here their essential collaboration with cells of the MPS in both the
initiation and effector mechanisms of cell-mediated immunity. Australian immunologists
have made major contributions in this field. We include Macfarlane Burnet, remembered
for the clonal selection of antibody production, as well as self-/non-self-recognition, and
virology [122,123], and Peter Doherty who, with the Swiss Rolf Zinkernagel, established
the role of the major histocompatibility complex in cell-mediated immunity [124]. Donald
Metcalf [125], also at the Walter and Eliza Hall Institute in Melbourne, and later, Richard
Stanley [126], Australia-born, at the Albert Einstein College of Medicine in New York,
played a major role in identifying the lineage-determining growth factors (CSF-1/M-CSF,
and GM-CSF) for macrophage and granulocyte differentiation. George Mackaness and
Robert North, both Australians at the Trudeau Institute in upstate New York, performed
pioneering studies with BCG and Listeria monocytogenes infection models in genetically
defined mouse strains [127]. They established that cell-mediated immunity to infection was
antigen-dependent during induction, but nonspecific during expression, involving both T
lymphocyte priming and the activation of macrophages. The soluble lymphokine factors,
initially demonstrated independently by Barry Bloom and John David [128], and others,
and their receptors were identified subsequently as appropriate methods became available.
Charles Dinarello played an important role in characterizing interleukins/cytokines [129].
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Mosmann and Coffman discriminated between Th1 and Th2 lymphocyte cytokines [130].
Carl Nathan played an important role in characterizing interferon gamma, the cytokine
responsible for classical macrophage activation, see ref. [131] described further below, and
Gray and Goeddel cloned its receptor [132].

3.2. Enter Dendritic Cells (DCs)

Prior to the discovery by Ralph Steinman and Zanvil Cohn that DCs are specialized,
potent cells for antigen capture, processing, and presentation (APC) to naive B and T lym-
phocytes [93,133,134], it was assumed that the more abundant macrophages in adherent
mononuclear phagocyte populations were responsible for the initiation of cell-mediated
immunity. Emil Unanue, in particular, had demonstrated in important studies with Brigitte
Askonas at Mill Hill [135] that a fraction of protein antigens was not completely degraded
after the uptake by “macrophage” populations, as found in studies of endocytosis by Stein-
man, Silverstein, and Cohn [136]. It was only later that Alain Townsend, Pamela Bjorkman,
and others identified the role of peptide binding by MHC molecules that protected antigenic
epitopes for the presentation to CD4/CD8 T cells [137,138]. In their classic paper [139],
Steinman and Cohn distinguished the rare DCs from conventional macrophages in mouse
splenic digests, by phenotypic analysis and later demonstrated “immature” and “mature”
functional states [93]. A subsequent paper with Michel Nussenzweig confirmed human
DCs were also able to activate lymphocytes in allogeneic mixed lymphocyte cultures [140].
It took a decade before the unique ability of DCs to activate naïve lymphocytes became
widely accepted [141]. Cultures of mouse bone marrow in GM-CSF and Interleukin 4, but
not CSF1, gave rise to DC in vitro [142]. The hematopoietic origin of tissue and blood DCs
has revealed considerable heterogeneity in DC subpopulations [143]. Studies of the “im-
mune synapse” by which DCs induce B and T cell activation by MHC–peptide complexes,
and effector recognition of target antigens by CD8 cytotoxic T cell receptors, continue to the
present day [144]. DCs play a critical role in the decision to induce tolerance versus immune
activation [145,146]. Artificial intelligence is being employed to identify tumor-specific
peptides for personalized immunotherapy [147].

3.3. Enter Monoclonal Antibodies

The chemical and genetic elucidation of antibody structure and function was justly
recognized by a series of Nobel awards in the 1960s and 1970s (Figure 1). Notably, Susumu
Tonegawa was awarded the Nobel Prize in 1987 for his work at the Basel Institute for Im-
munology, in which he identified genetic rearrangement as the basis for antibody diversity.
At Rockefeller, Henry Kunkel characterized the properties of monoclonal immunoglobulins
in sera and urine derived from patients with multiple myeloma [148]. The roles of MP
and DC in induction and effector mechanisms of both humoral and cellular immunity are
intimately associated with the progress in research methods and our understanding of dis-
ease. Perhaps one of the most arresting advances in experimental and clinical immunology
came from the application of somatic cell fusion to generate immortal hybrid cell lines
producing monoclonal antibodies as tools to analyze phenotypic heterogeneity by flow
and histochemical analysis. Henry Harris and John Watkins, in Oxford, started the ball
rolling with their use of UV-irradiated Sendai viruses for the artificial fusion of different
species of somatic cells to form homokaryons and heterokaryons, which could undergo
subsequent unlimited proliferation as genetically labile and interspecific hybrids [149]. It
soon became evident that differentiated cells extinguished their distinctive cell-specific
properties unless fused with cells of a related lineage. Harris and Klein exploited cell
fusion technology to demonstrate that malignancy was a recessive phenotypic trait and
that fusion with normal diploid cells, such as fibroblasts, could transiently suppress this
trait [150]. However, the tumor suppressor genes were readily lost in hybridomas because
of chromosomal instability and the selection for growth in vivo or in vitro. Kohler and
Milstein fused primary antibody-producing B lymphocytes with immortal myeloma cell
lines in vitro to identify and isolate hybridoma clones by direct screening for monoclonal
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antibodies [151]. This method was optimized using polyethyleneglycol (PEG) instead of the
Sendai virus and could be adapted to screen in advance for a desired functional phenotype.
In the MPS field, it opened up the analysis of tissue heterogeneity in situ and provided
biomarker antigens [152] for cell isolation by FACS and other methods of enrichment,
leading to the discovery of novel plasma membrane receptor functions. An early mAb,
Mac-1, produced by Timothy Springer [153,154] and directed at the CR3 receptor, led to
the discovery of beta-2 integrins that are important in myeloid phagocyte recruitment and
adhesion during inflammation. Monoclonal antibodies have also opened up therapeu-
tic opportunities to manipulate the phenotype of immune cells, including mononuclear
phagocytes [155]. In addition, somatic cell fusion is a natural property of mononuclear
phagocytes in vivo, physiologically, in the generation of osteoclasts, and in immune and
non-immune multinucleated giant cell (MNGC) formation, discussed further below.

3.4. Resident Tissue Macrophages

The F4/80 mouse antigen (Emr1), isolated by Austyn and Gordon 40 years ago [156],
has become a widely used plasma membrane marker to identify macrophages in many
mouse organs, from the embryo throughout adult life, normally and in a range of disease
models [157,158]. It became the founding member of a family of adhesion G protein
7-transmembrane receptors [159]. The related human antigen (EMR2), which is absent
in mice, has been implicated as a mechanoreceptor which undergoes a novel method of
autoproteolytic activation [160]. Collaborative gene knockout studies with Hsi Hsien Lin
and Joan Stein Streilein showed that the F4/80 molecule played a non-redundant role
in peripheral tolerance in an anterior chamber-associated immune deviation (ACAID)
model of delayed type hypersensitivity in the eye [161], extended to allografts and tumor
implantation. Figures 3 and 4 illustrate its expression in selected mouse tissues. With this
groundwork, we repeated the method to identify and characterize a range of macrophage
plasma membrane lectin-like (CD206, Siglec-1, Dectin1) and Scavenger receptors (SRA,
MARCO and CD36) involved in adhesion, phagocytosis, endocytosis, pathogen entry,
macrophage fusion, and cellular interactions [162]. By using a panel of surface markers,
we were able to demonstrate the heterogeneous phenotypes of resident macrophages in a
range of different organs (Figure 3).
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F4/80 antigen expression in mice [157], on human placenta [163], and induced pluripotent stem
cells (iPSC) [164]. Fejer has developed primary macrophage cell lines from mouse fetal livers, which
are superior to tumor-derived cell lines (MPI cells) [165]. Abbreviations: AGM = aorta-gonad-
mesonephros, HSC = hematopoietic stem cell, MDSC = myeloid-derived suppressor cell, GM-CSF =
granulocyte-macrophage colony stimulating factor, MPI = Max Planck Institute.

Subsequent studies of temporal and spatial mRNA and protein gene expression in
mouse and human tissue have considerably extended the concept that resident macrophages
display distinct phenotypes within different tissue micro-environments [166,167]. The
mechanisms which underlie their diversity include local interactions with neighboring
differentiated cell types and the extracellular matrix, exposure to endogenous systemic
stimuli, including the microbiome, which, in sum, regulates the epigenetic adaptation of
macrophage gene expression [168,169].
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Figure 4. Morphology of mononuclear phagocytes. (A) Dendritic cell isolated from mouse spleen.
Phase contrast microscopy reveals characteristic nuclear structure, cytoplasmic organelles, and
dendritic processes [139]. (B) Mouse peritoneal macrophage-engulfing-antibody-coated sheep ery-
throcytes, note plasma membrane ruffling revealed by scanning electron microscopy. (C) F4/80+
Langerhans cells in the mouse epidermis [170]. (D,E) Mouse F4/80+ microglia in situ and montage.
Note ramified processes of individual cells. (E) Striking regional morphologic heterogeneity in grey
and white matter [171,172].

3.5. Development and Distribution

Studies of hematopoietic origins and lineage tracing in mice have given rise to a major
paradigm shift in our understanding of the development of the MPS [173]. Progenitors
of F4/80+ macrophages arise sequentially in the yolk sac (d8), AGM (d10.5), fetal liver
(d10–12), and bone marrow before birth (d18–22), with widespread distribution throughout
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developing organs such as the brain [166,171]. An early origin from aortic endothelial
stem cells and other mesenchymal cells has been established [174], and colony-stimulating
factor1 (CSF-1)-responsive precursors of F4/80+ macrophages can be detected as early as
d4 (SG, unpublished observations). Yolk sac-derived tissue-resident macrophages persist in
many tissues such as the brain and epidermis throughout adult life, turning over locally and
depending on different transcription factors such as Myb from those deriving from bone
marrow [175,176], which populates organs with a high turnover, such as the gut. After birth,
bone marrow-derived blood monocytes are the main source of recruitment on demand such
as inflammation, infection, tissue injury, metabolic needs, and malignancy. Macrophage
populations in adult organs are therefore chimaeras of varying embryonic and bone marrow
origin. In several species, including humans, the CSF1R provides a pan monocytic lineage-
determining surface marker which can be used to isolate subpopulations of monocytes
and some DCs for further study, in conjunction with CD14 and CD16 antigens [177,178].
The mechanisms of circulation, tissue distribution, and migration in the fetus are not clear.
After birth, bone marrow-derived monocytes use distinct adhesion molecules such as Beta2
integrins [179], L selectin, and CD31 during constitutive and induced extravasation and
re-entry [180]. Monocyte/macrophage reserves can be mobilized from the spleen into
blood and, during inflammation. from the peritoneal cavity to draining lymph nodes or
the injured liver [181,182]. The niche for adhesion and repopulation may involve ligands
induced on the endothelium, the extracellular matrix, or other cell types, e.g., hepatic
stellate cells or the epithelium [183]. Blood monocytes can be delivered directly to the brain
from bone marrow in the skull or via a leaky blood–brain barrier [184]. Monocytes recruited
from blood contribute to the formation of osteoclast giant cells in bone and to MNGC in
granuloma formation during infection [185]. Unlike macrophages, DCs recirculate from
lymphatic circulation via the thoracic duct [186]. Recent studies have demonstrated that
during stress such as fasting, blood monocytes can return to bone marrow for subsequent
release into the blood upon refeeding [180].

3.6. Distinct Properties of Elicited Monocyte-Derived Mononuclear Phagocytes

Depending on the nature of acute or chronic stimuli, metabolic, inflammatory, infec-
tious, immune, or malignant, circulating monocytes and newly recruited tissue macrophages
display a range of altered phenotypes, reflecting their particular tissue environment. For ex-
ample, sterile crystalline materials that are poorly degradable accumulate in lysosomes and
stimulate foreign body giant cell formation [187]; bacteria, viruses, and helminths induce
distinct cytokine responses and the formation of Th1 or Th2 types of granulomata; microbial
products enhance a respiratory burst; the uptake of apoptotic or necrotic cells inhibit or
enhance inflammation, respectively; and immune complexes and cytokines can enhance or
suppress DC, T, and B cell activities. The concomitant responses of activated granulocytes,
NK, innate lymphoid cells, DCs, CD4, and CD8 T cells can exacerbate and may exceed
homeostatic limits, contributing to altered monocyte/macrophage proliferation, viability,
clearance, secretory, cytotoxic, and repair functions. Below, we draw attention to some of
the complex cellular aspects of these induced mononuclear phagocyte responses.

3.7. Re-Enter Complement

After earlier Nobel awards for complement and antibodies, research on humoral
immunity centered almost exclusively on the characterization of plasma proteins. The
later discovery of an “Alternative Complement pathway” by Pillemer, Müller-Eberhard,
and Götze [188,189] and lectin-like recognition actually predated “classical” antibody-
dependent activation in evolution. Progress in defining opsonic Fc and complement
receptors on myeloid leukocytes provided an important link to cellular immunity, both
innate and adaptive. Proteolytic cascades of complement, coagulation, and kinin path-
ways regulated phagocyte migration, cell activation, and target cell cytolysis via plasma
membrane receptors and peptides. Analogous plasma proteins, such as Mannose-binding
lectin (MBL) [190], calreticulin [191], and pentraxins [192], also serve as humoral pattern
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recognition receptors. The major source of many of these plasma proteins is the liver
hepatocyte, but Harvey Colten and colleagues showed that macrophages were able to
produce small amounts of all complement proteins during development, compatible with
functions in local tissue environments [193]. Selected resident macrophages, for example,
microglia in the CNS, express C1Q, which contributes to the sculpting of synapses by poorly
understood mechanisms [194]. Recent discoveries, reviewed by Wright and Kemper, have
shown that complement also plays an unexpected role intracellularly in innate and adaptive
autoimmunity [195]. These involve T lymphocytes, as well as mononuclear phagocytes
and DCs, and play a role in toll-like, TNF-related, and mitochondrial antiviral-signaling
protein (MAVS) recognition and local responses. This discovery has rekindled interest in
the role of locally produced complement as an integral part of cellular interactions during
inflammasome activation, immunity and infection, as well as in metabolic homeostasis,
development, and malignancy.

4. Cellular Functions of Mononuclear Phagocytes
4.1. Recognition, Uptake, and Degradation

Although many plasma membrane receptors and intracellular sensing mechanisms
have been identified (Figure 5), the ability of MPs to discriminate a healthy from altered self
at the cell surface or within intracellular membrane-bound compartments and the cytosol,
remain poorly defined.
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Figure 5. Sensing environment and mononuclear phagocyte responses. Schematic representation
of plasma membrane opsonic Fc and complement receptors, Toll-like receptors (TLRs), and non-
opsonic lectin-like and Scavenger receptors. Signaling pathways of opsonic receptors depend on
ITAM and ITIM cytoplasmic domains for activatory and inhibitory responses. Cytoplasmic sensors
include mitochondrial antiviral signaling (MAVS) proteins, RIG-like helicases, NOD-like receptors,
and components of the DNA sensing CGAS pathway. Inflammasome activation depends on ASC
and Caspase-1. Abbreviations: ITAM = immunoreceptor tyrosine-based activation, ITIM = im-
munoreceptor tyrosine-based inhibitory motif, NF-κB = nuclear factor kappa-light-chain enhancer
of activated B cells, IRF = interferon regulatory factors, RIG = retinoic acid-inducible gene/protein;
NOD = nucleotide binding and oligomerization domain; Adapted from A Pluddemann.
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These myeloid cells are more promiscuous than lymphoid cells and less dependent on
MHC-restricted selection of foreign or auto-antigens. Although the chemical composition
of the walls of micro-organisms can be detected by a broad range of proteins, carbohydrates,
lipids, and nucleic acid receptors, quality control of biosynthetic and intracellular transport
products is less defined. We tend to fall back on abstractions such as “danger” [196] or
“pattern recognition receptors” [197]; what can be stated with confidence is that there
are few holes in the MP repertoire. The efficient clearance of particulates and apoptotic
and necrotic cells by “professional” phagocytes is legendary [198], and “don’t eat me”
signals such as signal-regulatory protein α (Sirpα)-CD47 interactions have stimulated the
immunotherapeutic interest of oncologists [199]. Apart from the elegant early studies of
Silverstein [200] and the ultrastructural studies by Grinstein and their colleagues [201], we
still have little insight into molecular aspects of the phagocytic synapse [202,203], with or
without opsonization, and the regulation of cargo internalization. Antibody-dependent
enhancement of inflammation or infection via FcR and CR are important aspects of viral
pathogenesis [204–207]. What is also intriguing is the ability of microglia to sculpt neuronal
synapses and dendrites [208], and of stromal macrophages in bone marrow to ingest ery-
throid cell nuclei without compromising target cell viability [209]. Hidalgo and colleagues
have demonstrated the uptake of effete mitochondria, by a heterophagic process, analogous
to autophagy (Figure 6) [210]. Remarkably, intact mitochondria can be interchanged be-
tween adipocytes and macrophages without the loss of integrity or function [211]. Various
names have been coined to stress variants of phagocytosis such as efferocytosis, pyrop-
tosis, phagoptosis, ferroptosis, neuronophagy, and mitophagy. Apart from phago- and
endolysosomal fusion, acidification, digestion, and membrane recycling during the intracel-
lular invasion of macrophages are important aspects of pathogenesis [212] and determine
immune cross-presentation and peptide loading of MHC molecules by DCs [213] and
monocytes [214].
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Figure 6. Heterophagy and autophagy: (A) Heterophagy is a defining property of mononuclear
phagocytes. The schema shows key stages in the process of recognition, membrane, and vesicular
fusion and fission, and their recycling during cargo internalization and product secretion. Two
important outcomes of phagocytosis are acidification/digestion and the generation of oxygen and
nitrogen radicals in host defense, critical determinants of intracellular infection. (B) The autophagy
pathway employs analogous mechanisms to recognize, isolate, and degrade damaged intracel-
lular constituents. The genetic and molecular aspects of autophagy have attracted considerable
attention recently [215]. Adapted from [215–217]. Abbreviations: Atg = autophagy-related gene,
LC3 = microtubule-associated proteins 1A/1B-light chain 3.

The biochemical mechanisms that control protein degradation by ubiquitination
and delivery to proteosomes have previously attracted Nobel awards to Hershko and
Ciechanover [218]; new methods have been developed to degrade selected cellular proteins
for experimental and possible therapeutic purposes [219]. Finally, we stress the importance
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of endocytosis in lipid metabolism, recognized by Nobel awards to Brown and Goldstein,
and the recycling of iron and other essential nutrients [220,221].

4.2. Biosynthesis, Gene Expression, Metabolism, Cell Activation, and Secretion

After terminal differentiation, MPs shut down DNA synthesis, but continue to express
a wide range of mRNAs and proteins becoming highly active secretory cells [222] as well
as phagocytes. Upon activation by innate and immune stimuli, they adapt to local and
systemic environments to perform various homeostatic, inflammatory, and immune trophic
and effector functions (Figure 7).
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Figure 7. Paradigm of macrophage polarization. Macrophage gene expression is regulated differen-
tially after priming by the Th1/2 cytokines and interferon gamma versus IL4/13, followed by a local
innate phagocytic stimulus. The spectrum of activation extends from a signature cluster of genes
characteristic of classical or alternative activation to deactivation by IL-10, tgf beta, glucocorticoid
steroids [177], or by the uptake of apoptotic cells [46,223]. Polarization of macrophages mirrors that
of T lymphocytes [224]. Adapted from [225].

Tissue resident cells are long-lived, whereas elicited cells turn over more rapidly and
are primed to generate more pro-inflammatory and cytotoxic radicals after further stimula-
tion. Their secretory products include lysozyme [226], a range of neutral proteinases [227]
to activate plasma cascades of complement, coagulation, and kinin generation, as well as
arachidonate metabolites, leukotrienes, prostaglandins, and their derivatives. In addition,
they produce chemokines, pro- and anti-inflammatory cytokines, and growth factors for
lymphohematopoietic and endothelial cells [228], as well as protease inhibitors such as
TIMP, alpha1 anti trypsin, and alpha2 macroglobulin. Activated macrophages also secrete
collagenase and elastase, modify the extracellular matrix [229], and regulate fibroblast
growth and repair. Their energy requirements of ATP are met by glycolysis, through the
Krebs cycle and/or oxidative phosphorylation through mitochondrial respiration. The
pioneering metabolic studies by Nobel laureates Otto Warburg [230], Hans Krebs, and Fritz
Lipmann [231] are currently undergoing a renaissance in immunology [232].

Macrophage phenotype signatures are associated with a spectrum of polarized func-
tional states [224,233]. Markers of innate stimulation include the enhanced expression of
MARCO and CD200 [234]. Classical activation by interferon gamma, a product of CD4 Th1
lymphocytes and NK cells, induces a respiratory burst after local triggering, for example
phagocytosis, to generate reactive oxygen and nitrogen radicals by activation of NADPH
dehydrogenase [235] and iNOS [236], respectively. The vital roles of oxygen and nitrogen
in metabolism have also been recognized by recent Nobel prizes.

An alternative activation pathway of macrophages [177,224,237,238] associated with
allergy and nematode infestation and Th2 immunity, is mediated by IL-4/13 cytokines,
which upregulate selected MHCII molecules, produce arginase and Chitinase-like pro-
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teins, and promote repair and fibrosis. Other macrophage functional states are associated
with anti-inflammatory stimuli (IL10, TGF beta, corticosteroid, and prostaglandin E2) or
immunoregulatory immune complexes. Tumor-associated macrophages (TAM) promote
malignancy and metastasis [239–241]; temporal and spatial analyses of RNA and pro-
tein expression reveal considerable heterogeneity in TAM subtypes, relevant to potential
immunotherapy [242].

Several hundred rare genetic disorders which result in familial auto-inflammatory and
auto-immune syndromes have been discovered [69]. IL-1 beta release and pyroptosis are
associated with periodic fevers and a range of clinical manifestations and can be treated
with IL-1 receptor antagonist [243]. The discovery of inflammasome activation by the late
Jurgen Tschopp [244], and of intracellular Nod-like, RIG-like, and DNA-sensing pathways,
has spawned enormous activity in this field [245,246]. Life-threatening hyperinflamma-
tory syndromes are associated with CD4 lymphocyte reconstitution during antiretroviral
treatment of HIV/AIDS and severe pulmonary infections like SARS-CoV-2 [247,248]. It is
worth noting that the term “cytokine storm” is a misnomer, since it encompasses many
macrophage secretory products. Dexamethasone and several other repurposed drugs
used for COVID-19 therapy act primarily on dysregulated macrophages, and the type
1 interferon pathway has been implicated in the genetic predisposition to critical outcomes
of SARS-CoV-2 infection [68,249,250]. The potential role of MP in Long COVID sequelae
should also be considered [251].

4.3. Cellular Immunity and Granuloma Formation

Mononuclear phagocytes play a prominent role in the formation and persistence
of organized structures known as granulomas, which are not tumors, but assemblies of
heterogeneous monocytes, macrophages, and DCs, together with other myeloid and lym-
phoid cells, fibroblasts, and blood vessels, embedded in an extracellular matrix [252–254].
Their morphology has been recognized since early descriptions by pathologists, and they
cover a range of immunologic and inflammatory host responses to infection, foreign or
host-derived non-degradable materials, and autoimmune disorders [255]. Although not
malignant, per se, they have features in common with tumor-associated macrophages
and can inflict considerable tissue injury upon their local environment, promote fibrosis,
and even progress to true tumor formation, as in Schistosomiasis [256]. A characteristic
feature is macrophage multinucleation, the result of cell fusion induced by Th1 and Th2
lymphocytes and their secretory products [257]. Metchnikoff recognized MNGC, known as
Langhans giant cells, containing intracellular M. tuberculosis, with evident impairment of
mycobacterial division [8,258]. There has been recent significant progress in studying the
mechanism of fusion and its impact on the macrophage phenotype in a variety of cellular
model systems, in vitro [259], and in autoimmune granulomatosis, in vivo [254]. This is a
fascinating field for the further study of cellular biology and immunology, relevant to the
impact of environmental pollutant particles on human health [260].

5. Discussion

Our review highlights the importance of evolution [261] and homeostasis [262] in
considering the roles of macrophages and closely related DCs and MNGCs in pathophysi-
ology and natural selection. We have traced the growth of knowledge from the emergence
of these cells as a mononuclear phagocyte system, during development and throughout
life, and described selected cellular and molecular properties. These widely distributed
phagocytes recognize and interact with every other cell type of the body in their micro-
environment, including microbes and foreign particulates, through plasma membrane
contact, internalization, and secretion (Figure 8). Reciprocal interactions between the MPS
and neuroendocrine [263], cardiovascular [264], and gastrointestinal systems [265], for
example, extend the role of mononuclear phagocytes beyond host defense, inflammation,
and immunity. Within the lymphohematopoietic system, it is important to recognize that
macrophages are integral parts of all immunity, whether innate or adaptive, cellular or
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humoral, and participate in many disease processes as monocytes, tissue macrophages,
DCs, or MNGCs. These “non-immune” diseases include metabolic processes such as
atherosclerosis [266] and fatty liver disease [267], neurodegeneration such as Alzheimer’s
disease [268], and malignancy [240]. We have stressed the value of genetic, cellular, and
molecular analysis in deciphering and manipulating the MPS in situ and in vitro.
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Figure 8. Interactions of the MPS with other systems. We place the cells of the MPS at the center
of the homeostatic networks which interact reciprocally with all other cellular systems of the body.
Illustrative examples of such systemic tissue interactions are given in the text.

Although it is well-recognized that macrophage-like cells are ancient, long preceding
the emergence of lymphocytes, clonal selection, and gene rearrangement, there has been
much less investigation of myeloid cell evolution. Compelling studies by Max Cooper [269]
and colleagues have brought insights into lymphocyte evolution; presumably, the role of
MHC in peptide capture and antigen presentation by DCs should coincide with the evolu-
tion of lymphocyte activation. Comparative genomics and DNA analysis are making it pos-
sible to trace the origin and migration of human populations and the role of pandemics in
evolution. The recent Nobel award to Paabo [270] and the studies of Quintana-Murci [271]
and Barreiro [272] suggest that the MPS contributed significantly to selection by infectious
disease. The hypothesis by Lynn Margulis [273,274] that mitochondria and chloroplasts are
endosymbionts of captured bacteria is now widely accepted and the retention of retroviral
sequences in the human genome [275] provides further evidence for the role of gene transfer
and selection in evolution. Experiments to model the origin of eukaryotic cells [276] reveal
cells which display macrophage-like features.

Apart from the specific Nobel prizes in the macrophage field in 1908 and 2011, we have
shown how important many other awards in immunology and related subjects, including
technological advances, have been in promoting and documenting the progress of research
on MPs. This acknowledgement attests to the wider legacy of the Nobel awards in cellular,
biomedical, and chemical research.

From the viewpoint of MPS contributions to cellular immunity, there has been con-
siderable incremental progress in cell and molecular biology, but promising insights into
biology and therapeutic applications need further development. Its relevance to the hu-
man lifespan and to host–pathogen and other environmental interactions extends beyond
immunity and will be explored in detail elsewhere.
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6. Conclusions

We have outlined some of the evidence that the MPS is a unique dispersed organ
consisting of a family of closely related cells, interacting with every other system in the
body, consistent with its primary role in physiological homeostasis, cellular immunity, and
disease. Perturbation of its trophic cellular and molecular functions may contribute to
the mechanisms of aging and malignancy and provide opportunities for therapy through
genetic and immunologic manipulation. We have stressed the direct and indirect benefits
of many Nobel awards to achievements in MPS research and noted some of the factors
that promote scientific advances in this, as in other fields, where fundamental discoveries
can lead to clinical applications. Our historic perspective has confirmed the international
nature of scientific discovery and its dependence on institutional excellence, ready access
to education, and freedom of movement and the exchange of ideas. Finally, we suggest
that the evolutionary origins of macrophage diversification need more research to establish
its rightful role in biology, beyond immunity.
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