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Distributed representations of 
behaviour-derived object dimensions  
in the human visual system

Oliver Contier    1,2 , Chris I. Baker    3 & Martin N. Hebart    1,4

Object vision is commonly thought to involve a hierarchy of brain regions 
processing increasingly complex image features, with high-level visual 
cortex supporting object recognition and categorization. However, object 
vision supports diverse behavioural goals, suggesting basic limitations of 
this category-centric framework. To address these limitations, we mapped a 
series of dimensions derived from a large-scale analysis of human similarity 
judgements directly onto the brain. Our results reveal broadly distributed 
representations of behaviourally relevant information, demonstrating 
selectivity to a wide variety of novel dimensions while capturing known 
selectivities for visual features and categories. Behaviour-derived 
dimensions were superior to categories at predicting brain responses, 
yielding mixed selectivity in much of visual cortex and sparse selectivity in 
category-selective clusters. This framework reconciles seemingly disparate 
findings regarding regional specialization, explaining category selectivity 
as a special case of sparse response profiles among representational 
dimensions, suggesting a more expansive view on visual processing in  
the human brain.

A central goal of visual neuroscience is to understand how the brain 
encodes and represents rich information about objects, allowing  
us to make sense of our visual world and act on it in meaningful ways. 
A widely studied and influential account posits that one central func-
tion of the visual system is to recognize objects by organizing them 
into distinct categories1–4. According to this view, early visual cortex 
serves to analyse incoming visual information by representing basic 
visual features5, which are then combined into more and more complex 
feature combinations, until higher-level visual regions in the occipito-
temporal cortex and beyond support the recognition of object identity 
and category3. In line with this view, a number of category-selective 
clusters have been identified in occipitotemporal cortex that respond 
selectively to specific object classes such as faces, scenes, body parts, 
tools or text6–11. The functional importance of these regions is under-
scored by studies demonstrating that object category and identity as 

well as performance in some behavioural tasks can be read out from 
activity in occipitotemporal cortex12–17 and that lesions to these regions 
can lead to selective deficits in object recognition abilities18–22.

Despite the importance of object categorization and identification 
as crucial goals of object vision, it has been argued that these functions 
alone are insufficient for capturing how our visual system allows us to 
make sense of the objects around us23. A more comprehensive under-
standing of object vision should account for the rich meaning and 
behavioural relevance associated with individual objects beyond dis-
crete labels. This requires incorporating the many visual and semantic  
properties of objects that underlie our ability to make sense of our 
visual environment, perform adaptive behaviours and communicate 
about our visual world23–27. Indeed, others have proposed that visual 
cortex is organized on the basis of continuous dimensions reflect-
ing more general object properties, such as animacy28–31, real-world 
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diverse objects, as well as 4.7 million behavioural similarity judge-
ments of these objects (Fig. 1).

As core object dimensions, we used a recent similarity embedding 
of behaviour-derived object dimensions, which underlie the perceived 
similarity of 1,854 object concepts52,57. In this embedding, each object 
image is characterized by 66 dimensions derived from the human simi-
larity judgements in an odd-one-out task. We chose this embedding for 
several reasons. First, it provides highly reproducible dimensions that 
together are sufficient for capturing single-trial object similarity judge-
ments close to the noise ceiling. Second, the use of an odd-one-out task 
supports the identification of the minimal information required to 
distinguish between different objects and thus is sensitive not only to 
conceptual information, such as high-level category (for example, ‘is 
an animal’), but also to key visual–perceptual distinctions (for example, 
‘is round’). The object dimensions thus capture behaviourally relevant 
information, in that they support the key factors underlying arbitrary 
categorization behaviour and therefore underlie our ability to make 
sense of our visual world, to generalize, to structure our environment 
and to communicate our knowledge. Indeed, the object dimensions 
capture external behaviour such as high-level categorization and typi-
cality judgements, underscoring their potential explanatory value as 
a model of neural responses to objects52. Third, the object dimensions 
are easily interpretable, thus simplifying the interpretation of neural 
activity patterns in relation to individual dimensions.

The fMRI dataset covers 8,740 unique images from 720 catego-
ries presented to three participants (two female) over the course of 
12 sessions57. Given that the behavioural similarity embedding was 
trained only on one image for each of the 1,854 THINGS categories, 
these dimensions may only partially capture the visual richness of 
the entire image set, which may affect the potential for predicting 
image-wise brain responses. To address this challenge, we fine-tuned 
the artificial neural network model CLIP-ViT64 to directly predict object 
dimensions for the 8,740 images in our fMRI dataset. This model has 
previously been shown to provide a good correspondence to behav-
ioural65,66 and brain data67,68, indicating its potential for providing accu-
rate image-wise estimates of behaviour-derived object dimensions. 
Indeed, this prediction approach led to highly accurate cross-validated 
predictions of object similarity69 and consistent improvements  
in blood-oxygen-level-dependent (BOLD) signal predictions for all  
66 dimensions (Supplementary Fig. 1).

Core object dimensions are reflected in widespread fMRI 
activity patterns throughout the human visual system
To test how these dimensions were expressed in voxel-wise brain 
responses, we fit an fMRI encoding model that predicts spatially 
resolved brain responses on the basis of a weighted sum of these 
object dimensions. This allowed us to map out the contribution of 
the dimensions to the measured signal and thus link interpretable 
behaviour-derived dimensions to patterns of brain activity.

Across all 66 object dimensions, our results revealed a widely 
distributed cortical representation of these dimensions that spans 
much of visual cortex and beyond (Fig. 2). The spatial extent of these 
effects was highly similar across all three participants, underscoring 
the generality of these findings. We also tested the replicability of 
these results on an independent fMRI dataset70, revealing a similarly 
extensive representation of the object dimensions (Supplementary 
Fig. 2). Please note that, in the following, we use the terms ‘widespread’ 
and ‘distributed’ interchangeably and do not refer to a distributed  
representational coding scheme or the presence of continuous  
gradients but rather to responses that are not locally confined.

Prediction accuracies not only peaked in lateral occipital and  
posterior ventral temporal regions but also reached significant values  
in early visual, dorsal visual and frontal regions (Supplementary Fig. 3). In 
contrast to previous work based on representational similarity analysis  
that found information about perceived similarity to be confined 

size29,32, aspect ratio31,33 or semantics34. These and other continuous 
dimensions reflect behaviourally relevant information that offers a 
more fine-grained account of object representations than discrete 
categorization and recognition alone. This dimensional view sug-
gests a framework in which visual cortex is organized on the basis 
of topographic tuning to specific dimensions that extends beyond 
category-selective clusters. Under this framework, category-selective 
clusters may emerge from a more general organizing principle34–38, 
reflecting cortical locations where these tuning maps encode fea-
ture combinations tied to specific object categories34,38,39. Yet, while  
previously proposed dimensions have been shown to partially reflect 
activity patterns in category-selective clusters40–45, they cannot account 
fully for the response profile and are largely inferior to category selec-
tivity in explaining the functional selectivity of human visual cortex 
for objects46,47.

To move beyond the characterization of individual behavioural 
goals underlying both the discrete category-centric and the continu-
ous dimensional views and to comprehensively map a broad spectrum 
of behaviourally relevant representations, one powerful approach 
is to link object responses in visual cortex to judgements about the 
perceived similarity between objects48–51. Indeed, perceived similarity 
serves as a common proxy of mental object representations under-
lying various behavioural goals, as the similarity relation between 
objects conveys much of the object knowledge and behavioural rele-
vance across diverse perceptual and conceptual criteria52–56. Perceived  
similarity is therefore ideally suited for revealing behaviourally relevant 
representational dimensions and how these dimensions are reflected 
in cortical patterns of brain activity.

To uncover the nature of behaviourally relevant selectivity under-
lying similarity judgements in human visual cortex, in the present  
study we paired functional MRI (fMRI) responses to thousands of  
object images57 with core representational dimensions derived from 
a dataset of millions of human similarity judgements. In contrast 
to much previous research that has focused on a small number of 
hypothesis-driven dimensions or that used small, selective image 
sets29,48–51,58–60, we carried out a comprehensive characterization of 
cortical selectivity in response to 66 representational dimensions 
identified in a data-driven fashion for 1,854 objects52,61.

Moving beyond the view that mental object representations 
derived from similarity judgements are primarily mirrored in high-level 
visual cortex48–50,57, we demonstrate that representations underlying 
core object dimensions are reflected throughout the entire visual 
cortex. Our results reveal that cortical tuning to these dimensions  
captures the functional topography of visual cortex and mirrors  
stimulus selectivity throughout the visual hierarchy. In this multi-
dimensional representation, category selectivity stands out as a special 
case of sparse selectivity to a set of core representational object dimen-
sions, while other parts of visual cortex reflect a more mixed selectivity. 
A direct model comparison revealed that continuous object dimen-
sions provide a better model of brain responses than categories across 
the visual system, suggesting that dimension-related tuning maps 
offer more explanatory power than a category-centric framework. 
Together, our findings reveal the importance of behaviour-derived 
object dimensions for understanding the functional organization  
of the visual system and offer a broader, comprehensive view of object 
representations that bridges the gap between regional specialization 
and domain-general topography.

Results
We first aimed at mapping core representational object dimensions to 
patterns of brain activity associated with visually perceived objects. 
To model the neural representation of objects while accounting  
for their large visual and semantic variability62,63, we used the 
THINGS-data collection57, which includes densely sampled fMRI data 
for thousands of naturalistic object images from 720 semantically 
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primarily to higher-level visual cortex49–51,57, our dimension-based 
approach revealed that behaviourally relevant information about 
objects is much more distributed throughout the visual processing 
hierarchy, including the earliest cortical processing stages.

Behaviour-derived object dimensions reflect the functional 
topography of the human visual system
Having identified where information about perceived similarity is 
encoded, we next explored the spatial layout of each individual dimen-
sion underlying this representation. By using a voxel-encoding model 
of interpretable object dimensions, it is possible to inspect the cortical 
distribution of the weights of each regressor separately and interpret 
them in a meaningful fashion. This has two benefits. First, it allows 
us to probe to what degree behaviour-derived dimensions alone can 
capture the known topography of visual cortex. Second, it allows us to 
identify novel topographic patterns across visual cortex. This provides 
important insights into how the topography of visual cortex reflects 
object information relevant to behaviour and how functionally special-
ized regions are situated in this cortical landscape.

Visualizing the voxel-wise regression weights for each object 
dimension on the cortical surface (Fig. 3) revealed a clear corres-
pondence between numerous dimensions and characteristic, 
known topographic patterns of the visual system. For example, the 
‘animal-related’ dimension mirrors the well-established spoke-like 
tuning gradient for animate versus inanimate objects29, while dimen-
sions such as ‘head-related’ and ‘body-part-related’ differentiate the 
regional selectivity for faces and body parts in the fusiform face area 
(FFA), occipital face area (OFA) and extrastriate body area (EBA)6,7,71. 
Likewise, the implicit inclusion of natural scenes as object back-
grounds revealed scene-content-related dimensions (for example, 
‘house/furnishing-related’, ‘transportation/movement-related’ and 

‘outdoors’), which were found to be associated with scene-selective 
brain regions such as parahippocampal place area (PPA), medial place 
area (MPA) and occipital place area (OPA)8,72–76. Our approach also inde-
pendently identified a ‘food-related’ dimension in areas adjacent to the 
fusiform gyrus, in line with recently reported clusters responding selec-
tively to food stimuli77–79. A dimension related to tools (‘tool-related/
handheld/elongated’) also matched expected activation patterns in 
middle temporal gyrus11,80,81. Furthermore, dimensions related to low- 
to mid-level visual features (for example, ‘grid/grating-related’ and 
‘repetitive/spiky’) reflected responses primarily in early visual cortex.

Beyond these established topographies, the results also revealed 
numerous additional topographic patterns. For example, one 
dimension reflected small, non-mammalian animals (‘bug-related/
non-mammalian/disgusting’) that was clearly distinct from the 
‘animal-related’ dimension by lacking responses in face and body 
selective regions. Another dimension reflected a widely distributed 
pattern in response to thin, flat objects (‘thin/flat/wrapping’). Our 
approach thus allowed for the identification of candidate functional 
selectivities in visual cortex that might have gone undetected with more 
traditional approaches based on proposed categories or features47,77. 
Importantly, the functional topographies of most object dimensions 
were also found to be highly consistent across the three participants in 
this dataset (Supplementary Fig. 4) and largely similar to participants 
in an independent, external dataset (Supplementary Fig. 2), suggest-
ing that these topographies may reflect general organizing principles 
rather than idiosyncratic effects (Supplementary Fig. 4 and Extended 
Data Figs. 1–6).

Together, our results uncover cortical maps of object dimensions 
underlying the perceived similarity between objects. These maps  
span extensive portions of the visual cortex, capturing topographic 
characteristics such as tuning gradients of object animacy, lower-level 
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Fig. 1 | An fMRI encoding model of object dimensions underlying human 
similarity judgements. We linked core representational dimensions capturing 
the behavioural relevance of objects to spatially resolved neural responses to 
thousands of object images. For this, we used the THINGS-data collection57, 
which includes fMRI and behavioural responses to objects from the THINGS 
object concept and image database82. The behavioural data were used to train a 
computational model of core object dimensions underlying human similarity 
judgements on different object concepts. We extended this embedding to the 

level of individual object images on the basis of the computer vision model 
CLIP-ViT64. The fMRI data comprise three participants who each saw 8,740 unique 
object images. We used an encoding model of the object dimension embedding 
to predict fMRI responses to each image in each voxel. The estimated encoding 
model weights reflect the tuning of each voxel to each object dimension. X, B and 
Y denote the design matrix, regression weights and outcome of the encoding 
model, respectively.
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visual feature tuning in early visual cortex and category-selective, 
higher-level regions while uncovering new candidate selectivities. 
These findings thus support an organizing principle where multiple, 
superimposing cortical tuning maps for core object properties col-
lectively represent behaviourally relevant information about objects.

Cortical tuning to behaviour-derived object dimensions 
explains regional functional selectivity
Having delineated the multidimensional topographic maps across 
visual cortex, we next homed in on individual brain regions to deter-
mine their functional selectivity as defined by their response tuning 
across these behaviour-derived dimensions. To this end, we developed 
a high-throughput method to identify object images representative for 
specific brain regions. Specifically, we first determined a functional 
tuning profile across dimensions for each region of interest based 
on the region’s mean encoding model weights. Next, we identified 
images whose behavioural dimension profile best matched the func-
tional tuning profile of the brain region. To this end, we used all 26,107 
object images in the THINGS database82, most of which were unseen 
by participants, and assessed the cosine similarity between the dimen-
sion profiles of brain regions and images. This enabled us to rank over 

26,000 images on the basis of their similarity to a given brain region’s 
functional tuning profile.

Despite having been fitted solely on the 66-dimensional similarity 
embedding, our approach successfully identified diverse functional 
selectivities of visual brain regions (Fig. 4). For instance, the most 
representative images for early visual regions (primary to tertiary 
visual cortex, V1–V3) contained fine-scale, colourful and repeating 
visual features, consistent with known representations of oriented 
edges and colour in these areas83,84. These patterns appeared more 
fine-grained in earlier (V1 or V2) than in later retinotopic regions 
(human V4, hV4), potentially reflecting increased receptive field size 
along the retinotopic hierarchy85–87. A similar finding is reflected in 
dimension selectivity profiles (Fig. 4), revealing higher colour selec-
tivity in hV4 than in early retinotopic regions V1–V3 while yielding 
reductions in the ‘repetitive/spiky’ dimension. Notably, tuning profiles 
in category-selective regions aligned with images of expected object 
categories: faces in face-selective regions (FFA and OFA), body parts 
in body-part-selective regions (EBA) and scenes in scene-selective 
regions (PPA, OPA and MPA). Closer inspection of the tuning profiles 
revealed differences between regions that respond to the same basic 
object category, such as a stronger response to the ‘body-part-related’ 
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Prediction accuracy (R2)

0 0.5

Fig. 2 | Prediction accuracy of the fMRI voxel-wise encoding model based on 
66 core object dimensions. a, Prediction accuracy for one example participant 
(P1) visualized on a cortical flat map (centre) and inflated views of the cortical 
surface (corners). b, Results for the other two participants visualized on 
cortical flat maps. The colours indicate the proportion of explained variance 

(noise-ceiling-corrected R2) of held-out data in a 12-fold between-session cross-
validation. The white outlines indicate regions of interest defined in separate 
localizer experiments: FFA, OFA, posterior superior temporal sulcus (pSTS),  
EBA, PPA, OPA, MPA and V1–V3.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01980-y

dimension in OPA but not in other place-selective regions. Also, selec-
tivity to faces (FFA and OFA) versus body parts (EBA) appeared to be 
driven by the response magnitude to the ‘head-related’ dimension, 
while tuning to the remaining dimensions was highly similar across 
these regions. Together, these findings demonstrate that the 66 object 
dimensions derived from behaviour capture the selectivity across  
the visual processing hierarchy, highlighting the explanatory power of 
the dimensional framework for characterizing the functional architec-
ture of the visual system.

Category-selective brain regions are sparsely tuned to 
behaviour-derived object dimensions
Given that dimensional tuning profiles effectively captured the selec-
tivity of diverse visual regions, we asked what factors distinguish 
category-selective visual brain regions from non-category-selective 
regions in this dimensional framework. We reasoned that category 
selectivity reflects a sparsely tuned representation, where activity in 
category-selective regions is driven by only a few dimensions, while 
non-category-selective regions reflect a more mixed selectivity, with 

Animal-related (#3) Head-related (#51)Body-part-related (#30)

Food-related (#2) House/furnishing-related (#6) Outdoors (#13)

Tool-related/handheld/elongated (#17)

Repetitive/spiky (#34) Thin/�at/wrapping (#60) Bug-related/non-mammalian/disgusting (#40)

Grid/grating-related (#33)

–0.05 0 0.05

Transportation/
movement-related (#8)

β

Fig. 3 | Functional tuning maps to individual object dimensions. Example maps for 12 of the 66 dimensions for participant P1. Each panel shows the encoding model 
weights for one object dimension projected onto the flattened cortical surface. The numbers in the panel labels show the dimension number in the embedding.
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activity related to a larger number of dimensions. In this way, func-
tionally specialized, category-selective regions might stand out as 
an extreme case of multidimensional tuning. As a consequence, this 
would also make it easier to identify category-selective regions due to 
their sparser selectivity.

To quantify this, we estimated a measure of sparseness over the 
encoding model weights in each voxel. Large sparseness indicates 
regions that are selective to very few dimensions, while lower sparse-
ness indicates a dense representation in regions that respond broadly 
to diverse dimensions. Our results (Fig. 5a) indeed revealed sparser 
tuning in category-selective regions than in other parts of the visual sys-
tem. This effect was most pronounced in face- and body-part-selective 
regions (FFA, OFA and EBA), with the sparsest tuning across all par-
ticipants. The face-selective posterior superior temporal sulcus 
exhibited particularly sparse representation in Participants 1 and 2, 
while this region was not present in Participant 3 and, as expected, 
yielded no increase in sparseness. Scene-selective regions (PPA, MPA 
and OPA) also exhibited sparseness, though the effects were more vari-
able across participants, which could arise from the representational 
dimensions being derived from objects within scenes, as opposed 
to isolated scene images without a focus on individual objects. Con-
versely, non-category-selective regions, such as early visual cortices, 
clearly exhibited dense representations. These findings suggest that 
category-selective regions, while responsive to multiple dimensions, 
may primarily respond to a small subset of behaviourally relevant 
dimensions. Thus, in a multidimensional representational framework, 

category selectivity may reflect a special case of sparse tuning within 
a broader set of distributed dimension tuning maps.

Beyond the increased sparseness in functionally selective clusters, 
which had been defined in an independent localizer experiment57, we 
explored to what degree we could use sparseness maps for revealing 
additional, potentially novel functionally selective regions. To this end, 
we identified two clusters with consistently high sparseness values 
across participants (Fig. 5b). One cluster was located in the right hemi-
sphere anterior to anatomically defined area FG4 (ref. 88) and between 
the functionally defined FFA and anterior temporal face patch89, with 
no preferential response to human faces in two of three participants 
in a separate functional localizer. The other cluster was located in 
orbitofrontal cortex, coinciding with anatomically defined area Fo3 
between the olfactory and medial orbital sulci90. Having identified 
these clusters, we extracted regional tuning profiles and determined 
the most representative object images for each cluster. Inspection of 
the tuning profiles in these sparsely tuned regions revealed that their 
responses were best captured by images of animal faces for the region 
anterior to FFA and sweet food for orbitofrontal cortex (Fig. 5c). While 
the results in orbitofrontal cortex are in line with the motivational 
importance of rewarding foods and food representations in frontal 
regions78,91–94, the selective response to animal faces in the cluster 
anterior to FFA deserves further study. By identifying regional response 
selectivity in a data-driven fashion95, the results show that sparse tuning 
can aid in localizing functionally selective brain regions, corroborating 
the link between representational dimensions and regional selectivity.
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Fig. 4 | Regional tuning profiles across 66 object dimensions and 
representative images for selectivity of each region of interest in visual 
cortex. The rose plots indicate the magnitude of tuning for each object 
dimension in a given visual brain region. The image panels show eight images 
with the most similar model representation to the regional tuning profile. For 

copyright reasons, all original images have been replaced with visually similar 
images, and images of minors for which no permission could be obtained have 
been replaced with images of adults (marked with asterisks). The original images 
are available upon request. Photos from Pixabay.com and Pexels.com.
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Object dimensions offer a better account of visual cortex 
responses than categories
If representational dimensions offer a better account of the func-
tion of ventral visual cortex than categorization, this would predict  
that they have superior explanatory power for brain responses to  
visually perceived objects in these regions47,96. To compare these 
accounts formally, we compiled a multidimensional and a categori-
cal model of object responses and compared the amount of shared 
and unique variance explained by these models (for an exploratory 

comparison with object shape, see Supplementary Fig. 6 and Sup-
plementary Methods 2). We first constructed a category model by 
assigning all objects appearing in the presented images into 50 com-
mon high-level categories (for example, ‘animal’, ‘bird’, ‘body part’, 
‘clothing’, ‘food’, ‘fruit’ and ‘vehicle’) available as part of the THINGS 
metadata97. To account for the known selectivity to faces and body 
parts, we additionally labelled images in which faces or body parts 
appeared and included them as two additional categories. Then, for 
each category, we determined the most diagnostic object dimension. 
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Fig. 5 | Representational sparseness of behaviour-derived object dimensions 
in object-category-selective brain regions. a, Inflated cortical surfaces for 
Participant 1 showing the sparseness over the encoding model weights in each 
voxel. The colours indicate z values of sparseness compared with a noise pool 
of voxels thresholded at P < 0.05 (one-sided, uncorrected). b, Ventral view of 
the right hemisphere for all three participants. The round outlines illustrate 

the locations of two explorative, sparsely tuned regions of interest: one in the 
fusiform gyrus and one in orbitofrontal cortex. c, Functional selectivity of 
these explorative regions of interest demonstrated by their multidimensional 
tuning profiles and most representative object images. For copyright reasons, 
all original images have been replaced with visually similar images. The original 
images are available upon request. Photos from Pixabay.com and Pexels.com.
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Since some dimensions mapped to multiple categories, this resulted in 
a model of 30 object dimensions. On the basis of the 52 categories and 
the 30 dimensions, we fit two encoding models to the fMRI single-trial 
responses and performed variance partitioning to disentangle the 
relative contributions of the object category and dimension models 
to the cross-validated prediction.

The results (Fig. 6) demonstrate that both object dimensions 
and categories shared a large degree of variance in explaining brain 
responses, especially in higher-level ventro-temporal and lateral occipi-
tal cortices (median, 19%; maximum, 74% shared explained variance) 
and to a lesser extent in early visual regions (median, 4%; maximum, 
19% shared explained variance). This suggests that both models are 
well suited for predicting responses in the visual system. However, 
when we inspected the unique variance explained by either model, 
object dimensions explained a much larger amount of additional 
variance than object categories (Supplementary Fig. 5). This gain 
in explained variance was not only evident in higher-level regions 
(median, 10%; maximum, 35% unique explained variance), where both 

models performed well, but extended across large parts of visual cor-
tex, including early visual regions (median, 8%; maximum, 35% unique 
explained variance), suggesting that behaviour-derived dimensions 
captured information not accounted for by categories. Conversely, cat-
egory membership added little unique explained variance throughout 
the visual system (median, 1 %; maximum, 11%), reaching larger values 
in higher-level regions (median, 2%; maximum, 11% unique explained 
variance). Together, these results indicate that a multidimensional 
model offers an account with more explanatory value than a category 
model, supporting the idea that capturing behaviourally relevant 
responses in the visual system requires moving beyond categorization 
and suggesting object dimensions as a suitable model of encoding the 
behavioural relevance of objects.

Discussion
Determining how the human brain represents object properties that 
inform our broad range of behaviours is crucial for understanding  
how we make sense of our visual world and act on it in meaningful ways. 
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Fig. 6 | Comparison of a continuous dimensional model and a categorical 
model of object responses. a, Shared variance in single-trial fMRI responses 
explained by both models. b, Variance explained uniquely by a multidimensional 
model. c, Variance explained uniquely by a model of object categories. The flat 

maps show the left hemisphere of each participant. The colours indicate the 
proportion of explained variance (noise-ceiling-corrected R2) from variance 
partitioning.
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Here we identified behaviour-derived brain representations by predict-
ing fMRI responses to thousands of object images with 66 interpretable 
representational dimensions underlying millions of object similarity 
judgements. The results reveal that this behaviourally relevant infor-
mation is mirrored in activity patterns throughout the entire visual 
processing hierarchy, emphasizing the importance of considering 
the entire system for identifying the behavioural relevance of visual 
responses. The diverse image selectivity of different visual brain regions 
emerged from the multidimensional tuning profiles in this distri buted 
representation. This suggests that behaviour-derived dimensions  
offer a broadly applicable model for understanding the architecture 
of the visual system in which category-selective regions stand out as a 
special case of sparse tuning. A direct model comparison confirmed 
that such a multidimensional account has more explanatory value than 
a category-centric account.

Much work on the behavioural relevance of object responses in 
occipitotemporal cortex has focused primarily on a limited number 
of behavioural goals, such as recognition and high-level categoriza-
tion20–22,28,74,96. According to this view, high-level visual regions contain 
representations that abstract from factors non-essential for recogni-
tion and categorization, such as position, colour or texture3,98,99. Our 
findings provide an alternative perspective on the nature of cortical  
object representations that may offer greater explanatory power 
than this traditional view. By considering a richer representation of 
objects supporting broader behavioural goals23, object information is 
no longer restricted to the commonalities between objects based on 
how we label them. In this framework, even responses in early visual 
cortex to images from high-level categories such as food77,78, which 
would traditionally be disregarded as lower-level confounds based on 
texture or colour, are relevant information supporting the processing 
of behaviourally relevant visual inputs. In this perspective, object vision 
solves the more general problem of providing a rich representation  
of the visual environment capable of informing a diverse array of  
behavioural domains23.

While our results favour a distributed view of object representa-
tions, localized response selectivity for ecologically important object 
stimuli has been replicated consistently, underscoring the functional 
importance of specialized clusters. Regional specialization and dis-
tributed representations have traditionally been seen as opposing 
levels of description37,38. In contrast, our study advances a framework 
for unifying these perspectives by demonstrating that, compared 
with other visual regions, category-selective clusters exhibit sparse 
response tuning profiles. This framework treats regional specializa-
tion not as an isolated phenomenon but rather as a special case within 
a more general organizing principle. It thus provides a more general 
view of object representations that acknowledges the importance of 
regional specialization in the broader context of a multidimensional 
topography.

One limitation of our study is that we did not identify behaviour- 
derived dimensions specific to each individual participant tested 
in the MRI. Instead, dimensions were based on a separate popula-
tion of participants. However, our findings were highly replicable 
across the three participants for most dimensions, suggesting that 
these dimensions reflect general organizing principles rather than 
idiosyncratic effects (Supplementary Fig. 4). Of note, some dimen-
sions did not replicate well (for example, ‘feminine (stereotypical)’, 
‘hobby-related’ or ‘foot/walking-related’; Supplementary Fig. 4), which 
indicates that our fitting procedure does not yield replicable brain 
activity patterns for any arbitrary dimension. Future work may test the 
degree to which these results generalize to other dimensions identi-
fied through behaviour. Additionally, applying our approach to an 
external fMRI dataset (Supplementary Methods 1) revealed similarly 
distributed responses, with highly similar dimension tuning maps, sug-
gesting that our findings generalize to independent participants (Sup-
plementary Fig. 2). Future work could test the extent to which these 

results generalize to the broader population and how they vary between 
individuals. Furthermore, despite the broad diversity of objects used 
in the present study, our work excluded non-object images such as 
text82. While the effects of representational sparseness were less pro-
nounced in scene-selective regions and largely absent in text-selective 
regions10, our encoding model significantly predicted brain responses 
in scene-selective regions (Supplementary Fig. 3), indicating validity 
beyond isolated objects. Future research may extend these insights by 
exploring additional image classes. Moreover, our use of a pre-trained 
computational model64 to obtain predicted dimension values might 
have underestimated the performance of the object embedding in 
predicting brain responses or may have selectively improved the fit 
of some dimensions more than that of others. Future studies could 
test whether using empirically measured dimension values for each 
image would lead to refined dimension maps. Finally, we reported 
results based on noise-ceiling-corrected R2 values. While noise-ceiling 
normalization is common practice when interpreting encoding model 
results to make them more comparable, the degree to which the results 
would generalize if noise ceilings were much higher could probably 
only be addressed with much larger yet similarly broad datasets.

While the behaviour-derived dimensions used in this study were 
highly predictive of perceived similarity judgements and object cate-
gorization52, there are many possible behaviours not captured by 
this approach. Here we used representational dimensions underlying 
similarity judgements to contrast with the category-centric approach. 
We chose similarity judgements as a common proxy for mental object 
representations, since they underlie various behavioural goals, includ-
ing categorization and recognition52–56. Future work could test the 
extent to which other behaviours or computational approaches carry 
additional explanatory value15,49,51,100,101. This would also allow estab-
lishing the causal relevance of these activity patterns in behavioural 
readout13,15,17,102.

Given the explanatory power of our dimensional framework, our 
results may be interpreted as hinting at an alternative explanation 
of traditional stimulus-driven feature selectivity through the lens of 
behavioural relevance103, where the emergence of feature selectivity 
may exist because of the potential for efficient behavioural readout. 
Since the dimensions used in this study probably do not capture all 
behaviourally relevant selectivity, our approach does not allow test-
ing this strong assumption. For example, a direct comparison of our 
embedding with the predictive performance of a Gabor wavelet pyra-
mid model104 or state-of-the-art deep neural network models68 would 
neither support nor refute this idea. Future work could specifically 
target selectivity to individual visual features to determine the degree 
to which these representations are accessible to behavioural readout  
and thus may alternatively be explained in terms of behavioural  
relevance, rather than feature selectivity.

In conclusion, our work provides a multidimensional framework 
that aligns with the rich and diverse behavioural relevance of objects. 
This approach promises increased explanatory power relative to a 
category-centric framework and integrates regional specialization 
within a broader organizing principle, thus offering a promising per-
spective for understanding how we make sense of our visual world.

Methods
THINGS-data
We relied on the openly available THINGS-data collection to investigate 
the brain representation of everyday objects57. THINGS-data include 
4.7 million human similarity judgements as well as neural responses 
measured with fMRI to thousands of naturalistic and broadly sam-
pled object images. The collection also includes a representational 
embedding of core object dimensions learned from the similarity 
judgements, which predicts unseen human similarity judgements 
with high accuracy and offers an interpretable account of the mental 
representation of objects52,57. Here we used these object dimensions 
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to predict fMRI responses to object images. All data generation and 
processing methods are described in detail in the original data publica-
tion57 and are only summarized here.

Participants
The MRI dataset in the THINGS-data collection comprises data from 
three healthy volunteers (two female, one male; mean age, 25.33 years). 
The participants had normal or corrected-to-normal visual acuity  
and were right-handed. The behavioural dataset in the THINGS-data 
collection was obtained from 12,340 participants through the crowd-
sourcing platform Amazon Mechanical Turk (6,619 female, 4,400 
male, 56 other, 1,065 not reported; mean age, 36.71 years; s.d., 11.87 
years; n = 5,170 no age reported). The participants provided informed 
consent in participation and data sharing, and they received finan-
cial compensation for taking part in the studies. Data acquisition of 
the THINGS-data collection was approved by the National Institutes 
of Health Institutional Review Board (study protocol 93 M-0170, 
NCT00001360).

Stimuli
All images were taken from the THINGS database82. The THINGS data-
base contains 26,107 high-quality, coloured images of 1,854 object 
concepts from a wide range of nameable living and non-living objects, 
including non-countable substances (for example, ‘grass’), faces (for 
example, ‘baby’, ‘boy’ and ‘face’) and body parts (for example, ‘arm’, 
‘leg’ and ‘shoulder’). The stimuli presented during fMRI included 720 
object concepts from the THINGS database, with the first 12 examples 
of each concept selected for a total of 8,640 images. In addition, 100 
of the remaining THINGS images were presented repeatedly in each 
session to estimate data reliability.

Experimental procedure
Participants in the THINGS-fMRI experiment took part in 15–16 scan-
ning sessions, with the first 1–2 sessions serving to acquire individual 
functional localizers for retinotopic visual areas and category-selective 
clusters (faces, body parts, scenes, words and objects). The main fMRI 
experiment comprised 12 sessions where participants were presented 
with the 11,040 THINGS images (8,740 unique images, catch trials 
excluded, 500 ms presentation followed by 4 s of fixation). For details 
on the procedure of the fMRI and behavioural experiments, please 
consult the original publication of the datasets57.

Behavioural similarity judgements in the THINGS-data collec-
tion were collected in a triplet odd-one-out study using the online 
crowdsourcing platform Amazon Mechanical Turk. The participants 
were presented with three object images side by side and were asked to 
indicate which object they perceived to be the odd one out. Each task 
comprised 20 odd-one-out trials, and the participants could perform 
as many tasks as they liked.

MRI data acquisition and preprocessing
Whole-brain fMRI images were acquired with 2 mm isotropic resolu-
tion and a repetition time of 1.5 s. The MRI data were preprocessed 
with the standard pipeline fMRIPrep105, which included slice time cor-
rection, head motion correction, susceptibility distortion correc-
tion, co-registration between functional and T1-weighted anatomical 
images, brain tissue segmentation, and cortical surface reconstruction. 
Additionally, cortical flat maps were manually generated106. The fMRI 
data were denoised with a semi-automated procedure based on inde-
pendent component analysis, which was developed specifically for the 
THINGS-fMRI dataset. The retinotopic mapping data and functional 
localizer data were used to define retinotopic visual regions as well as 
the category-selective regions used in this study. Image-wise response 
estimates were obtained by fitting a single-trial model to the fMRI time 
series of each functional run while accounting for variation in haemo-
dynamic response shape and mitigating overfitting107–109.

Behavioural embedding
To predict the neural response to seen objects, we used a recent, openly 
available model of representational dimensions underlying human 
similarity judgements of objects52. This model was trained to esti-
mate a low-dimensional, sparse and non-negative embedding predic-
tive of individual trial choices in an odd-one-out task on 1,854 object 
images. The dimensions of this embedding have been demonstrated 
to be highly predictive of human similarity judgements while yielding 
human-interpretable dimensions reflecting both perceptual (for exam-
ple, ‘red’ and ‘round’) and conceptual (for example, ‘animal-related’) 
object properties. We used a recent 66-dimensional embedding trained 
on 4.7 million odd-one-out judgements on triplets of 1,854 object 
images57.

While the original embedding was trained on one example image 
for each of the 1,854 object concepts, it may not account for differ-
ences between exemplars of the same object concept. For example, 
the colour of the apple the model was trained on might have been red, 
while we also presented participants with images of a green apple. 
This may underestimate the model’s potential to capture variance 
in brain responses to visually presented object images. To address 
this, we extended the original embedding by predicting the 66 object 
dimensions for each individual image in the THINGS database82. To 
this end, we used the neural network model CLIP-ViT, which is a mul-
timodal model trained on image–text pairs and which was recently 
demonstrated to yield excellent prediction of human similarity judge-
ments65,69. For each of the 1,854 object images, we extracted the activity 
pattern from the final layer of the image encoder. Then, for each of the 
66 dimensions, we fitted a ridge regression model to predict dimen-
sion values, using cross-validation to determine the regularization 
hyperparameter. Finally, we applied the learned regression model to 
activations for all images in the THINGS database. This resulted is a 
66-dimensional embedding that captures the mental representation of 
all 26,107 THINGS images. We used these predicted dimension values to 
predict fMRI responses to the subset of 8,740 unique images presented 
in fMRI, which yielded consistent improvements in explained variance 
for all dimensions (Supplementary Fig. 1).

Encoding model
We used a voxel-wise encoding model of the 66-dimensional similarity 
embedding to predict image-wise fMRI responses to test (1) how well 
the model predicts neural responses in different parts of the visual 
system and (2) how neural tuning to individual dimensions maps onto 
the topography of visual cortex.

Linear regression on fMRI single-trial estimates. To test how well the 
core object dimensions predict brain responses in different parts of the 
visual system, we fit them to the fMRI single-trial response estimates 
using ordinary least squares regression. While most analyses in this 
work rely on a more powerful parametric modulation model estimated 
on time-series data (see below), we used single-trial responses for esti-
mating the predictivity of the object dimensions, since this approach 
does not require extracting the contribution of the parametric modula-
tors for estimating the explained variance of the general linear model. 
We evaluated the prediction performance of this encoding model in a 
leave-one-session-out cross-validation, using the average correlation 
between predicted and observed fMRI responses across folds. Within 
each cross-validation fold, we also computed a null distribution of cor-
relation values based on 10,000 random permutations of the held-out 
test data. To assess statistical significance, we obtained voxel-wise  
P values by comparing the estimated correlation with the generated 
null distribution and corrected for multiple comparisons on the basis of 
a false discovery rate of P < 0.01. We computed noise-ceiling-corrected 
R2 values by dividing the original R2 of the model by the noise ceiling 
estimates, for each voxel separately. These single-trial noise ceilings 
(Supplementary Fig. 7) were provided with the fMRI dataset and were 
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computed on the basis of estimates of the signal and noise variance, 
which were based on the variability of responses to repeatedly pre-
sented images57.

Parametric modulation on fMRI time series. To evaluate the con-
tribution of individual object dimensions to the neural response in a 
given voxel, we used a parametric modulation model on the voxel-wise 
time-series data. In this parametric modulation, a general onset regres-
sor accounts for the average response across all trials, and a set of 66 
parametric modulators account for the modulation of the BOLD signal 
by individual object dimensions. To compile the parametric modula-
tion model, we constructed dimension-specific onset regressors and 
mean-centred each parametric modulator to make them orthogonal to 
the general onset regressor. We then convolved these regressors with 
a haemodynamic response function (HRF) to obtain predictors of the 
BOLD response. To account for variation in the shape of the HRF, we 
determined the best-fitting HRF for each voxel on the basis of a library 
of 20 HRFs107,108. The resulting design matrix was then concatenated 
and fit to the fMRI time-series data. To mitigate overfitting, we regu-
larized the regression weights using fractional ridge regression109. We 
chose a range of regularization parameters from 0.10 to 0.90 in steps 
of 0.10 and from 0.90 to 1.00 in steps of 0.01 to more densely sample 
values that reflect less regularization. We determined the best hyper-
parameter combination (20 HRFs and 26 regularization parameters) 
for each voxel on the basis of the amount of variance explained in a 
12-fold between-session cross-validation. Finally, we fit the model with 
the best hyperparameter combination per voxel to the entire dataset, 
yielding 66 statistical maps of regression weights representing the 
voxel-wise contribution of individual object dimensions in predicting 
the fMRI signal. The regularization hyperparameter turned out to be 
small throughout visual cortex (Supplementary Fig. 8), demonstrating 
that the regularization of regression weights had little impact on the 
absolute size of regression weights. While our analysis was focused on 
individual participants, we also estimated the consistency of the tuning 
maps of individual dimensions across participants. To this end, we used 
a number of individually defined regions of interest as anchor points 
for quantifying similarities and differences between these maps. First, 
for each dimension separately, we obtained mean β patterns across 
these regions, including early visual retinotopic areas (V1–V3 and 
hV4) as well as face- (FFA and OFA), body- (EBA) and scene-selective 
(PPA, OPA and MPA) regions. Face-, body- and scene-selective regions 
were analysed separately for each hemisphere to account for poten-
tial lateralized effects, and voxels with a noise ceiling smaller than 2% 
were excluded from the analysis. Finally, to quantify the replicability 
across participants, we computed the inter-participant correlation 
on the basis of these mean β patterns, separately for each dimension 
(Supplementary Fig. 4).

Regional tuning profiles and most representative object 
images
To explore the functional selectivity implied by regional tuning to core 
object dimensions, we extracted tuning profiles for different visual 
brain regions and related them to the multidimensional representation 
of all object images in the THINGS database82 using a high-throughput 
approach. First, we extracted the regression weights resulting from 
the parametric modulation model in different visual brain regions: V1, 
V2, V3, hV4, OFA, FFA, EBA, PPA, MPA and OPA. We then averaged these 
regional tuning profiles across participants and set negative weights 
to zero, given that the predicted dimensions reflect non-negative 
values as well. We plotted the regional tuning profiles as rose plots to 
visualize the representation of core object dimensions in these brain 
regions. To explore the regional selectivity for specific object images, 
we determined the cosine similarity between each regional tuning 
profile and the model representation of all 26,107 images in the THINGS 
database. This allowed us to identify those THINGS images that are 

most representative of the local representational profile in different 
visual brain regions.

Representational sparseness
We estimated the sparseness of the representation of core object dimen-
sions on the basis of the regression weights from the parametric modula-
tion model. Given our aim of identifying local clusters of similarly tuned 
voxels, we performed spatial smoothing on the regression weight maps 
(4 mm full-width at half-maximum) to increase the spatial signal-to-noise 
ratio. We then took the vectors representing the 66-dimensional  
tuning profile for each voxel and removed negative vector elements, 
mirroring the analysis of the regional tuning profiles. We computed 
the sparseness of the resulting voxel-wise tuning vectors on the basis 
of a previously introduced sparseness measure, which is based on the 
normalized relationship between the L-1 and L-2 norm of a vector110:

s(x) =
√n −∑ |xi|/√∑ xi2

√n − 1

where s indicates the sparseness of the n-dimensional input vector x.  
A sparseness value of 1 indicates a perfectly sparse representation 
where all vector elements except one have the same value. In turn, a 
value of 0 indicates a perfectly dense representation where all elements 
have identical values. We computed this sparseness measure over the 
regression weights in each voxel, which yielded a sparseness measure 
as a single value per voxel. To assess their statistical significance, we 
first identified the distribution of sparseness values in a noise pool of 
voxels. This noise pool included voxels where the parametric modula-
tion model predicted the fMRI signal poorly in the cross-validation 
procedure (R2 < 0.0001). Since visual inspection of sparseness histo-
grams suggested a log-normal distribution, we log-transformed all 
sparseness values to convert them to a normal distribution. Finally, 
we estimated the mean and standard deviation of the sparseness dis-
tribution in the noise pool, allowing us to obtain z and P values of the 
sparseness in each voxel.

On the basis of these results, we explored whether local clusters 
of representational sparseness are indicative of brain regions with 
high functional selectivity. To this end, we identified two regional 
clusters of high sparseness values which were present in all participants  
and which had not yet been defined on the basis of the functional local-
izer experiment (see ‘MRI data acquisition and preprocessing’). On 
the basis of visual inspection of the sparseness maps, we defined two 
regions of interest. The first region of interest was located in the right  
ventro-temporal cortex, anterior to anatomically defined area FG4 (ref. 88)  
and functionally defined FFA, but posterior to the anterior temporal 
face patch89. The second region of interest was located in the orbitofron-
tal cortex. We probed the functional selectivity of these sparsely tuned 
regions by extracting regional tuning profiles and determining the 
most representative object images as described in the previous section.

Variance partitioning of object-category-based versus 
dimension-based models
The aim of the variance partitioning was to test whether object dimen-
sions or object categories offer a better model of neural responses 
to object images. To this end, we compiled a multidimensional and 
categorical model and compared the respective amount of shared and 
unique variance explained by these models.

We used 50 superordinate object categories provided in the 
THINGSplus metadata collection to construct a category encoding 
model97 (see Supplementary Methods 3 for a full list). To account for 
cases where images contained multiple objects (for example, an image 
of ‘ring’ might also contain a finger), we used the image annotations in 
the THINGSplus metadata97 and manually matched these annotations 
to objects in the THINGS database for all images presented in the fMRI 
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experiment. Lastly, we added two more categories by manually identify-
ing images containing human faces or body parts. We then compiled 
an encoding model with 52 binary regressors encoding the high-level 
categories of all respective objects.

Next, we compiled a corresponding encoding model of object 
dimensions. Note that we predicted that this model would outperform 
the categorical model in explaining variance in neural responses. To 
conservatively test this prediction, we biased our analysis in favour of 
the categorical model by selecting fewer dimensions than categories. 
To this end, for each category we identified the object dimension with 
the strongest relationship based on the area under the curve metric. 
Since some dimensions are diagnostic for multiple categories (for 
example, ‘animal-related’ might be the most diagnostic dimension 
for both ‘bird’ and ‘insect’), this resulted in a one-to-many mapping  
between 30 dimensions and 50 categories (see Supplementary  
Methods 3 for a full list of selected dimensions).

To compare the predictive potential of these two models, we fitted 
them to the fMRI single-trial responses in a voxel-wise linear regres-
sion and performed variance partitioning. To estimate the uniquely 
explained variance, we first orthogonalized the target model and the 
data with respect to the other model111. This effectively removed the 
shared variance from both the target model and the data. We then fit 
the residuals of the target model to the residuals of the data and calcu-
lated the coefficient of determination (R2) in a 12-fold between-session 
cross-validation as an estimate of the unique variance explained by the 
target model. We then estimated the overall variance explained by both 
models by concatenating the two models, fitting the resulting com-
bined model to the data and determining the cross-validated R2 esti-
mate. Lastly, we computed an estimate of the shared variance explained 
by the two models by subtracting the uniquely explained vari ances  
from the overall explained variance. For visualization purposes,  
R2 values were normalized by the noise ceiling estimates provided 
with the fMRI dataset57 (Supplementary Fig. 7). We also visualized the 
relationship between the performance of both models quantitatively. 
To that end, we selected voxels with a noise ceiling of greater than 5% in 
early (V1–V3) and higher-level (face-, body- and scene-selective) regions 
of interest and created scatter plots comparing the variance uniquely 
explained by the category- and dimensions-based models in these 
voxels (Supplementary Fig. 5). To summarize the extent of explained 
variance, we computed median and maximum values for the shared 
and unique explained variances in these voxels.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting our analyses were obtained from the publicly 
available THINGS-fMRI dataset. The fMRI dataset is accessible on Open-
Neuro (https://doi.org/10.18112/openneuro.ds004192.v1.0.5) and via 
Figshare at https://doi.org/10.25452/figshare.plus.c.6161151 (ref. 112). 
The object dimensions embedding underlying behavioural similarity 
judgements that was used to predict the fMRI responses is available 
at the Open Science Framework repository (https://osf.io/f5rn6/). 
The higher-level object category labels that were used to construct 
a categorical model of object responses are part of the THINGSplus 
metadata and available at the Open Science Framework (https://osf.
io/jum2f/). The BOLD5000 fMRI data, including all image stimuli, 
are openly available on the KiltHub repository hosted on Figshare at 
https://doi.org/10.1184/R1/14456124 (ref. 113).

Code availability
The Python code (version 3.7.6) used for data processing, analysis 
and visualization in this study is publicly available on GitHub (https://
github.com/ViCCo-Group/dimension_encoding).
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Extended Data Fig. 1 | Dimension tuning maps 1-36 for Participant 1. Colors 
indicate regression weights for each dimension predictor from the parametric 
modulation encoding model. Labels indicate regions of interest on the cortex: 

V1-V3: primary - tertiary visual cortex, OFA: occipital face area, FFA: fusiform face 
area, EBA: extrastriate body area, PPA: parahippocampal place area, MPA: medial 
place area, OPA: occipital place area.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01980-y

Extended Data Fig. 2 | Dimension tuning maps 37-66 for Participant 1. Colors 
indicate regression weights for each dimension predictor from the parametric 
modulation encoding model. Labels indicate regions of interest on the cortex: 

V1-V3: primary - tertiary visual cortex, OFA: occipital face area, FFA: fusiform face 
area, EBA: extrastriate body area, PPA: parahippocampal place area, MPA: medial 
place area, OPA: occipital place area.
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Extended Data Fig. 3 | Dimension tuning maps 1-36 for Participant 2. Colors 
indicate regression weights for each dimension predictor from the parametric 
modulation encoding model. Labels indicate regions of interest on the cortex: 

V1-V3: primary - tertiary visual cortex, OFA: occipital face area, FFA: fusiform face 
area, EBA: extrastriate body area, PPA: parahippocampal place area, MPA: medial 
place area, OPA: occipital place area.
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Extended Data Fig. 4 | Dimension tuning maps 37-66 for Participant 2. Colors 
indicate regression weights for each dimension predictor from the parametric 
modulation encoding model. Labels indicate regions of interest on the cortex: 

V1-V3: primary - tertiary visual cortex, OFA: occipital face area, FFA: fusiform face 
area, EBA: extrastriate body area, PPA: parahippocampal place area, MPA: medial 
place area, OPA: occipital place area.
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Extended Data Fig. 5 | Dimension tuning maps 1-36 for Participant 3. Colors 
indicate regression weights for each dimension predictor from the parametric 
modulation encoding model. Labels indicate regions of interest on the cortex: 

V1-V3: primary - tertiary visual cortex, OFA: occipital face area, FFA: fusiform face 
area, EBA: extrastriate body area, PPA: parahippocampal place area, MPA: medial 
place area, OPA: occipital place area.
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Extended Data Fig. 6 | Dimension tuning maps 37-66 for Participant 3. Colors 
indicate regression weights for each dimension predictor from the parametric 
modulation encoding model. Labels indicate regions of interest on the cortex: 

V1-V3: primary - tertiary visual cortex, OFA: occipital face area, FFA: fusiform face 
area, EBA: extrastriate body area, PPA: parahippocampal place area, MPA: medial 
place area, OPA: occipital place area.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No additional data was collected for this manuscript. For a full description of the data acquisition including relevant computer software, see 
Hebart et al. 2023, https://doi.org/10.7554/eLife.82580

Data analysis python (3.7.6) custom code with specified dependencies available at https://github.com/ViCCo-Group/dimension_encoding/

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data supporting our analyses were obtained from the publicly available THINGS-fMRI dataset. The fMRI dataset is accessible on OpenNeuro  (https://
doi.org/10.18112/openneuro.ds004192.v1.0.5) and Figshare (https://doi.org/10.25452/figshare.plus.c.6161151). The object dimensions embedding underlying 
behavioral similarity judgements which was used to predict the fMRI responses is available at the Open Science Framework repository (https://osf.io/f5rn6/). The 
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higher-level object category labels which were used to construct a categorical model of object responses are part of the THINGSplus metadata and available at the 
Open Science Framework (https://osf.io/jum2f/). The BOLD 5000 data, including all images e.g. from the SUN database are openly available on figshare (https://
doi.org/10.1184/R1/14456124).

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This study used already openly available data. No additional participants were recruited. More details can be found in the 
manuscript describing the data generation methods and consent information (https://elifesciences.org/articles/82580#s4). 
 
2 of the 3 participants self-reported female gender. Neither sex nor gender was considered in study design. Neither sex- nor 
gender-related analyses were performed because the data, due to the small sample size, is unsuited for studying inter-
individual effects. Participants had given consent for obtaining and sharing individual-level data.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

No other socially relevant categorization variables were used in this manuscript.

Population characteristics All participants were asked to report their age (Mean age at beginning of study: 25.33 years).

Recruitment This study used already openly available data. No additional participants were recruited.

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Analysis was performed on three subjects individually. The number of subjects in the open dataset we used is limited by the feasibility of data 
acquisition, which focused on densely sampled, large-scale recordings of neural responses for each individual subject instead of sampling a 
larger population.  

Data exclusions None of the THINGS-fMRI data had been excluded for this work. In the BOLD 5000 reanalysis, we excluded trials showing images from the 
SUN database because they did not contain objects.

Replication We replicated our results in an independent dataset (BOLD5000), based on three different participants and different sets of stimuli (ImageNet 
and MS CoCo). All attempts at replication were successfull.

Randomization Randomization did not apply to this work since we did not experimentally manipulate any variables. Instead, we reanalyzed already existing 
data. 

Blinding Blinding is not applicable to this work since we did not experimentally manipulate any variables.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants

Magnetic resonance imaging

Experimental design

Design type Event-related task fMRI.

Design specifications 11,040 images (8,740 unique images, catch trials excluded, 500 ms presentation followed by 4 s of fixation). For details 
on the procedure of the fMRI and behavioral experiments, please consult the original publication of the dataset 
(https://elifesciences.org/articles/82580)

Behavioral performance measures Participants responded to catch trials in order to stay engaged. Response accuracy 
was and catch trials were not analyzed.

Acquisition
Imaging type(s) functional

Field strength 3

Sequence & imaging parameters Gradient echo EPI, 2 mm isometric resolution, FOV = 192 mm × 192 mm, matrix 
size = 96 × 96; slice thickness: 2 mm, axial orientation, TR/TE/flip angle = 1.5s/33ms/75°

Area of acquisition whole-brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software The data used in this publication was already provided in preprocessed form. Additional smoothing (fwhm=4mm) was only 
performed for the sparseness analysis using the nilearn python library.

Normalization Data were not normalized.

Normalization template n/a

Noise and artifact removal None

Volume censoring None
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Statistical modeling & inference

Model type and settings Voxel-wise encoding model involving a cross-validated train-test procedure.

Effect(s) tested Variance explained (r-squared) of the entire model.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Object category-selective clusters were determined based on a standard functional localizer experiment. 
Similarly, retinotopic visual regions were determined based on a population receptive field experiment.

Statistic type for inference

(See Eklund et al. 2016)

voxel-wise

Correction FDR

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Independent variables: Object dimensions. Dependent variables: Voxel-wise responses to each object image. 
Average prediction performance was evaluated with a leave-one-session-out cross-validation and statistical 
significance was tested via permutation test (10,000 random permutations in each cross-validation fold, FDR 
p<0.01). 
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