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A B S T R A C T

Introduction: Formal genetics studies show that smoking is influenced by genetic factors; exploring this on the molecular level can offer deeper insight into the 
etiology of smoking behaviours.
Methods: Summary statistics from the latest wave of the GWAS and Sequencing Consortium of Alcohol and Nicotine (GSCAN) were used to calculate polygenic risk 
scores (PRS) in a sample of ~2200 individuals who smoke/individuals who never smoked. The associations of smoking status with PRS for Smoking Initiation (i.e., 
Lifetime Smoking; SI-PRS), and Fagerström Test for Nicotine Dependence (FTND) score with PRS for Cigarettes per Day (CpD-PRS) were examined, as were distinct/ 
additive effects of parental smoking on smoking status.
Results: SI-PRS explained 10.56% of variance (Nagelkerke-R2) in smoking status (p=6.45x10− 30). In individuals who smoke, CpD-PRS was associated with FTND 
score (R2=5.03%, p=1.88x10–12). Parental smoking alone explained R2=3.06% (p=2.43×10− 12) of smoking status, and 0.96% when added to the most informative 
SI-PRS model (total R2=11.52%).
Conclusion: These results show the potential utility of molecular genetic data for research investigating smoking prevention. The fact that PRS explains more variance 
than family history highlights progress from formal to molecular genetics; the partial overlap and increased predictive value when using both suggests the importance 
of combining these approaches.
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1. Introduction

Smoking behaviours are related to a multitude of diseases including 
cancer, chronic obstructive pulmonary disease (COPD), and heart dis
ease (U.S. Department of Health and Human Services, 2014). Despite the 
fact that the adverse effects of smoking on health are well-known and 
considerable efforts to lower its prevalence have been made by many 
countries, the global number of individuals who smoke is still rising 
(Reitsma et al., 2021), leading to increasing preventable mortality 
worldwide.

Twin and family studies have shown that smoking behaviour is 
influenced by genetic factors (Li et al., 2003; Sullivan and Kendler, 1999; 
Vink et al., 2005), and it is thought that a large proportion of variance in 
smoking-related behaviours is accounted for by genetic effects (Quach 
et al., 2020). The different stages of smoking (e.g. initiation, regular 
smoking, nicotine dependence, cessation) have strong genetic compo
nents which overlap (6,7,8). Better understanding of the genetic factors 
involved in the development of smoking is needed to take more effective 
steps towards prevention.

One method of exploring the influence of genetic load on phenotypes 
is polygenic risk score (PRS) profiling, which takes genetic variants 
identified in genome-wide association studies (GWAS) as being associ
ated with a given phenotype and combines them into a PRS that captures 
part of an individual’s susceptibility to developing that phenotype 
(Lewis and Vassos, 2020; Choi et al., 2020). In polygenic risk scoring, 
summary results of risk variants and effect sizes identified in GWAS of 
particular phenotypes are used as “training samples”, and used to 
generate risk scores reflecting the genetic load for the phenotype in an 
independent “target sample”. PRS are beginning to show utility not only 
in research-based case-control studies, but also at the level of 
population-based cohort studies (Lewis and Vassos, 2020). While it has 
been suggested that PRS are beginning to have clinical utility in terms of 
disease risk prediction (Lewis and Vassos, 2020), for many phenotypes, 
predictive ability remains modest, and more evidence is still needed on 
the value of adding PRS to prediction scenarios in clinical settings 
(Lambert et al., 2019).

Family history (FH) is another measure capturing genetic risk, but 
also comprises environmental familial influences (Boardman et al., 
2010). Several recent studies have started to explore the interplay of 
genome-wide PRS and family history, finding that for a variety of 
common diseases, the two measures are complementary, partially in
dependent, and not interchangeable (Mars et al., 2022).

In the present study, as a proof-of-principle, we aimed to explore the 
influence of genetic load on smoking phenotypes by investigating 
whether PRS of nicotine phenotypes could predict smoking status and 
intensity of dependence, and how this compared to prediction using FH. 
PRS were calculated based on summary statistics from the largest GWAS 
of nicotine phenotypes (smoking initiation, cigarettes per day) to date 
(Saunders et al., 2022), which did not include the present sample, and 
were used to predict smoking status and behaviour in a 
population-based case-control study of individuals who smoke and in
dividuals who never smoked (n= 2396) (Lindenberg et al., 2011).

2. Methods

2.1. Data collection

Demographic and genetic data from the population-based German 
multi-center study “Genetics of Nicotine Dependence and Neurobio
logical Phenotypes” (German Research Foundation, SPP1226) were 
used. Full details on the data collection in the cohort can be found in 
Lindenberg et al., 2011 (Lindenberg et al., 2011). Briefly, in 2007–2009, 
active individuals who smoke (n=1116) and individuals who never 
smoked (n=1280) aged 18–65 years were recruited from the general 
population. Exclusion criteria included being a former individual who 
smoke, alcohol or substance use/dependence, non-German ethnicity, 

pregnancy, and medical conditions or medication that might interfere 
with the study.

Classification of individuals who smoke was conducted using DSM- 
IV criteria (American Psychiatric Association (APA) (APA), 1994), 
Structured Clinical Interview for DSM Disorders (SCID) (First et al., 
1996) and the German version of the Fagerström Test for Nicotine 
Dependence (FTND) (Lindenberg et al., 2011). FTND scores were 
available for 2228 individuals (n=1027 individuals who smoke, n=1201 
individuals who never smoked). Parental history of smoking was 
assessed via questionnaire.

2.2. Genotyping and quality control of the target sample

Genetic data was available from 2312 individuals. DNA was 
extracted from whole blood and prepared using the Qiagen FlexiGene 
DNA Kit (Qiagen, Hilden, Germany) according to manufacturer pro
tocols. Genotyping was performed using the Infinium OmniExpress 
Exome Array (Illumina, San Diego, USA), which includes a GWAS 
backbone of ~ 680,000 markers selected to capture the greatest amount 
of common SNP variation.

Quality control was performed using PLINK 1.90 (Chang et al., 
2015). Individuals were excluded for being ancestry outliers (>4.5 
standard deviations on any of the first 20 ancestry principal compo
nents), relatedness (Pi-HAT>0.2) and person–missing rate (≥ 0.02); 
Single nucleotide polymorphisms (SNPs) were excluded based on 
missing rate (≥ 0.02), deviation from Hardy-Weinberg disequilibrium 
(HWE–P-value ≤ 1×10− 6), and minor allele frequency (< 0.01).

Imputation of non-typed markers was performed using a locally 
installed instance of the Michigan Imputation Server with the 1000 
Genomes backbone(Das et al., 2016).

The final data set available for PRS analyses contained n=2169 in
dividuals (997 active individuals who smoke, 1172 individuals who 
never smoked; former individuals who smoke not included) and 
7004,791 SNPs.

2.3. Polygenic risk scoring and summary statistics

GWAS meta-analysis summary statistics (European ancestry sum
mary statistics) from the second phase of the GWAS and Sequencing 
Consortium of Alcohol and Nicotine (GSCAN2) excluding the 23andme 
subset were used, comprising the phenotypes: 1) smoking initiation (i.e. 
ever being a individual who smoke vs. never; SI; n=805,431) and 2) 
cigarettes per day (CpD; n=326,497).

Details on the phenotype definitions in GSCAN2 can be found in 
Saunders et al., 2022 (Saunders et al., 2022) and at https://genome. 
psych.umn.edu/images/d/da/GSCAN_GWAS_Phenotype_Definitions- 
2–24-2016.pdf (Accessed April 10, 2024). Additionally, calculations 
were performed with GWAS meta-analysis summary statistics from the 
first phase of GSCAN (GSCAN1, not including 23andMe) (Liu et al., 
2019) to compare with results from GSCAN2. The total number of 
markers for GSCAN2 was 13,595,219 for SI and 13,763,312 for CpD, and 
the total number of markers for GSCAN1 was 11,802,365 for SI and 12, 
003,613 for CpD.

PRS were based on posterior effect sizes estimated using the PRS-CS 
method (Ge et al., 2019). The method uses Bayesian regression models 
to apply continuous shrinkage priors to the effect sizes to account for LD 
structure among SNPs. PRS-CS maximizes the number of SNPs included 
in PRS, as it does not require SNPs to be independent from one another 
as in other clumping and threshold methods. The LD pattern of the 1000 
Genomes European reference panel and the default priors for effect sizes 
were used. Based on the posterior effect sizes estimated with PRS-CS, 
scores were calculated in PRSice2 (Choi and O’Reilly, 2019), using the 
–no-clump option, and excluding the extended MHC region. The number 
of SNPs included in the PRS from GSCAN2 was 1019,639 for SI and 
1019,641 for CpD, in GSCAN1, it was 1014,896 for SI and 1021,339 for 
CpD.
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The individual who smoke/individual who never smoked dataset 
described above was used as the target sample. Regression analyses were 
used to test for association of PRS with phenotypes of interest, namely 
with smoking status (individuals who smoke vs. individuals who never 
smoked: SI), and FTND score (in individuals who smoke: CpD). Analyses 
were adjusted for population stratification by including the first 10 
ancestry principle components (PCs). R2 (Nagelkerke pseudo R2 for 
categorical phenotypes) was used to estimate explained variability. 
Model fits were calculated as difference of R2 of the full model (e.g. 
Pheno ~ PRS + PCs) and R2 of the null model (Pheno ~ PCs). Regression 
analyses were performed in R 3.6.3.

In an additional step, specifying an incremental variable in the 
regression, we investigated the contribution of family history of smoking 
(for SI-PRS: parental history of smoking (FH), 0=neither, 1=one, 
2=both parents).

In addition, we calculated receiver operating characteristic (ROC) 
curves and estimated the area under the curve (AUC) to examine the 
ability to predict smoking status using SI-PRS and FH. Calculations were 
performed using the caret package.

Generalized Linear Models (GLM) with smoking status as a binary 
response variable and logit link function were used as prediction models 
(null model: ~ PCs; model 1: ~ SI-PRS + PCs; model 2: ~ SI-PRS + FH +
PCs).

3. Results

3.1. Smoking status

PRS for SI from GSCAN2 explained R2=10.56% of variance in 
smoking status (p=6.45×10− 30) (Fig. 1A). Quantile plots show the 
increasing effect of higher SI-PRS (Fig. 1B).

FH alone explained R2=3.06 % (p=2.43×10− 12) of smoking status. 
In the model combining FH and SI-PRS, FH explained an additional and 
independent R2=0.96% (p=8.50x10− 7), resulting in a combined R2 of 
11.52%.

Overall, the SI-PRS from GSCAN2 explained more phenotypic vari
ance than GSCAN1 (R2=10.56% vs. R2=8.79%, respectively).

Fig. 1. a) individual who smoke/individual who never smoked Status predicted by PRS for Smoking Initiation and Parental Smoking; b) Quantile plot showing odds 
ratio for SI-PRS on ever being a individual who smoke/individual who never smoked status; c) FTND score predicted by PRS for Cigarettes per Day and Parental 
Smoking; d) Quantile plot showing change in FTND score given CpD-PRS. 1 is the reference quantile in all quantile plots.
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3.1.1. FTND
PRS for CpD (R2=5.03 % p=1.88×10− 12, Fig. 1c) were significantly 

associated with FTND scores in individuals who smoke. Quantile plots 
depict change in phenotype over PRS in quantiles (Fig. 1d). FH alone 
explained 0.32 % of variance in FTND scores (n.s., p= 0.08). In the 
combined model with CpD-PRS, FH explained an additional 0.21 % of 
variance (p = 0.143). More variance in FTND scores was explained with 
CpD-PRS from GCSAN1 than GSCAN2 (R2= 5.81% vs R2=5.03% 
respectively).

3.2. AUC and ROC

The full model including SI-PRS, FH, and PCs had better predictive 
ability (AUC = 0.68) than the models including PRS-SI and PCs only 
(AUC = 0.66), and the null model including PCs only (AUC = 0.52). 
Overall, the predictive value of each model ranged from modest 
(smoking status ~ SI-PRS + parental smoking + PCs, smoking status ~ 
SI-PRS + PCs) to low (smoking status ~ PCs) (Fig. 2).

4. Discussion

The present study demonstrates the informativeness of PRS and 
highlights their potential utility in the prediction of disease risk. We 
found that PRS for smoking behaviours were significantly associated 
with smoking status, and also FTND score in individuals who smoke; 
these associations suggest their importance for use in smoking research 
as well as the future potential to use PRS for purposes of prediction and 
preventative measures. History of parental smoking was also signifi
cantly associated with PRS for smoking initiation and overlap with the 
variance explained by PRS was observed. Research has found that PRS 
are able to predict a reliable but modest amount of complex genetic 
phenotypes and the amount of variance in smoking initiation behaviour 
phenotypes explained here is in the range of PRS to predict other 
disease-related phenotypes (Duncan et al., 2019).

Combining SI-PRS with history of parental smoking enabled a better 
prediction of smoking status, with results suggesting both independent 
and overlapping components of contribution of parental smoking and 
PRS. It is of interest to note that in terms of SI, while FH alone explained 

3.06%, the combined model explained up to 11.52%. This highlights the 
strength of using such a molecular genetic approach, which is more 
direct than formal genetics. It is also important to note that with the 
inclusion of the PRS, the amount explained by parental smoking 
decreased. This overlap may suggest that PRS can cover a substantial 
share of the contributing genetic factors contained in phenotypic pa
rameters such as parental smoking (i.e., family history), which are 
overall measures that capture not only genetic contributions but also 
environmental factors; when looking at ‘purely’ biological mechanisms, 
it may be advantageous to prioritize the use of techniques such as PRS. 
Used together, these approaches will allow more detailed analyses and 
enable exploration of environment-familial loading as well as dissection 
of biological pathways involved.

We observed that CpD-PRS were associated with FTND score, which 
points to the ability to identify those who might be at the highest risk of 
heavy smoking. These results are in line with those of a previous study 
which used GSCAN summary statistics to generate PRS for amount of 
smoking in another European cohort (Bray et al., 2021). That study 
found that in a non-European cohort PRS did not predict smoking be
haviours; the inclusion of only individuals with European ancestry also 
limits the generalizability of the results of the present study.

In the present sample, the results of predictive analyses found that 
addition of SI-PRS and parental smoking increased AUC (PCs only =
0.52, PCs + PRS = 0.66, PRs + PRS + FH = 0.68). The results are 
relatable to a previous study by Bray and colleagues (Bray et al., 2021) 
which examined PRS in smoking cessation, specifying predictive models 
with clinical and genetic predictors (PRS of smoking behaviors), finding 
that genetic predictors increased AUC 0.617–0.665 (Bray et al., 2021) 
(but not including FH in prediction models). Taken together, the results 
suggest that genetic factors are valuable for predicting smoking behav
iors, although we note that even with a large discovery sample, the 
discriminatory power is limited, and sample size may not be the only 
factor. We also note that the variance explained by PRS based on 
GSCAN2 vs GSCAN1 increased for explaining smoking status, but not for 
FTND score, which may perhaps be related to the binary/continuous 
nature of the variables.

Towards the application of PRS in clinical and practical contexts, 
other research has found that PRS are informative not only about disease 
risk but also about time of occurrence; e.g., age/age of onset (Bray et al., 
2021; Mars et al., 2020; Deutsch and Selya, 2020). Recent work has also 
demonstrated that PRS are significantly associated with trajectories of 
problematic substance use and may be informative about developmental 
progression of disease (Deak et al., 2022). It is hoped that PRS may be 
more powerful and potentially approach practical utility with refined 
phenotypes and PRS based on better characterized and larger GWAS. It 
will be important to extend the approach to different study populations 
(e.g., of other ancestries); the utility of PRS is evolving as novel methods 
and those for extension to diverse populations are constantly being 
developed (Kachuri et al., 2024). PRS can also be refined, e.g., by 
selecting only variants belonging to specific biological pathways to test 
whether these play a role in susceptibility for disease or treatment, also 
with the aim to identify specific subpopulations. Well-defined samples 
such as the present one offer the possibility to identify relevant pathways 
using the PRS approach.

Our findings, serving as a proof of principle, suggest that including 
PRS for smoking initiation in the exploration of an individual’s risk of 
becoming a individual who smoke may have the potential to inform 
prevention and intervention strategies. Combining PRS with FH yielded 
additional predictive ability, suggesting that the two should be used 
together. At the same time, the present results suggest that the 
improvement in predictive power obtained by the use of smoking PRS 
remains limited, and that they may be currently more well-suited to help 
understand the genetic bases of smoking and related behavioural traits, 
than for use in prediction or clinical models.

Fig. 2. ROC curves and AUCs of prediction models for smoking status.
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