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Carrier mobility of strongly anharmonic materials from first principles
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First-principles approaches for phonon-limited electronic transport are typically based on many-body pertur-
bation theory and transport equations. With that, they rely on the validity of the quasiparticle picture for electrons
and phonons, which is known to fail in strongly anharmonic systems. In this work, we demonstrate the relevance
of effects beyond the quasiparticle picture by combining ab initio molecular dynamics and the Kubo-Greenwood
(KG) formalism to establish a nonperturbative, stochastic method to calculate carrier mobilities while accounting
for all orders of anharmonic and electron-vibrational couplings. In particular, we propose and exploit several
numerical strategies that overcome the notoriously slow convergence of the KG formalism for both electronic
and nuclear degrees of freedom in crystalline solids. The capability of this method is demonstrated by calculating
the temperature-dependent electron mobility of the strongly anharmonic oxide perovskites SrTiO3 and BaTiO3

across a wide range of temperatures. We show that the temperature dependence of the mobility is largely
driven by anharmonic, higher-order coupling effects and rationalize these trends in terms of the nonperturbative
electronic spectral functions.

DOI: 10.1103/PhysRevB.110.235202

I. INTRODUCTION

Charge transport plays an important role in the field of
condensed matter physics, material science, and engineering
since over 100 years [1,2]. In fact, this topic is of pivotal
importance for technological applications since it determines
the performance of batteries [3], transistors [4], thermoelectric
elements [5,6], solar cells [7], and more. At the macroscopic
level, charge transport and the carrier conductivity σ is defined
by Ohm’s law that relates the applied electric field E(t ) and
the induced current J(t ):

J(t ) = σE(t ), (1)

where the conductivity σ is a 3 × 3 tensor. In general, there
are different mechanisms associated with charge transport
in solids: bandlike conductivity originating from Bloch-type
quasiparticles [8], hopping conductivity from polaron mo-
tion [9], and ionic conductivity associated with the diffusion
of ions [10]. In all of these cases, two distinct quantities
drive the respective conductivity, i.e., the amount of mobile,
“free” charge carriers n (electrons, holes, polarons, anions,
or cations) and the mobility μ of these charge carriers. The
conductivity can thus be expressed as

σ = qnμ, (2)
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in which q is the charge that the respective particle carries. In
this spirit, it is common to measure charge carrier concentra-
tions and mobility independently and to report the mobility as
a function of the charge carrier density [8].

In this work, we focus on bandlike conductivity, the domi-
nant mechanism in semiconductors [2]. In this regard, decades
of research in band-structure engineering and doping have
focused on understanding and tailoring the band structure
and charge-carrier density for specific applications [11–14].
In contrast, less is known about the bandlike mobility it-
self, which is limited by different scattering mechanisms.
For instance, electron-electron scattering plays an important
role at high electron densities, e.g., in metals [15], while
electron-defect scattering [16] is known to be the limiting
factor at very low temperatures [16,17]. For nondegenerate
semiconductors at ambient temperature and above, the mo-
bilities are essentially determined by electron-phonon (el-ph)
scattering, i.e., the interaction of the electronic charge carriers
with the thermal vibrations of the nuclei [8]. To address the
latter effect from first principles, it is common to combine
density-functional theory (DFT) and many-body perturbation
theory (MBPT) [18]. In this framework, the nuclear dynamics
is approximated in terms of phonons, i.e., one assumes that the
nuclei move on a single, perfectly harmonic potential-energy
valley. Similarly, it is presumed that the associated electron-
phonon scattering is weak enough to be approximated in
terms of the first-order response to nuclear displacements,
i.e., the so-called electron-phonon coupling elements. In turn,
MBPT then provides the (vibrationally) renormalized elec-
tronic self-energy. Its real part describes the band-structure
renormalization, i.e., energy shifts in the electronic states
due to el-ph scattering, whereas the imaginary part corre-
sponds to the el-ph scattering cross sections. In conjunction
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with the Boltzmann transport equation (BTE) and /or the
Wigner transport equation (WTE) [19], this allows to compute
phonon-limited mobilities from first principles [7,8,20–25].

However, the mentioned approximations on which these
transport equations rely may well fail, especially in complex
materials and/or at elevated temperatures. As shown re-
cently in the closely related field of vibrational heat transport,
so-called anharmonic effects beyond the harmonic approxi-
mation can play a decisive role in the nuclear dynamics even
at room temperature [26]. When such anharmonic effects are
too strong, the phonon picture itself becomes invalid, as the
phonon lifetime may get comparable or even shorter than
the period of just one phonon oscillation when violating the
Ioffe-Regel limit [27,28]. Then, also the BTE and WTE be-
come no longer applicable since they rely on the validity
of the phonon picture. For example, it has been shown that
this case occurs when short-lived intrinsic defects are formed
in crystalline solids [29]. Such finite-temperature effect may
resemble local structures of other crystal phases, but they
may occur already at temperatures well below the relevant
phase transition. In such cases, accurate transport predictions
require methods that explicitly take into accounts all orders
of anharmonicity [30,31] and electron-vibrational coupling.
For instance, this has been also observed in oxide (SrTiO3)
and halide (CsPbBr3) perovskites [32,33], for which the real
part of the electronic self-energy is substantially influenced by
higher-order couplings. This suggests that these effects might
also substantially affect mobility predictions.

Several different methods have been developed to ac-
count (at least partially) for anharmonic and/or higher-order
coupling effects [34–36]. For example, renormalized, ef-
fectively temperature-dependent phonon theories had been
proven useful in practice, resulting in improved predictions
[37,38]. However, also these approaches inherently rely on
the validity of the phonon picture and are hence inapplicable
beyond that regime [28]. To address this regime, a nonper-
turbative theory of charge transport in crystalline materials
is needed.

A promising route to overcome the described limitations of
MBPT in the prediction of mobilities is the Kubo-Greenwood
(KG) formalism [39]. In this approach, all anharmonic effects
can be taken into account via ab initio molecular dynam-
ics (aiMD) simulations. Similarly, all orders of vibrational
coupling are accounted for by explicitly considering the evo-
lution of the electronic structure during the dynamics within
the Born-Oppenheimer approximation. Let us emphasize that
this naturally includes the aforementioned intrinsic defect
formation [29], both at the structural level during the aiMD
dynamics and at the electronic level, since the electronic
structure at each step is evaluated self-consistently. For disor-
dered systems, the KG approach has been successfully applied
to determine conductivities, e.g., for warm dense plasmas
[40–42], liquids [43–45], and amorphous compounds [46,47].
For ordered, crystalline systems, the application of the KG
formalism is, however, technically challenging [42,44,48,49].
The fundamental reason is that crystalline systems are typ-
ically characterized by dispersive electronic and vibrational
states. For the KG approach, this results in a substantial com-
putational effort: On one hand, large supercells are required
to account for long-wavelength lattice vibrations in the aiMD

simulations; on the other hand, dense reciprocal-space k grids
are needed for the Brillouin zone integrations to properly
account for the dispersive character of the electronic structure.
So far, these computation limitations have prevented a fully
anharmonic assessment of mobilities in crystalline semicon-
ductors [49].

In this work, we discuss and demonstrate several strate-
gies to overcome the numerical challenges described above,
which eventually allows to account for all orders of electron-
vibrational and anharmonic couplings when predicting mobil-
ities. To this end, we introduce the theoretical fundamentals
of the Kubo-Greenwood formalism and the resulting first-
principles workflow in Sec. II. In Sec. III, we discuss the
details of our implementation in the all-electron, numeric
atom-centered orbitals (NAOs) based ab initio materials sim-
ulation package FHI-AIMS [50]. In particular, we analyze the
strategies used to tackle the numerical challenges mentioned
above. In Sec. IV, we then demonstrate the merits of the
method by calculating temperature-dependent electron mo-
bilities for the strongly anharmonic perovskites SrTiO3 and
BaTiO3 up to high temperatures. The results are rationalized
by analyzing the associated, temperature-dependent spectral
functions. Finally, in Sec. V, we summarize the results and
discuss future opportunities to improve the efficiency of the
ab initio KG formalism.

II. KUBO-GREENWOOD FORMALISM

In linear response theory, the carrier conductivity σ(t )
describes the linear proportionality between an applied, time-
dependent electromagnetic field E(t ) and the resulting current
J(t ), in close analogy to Ohm’s law in Eq. (1). Fourier trans-
formation with respect to time yields the frequency-dependent
conductivity σ(ω), a quantity that is often referred to as optical
conductivity [8]. Here, the frequency ω describes the applied
alternating current (ac) field; its static limit (ω → 0) is the
direct current (dc) conductivity.

The Kubo formalism [51] express the frequency-dependent
conductivity tensor at finite temperature in terms of current-
current correlation functions [40]:

σi j (ω) = lim
α→0+

∫ ∞

0
dt ei(ω+iα)t

∫ β

0
dτ Tr[ρ̂0Ĵi(t − ih̄τ ) · Ĵ j].

(3)

Here i, j ∈ {x, y, z} denote the Cartesian axes, β = (kBT )−1,
and α → 0+ is an infinitesimal adiabatic turn-off parameter
for the response. Physically, it reflects the causal relation
between drive and response [52] and hence ensures that the
response function vanishes at large times [53], when the sys-
tem is back in equilibrium. In turn, this guarantees the mathe-
matical converge of the integral in Eq. (3).

Formally, the general Kubo formula in Eq. (3) covers all
kind of charge transport mechanisms, including polaronic [54]
and ionic [55] conductivity, as long as the respective current
operator accounts for the respective transport process. In this
work, we focus on bandlike conductivity and hence employ
the respective, well-known expression for the bandlike current
operator in terms of effective, single-particle Bloch states
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|kμ〉 [39,40]:

Ĵ = q

m

∑
kμν

〈kμ|p̂|kν〉|kμ〉〈kν|. (4)

Here, k is the wave vector and μ is the band index of the
Bloch state, p̂ = mv̂ = ih̄∇ denotes the momentum opera-
tor, and v̂ indicates the velocity operator. Let us emphasize
that the effective, single-particle Bloch states |kμ〉 entering
Eq. (4) are expected to correctly describe the quasiparticle
excitation spectrum. Accordingly, they should be computed
with an appropriate many-body formalism, e.g., GW [56]. In
this work, we will approximate them by Kohn-Sham states
obtained from DFT, though. The limitations of this choice are
discussed in more detail in Sec. III A.

Within this effective single-particle approximation, Eq. (3)
yields the following Kubo-Greenwood (KG) formula for the
conductivity [39]:

σi j (ω) = lim
α→0+

i
2q2h̄3

m2V

∑
kμν

( fkν − fkμ)

(εkμ − εkν )

× 〈kν|∇i|kμ〉〈kμ|∇ j |kν〉
εkμ − εkν − h̄ω + iα

, (5)

where εkμ and fkμ are the energy eigenvalue and the occu-
pation number of state |kμ〉; the summation is over all k
points in the first Brillouin zone of the utilized cell. Note
that the resulting conductivity tensor σ(ω) is complex; its real
and imaginary parts are related by the Kramers-Krönig rela-
tion, in close analogy to the permittivity defined in classical
electrodynamics [2,57]. Similarly, the imaginary part of σ(ω)
describes if the response is capacitative or inductive, whereas
the real part denotes the actual conductivity of interest in this
work. Accordingly, we focus on the real part for the remainder
of this paper.

Eventually, we apply the Born-Oppenheimer approxima-
tion, i.e., we assume that the electrons follow the nuclei
instantaneously, and hence take the limit α → 0+ of instan-
taneous response. The obtained off-diagonal elements (i �= j)
of σ(ω) describe the intrinsic anomalous Hall effect in the DC
limit [58,59],

Re[σi j (ω = 0)] = 2πq2h̄3

m2V

∑
kμν

Im(〈kν|∇i|kμ〉〈kμ|∇ j |kν〉)

× ( fkν − fkμ)

(εkν − εkμ)2
, (6)

and the diagonal elements (i = j) describe the desired longi-
tudinal conductivity,

Re[σii(ω)] = 2πq2 h̄2

m2V ω

∑
kμν

(〈kν|∇i|kμ〉〈kμ|∇i|kν〉)

× ( fkν − fkμ)δ(εkμ − εkν − h̄ω). (7)

Due to its similarity to Fermi’s golden rule, Eq. (7) can be ra-
tionalized in terms of instantaneous scattering events between
different electronic states |kμ〉 and |kν〉 with the same crystal
momentum k (vertical transition). Accordingly, the scatter-
ing amplitude is given by the momentum matrix element

ih̄〈kμ|∇|kν〉 while the delta function ensures energy con-
servation. At first glance, indirect transitions, i.e., transitions
between electronic states with different crystal momentum k,
appear not to enter the KG formula. However, one has to
keep in mind that the KG formula needs to be evaluated in
extended supercells. For the electronic degrees of freedom,
this results in a reduction of the first Brillouin zone (BZ), often
called “Brillouin zone folding.” In turn, indirect transitions
in the primitive BZ formally become vertical transitions in
the folded BZ. By this means, they are effectively accounted
for in the KG formula in Eq. (7), as discussed in more detail
in Sec. III D.

Eventually, let us note that Eq. (7) denotes the conductiv-
ity for one specific nuclear configuration. In order to obtain
conductivities at finite temperature T , it is thus necessary to
sample the available phase space in the canonical ensemble
and perform an ensemble average 〈σ (ω)〉T . In practice, this
implies evaluating the average of the KG formula over many
different nuclear configurations since those configurations en-
ter the KG only indirectly via the Kohn-Sham Hamiltonian,
its eigenvalues, and eigenstates |kμ〉. For crystalline systems,
this means that extended supercells need to be used, so that
also vibrational degrees of freedom with long wavelengths
are appropriately sampled, which in turn ensures that indirect
electronic transitions are accounted for, as mentioned above.

The application of the KG formalism to crystalline sys-
tems at finite temperatures faces severe numerical challenges.
First, extended supercells need to be considered (a) to accu-
rately sample the vibrational degrees of freedom in the crystal
and (b) to ensure that all relevant electronic transitions are
mapped to vertical excitation in the folded BZ. Second, dense
k grids are needed to converge the Brillouin zone integration
in Eq. (7), even for calculations in an extended supercell fea-
turing a reduced BZ. The reason is that in crystalline materials
the band structure is typically dispersive, i.e., band energies
vary significantly as function of k. As a consequence, the
occupation numbers, determined by the Fermi distribution,
also show a strong k dependence. In this regard, also an
appropriate representation for numerically evaluating the delta
function appearing in Eq. (7) has to be chosen. As discussed
below, this can be achieved by a broadening function, whereby
it is essential to reach the limit of vanishing broadening.

In the following, we will discuss these numerical issues by
computationally investigating mobilities μ [see Eq. (2)]. As
mentioned in the Introduction, targeting mobilities instead of
conductivities allows to disentangle the underlying transport
mechanisms. Since the conductivity is directly proportional to
the amount of free charges, i.e., the charge-carrier density n, it
sensitively depends on doping. Conversely, the mobility is an
intrinsic property of the material that is unaffected by changes
in the charge-carrier density in the low-doping limit. Only for
high doping a dependence of mobilities on the charge-carrier
density has been observed. However, even in this case, this
is understood as being largely caused by the increased defect
scattering due to the very high-dopant concentration and not
by changes in the charge-carrier density [17]. For these exact
reasons, it is common both in theoretical [8,60] and in ex-
perimental [61,62] studies of electronic transport to report the
mobility μ and the charge-carrier density separately, instead
of just the conductivity. Along these arguments, we henceforth
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FIG. 1. Workflow of the Kubo-Greenwood (KG) calculation. All
symbols and steps are explained in details in Sec. III. Convergence
here refers to running KG calculations with different parameters until
the error in the result is within the desired threshold.

fix the charge-carrier density n to the desired value in our
evaluation of Eq. (7), as detailed in Sec. III C 2. Mobilities are
then obtained by just dividing the obtained conductivity by n.
For DFT calculations, this has the additional advantage that
inaccuracies in the charge-carrier density, which are heavily
affected by the notorious band-gap problem of semilocal DFT
[63,64], can be circumvented, as also discussed in Sec. III C 2.
Note that we will also focus on scalar mobilities, i.e., the
average of the diagonal elements:

μ = 1

3

∑
i

μii, i ∈ {x, y, z}. (8)

A sketch of the ab initio KG workflow is shown in Fig. 1.
Briefly speaking, the process begins by generating sam-
ples via aiMD simulations at the desired temperature T .
Subsequently, the KG calculation is performed to evalu-
ate the conductivity and mobility of each aiMD sample.
The overall conductivity and mobility at T is then deter-
mined by taking the ensemble average over all samples.
Details on the numerical convergence schemes employed
throughout the process will be thoroughly discussed in the
next section.

III. NUMERICAL IMPLEMENTATION
OF THE KUBO-GREENWOOD FORMALISM

In this work, we implemented the KG formula in the ab ini-
tio electronic-structure theory package FHI-AIMS [50]. In this
all-electron code, the Kohn-Sham states |kν〉 are expanded in
terms of (nonorthogonal) real-space basis functions |φ jN(r)〉:

|kν〉 = 1√
L

∑
jN

C j
ν (k)eik·T(N)|φ jN(r)〉. (9)

Here, |φ jN(r)〉 indicates the basis function j centered in the
unit cell N = (N1, N2, N3), L is the total number of periodic
images of the unit cell that are accounted for, and T(N) is
the translation vector connecting the periodic image in cell N
to the unit cell. Accordingly, the exponential exp[ik · T(N)]
ensures that the |kν〉 fulfill the Bloch condition. In turn, the
momentum matrix elements ih̄〈kμ|∇|kν〉 can be expressed in

terms of the real-space basis functions |φ jN(r)〉 as

〈kμ|∇|kν〉 =
∑

i j

[Ci
μ(k)]∗C j

ν (k)
∑

N

eik·T(N)

×〈φi0(r)|∇|φ jN(r)〉. (10)

Here, 〈φi0(r)|∇|φ jN(r)〉 denotes the gradient matrix of the
NAO basis functions, which is evaluated in real space using
the techniques described in Refs. [65,66]. Note that L and one
summation

∑
M over unit cells are eliminated in the formula

above by exploiting the translational symmetry of the real-
space matrix elements.

As mentioned above and discussed in details in Sec. III B,
dense k grids are typically required to reach convergence
when evaluating the Brillouin zone in Eq. (7). To alleviate
the computational cost, we exploit the fact that the electronic
density and, in turn, the associated real-space Hamiltonian,
can typically be converged within a relatively sparse set of
k points, especially in extended supercells featuring a finite
band gap. Formally, this is reflected by the fact that the real-
space Hamiltonian and overlap matrix elements defined as
HiN, jM = 〈φiN|H|φ jM〉 and SiN, jM = 〈φiN|φ jM〉 are localized
integrals in the NAO basis. The respective reciprocal-space
matrix elements at any k are obtained via

Hi j (k) =
∑

M

eik·T(M)Hi0, jM, (11)

Si j (k) =
∑

M

eik·T(M)Si0, jM. (12)

Due to the locality of the real-space NAO basis, HiN, jM and
SiN, jM decay rapidly with atomic distance. Thus, the real-
space matrices H and S become sparse since HiN, jM and
SiN, jM vanish at large distances (M − N). In turn, this im-
plies that, once real space H and S are fully known from the
self-consistent field (SCF) calculation with a sparse k grid,
the respective reciprocal space H(k′) and S(k′) at any other
denser k′ grid can be obtained via Eqs. (11) and (12). With
that, it is then possible to get the associated Bloch states by
solving the generalized eigenvalue problem

H(k′)|k′μ〉 = εk′μS(k′)|k′μ〉 (13)

on denser k′ grids. This procedure is often referred to as
Fourier interpolation and is commonly used in electronic-
structure codes for evaluating properties that require dense k
grids, e.g., band structures and density of states. In this work,
we use Fourier interpolation to evaluate Eq. (10) and hence
Eq. (7) on dense k grids, which enables significant memory
savings as well as computational speedups and, in turn, en-
ables the practical convergence of the KG equation within
reasonable computational cost. These merits are discussed in
more detail in the Appendix.

A. Charge-carrier density determination

In the static case, i.e., for a given nuclear configuration, the
Fermi level εF is determined by enforcing charge neutrality,
i.e., by requiring the free-electron density ne in the conduction
band (CB) to match the free hole density nh in the valence
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FIG. 2. Band structure of the primitive cell of SrTiO3 with dif-
ferent functionals. For both cases, the geometry is that of a PBE-TS
calculation. Computational details are introduced in Sec. IV A.

band (VB):

ne =
CB∑
k,ν

f (εF, T, εkν ) =
VB∑
k,ν

[1 − f (εF, T, εkν )] = nh, (14)

where f (εF, T, ε) is the Fermi distribution function and the
spin degree of freedom is omitted. At finite temperature, εF

needs to be determined self-consistently, and thus, at the same
time also the free carrier densities ne and nh are known. The
Fermi distribution changes exponentially with increasing en-
ergy deviation from ε − εF. This indicates that the intrinsic
carrier density depends exponentially on the band gap Eg in
zero-order approximation:

ne ∝ exp

(
− Eg

2kBT

)
. (15)

Likewise, the free carrier density can be formally controlled
by manipulating the Fermi level εF with respect to the condi-
tion ne = nh + n, where n is the desired carrier density.

Due to the well-known band-gap problem of semilocal
DFT, inaccuracies in the band-gap assessment strongly affect
the carrier density and thus the conductivity. For example, the
PBE band gap for SrTiO3 at T = 0 K is only 2.11 eV, well
smaller than the experimental value of 3.26 eV [67] measured
at 10 K. In turn, this implies that PBE yields intrinsic charge-
carrier densities and conductivities that are six orders times
too large, as can be estimated with Eq. (15) and is explicitly
demonstrated later in Sec. III C 2.

In principle, accurate conductivity calculations would
hence require an appropriate many-body electronic structure
theory approach that overcomes the band-gap problem of
semilocal DFT, e.g., GW . However, this would be compu-
tationally very expensive and as discussed in Sec. III C 2
below, not really necessary. The reason is that, albeit severely
underestimating the band gap, semilocal DFT still predicts
the curvature and dispersion of the electronic band structure
surprisingly well since also the Kohn-Sham wave functions
are typically sufficiently accurate [56,68]. For the exact same
reason, scissor-operator approaches typically work well for
obtaining free charge-carrier densities [49,69]. This is fur-
ther substantiated in Fig. 2, in which the band structure of

SrTiO3 computed using PBE and the hybrid HSE06 functional
are compared. While HSE06 yields a realistic band gap of
around 3.52 eV that is comparable to the experimental value
of 3.26 eV [67] at 10 K, PBE severely underestimates the band
gap yielding a value of 2.11 eV, as mentioned above. Still, the
shapes of the individual bands are very similar with both func-
tionals, e.g., the effective masses differ only by ∼5%, yielding
0.86 (PBE) and 0.92 me (HSE06) at  in the M direction.

B. Convergence with respect to electronic degrees of freedom

As evident from the Kubo-Greenwood formula in Eq. (7),
only transitions between electronic states that differ in oc-
cupation number contribute to the conductivity. In pristine
semiconductors with no defect state in the gap, transitions
between valence and conduction band hence dominate the
optical conductivity for h̄ω values that are larger than the
band gap. When h̄ω is smaller than the band gap, however,
transitions between valence and conduction band are energet-
ically forbidden by the delta function in Eq. (7). Accordingly,
only transitions within the valence band, i.e., between occu-
pied valence states and the free holes in the valence band,
or within the conduction band, i.e., between unoccupied con-
duction states and the free electrons in the conduction band,
can contribute to the mobility. Discerning these two types of
transitions allows to disentangle the contributions of holes
and electrons to the mobility. Let us note that in the case
of (occupied or unoccupied) defect states in the band gap,
the exact same arguments hold and the KG formalism is
equally applicable. In this case, however, the relevant energy
gap for discerning between hole and electron conductivity
is no longer the fundamental band gap between valence and
conduction band, but the gap between the valence band and
the lowest unoccupied defect state or between the highest
occupied defect state and the conduction band. For the sake
of simplicity, we will just refer to the gap between highest
occupied and lowest unoccupied state as transition gap in the
following, regardless of defect states being present or not.

For the case of h̄ω being smaller than the transition gap
and the transition gap being larger than kBT , i.e., in case of
a nonmetallic system, only those states closest to the Fermi
level can contribute since all deep or high levels far from the
Fermi level are all either fully occupied or unoccupied due
to the fast decay of the Fermi function. For semiconductors
with dispersive electronic band structures, valence holes and
conduction electrons are hence confined to small pockets in
k space near the valence band maximum (VBM), the con-
duction band minimum (CBM), and, if present, defect states.
Accurately sampling these tiny pockets requires very dense k
grids also because the actual location of these pockets is not
known a priori since the band structure and these pockets de-
pend on the atomic positions. The use of Fourier interpolation
gives access to dense k grids in a numerically efficient and
reliable fashion, so that one can reach convergence, as shown
in Fig. 3(a) for one selected 40-atom SrTiO3 sample from an
aiMD trajectory at 500 K. When the k grid is too sparse, e.g.,
for a k grid of 43, there are large oscillations in the spectrum
since transitions within the pockets are not accurately sam-
pled. For increasingly dense k grids, the spectrum becomes
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FIG. 3. Mobility spectrum calculated from a 40-atom super-
cell SrTiO3 sample. Convergence of the mobility spectrum with
fixed (a) η = 2 meV, (b) η = 8 meV and increasing k-grid density.
Thicker lines indicate spectra that can be considered as converged
with respect to the k-grid density. In (a), a k grid 403 is needed to
converge the spectrum, but in (b) a k grid of 163 is already suffi-
cient. (c) Mobility spectra for different η values using individually
converged k-grid densities.

smooth and convergence is observed, here for grids around
403.

Note that the convergence behavior with respect to the k
grid also sensitively depends on the numerical representation
of the delta function in the evaluation of Eq. (7). In this work,
a Gaussian broadening

Gη(ω) = 1√
πη

exp

(
− (εkμ − εkν − h̄ω)2

η2

)
(16)

is used, but our findings are not limited this particular broad-
ening function. For the example in Fig. 3(a), a converged
broadening width of η = 2 meV was used. As discussed in
Sec. II, convergence is reached for η in the zero broadening
limit. To approach this limit, the k grid has to be chosen
the denser, the smaller the broadening parameter η is, since
sharper broadening implies less BZ averaging. This can be
seen by comparing Figs. 3(a) and 3(b), in which the exact
same k grids, but different values for η = 2 and 8 meV are
used. In the latter case, k grid 163 is already converged.

Eventually, we discuss the convergence behavior with re-
spect to η, whereby the k grid was converged individually for
each value of η. For broadenings larger than η > 10 meV,
k-grid convergence is already achieved with sparse grids.
However, the shape and values of these spectra are unreliable,
i.e., they are largely determined by the broadening function
and not by the underlying physics. As shown in Fig. 3(c), the
spectra convergence for lower values of η and the results do
no longer depend on the chosen value of η. However, consid-
erable denser k grids are needed to reach this limit. In this case
of a 40-atom SrTiO3 cell, a broadening of η = 4 meV and a k
grid of 203 can be considered as converged.

Obviously, the value of η and the k-grid density needed to
achieve convergence is system dependent. In general, sparser
k grids are sufficient if the dispersion becomes flatter since
then free holes and conduction electrons are less localized
in pockets of the BZ. This also explains why convergence is
more easily achieved in disordered systems, as mentioned in
the Introduction.

C. Convergence with respect to nuclear degrees of freedom

1. Thermodynamic average over samples

As discussed in the context of Fig. 1, computing the
mobility requires an average over multiple mobility spectra
associated to different geometric configurations, so to cover
the relevant phase space accessible at a specific temperature.
To monitor the convergence of the spectrum with respect to
phase-space sampling, Fig. 4(a) shows the peak height of
the averaged spectrum as function of the number of sam-
ples, i.e., of the number of different geometric configurations
used for averaging, for different supercell sizes. In practice,
samples are randomly selected from an aiMD trajectory (cf.
Sec. IV A for details) and grouped in three different sets with
the same sample size, which are used to determine averages
and standard deviation of the average across sets. By only
considering the peak height, one might conclude that the spec-
tra converge very quickly, e.g., the 40-atom supercell seems
already converged with less than 20 samples. However, further
analysis reveals that this is not the case. As shown in Fig. 5(a),
the overall shape of the spectrum changes quite dramatically
when further increasing the number of samples to a 100, even
if the peak height does not. To take this into account, we also
plot the evolution of the peak position in Fig. 4(b), which
better reflects the convergence of the spectrum’s shape. This
also reveals that the peak position converges more rapidly for
larger supercell size since more phase space is sampled in
larger supercells. Accordingly, converged spectra for the 40-,
135-, and 320-atom supercells are achieved with at least 100,
50, and 30 samples, respectively.
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FIG. 4. Evolution of the averaged (a) peak height and (b) peak
position over three different sets of samples as function of the consid-
ered number of samples (x axis) in each set. Samples were randomly
selected from one 4-ps aiMD trajectory. The dashed region indicates
the standard deviation over the three sets of samples.

Not too surprisingly, we find that the thermodynamic av-
eraging effectively smoothens the spectrum, as showcased in
Fig. 5(a). In turn, this implies that, compared to the spectrum
of a single sample, less dense k-point grids are needed to
converge the thermodynamically averaged spectrum. This is
also seen in Fig. 5(b), which shows that the averaged spectrum
for k grids of 203 and 403 are essentially equal. In comparison,
the respective spectra obtained with k grids of 203 and 403 for
a single sample do not agree and show differing oscillation
patterns, as discussed in the previous section and shown in
Fig. 3 and with dashed lines in Fig. 5(b).

2. Thermodynamic averages of charge-carrier densities

As discussed in Sec. III A, the charge-carrier density sen-
sitively depends upon the band gap. Figure 6(a) shows the
free-electron densities ne obtained for individual samples with
PBE and HSE06, resulting in average intrinsic 〈ne〉 that is
nearly six orders of magnitude too large with PBE com-
pared to HSE06 due to the underestimation of the band gap
by PBE. In turn, this results in conductivities that are also
nearly six orders of magnitude larger with PBE than with
HSE06 [see Fig. 6(c)]. Targeting mobilities, i.e., separat-
ing out the contribution stemming from the charge-carrier
density, allows to obtain much more reasonable results al-
ready at the PBE level. However, one further subtle aspect

FIG. 5. Mobility spectra for the 40-atom supercell SrTiO3 ob-
tained by KG-averaging samples from an aiMD trajectory. (a) Shows
spectra averaged over different number of samples, while (b) com-
pares spectra averaged over 100 samples and spectra of two specific
samples computed with different k-grid densities.

arises during the thermodynamic averaging of conductivities
and charge-carrier densities in the determination of mobili-
ties. In experiments, the mobility is obtained by measuring
conductivity and charge-carrier density separately, i.e., via
〈μ〉 = 〈σ 〉

〈qnc〉 . Computationally, this route is in principle also
viable since 〈qnc〉 can be obtained by averaging over the
individual samples, which all feature a different atomic
configuration and, in turn, a different electronic structure,
intrinsic Fermi energy, and carrier density. In that case, one
obtains

μ = 〈σ 〉
〈qn〉 =

∑
i σi

q
∑

i ni
=

∑
i

ni

〈n〉μi, (17)

in which the sum over i runs over all samples. While correct
in the thermodynamic limit, Eq. (17) leads to numerical prob-
lems for microscopic systems that exhibit artificially large
charge-carrier densities fluctuations. As shown in Fig. 6(a),
the charge-carrier densities fluctuate massively across sam-
ples in finite systems since even just small changes in the
band gap lead to exponential changes of the carrier density.
For the 40-atom supercell, for instance, the PBE values vary
over three, the HSE06 values over five orders of magnitude,
showcasing that these fluctuations are even more pronounced
in case of higher band gaps and lower charge-carrier densities.
In turn, this leads to the undesirable side effect that only very
few samples with high charge-carrier density determine the
average in Eq. (17) and that noise cancellation via averaging
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FIG. 6. (a) Fluctuation of carrier density in each sample with dif-
ferent functional and supercell sizes. (b) Height of the highest peak in
the mobility spectrum up to 0.3 eV for different fixed charge-carrier
densities (one sample, 40-atom supercell). (c), (d) Comparison of
averaged conductivity and mobility spectra for the 40-atom supercell
and different functionals over 100 samples.

is largely suppressed so that the spectra converge very slowly
with the number of samples.

The above-mentioned issues are particularly problematic
when comparing different supercell sizes. For larger, but
still microscopic cells, e.g., the 320-atom cell also shown in
Fig. 6(a), the fluctuations are already massively attenuated
and “only” cover one order of magnitude in the case of PBE.
For larger systems, when approaching the thermodynamic
limit, these fluctuations would be even more suppressed. To
correctly reflect the thermodynamic limit already in small
cell sizes, it is thus advantageous to not use Eq. (17), but
to eliminate these fluctuations by fixing the charge-carrier
density across samples. In practice, this is achieved by shifting
the intrinsic Fermi level for each individual sample to achieve
the desired carrier density during the Kubo-Greenwood calcu-
lations. To this end, one can for instance fix the charge-carrier
density to be close to the intrinsic limit or to the experimen-
tally measured value. By these means, it is ensured that the
charge-carrier density of interest is addressed and that the
averaging is numerically reasonably efficient. However, this
approach effectively eliminates all fluctuations, even those

minute ones that would still be present in the thermodynamic
limit. We find that this approximation has negligible influ-
ence, given that virtually indistinguishable mobility spectra
are obtained when varying the charge-carrier densities be-
tween ne = 1010 and 1019 cm−3. Accordingly, also the exact
same DC mobilities are obtained in this low-doping limit,
as shown in Fig. 6(b). However, this is no longer true for
even larger carrier densities, i.e., for ne = 1020 cm−3 and
higher. In this case, additional states in the conduction-band
valleys become occupied, leading to a metal-like character
that affects both the mobility spectra and the DC mobility
itself, as also shown in Fig. 6(b). Eventually, let us note that
the developed strategy holds in the intrinsic and low-doping
limit. For high-dopant concentrations, an explicit simulation
of the dopants within the Kubo-Greenwood approach is also
straightforward.

In practice, the proposed approach minimizes the error
stemming from the usage of semilocal DFT and of the thereby
underestimated band gap, as alluded to before. As shown in
Fig. 6(c), the conductivity with PBE is ∼106 times larger
than the one of HSE06, if one does not fix the charge-carrier
density. In comparison, our approach with fixed charge-carrier
densities shown in Fig. 6(d) yields similar mobilities for
PBE and HSE06. For instance, the peak height only differs
by ∼13%, in line of what can be expected due to different
band curvatures obtained with different functionals [8,60,70].
Aside from PBE and HSE06, we also tested other xc func-
tionals since they give different effective single-particle states,
different band curvatures, and hence different mobilities. As
shown in Fig. 7(a), the local-density approximation (LDA)
with the PW92 functional [71] and the generalized gradient
approximation (GGA) with the PBE [72] and PBEsol [73]
functionals give very similar results with fixed carrier density.
Aside from the xc functionals, also all other numerical settings
need to be converged, including the basis sets. Default numer-
ical settings in FHI-AIMS are divided into light, intermediate,
tight, and really tight. “Tighter” settings imply a higher num-
ber of NAOs, basis functions with longer-range tails, denser
integration grids, and more [50,74]. As shown in Fig. 7(b),
light, intermediate, and tight settings give very similar results
for the 40-atom SrTiO3 cell, so that the computationally most
affordable light settings are used for the remainder of the
paper.

D. Finite-size effect and extrapolation

Eventually, we analyze the convergence with respect to
the supercell size, which largely determines the behavior of
the optical conductivity in the low-frequency limit. As men-
tioned in Sec. II, the use of extended supercells is required to
correctly sample long-wavelength vibrational modes, which
in turn allows to sample indirect transitions, i.e., electronic
transitions between states at different k points. This happens
via Brillouin zone folding, which maps transitions that are
originally indirect in the first BZ associated to the primitive
cell to direct transitions in the reduced BZ associated with
a supercell. In finite supercells, only a fraction of indirect
transitions are mapped and accounted for. This is evident
from Eq. (7), in which energy conservation requires that the
energy difference for a transition between two states has to
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FIG. 7. (a) Averaged mobility spectrum for the 40-atom SrTiO3

supercell (100 samples, aiMD simulations performed with light
settings and the PBE functional) with different xc functionals.
(b) Mobility spectrum of one sample calculated with PBE functional
and different numerical settings.

equal h̄ω. As sketched in Fig. 8(a), there are only few states
with small energy differences h̄ω in the band structure of a
small supercell. Thus, there are no direct transitions for small
values of h̄ω. Accordingly, the respective spectrum features
a peak and then quickly decays to zero for small values of
ω. For increasing supercell sizes, the BZ is folded, as shown
in Fig. 8(a). Hence, more vertical transitions with smaller en-
ergy difference become possible and are naturally included in
Eq. (7). As a result, the peak in the mobility spectrum becomes
higher and its position shifts closer towards ω = 0, as already
observed in literature [42]. In this context, it is important to
mention that Fröhlich coupling, i.e., electron-phonon coupling
in the long-wavelength limit [18,75], is obviously hard to
capture within finite-size supercells and is thus neglected in
this work.

The above-described trends can also be rationalized in
terms of “unfolded” electronic and vibrational reciprocal-
space states, i.e., in the primitive unit cell and BZ. Small
supercells only feature few vibrational modes characterized
by a coarse reciprocal-space resolution �q of the vibrational
degrees of freedom in the primitive BZ. In turn, only in-
direct transitions that fulfill crystal momentum conservation
k + k′ = �q are sampled. For increasing supercell size, more
long-wavelength vibrations are included and the resolution

FIG. 8. (a) Schematic band structure to show the effect of band
folding with increasing supercell size. Dashed lines indicate the
bands of a small unit cell, where a direct transition with energy
difference h̄ω1 can only happen at a single k point. When the
supercell size is doubled, transitions become possible at three k
points. (b) Schematic mobility spectrum to illustrate the increase
of peak height and shift of peak position with increasing supercell
size. (c) The mobility spectrum of a 625-atom SrTiO3 at 500 K
with interband peaks at higher frequencies. The black dashed line
indicates the upper bound of the frequency for a reasonable Drude
fit. (d) The mobility spectrum of SrTiO3 at 500 K obtained for
different supercell sizes. The thin dashed vertical line indicates the
peak position. It shows that the peak position approaches zero as the
supercell size increases, so that the Drude fit gradually converges.

of the vibrations in reciprocal space improves, i.e., �q de-
creases. Accordingly, more indirect transitions between k
points that are close to each other are accounted for. Since
such states at “neighboring” k points typically feature smaller
energy differences, they play an exceedingly important role
for the low-frequency limit h̄ω → 0. In an infinitely large
supercell, all possible vibrational modes would be included
and the mobility would smoothly approach its peak at the
DC limit, as sketched in Fig. 8(b). In this case, the artificial,
numerical divergence at ω = 0, which originates from the
1/ω factor in Eq. (7), is also lifted. For a single band, only
intraband transitions are possible. As we enlarge the supercell
size, the BZ-folding effect maps these intra-band (indirect)
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transitions in the primitive cell (PC) to interband (direct) tran-
sitions in the supercell (SC) as shown in Fig. 8(a). However,
in real multiband systems, increasing the supercell size can
also enable some previously forbidden interband (indirect)
transitions in the PC to occur, leading to the emergence of
new peaks as the frequency increases as shown in Fig. 8(c).
These interband transitions with respect to the PC bands are
important for calculating optical properties [76], but do not
contribute to the mobility in the DC limit.

In practical calculations, however, the above-mentioned
“infinite supercell” limit can hardly be reached, as shown in
Fig. 8(d). It is thus important to employ strategies to extrap-
olate to the DC limit, several of which have been proposed
in literature [43,44,46,48,77]. In this work, we extrapolate to
the DC limit by fitting the frequency-dependent mobility with
a Drude function [43,45,48]. Formally, this can be justified
directly from Eq. (7). With a finite broadening and when
neglecting interband transitions, the conductivity spectrum
becomes a Drude function

μ(ω → 0) ≈ μ0

(ωτ )2 + 1
(18)

in the low-frequency limit, whereby μ0 corresponds to the
DC limit of the mobility and τ is an effective lifetime of
the charge carriers, as shown in Ref. [48]. Formally, the
Drude model was first developed to describe metallic con-
duction; in practice, the low-frequency optical conductivity
of many semiconductors exhibits a Drude-type behavior, as
long as the additional charge carriers are indeed metal-like
conduction-band electrons or valence-band holes, but not lo-
calized polarons [78–80].

The advantage of this approach is that minimal assump-
tions regarding the behavior of the mobility spectrum are
required. In turn, however, it requires well-converged mobility
spectra with respect to k grid, broadening η, thermodynamic
averages, and supercell size. Achieving this convergence is
possible in our implementation due to the advancements de-
scribed in the previous sections.

In practice, it implies that we fit the (already thermody-
namically averaged) mobility spectrum with Eq. (18) in the
low-frequency region using an appropriate frequency win-
dow. We note that (a) the very-low-frequency limit is not
trustworthy, as discussed above, and (b) the high-frequency
regions feature peaks stemming from interband transitions
not captured by a Drude model, as shown in Fig. 8(c). The
interband transitions manifest as additional peaks in the mo-
bility spectrum as frequency increases. These peaks enlarge as
temperature and supercell size increase since more interband
transitions occur. Accordingly, we choose a window between
the first peak and ∼40 meV afterwards. For instance, the
fitting in Fig. 8(d) is performed between 0.015 and 0.06 eV
for the 625-atom supercell. The actual outcome of the fitting
is rather insensitive to the actual specifics of the window, as
long as it follows the above criteria. For instance, enlarging
the window towards higher frequencies of up to 0.1 eV or
narrowing the window by only starting the fit at 0.025 eV only
changes the DC mobility by 3%.

This procedure enables systematic convergence with
respect to supercell size since the fitting window is adapted
to the employed supercell size through the location of the
first peak in the spectrum. As the example in Fig. 8(d) shows,

the obtained Drude fits converge with supercell size. In
turn, the DC mobilities and lifetimes only vary by 4.3% and
1.9% for the largest cell sizes considered in this example.
Clearly, the employed Drude fitting is an approximation that
is desirable to be overcome by more explicit models based
on first-principles modeling. However, it at least allows for
systematic convergence, as the numbers above show, and
enables an error estimate, given that the peak height observed
in the largest possible supercell can serve as a lower bound
for the mobility in the bulk limit.

The supercell size convergence is highly system depen-
dent. For some materials, an extremely large supercell may be
necessary for convergence while for others, a much smaller
one might suffice. Take, for example, an extreme case of
a system with completely flat bands. In such scenarios, in-
creasing supercell size will not map indirect transitions into
direct ones, and all k points are equivalent. Therefore, only
one single k point and a primitive cell are sufficient to con-
verge the spectrum. From this, a simple rule of thumb of
supercell size convergence could be as follows: for materials
with flatter bands, lower mobilities, or those studied at very
high temperatures, a smaller supercell is generally sufficient
for convergence. Conversely, highly dispersive or complex
multi-valley band edges can require (even impractically) large
supercells for convergence.

IV. APPLICATION

In this section, we use the the Kubo-Greenwood method
to calculate temperature-dependent electron mobility of the
highly anharmonic oxide perovskites SrTiO3 and BaTiO3 up
to high temperature and compare with other theoretical and
experimental values. Then we further analyze our results in
terms of temperature-dependent spectral functions.

A. Computational details

All our calculations were performed with the all-electron,
numerical atom-centered orbital basis ab initio simulation
code FHI-AIMS [50]. To describe exchange and correlation, we
employ the Perdew-Burke-Ernzerhof (PBE) functional [72]
when using the generalized gradient approximation (GGA)
approximation and the Heyd-Scuseria-Enzerhof (HSE06)
functional [81,82] for hybrid DFT calculations. The effi-
cient hybrid DFT implementation in FHI-AIMS is described in
Refs. [83,84]. The Tkatchenko-Scheffler (TS) method [85] is
used to take into account van der Waals interactions.

We first optimized the lattice constants at 0 K with
a 5 × 5 × 5 k grid. Then we perform Born-Oppenheimer
ab initio molecular dynamics (aiMD) at different temperatures
and supercell sizes in the canonical ensemble (NVT) using a
time step of 1 fs for a total of 4000 steps (4 ps). After the
first 2 ps, the lattice parameters are adjusted such that thermal
pressure is minimal to take into account the lattice thermal
expansion (LTE) [31]. The last 2 ps of the aiMD trajec-
tory were then used to evaluate the KG formula. For the aiMD
trajectory of the 625-atom SrTiO3 supercell, the trajectory
computed in Ref. [32] using the same code and computational
settings was used. All other aiMD simulation and postprocess-
ing (calculate anharmonicity metric, etc.) are performed via
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FHI-VIBES [86], whereby PHONOPY [87] is used as calculator
for the harmonic force constants.

For the KG calculations, we use the same k-grid den-
sity (40 × 40 × 40 k points in the first Brillouin zone of
the five-atom primitive structure) for all supercell sizes (i.e.,
20 × 20 × 20 k grid for a 40-atom supercell, etc.). A carrier
density of ne = 1 × 1018 (1/cm3) is used as discussed in
Sec. III C 2. Frequency-dependent mobilities are calculated
for h̄ω values up to 0.3 eV with a resolution of 1 meV using
a Gaussian broadening function with broadening parameter
η ∈ [1, 10] meV for the delta function in the KG formula. The
final result for different supercells uses the smallest possible
η, such that the spectrum is converged: For the 40-, 135-,
320-, and 625-atom supercells, η = 4, 3, 2, and 2 meV are
used as converged values, respectively. Considering empty
bands up to 1 eV above the Fermi level is enough to converge
the conductivity in each sample due to the fast decay of the
Fermi distribution function, as discussed at the beginning
of Sec. III B. The number of samples to converge the mo-
bility is ensured for all our calculations. For the 625-atom
supercell, 30 samples are for instance enough to converge
the result.

The spectral functions are calculated by unfolding su-
percell band structures taken from aiMD samples into the
primitive cell Brillouin zone. The averaged unfolding weights
over samples are defined as the nonperturbative spectral func-
tion taken into account all anharmonic vibration couplings
[32]. This nonperturbative spectral function from unfolding
is equivalent to a Feynman expansion to all orders in the
perturbation [88]. The asymmetricity metric γ of the spectral
function is defined by the integration

γ =
∫

f (ω)(ωpeak − ω)dω∫
f (ω)dω

, (19)

where ωpeak is the peak position of the spectral function and
f (ω) is the spectral weight at ω. For a perfectly symmetric
function centered at ωpeak, γ will be zero. For spectral func-
tions with multiple peaks with similar height, ωpeak is chosen
as the mean position of the highest two peaks.

Impurity scattering of dopants is estimated via the semiem-
pirical Brooks-Herring model [89,90]

μi = 27/2ε2(kBT )3/2

π3/2e3
√

m∗
d niG(b)

, (20)

with G(b) = ln(b + 1) − b/(b + 1), b = 24πm∗
dε(kBT )2/

e2h2n′, and n′ = n(2 − n/ni ). Here, ε is the dielectric
constant, m∗

d is the density-of-state effective mass, n is the
free carrier density, and ni is the dopant density, in our
calculation we assume that n = ni. For SrTiO3, we use the
calculated ε = 5.97 and the experimental electron density
n = 1.4 × 1018 cm−3 [91], m∗

d = 1.8 me [92]. For BaTiO3,
we use the calculated ε = 6.40 and the experimental electron
density n = 8.5 × 1018 cm−3 [93], m∗

d = 6.5 me [93]. The
total mobility is then estimated by the Matthiessen rule:
μ−1

tot = μ−1
KG + μ−1

i .

B. Strong anharmonic effects in perovskites

Perovskite materials, characterized by the formula ABX3,
have consistently garnered significant interest across various
research fields [94–96]. These materials typically exhibit
low-symmetry tetragonal or orthorhombic structures at lower
temperatures. As the temperature increases, their structural
symmetry increases, and phase transitions to high-symmetry
cubic structures with a single formula unit per cell are
common. These cubic and paraelectric phases of perovskites,
featuring untilted octahedra, were confirmed by x-ray
diffraction [97]. However, multiple experiments find local
centrosymmetry broken and local disorder in many cubic
phase perovskites [98–101]. Similarly, on the theory side,
cubic perovskites often have imaginary phonon frequencies,
which indicate that these structures do not correspond to a
local potential-energy minimum [32,33]. In turn, a structure
optimization of supercells results in structures with lower
symmetry [102]. With all this evidence, researchers find that
in reality the cubic paraelectric phase of halide and oxide
perovskites is a thermodynamic average of locally disordered
octahedral motifs, associated with a potential-energy surface
(PES) featuring multiple wells [33,103–105]. Similar effects
are common to many oxides and have, for example, been
observed in ZrO2 [106,107]. This corrugated PES results in
strong anharmonic effects with respect to the nuclear vibra-
tions, which will strongly affect thermal and charge transport
[108,109]. Here we choose the two typical oxide perovskites
SrTiO3 and BaTiO3 as examples to show the influence of the
anharmonic dynamics on the electron mobility.

SrTiO3 (STO) is one of the most widely studied materi-
als in both the oxides and the perovskites families. At low
temperatures, it shows an antiferrodistortive tetragonal struc-
ture. Interestingly, even at ultralow temperature STO still
does not have overall dipole moment, unlike many other
perovskites which are ferroelectric at low temperatures. This
is attributed to the quantum fluctuations over its shallow
ferroelectric potential well [110]. Above 105 K [111,112],
it exhibits a thermodynamically averaged paraelectric cubic
Pm-3m phase until its melting point at 2300 K [67]. BaTiO3

(BTO) is another typical material in the oxide perovskites
family. It shows ferroelectric order below 400 K [113] and
it transforms into a cubic paraelectric phase above the Curie
temperature. Same as many other perovskite materials, the
cubic structure of BTO is an effect of averaging over tilted
local configurations. This locally disordered nature has been
shown in some puzzling observations in experiments, such
as pyroelectricity and piezoelectricity [101], second harmonic
generation signals [99], and pair distribution function [100] in
paraelectric BTO. At the same time, this was also confirmed
by many theoretical works [104,105,114]. To quantify the
anharmonicity of these materials, we use the anharmonicity
metric σ A proposed in Ref. [26], which quantifies the differ-
ence between the actual anharmonic forces observed during
aiMD and the approximative harmonic model. Accordingly,
σ A vanishes for perfectly harmonic materials and nearly har-
monic materials feature low σ A values, e.g., 0.14 and 0.08
for silicon and diamond at 300 K, respectively. As a rule of
thumb, anharmonic effects become non-negligible in materi-
als with σ A > 0.2, which indicates that, on thermodynamic
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FIG. 9. Time-dependent anharmonicity metric σ A of SrTiO3 and
BaTiO3 at different temperatures as obtained via aiMD. The dashed
lines indicate the mean value.

average, the anharmonic contributions make up for more than
20% of the observed forces. Figure 9(a) shows σ A(t ) for STO
obtained from our 625-atom supercell aiMD simulation at
different temperatures, whereby lattice thermal expansion is
accounted for in the simulations. Even at room temperature,
SrTiO3 exhibits already a high value of σ A = 0.34; as the
temperature increases, σ A also increases up to a value of 0.48
at 900 K. At such high levels of anharmonicity, in which
anharmonic effects contribute between 34% and 48% of the
total forces, perturbative frameworks that treat these effects as
a minor perturbation are no longer appropriate. For instance,
this is reflected in the fact that the band-gap renormalization of
STO is severely underestimated when relying on the harmonic
approximation, but can be reproduced when accounting for
anharmonic effects [32,36]. The anharmonicity metric of BTO
is shown in Fig. 9(b). Just above the phase transition temper-
ature at 400 K, it already shows a very large anharmonicity
σ A ≈ 0.45, comparable to STO at 700 K. And, as expected,
the anharmonicity increases even further with rising temper-
ature. At our highest studied temperature of T = 1400 K it
shows σ A ≈ 0.70, so anharmonic effects largely dominate the
dynamics in this case.

C. Electron mobility of SrTiO3

As shown in Fig. 10 for SrTiO3, our KG + aiMD cal-
culation with a 625-atom supercell reproduces the correct,
qualitative behavior of the mobility up to very high temper-
ature when compared to experiments, including the observed
deviations from a low temperature T −3.1 scaling at high tem-
perature measured in Nb-doped STO with <1020 cm−3 carrier
density [91]. In comparison, the state-of-the-art BTE meth-
ods can qualitatively capture the correct trend of the electron
mobility up to room temperature (150–300 K) [38], but the
value is one order of magnitude higher than the KG results,

FIG. 10. Temperature-dependent electron mobility of SrTiO3

compared to BTE results [38] (green line) and values obtained using
the retarded Green’s function approach [115] (purple line). Experi-
mental results (red [91] data with carrier density 5.9 × 1018 cm−3,
sky blue [116]) and the low-temperature ∼T −3.1 trend (black dashed
line) are shown as well.

as shown by the green line in Fig. 10. Note that these BTE
calculations already incorporate some anharmonic effects via
temperature-dependent phonon dispersions. Including higher-
order electron-phonon interactions in the retarded Green’s
function can cover this gap and get quantitatively comparable
results with the KG approach in the low-temperature regime,
as shown by the purple line in Fig. 10. However, in both cases,
perturbation theory predicts a ∼T −n temperature dependence
of the mobility with n = −3.1, as highlighted by the dashed
line in Fig. 10. Let us emphasize that perturbation theory is
bound by construction to a constant n value [8] for the whole
high-temperature range and can thus not match the ∼T −1.5

trend [91] observed in experiment. At variance with that, the
KG approach correctly captures changes in n and also the
∼T −1.5 behavior at large temperatures.

Quantitatively, we note that the calculated mobility val-
ues for the retarded Green’s function and the KG approach
agree at 300 K, but are both larger then the experimental
results. We here assume that this discrepancy is caused by
impurity scattering in the doped samples. Since the experi-
mental charge-carrier density of ∼1018 cm−3 is almost two
orders of magnitude too small to be explicitly modeled via
aliovalent substitution in a 625-atom supercell, we estimate
the influence of impurity scattering using the semiempirical
Brooks-Herring model as introduced in Sec. IV A. This gives
a reduced mobility ∼5.8 cm2/Vs at 300 K, which is closer to
the experimental value of ∼4.7 cm2/Vs.

Coming back to the deviations from the T −3.1 trend at high
temperatures, our calculations can be rationalized using the
fully anharmonic spectral functions shown in Fig. 11(a). With
increasing temperature, the spectral function becomes broader
and broader, whereby the width of the spectral function cor-
responds to the imaginary part of the electron self-energy.
Conversely, the shifts observed for the peak maximum in the
spectral function correspond to the real part of the self-energy
[32]. The massive broadening of the spectral function indi-
cates very strong electron-vibration interactions at increasing
temperature. For a closer analysis, we plot the temperature-
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FIG. 11. (a) Spectral function of SrTiO3 near the conduction band minimum along the -0.4M path at different temperatures. The color
bar indicates the spectral weight. The red curve shows the band structure of the perfect primitive cell at 0 K. The band-gap renormalization
and broadening of the spectral function with temperature is clearly observed. (b) Spectral function at  point near conduction band minimum.
As temperature increases, more and more spectral weight is transferred to the high-energy tail. Black dashed line shows the derivative of the
Fermi function.

dependent spectral function at the CBM, i.e., the  point, in
Fig. 11(b). This reveals that the spectral function becomes
not only very broad, but also asymmetric at high temper-
atures, since it develops a long, high-energy tail. This tail
does virtually not contribute to the mobility due to the fast
decay of the Fermi occupation function, as shown by the
derivative of Fermi function in Fig. 11(b). Thus, the mo-
bility drops down with increasing temperature since more
and more spectral weight is transferred to the noncontribut-
ing tail. Let us emphasize that this asymmetric line shape
of the spectral function is a key signature for anharmonic
and higher-order electron-vibrational coupling [37], that is
not accounted for in state-of-the art perturbative BTE ap-
proaches. In such methods, the peaks of the spectral function
are Lorentzian by construction [8], so that the described high-
temperature spectral weight shift remains unaccounted for.
The asymmetricity of the spectral function of STO with tem-
perature will be analyzed in details together with BTO in the
next section.

D. Electron mobility of BaTiO3

In comparison to SrTiO3, BaTiO3 exhibits a much lower
mobility, e.g., already 0.6 cm2/Vs at 400 K. Also, the
temperature dependence observed in experiments exhibits
a quite different behavior. As discussed above, SrTiO3

follows a T −n law with n = 3.1 at low temperatures. At
more elevated temperatures, the decay becomes less steep
with n ∼ 1.5. Conversely, the decrease of mobility in BaTiO3

shows a ∼T −1.24 behavior over the whole temperature range.
Note that some experiments argue that the mobility of
BaTiO3 should also level off and become constant at high
temperatures T > 1100 K [117–119]. However, the scattering
between different experiments, the error bars within one
measurement [118], and the few available high-temperature
data points hardly allow to fully corroborate this conclusion
from experiment alone.

The performed KG calculations for the electron mobility
confirm that a T −1.25 scaling law holds over a wide temper-

ature region. Strong anharmonicity can also be qualitatively
illustrated in the spectral function of BTO at the band edge.
As shown in Fig. 12(b), all spectral functions show a very
broad non-Lorentzian distribution, indicating the breakdown
of the quasiparticle picture. The spectral peak height in BTO
at 400 K is lower than the spectral peak height of STO at
500 K and comparable with that at 700 K in Fig. 11(b). This
trend is qualitatively related to the higher σ A of BTO at 400 K
compared to STO at 500 K and is more similar to SrTiO3 at
700 K. The lower spectral peak in BTO than STO at fixed T
can also explain the lower mobility in BTO.

The different temperature-dependent behavior of STO and
BTO can be qualitatively rationalized by the asymmetricity
of their spectral functions. The method to evaluate the asym-
metricity of the spectral function is introduced in Sec. IV A.
As shown in Fig. 12(c), the asymmetricity of STO’s spectral
function increases with temperature. In comparison, the asym-
metricity of BTO’s spectral function barely changes for the
whole temperature region. The nearly constant asymmetric-
ity of the BTO spectral function indicates high similarity of
the spectral shape with increasing temperature, which result
in nearly constant n in the T −n scaling law. On the other
hand, the asymmetricity shows that the spectral function of
STO changes shape significantly with temperature, inducing
changes in the n scaling in the T −n law.

Eventually, we note that the predicted mobility values
are higher than in experiment. Although the quantitative
deviances are rather small and only in the order of few
cm2/Vs, one can speculate if additional scattering mecha-
nisms might be active in experiment. Indeed, all reported
measurements studied polycrystalline [118,119] and highly
doped BTO [93], for which spontaneous vacancy and po-
laron formation have been observed [120]. Again, one can
estimate the influence of such scattering centers using the
semiempirical Brooks-Herring model, which results in a re-
duced mobility of ∼1.4 cm2/Vs at 400 K, which is closer
to the experimental value of ∼0.6 cm2/Vs. Furthermore, the
fact that a temperature-independent shift is observed between
experiment and theory suggests that grain-boundary scattering
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FIG. 12. (a) Temperature-dependent electron mobility of BTO.
Blue dots are the result in this work. Others are experimental values:
� [93], • [123], � [117], � [118], × [119]. The dashed line indicates
the T −n law. (b) Spectral function of BTO at the  point near the con-
duction band minimum at different temperatures. (c) Asymmetricity
metric of STO and BTO.

might be active. When the grain size is comparable or larger
than the actual charge-carrier mean-free path, this scattering
typically results in such a constant offset, as for instance
observed in Refs. [121,122].

V. CONCLUSION AND OUTLOOK

In this work, we investigated and analyzed the Kubo-
Greenwood formula, a nonperturbative, first-principles ap-
proach for computing electronic transport based on fully
anharmonic aiMD calculations that is notoriously tricky and
costly to converge for ordered, crystalline materials. To this
end, we implemented the KG formula and several numer-
ical strategies that alleviate these computational hurdles in
the numeric atom-centered orbital basis code FHI-AIMS. This
includes Fourier interpolation to speed up BZ integrations, a

workflow to systematically choose the optimal combination of
k-grid density and broadening parameter in the KG formula,
a workflow to achieve convergence with respect the thermo-
dynamic phase-space sampling both with respect to number
of samples and supercell size, and, eventually, a scheme to
obtain correct mobilities from semilocal DFT calculations de-
spite the well-known failure of such approaches in predicting
band gaps and charge-carrier densities. Eventually, we show
that the combination of these techniques enables to compute
converged mobilities from first principles, even for ordered
crystalline solids that were numerically not accessible before.
Compared to existing perturbative approaches [8], the KG
formalism has the unique advantage that anharmonic effects
in the nuclear dynamics and higher-order couplings between
electronic and nuclear degrees of freedoms are naturally
included.

We demonstrated the merits of the implemented KG for-
malism by computing the mobilities of the oxide perovskites
SrTiO3 and BaTiO3 over a wide range of temperatures, reach-
ing good agreement with experimental data. For instance,
state-of-the-art BTE approaches for SrTiO3 overestimate the
mobility at room temperature by an order of magnitude,
whereas the KG formalism yields results closer to experiment,
in line with retarded Green’s function approaches [115]. At
variance with this approach, the KG formalism is further-
more able to correctly reproduce the experimentally measured
temperature dependence of the mobility at higher tempera-
tures, at which anharmonic and higher-order coupling effects
become more prevalent and the quasiparticle approximation
breaks down. For SrTiO3, we find that the mobility follows
a ∼T −3.1 scaling in the low-temperature regime, but exhibits
a much less steep behavior of ∼T −1.5 when the temperature
increases, in line with high-temperature experiments [91].
Conversely, BaTiO3 shows a ∼T −1.25 temperature depen-
dence across a wide temperature regime. We can rationalize
this contrasting trend by analyzing the temperature-dependent
spectral functions of these materials at various temperatures.
For both materials, the electronic states relevant for the mo-
bility exhibit asymmetric, non-Lorentzian line shapes. For
SrTiO3, the asymmetricity increases with temperature, so that
the spectral weight of the conductive states at the bottom
of the band decreases. We ascribe the observed changes in
the T −n scaling law to this effect. Accordingly, the asym-
metricity of the spectral function of BaTiO3 barely changes
with temperature and also the scaling exponent n remains
constant over a wide temperature range. Let us emphasize
that this is a pure higher-order effect since low-order pertur-
bative approaches are limited to Lorentzian line shapes by
construction.

In a nutshell, our work demonstrates the importance of
anharmonic and higher-order coupling effects for the com-
putation of mobilities and describes strategies on how to
systematically account for them using the KG formalism in
first-principles approaches. Despite being applicable to all
kind of materials, the presented implementation is impractical
and unnecessarily costly for weakly anharmonic materials,
e.g., Si [60] or GaAs [22,124,125], for which perturbative
methods that do not require explicit aiMD are computation-
ally advantageous. To facilitate systematic benchmarks and to
validate the approximations taken in perturbative approaches
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against the KG approach across all kinds of material classes,
including low and highly doped compounds as well as weakly,
moderately, and highly anharmonic materials, further acceler-
ating the KG method is desirable. In particular, explicit impu-
rity scattering simulations would be facilitated by lowering the
cost of KG calculations in very large supercells, which would
allow to address degenerate semiconductors and to improve
current semiempirical models for impurity scattering such as
the Brooks-Herring model. To this end, machine-learning-
based approaches appear promising, e.g., by avoiding explicit
aiMD simulations and using machine-learned interatomic
potentials for the dynamics instead [126,127]. Similarly,
machine-learning approaches for predicting electronic proper-
ties such as densities and matrix elements [128–131] provide
a route to also accelerate the evaluation of the KG formula.
This would also be beneficial for materials with highly dis-
persive band structures, which can require large supercells for
achieving convergence. However, we also note the challenge
that much of the anharmonicity of atomic motions is triggered
by rare events such as the temporary formation of intrinsic de-
fects explored in aiMD [29]. These are typically not well cap-
tured by state-of-the-art machine-learning potentials [132].

All the electronic-structure theory calculations produced in
this work and the ab initio molecular dynamics trajectories
are available on the Novel Materials Discovery (NOMAD)
repository under [133].
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APPENDIX: MERIT
OF THE FOURIER INTERPOLATION

Fourier interpolation is a well-established technique in
codes using linear combinations of atom-centered orbitals,
e.g., for band-structure and density of state calculations.
The merits of this approach are shown in Fig. 13 for a
representative 40 atoms, 2 × 2 × 2 SrTiO3 supercell from
an aiMD trajectory at 500 K with ne = 1 × 1018 (1/cm3).
Thereby, we compare a fully self-consistent evaluation of the
frequency-dependent mobility with one obtained via Fourier
interpolation. In the first case, a SCF k-grid 203 points per cell
is used for both the SCF cycle and the Kubo-Greenwood for-
mula. In the second case, only a sparse k grid 43 is employed
during SCF; for the evaluation of the Kubo-Greenwood for-
mula the k grid is then up-sampled to 203 k points via
Fourier interpolation. As evident from Fig. 13(a) the resulting
mobilities are virtually indistinguishable in the two cases.
With respect to memory consumption and computational
cost, the Fourier interpolation is, however, extremely advan-
tageous. The memory consumption is significantly lowered

FIG. 13. Merits of Fourier interpolation. (a) Comparison of the
spectrum calculated from a dense 20 × 20 × 20 SCF k-grid and a
sparse 4 × 4 × 4 SCF k-grid with additional Fourier interpolation.
(b) Comparison of maximum memory per node with increasing
number of k-points. (c) Comparison of computational time with
increasing number of k-points.

since only the k-dependent KS wave functions included in the
SCF need to be actually stored concurrently. For the evalua-
tion of the Kubo-Greenwood formula, the required KS wave
functions are computed consecutively, so that the memory
consumption remains constant, as shown in Fig. 13(b). Since
converging the mobility often requires 104 k points and more,
this results in memory savings of one order of magnitude
and more.

Similarly, we observe notable savings in computational
time, as shown in Fig. 13(c). In the case of a fully self-
consistent solution, one diagonalization is required for each
k point in each SCF step, whereas each of the Fourier-
interpolated k points requires only one diagonalization.
Overall, this leads to almost an order of magnitude in savings;
the overall scaling remains similar, though, since the diago-
nalization itself is the computationally dominant step. In this
context, it is worth mentioning that the here employed Fourier
interpolation is also the basis for the Wannier interpolation
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commonly employed for plane-wave basis sets [134]. In that
case, a Wannierization procedure is used to obtain a localized
representation in real space that can be Fourier interpolated.

For the case of NAO basis sets used in FHI-AIMS, this first
step is unnecessary since the representation is localized by
construction.
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