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Abstract

Polaritonic chemistry has garnered increasing attention in recent years due to pi-

oneering experimental results, which show that site- and bond-selective chemistry at

room temperature is achievable through strong collective coupling to field fluctuations

in optical cavities. Despite these notable experimental strides, the underlying theo-

retical mechanisms remain unclear. In this focus review, we highlight a fundamental

theoretical link between the seemingly unrelated fields of polaritonic chemistry and spin

glasses, exploring its profound implications for the theoretical framework of polaritonic

chemistry. Specifically, we present a mapping of the dressed electronic structure prob-

lem under collective vibrational strong coupling to the iconic Sherrington-Kirkpatrick
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model of spin glasses. This mapping uncovers a collectively induced instability in

the dressed electronic structure (spontaneous replica symmetry breaking), which could

provide the long-sought seed for significant local chemical modifications in polaritonic

chemistry. This mapping paves the way to incorporate, adjust and probe numerous

spin glass concepts in polaritonic chemistry, such as frustration, aging dynamics, ex-

cess of thermal fluctuations, time-reversal symmetry breaking or stochastic resonances.

Ultimately, the mapping also offers fresh insights into the applicability of spin glass

theory beyond condensed matter systems and it suggests novel theoretical directions

such as polarization glasses with explicitly time-dependent order parameter functions.

1 Introduction

It is well established that molecular properties and chemical reactions can be influenced by

light. Femtochemistry1,2 and coherent control using ultra-short and high-power lasers attest

to this. So on a first glance it may seem straightforward to reach for a similar outcome by

using optical cavities instead of laser driving, which has established the emergent field of

polaritonic or QED chemistry (see Fig. 1).3–13 There are, however, a few very important

differences that make polaritonic chemistry distinct. Firstly, when using lasers one tries to

achieve site-selective chemistry usually with coherent, i.e., classical, light fields. In polari-

tonic chemistry usually a much smaller number of photons couples and their quantum nature

becomes important.3,14 Secondly, in many cases the electromagnetic field inside an optical

cavity is zero, i.e., the cavity is not pumped externally, such that only the strong coupling

to the quantum and thermal fluctuations lead to modifications.3,14 Thirdly, and most im-

portantly for this perspective, in most cases the coupling to a single molecule is small, but

non-zero even in the thermodynamic limit.3,15,16 Therefore, only the macroscopic ensemble of

molecules a priori couples strongly to the photon-field fluctuations. This collective-coupling

regime leads to a seemingly paradoxical situation: While chemical reactions and the prop-

erties of individual molecules are usually considered local in time and space, this traditional
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view is challenged in polaritonic chemistry due to strong feedback effects between the mi-

croscopic properties and the macroscopic behavior of the ensemble. The unique nature and

origin of those feedback effects bridging different scales in time and space will the main focus

of the present review.

Connecting the different scales and isolating the physically relevant mechanism poses a

formidable theoretical challenge, which has so far not been resolved satisfactorily due to

its complexity (presumably its off-equilibrium glassy nature).5,17–20 Particularly the origin of

why in some molecular ensembles chemical reactions change21–27 while in others under sim-

ilar conditions no effect is observed,28,29 remains elusive. In this article we want to provide

a perspective on this conundrum that gives a partial answer and highlights a way forward

to understand how the macroscopic behavior of an ensemble of molecules can act back on

its individual constituents with the help of the electromagnetic modes of an optical cavity.

While, as we will detail in this manuscript, there are many intricacies that need more the-

oretical and experimental investigations, eventually a relatively simple picture will emerge

thanks to the established theoretical concepts of spin glasses. By borrowing ideas from this

mature research discipline and applying them to the situation of collective vibrational strong

coupling (VSC, i.e., the cavity is resonant to some vibrational degrees of freedom), we will

see that the electronic polarizations of the individual molecules become synchronized via the

cavity. However, since the overall macroscopic polarization of the ensemble is zero, these

synchronized polarizations form intricate patterns that are (dynamically) frustrated.30 That

is, if the dynamic polarization of one molecule is flipped (or asynchronous), all the others

need to react in a concerted synchronized way. In the following, we will call this situation a

polarization glass.20 The underlying electronic frustration effect does not only bridge length

but also time scales. It acts back on all the other degrees of freedom such that it provides

a necessary seed to trigger stochastic resonances, which together can affect reaction rates

(rare events that depend on the details of the thermal ensemble and the local distribution of
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the energy in the ensemble) and other molecular properties. Indeed, based on the analogy

with the spin glass, one expects non-trivial local and collective off-equilibrium effects even

in a global thermal ensemble. Overall, the presented theoretical framework can provide an

avenue for numerous future theoretical and experimental developments in the field of QED

chemistry.

In the following we will first discuss the theoretical setting for describing VSC in the col-

lective regime (Sec. 2), then show numerical and experimental evidence for frustration and

phase-transition-like behavior of a polarization glass (Secs. 3.1-3.2), before we present a

novel mapping of the dressed electronic-structure problem onto the prototypical Sherrington-

Kirckpatrick (SK) spin glass model (Secs. 3.3-3.4) and introduce corresponding theoretical

instability concepts (Secs. 3.5). We will also address theoretical and experimental observables

as well as crucial differences between the spin-glass and polarization-glass setups (Sec. 4).

2 Pauli-Fierz ab initio theory

As a starting point to describe an ensemble of molecules coupled to an optical cavity one

usually employs the Pauli-Fierz theory, which provides a rigorous and non-perturbative the-

oretical framework to describe the coupling of non-relativistic quantized matter and the

quantized light field in an optical cavity (see Fig. 1 for a paradigmatic setup).8,31 By solving

the corresponding Schrödinger-type equation, even strongly coupled light and matter can

be accurately described on the atomistic scale. In the case that the enhanced light-modes

of the optical cavity have a wavelength much larger than the molecular systems, we can

employ the long-wavelength and the few-mode approximation,8 such that in length-gauge

the Pauli-Fierz Hamiltonian takes the form

Ĥ = Ĥm +
1

2

[
p̂2β + ω2

β

(
q̂β −

X̂ + x̂

ωβ

)2
]
. (1)

4



For simplicity we have chosen a single-effective cavity mode β, e.g., of a Fabry-Pérot cavity.

Notice that more evolved cavity setups can be designed that, e.g., allow for higher mode-

volume confinements (such as in plasmonic or micro cavities).32–36 Moreover, cavity leakage

effects of the mirrors are a priori not captured by Eq. (1). However, those could be accounted

for by considering multiple modes (broadening) and thus introducing a finite line width

(lifetime) based on the imaginary part of the dielectric response of the mirrors.37,38 The

more general minimal-coupling Pauli-Fierz framework is discussed in, for example, Ref. 8,

but we do not expect that this more intricate description will qualitatively change the results

in the following.

Light-Matter  
Coupling

Resonance Frequency

the highly non-trivial free-space matter problem, which has been the focus of quantum-

chemical methods over many decades. The second term describes the coupling of the matter

to the quantized displacement field operator q̂�, with the conjugate photon operator defined

as p̂�. The matter polarization operators for N molecules with Nn nuclei and Ne electrons

are given as X̂ := �
PN

i=1

PNn

n=1 ZnR̂in and x̂ := ��
PN

i=1

PNe

n=1 Zer̂in, where the nuclear and

electronic total transition dipole moments, respectively, are coupled via � to the e↵ective

displacement field mode of frequency !�. The vectorial photon-matter coupling � = "�

depends on the mode polarization vector " and the coupling constant?

� =

s
e2

V "0

(2)

where V corresponds to the e↵ective mode volume. This e↵ective mode volume can be

connected to properties of the Fabry-Pérot cavity and scales roughly as L3F , where F is

the finesse of the cavity.? It is important to highlight two aspects of the Pauli-Fierz theory

in the length gauge and the few-mode approximation. Firstly, that we have an equilibrium

solution of the coupled system is due to the fact that the light-matter coupling term in Eq. (1)

is quadratic and thus the Hamiltonian is bounded from below. Of specific importance for

the stability of the coupled system is the term (X̂ + x̂)2, which is quadratic in the coupling

strength �. [vasilis, christian] This term is called dipole self-energy or self-polarization term in

the literature. Secondly, for the proper free-space continuum limit it is important to subtract

the free-space contributions from the e↵ective-mode theory. Else one would double-count

the interaction with the free-space modes that are captured by working with the observable

masses of the charged particles.? Thus � = 0 means no cavity, and for any Fabry-Pérot

cavity there is a finite mode volume V which implies � > 0 and also dictates the maximal

amount of molecules that can be coherently coupled for a given molecular density. This

aspect will become important later when we discuss the scaling behavior in QED chemistry

(see Sec. ...).
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does not only bridge length but also time scales, and it acts back on all the other degrees of

freedom such that it can potentially a↵ect reaction rates (rare events that depend on the de-

tails of the thermal ensemble) and other molecular properties. Indeed, based on the analogy

with the spin glass, one expects non-trivial o↵-equilibrium e↵ects even in a thermal ensemble.

In the following we will first discuss the theoretical setting for VSC in the collective regime

(Sec. ...), then show numerical and experimental evidence for frustration and phase-transition-

like behavior (Sec. ...), before we contrast this with the physics of spin glasses (Sec. ...). We

then ...

2 Pauli-Fierz ab initio theory

As a starting point to describe an ensemble of molecules coupled to an optical cavity one usu-

ally employs the Pauli-Fierz theory, which provides a rigorous and non-perturbative theoreti-

cal framework to describe the coupling of non-relativistic quantized matter and the quantized

light field.? By solving the corresponding Schrödinger-type equation, even strongly coupled

light and matter can be accurately described on the atomistic scale. In the case that the

enhanced light-modes of the optical cavity have a wavelength much larger than the molecular

systems, we can employ the long-wavelength and the few-mode approximation1 such that in

length-gauge the Pauli-Fierz Hamiltonian takes the form

Ĥ = Ĥm +
1

2


p̂2
� + !2

�

⇣
q̂� �

X̂ + x̂

!�

⌘2
�
. (1)

For simplicity we have chosen a single-e↵ective cavity mode �, e.g., of a Fabry-Pérot cavity.

The more general minimal-coupling Pauli-Fierz framework is discussed in, for example, Ref.

? , but we do not expect that this more intricate description will qualitatively change the

results in the following. In Eq. (1) the free-space matter Hamiltonian is defined as Ĥm,

which accounts for the quantized nuclei and electrons of the molecules. Thus Ĥm describes
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Figure 1: Sketch of a molecular ensemble under vibrational strong coupling (VSC) in a
Fabry-Pérot cavity. The distance between the reflective mirrors is inversely proportional the
resonance frequency ωβ, i.e., which photon modes are enhanced due to the standing-wave
conditions, and together with the finesse of the mirrors this dictates the single-particle light-
matter coupling strength λ (see also Eq. (2)).5

In Eq. (1) the free-space matter Hamiltonian is defined as Ĥm, which accounts for the

quantized nuclei and electrons of the molecules. Thus Ĥm describes the highly non-trivial

free-space matter problem, which has been the focus of quantum-chemical methods over

many decades. The second term describes the coupling of the matter to the quantized

displacement field operator q̂β, with the conjugate photon operator defined as p̂β. The

matter polarization operators for N molecules with Nn nuclei and Ne electrons are given as
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X̂ := λ
∑N

i=1

∑Nn

n=1 ZnR̂in and x̂ := −λ
∑N

i=1

∑Ne

n=1 Zer̂in, where the nuclear and electronic

total transition dipole moments, respectively, are coupled via λ to the effective displacement

field mode of frequency ωβ. The vectorial photon-matter coupling λ = ελ depends on the

mode polarization vector ε and the coupling constant8

λ =

√
e2

V ε0
, (2)

where V corresponds to the effective mode volume. This effective mode volume can be

connected to properties of the Fabry-Pérot cavity and scales roughly as L3F , where F

is the finesse of the cavity. A more elaborate discussion reveals that the effective mode

volume leads to a finite light-matter coupling even in the macroscopic limit.16 It is important

to highlight two aspects of the Pauli-Fierz theory in the length gauge and the few-mode

approximation. Firstly, that we have an equilibrium solution of the coupled system is due to

the fact that the light-matter coupling term in Eq. (1) is quadratic and thus the Hamiltonian

is bounded from below. Of specific importance for the stability of the coupled system is the

term (X̂ + x̂)2, which is quadratic in the coupling strength λ.39,40 This term is called dipole

self-energy or self-polarization term in the literature. Secondly, for the proper free-space

continuum limit it is important to subtract the free-space contributions from the effective-

mode theory. Otherwise, one would double-count the interaction with the free-space modes

that are captured by working with the observable masses of the charged particles.16 Thus

λ = 0 means no cavity, and for any Fabry-Pérot cavity there is a finite mode volume V

which implies λ > 0 and also dictates the maximal amount of molecules that can in fact be

coherently coupled for a given molecular density. This aspect will become important later

when we discuss the scaling behavior in QED chemistry (see Sec. 3.5).

At this point it is important to highlight again that in most experiments in polaritonic

chemistry the effective mode volume is large, since many molecules are coherently coupled,

and λ ≪ 1. Based on this small prefactor it is then often argued that no effect for molec-
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ular systems should be observed in a dark cavity. We will, however, not apriori discard

the coupling terms. Most importantly because although the prefactor λ might be small,

the quadratic coupling term formally scales as N2 and hence for N ≫ 1 this scaling can

potentially balance this small prefactor and eventually give rise to a quantitative effect at

the single molecular level. Moreover, because in the following we focus on VSC, which im-

plies that the cavity frequency ωβ is tuned on the vibrational excitations rather than the

energetically higher-lying electronic excitions, the cavity Born-Oppenheimer partitioning is

a natural and effective choice to proceed.8,15,41 Thus in a Born-Huang expansion the total

wave function is partitioned by grouping the nuclear and displacement field degrees and the

electronic wave function is treated as a conditional wave function that depends on the nu-

clear and displacement coordinates. This allows to write the Hamiltonian for the electronic

part of the coupled problem as

Ĥe(R, qβ) :=H
m,e(R) +

(
1

2
x̂2 + x̂X − ωβx̂qβ

)
, (3)

which parametrically depends on all the nuclei positions

R := [R1 = (R11, . . . ,R1Nn), . . . ,RN = (RN1, . . . ,RNNn)] (4)

and displacement photon field coordinates, written compactly as (R, qβ). The free-space

electronic-structure problem is given by Hm,e(R). Notice that if we would keep all non-

adiabatic couplings in the Born-Huang expansion no approximation has been made so far.

Only in a next stage, different levels of approximations are introduce to reduce the compu-

tational complexity of the fully quantized problem given in Eq. (1), see e.g. Refs. 41,42.

Throughout this work, we are mainly interested in the physical properties of the cavity-

mediated electronic structure given in Eq. (3). For this reason, we proceed by applying the

classical (for the nuclear and displacement degrees of freedom) cavity Born-Oppenheimer
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approximation on the coupled nuclear-photon problem. This allows for a computationally

efficient determination of reasonable parameters (R, qβ) that enter the dressed electronic-

structure problem. In more detail, nuclei and (effective16) displacement field evolve on the

dressed ground-state electronic potential-energy surface according to the classical Hamilto-

nian dynamics of,5,20,43–49

Hnpt := Hm,n(R) +
p2β
2

+
ω2
β

2

(
qβ −

X

ωβ

)2

+ ⟨Ψ0|Ĥe(R, qβ)|Ψ0⟩. (5)

The classical cavity Born-Oppenheimer approximation implies that any quantum and non-

adiabatic effects of the nuclear structure are subsequently discarded, which allows for ground-

state ab initio molecular dynamic implementations. Such a theoretical setup is numerically

feasible even for large molecular ensembles N ≫ 1. We will get back to this adiabatic

assumption and discuss its validity in the context of VSC later in Secs. (3.5,4.1,4.2.3). No-

tice that assuming a classical displacement field D = λωβqβ/4π does not mean that the

transverse electric-field operator Ê⊥ is entirely classical. Indeed, the transverse electric-field

operator is given as,20

Ê⊥ = 4π(D − P̂ ) (6)

within the length-gauge representation used throughout this paper. Thus the electronic part

of the macroscopic polarization operator P̂ = λ(X + x̂)/4π remains fully quantized and

describes the electronically bound photons of the hybrid light-matter states.8,39 The quan-

tized nature of P̂ will be an essential ingredient for all the subsequent discussions. A further

important point is that the displacement field coordinate couples to the total dipole of the

ensemble and the coupling scales linear in λ. Thus the coupling of the displacement field is

different from the direct dipole-dipole coupling due to the self-energy term. Notice further

that the longitudinal electric fields remain unaffected by the gauge choice, i.e., they corre-

spond to the standard Coulomb interaction terms of the bare matter problem with classical
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nuclei and quantized electrons.

To investigate the physical properties of the dressed electronic problem in Eq. (3), it is conve-

nient to assume the dilute-gas limit for the corresponding many-electron wave function Ψ, i.e.,

free-space molecules do not interact with each other described by Hm,e(R) =
∑N

i=1H
m,e
i (Ri).

This is a common choice in the field of polaritonic chemistry, which is applied to a broad range

of different situations.18,20,50–52 We note that this ansatz can also be extended to molecules in

more complex environments, such as in solution. In this case Hm,e
i (Ri) does not correspond

to the electronic structure of a single molecule but to a full solvation shell instead. Assuming

non-overlapping electronic structures between the N molecules, effectively reduces the total

electronic wave function Ψ to a simple Hartree product Ψ = ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψi ⊗ · · · ⊗ ψN

of N single-molecule electronic wave functions ψi. These single-molecule wave functions are

determined by the following N coupled cavity Hartree (cH) equations,18,20

(
Hm,e

i (Ri) +
(
X − qβωβ+

N∑

j ̸=i

⟨ψj|x̂j|ψj⟩
)
x̂i +

x̂2i
2

)
Ψi = εiΨi. (7)

Notice that the mean-field (direct product) description implies no quantum entanglement

between the molecules. While in principle one could go beyond a mean-field theory, e.g., using

coupled cluster, and other more accurate ab-initio methods37,53–60 for the collective electronic

structure problem, it comes at the cost of increasing the computational load considerably.

However, this additional complexity might not be necessary for large molecular ensembles

under collective strong coupling, since it has been shown for similar situations that a mean-

field treatment becomes exact in the large N -limit.61,62 However, the rigorous mathematical

analysis of this aspect remains an open research question for the moment. Nevertheless,

the subsequently developed connection to a classical spin glass is expected to sufficiently

capture the most relevant physical mechanism of the inter-molecularly dressed electronic

structure problem under VSC. Certainly, as always, the intra-molecular electronic structure
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problem (bare matter) requires the inclusion of exchange and correlation terms to be a

chemically accurate description of a molecule. However, this is implicitly enabled by the cH

equations. To determine the many-body ground state of the dressed electrons the N coupled

cH equations need to be solved iteratively until convergence. One immediately notices that

the recursive dependency on
∑N

j ̸=i⟨ψj|x̂j|ψj⟩ may introduce a significant (non-perturbative)

modification of the electronic structure, even for small coupling constants λ.61 This terms

originates from the quadratic interaction term x̂2 in Eq. (1) that has the formal scaling of N2.

Notice, the length gauge representation is convenient to uncover this fundamental all-to-all

interaction term. However, it is a gauge independent feature, which is implicitly present in

any other gauge (e.g., also in the common velocity gauge).57,63 It makes the main difference to

a free-space ensemble, where for each molecule the instantaneous electronic ground state can

be determined independently and the unique electronic many-body ground-state is simple.

In the free-space case the macroscopic ensemble has no influence on the individual molecule

except of statistically exploring all single-molecule configurations. In the following, we will

investigate the consequences of this novel long-range all-to-all interaction, which connects

the properties of the macroscopic ensemble to its individual constituents.

3 A polarization glass is born

3.1 Collective strong coupling with the cavity Hartree equations

To simulate an ensemble of molecules under VSC one has to propagate the classical equations

of motion based on Eq. (5) in contact with a thermal bath.5 Traditionally such a classical

molecular dynamics setup would be considered overall in (canonical) thermal equilibrium.64

However, thing are more intricate in a cavity,5 i.e., when forming a glassy phase as will be

discussed in Sec. 4.2.4. For each propagation time-step the cH Eqs. (7) have to be solved self-

consistently for all the electrons. This is numerically very expensive and demanding. Already

minimizing the electronic structure problem of a single realistic molecule at a single time-

10



step in principle poses a formidable challenge.65 For this reason, a simple anharmonic one-

dimensional Shin-Metiu model molecule66 was used in Ref. 20 that can be solved numerically

exactly and captures all relevant aspects to reach a qualitative understanding of an ensemble

of molecules under collective VSC. The Shin-Metiu molecule is a paradigmatic and common

model to study chemical reactions and conical intersections in- and outside of cavities.12,67–70

Each Shin-Metiu molecule consists of only one effective electron and nucleus and thus allows a

numerically efficient solution of the free-space matter problem. This computationally simple

model permitted the efficient exploration of classical cavity-Born-Oppenheimer molecular

dynamics at finite temperature up to several 1000 molecules.20 A first proof that strong

collective coupling was reached in these simulations is displayed in Fig. 2, where the dashed

blue line shows the collective Rabi splitting of the vibrational mode of the ensemble of Shin-

metiu molecules. The two peaks correspond to the collective upper and lower polaritons,

hybrid light-matter excitations, from which the field of polaritonic chemistry deduces its

name.3,7,14 The Rabi splitting is asymmetric, since the self-consistent solution captures the

change in refractive index due to many molecules inside the optical cavity.71,72 For a purely

harmonic electronic model one can show that this red-shift can directly be related to the

static refractive index of the free-space electronic system.72 Apart from these macroscopic

properties, Fig. 2 also shows the averaged hypothetical absorption spectrum of a single

molecule in the ensemble (solid blue line). Interestingly we find besides the dark states

(vibrational states that decouple from the photon field) that also the local lower polariton

is populated. In a next step, the cavity-induced polarization differences

∆µ0 = ⟨µ̂i⟩0,λ=0 − ⟨µ̂i⟩0,λ (8)

were analyzed in the collective electronic groundstate by increasing the number of molecules.

However, at the same time the coupling was decreased as λ/
√
N to see whether the local

polarizations persist in the large-N (thermodynamic) limit. The electronic polarization
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operator of the i-th Shin-Metiu molecule is given by µ̂i = −Zer̂i. Indeed, Fig. 3 provides

unique microscopic insights on the the scaling statistics of such cavity-induced polarizations.

It depicts the first evidence of a cavity-induced local polarization under VSC in the collective-

coupling regime.20 In more detail, the time and ensemble averaged polarizations of the

single molecules approach a finite value in the thermodynamic limit (blue). In contrast,

the macroscopic polarization (black) quickly drops to a vanishingly small value. Notice,

these findings hold qualitatively for an ensemble of aligned as well as randomly oriented

molecules.20 Naturally the question arises why do these small single-molecule polarizations

not add up constructively to generate a macroscopic polarization? Here Fig. 3, which shows

the time-averaged probability density PcH(∆µ0), details that overall the ensemble is not

polarized, but there is a symmetric polarization ordering, i.e.,

EcH[∆µ0] = 0 (9)

VarcH[∆µ0] ̸= 0. (10)

This already vaguely resembles a spin-glass phase, for which, simply speaking, one observes

zero overall magnetization, but ordering of the local spins (magnetization).73,74

Furthermore, we notice that the probability density appears relatively rough (almost

discontinuous), even though it is an averaged quantity over many vibrational cycles (nuclear

time scales). The emergence of such almost discontinuous probability distribution, as well as

the very noisy data for the cavity-induced local polarizations (even on a logarithmic scale),

suggest the presence of a frustration mechanism, i.e., the local polarization patterns are long-

lived, despite being constantly perturbed by the vibrating nuclei. Moreover, the frustrated

behaviour suggests that the time and ensemble averaged data is strongly correlated with the

randomly chosen initial state of the system. This is what one would expect in a spin glass

as well.75 For this reason, the above local polarization pattern with zero net polarization

was termed a polarization glass in Ref. 20. Eventually, we would like to highlight that
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solving the cH equations for the Shin-Metiu molecules numerically is only possible up to a

certain collective Rabi-splitting. When increasing the collective coupling strength beyond

this value, the self-consistency cycles of the cH equations do not converge anymore.20 This

suggests the emergence of a cavity-induced phase transition at a certain collective coupling

strength. Again, the occurrence of a phase transition that depends on the strength of an

all-to-all interaction term closely resembles the behaviour of a spin glass. In the following we

want to further explore the connections of this frustrated polarizations in a cavity and the

physics of spin glasses. We expect that this gives us some fundamental microscopic insights

into the conundrum of VSC under collective strong coupling. But before, we discuss some

experimental evidence for the proposed phase transition.

Figure 2: Collective (dotted) vs. local (bold) Rabi splitting for (N=900) aligned Shin-
Metiu molecules under VSC, taken from Ref. 20. The local upper polariton is hidden in the
broadening of the dark states, which occur at the bare cavity frequency (vertical black line).
The asymmetry of the collective Rabi splitting with respect to the bare cavity frequency is
a consequence of the red-shift that is caused by the polarizability of the medium, i.e., due
to the dipole self-interaction term in the Hamiltonian.
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Figure 3: Local polarization features of Shin-Metiu molecules under collective VSC. Left:
Finite cavity-induced molecular polarizations (blue) that emerge due to the self-consistency
cycles of the cH equations (reproduced from Ref. 20). The collective Rabi splitting was kept
fixed, when increasing the ensemble size N . In contrast, the macroscopic polarization (black)
quickly drops to zero, within numerical errors. Notice that the numerical results of the Shin-
Metiu molecule were determined at the onset of a numerical instability (phase transition),
which effectively prevents to reach considerably stronger collective coupling strength with
the chosen setup. Right: Probability density of the cavity-induced polarizations calculated
for N = 1024 molecules of the above setup. The system was equilibrated for 600 time
steps and then polarization data was considered from another 600 time steps. Two striking
features appear: First, the local polarizations are symmetrically distributed. Second, the
probability distribution seems almost discontinuous, even though the electronic-structure
data is time-averaged over many vibrational cycles. This should smoothen the data, unless
some frustration mechanism counteracts.
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3.2 Nuclear magnetic resonance experiments

In the previous subsection, we have seen that solving the cH equations reveals several fas-

cinating physical mechanisms in an ensemble of molecules embedded in an optical cavity at

ambient temperature T (polarization ordering, frustration, potential phase transitions). In

the following, we compare the above theoretical predictions with recent experimental nuclear

magnetic resonance (NMR) results under VSC.27 In Figs. 4a-c the influence of VSC on the

equilibrium concentration between two conformations of a molecular balance sensitive to

London dispersion forces is studied with NMR spectroscopy. The experiments reveal that

VSC can indeed modify the equilibrium rate constant and thus changes the chemical prop-

erties if tuned on resonance with a specific C-H stretching mode of the solute molecules. If

we disregard the (important) resonance feature for the moment, the following three exper-

imental observations seem to directly relate to our previous discussions: First, the absence

of cavity-induced chemical shifts indicates that the electronic structure is on average not

polarized by the cavity, which perfectly agrees with what we would anticipate from Eq. (9).

Second, the broadening of the chemical shifts seems modified under VSC, which one would

expect for a cavity-induced polarization glass, i.e., from Eq. (10). Notice, however, that

in Ref. 27 the modified broadening is assigned to experimental artifacts. Nevertheless, it

would be interesting to verify if the predicted broadening caused by PcH(∆µ0) contributes to

the measured data or if the polarization-glass mechanism is too small to be detected in this

NMR setup. The third important insight is an abrupt change of the equilibrium constant at

a specific collective strong coupling strength (influenced by the concentration) that does not

scale further with the collective Rabi splitting. This suggests a phase transition at a specific

collective coupling, as we anticipated from the above discussions about the convergence of

the cH equations. Overall, the NMR results of the Ebbesen group seem perfectly in line

with the above theoretical description based on the formation of a polarization glass except

for one caveat: The observed resonance condition has so far not been studied in detail in

the numerical simulations presented above. We will come back to this important aspect at
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the end of this review (see Sec. 4.2.3), where we will argue that the resonance mechanism is

likely a manifestation of the dynamical aspect of the cavity-induced frustration mechanism.

average very small, to the point of being undetectable by
NMR and is thus unlikely to be responsible for the observed
changes in octanol polarity under VSC. Similarly, the fine
structure coupling constant and spin-lattice relaxation time
remain unchanged under VSC (see section 7 in the SI).
These findings are very significant in that they narrow the
possible explanations as to why VSC induces changes in
chemical processes, which will be discussed further down.

To prove the potential of NMR spectroscopy as a
technique of choice for polaritonic chemistry, the NMR
compatible cavities are used to directly probe the VSC-
induced modification of London dispersion forces. For this
purpose, we set out to study the conformational equilibrium
of a molecular balance (1), an established system for
studying London dispersion forces in solution.[51] 1 consists
of a cyclooctatetraene core bearing two tert-butyl moieties
and exists in two conformations in which the tert-butyl
groups are oriented towards or away from one another
(named folded and unfolded, respectively – see Figure 4a).
As demonstrated by Schreiner et al.,[51] the folded conformer
is stabilized by London dispersion forces between the two
tert-butyl groups. In contrast, the tert-butyl groups are too
far away from each other in the unfolded conformer to
interact in an intramolecular fashion. The fact that the
balance does not have any polarized functional groups, but

is instead purely hydrocarbon-based is advantageous since it
simplifies the behavior of the system as well as data
interpretation.

To study the effect of VSC on the mentioned equili-
brium, we synthesized this molecular balance and compared
the equilibrium constant of the molecular balance in
solutions of varying concentrations in deuterated benzene.
The equilibrium constant is determined from peak areas of
1H signals corresponding to both folded and unfolded
conformers. The peak areas are obtained by either directly
integrating signals areas or line shape fitting in the
quantitatively measured 1H NMR spectrum. The peak
assignment and equilibrium constant determination is based
on the data provided in the original study by Schreiner
et al.:[51]
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where Cfolded, Cunfolded are the concentration of the folded
and unfolded conformers and
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peak areas of the 1H signals of both conformers respectively.
First, we studied the equilibrium at low concentration

(100 mM in benzene-d6) in a standard NMR tube insert at
23⌃1 °C. The determined value of the equilibrium constant

Figure 4. Influence of VSC on the London dispersion forces-driven equilibrium. (a) The cycloocatetraene-based molecular balance (1) exists in two
distinct conformations (unfolded and folded). The ΔGfold value is for the molecular balance in benzene-d6. (b) FT-IR spectrum of the neat molecular
balance measured by ATR (navy blue) and a transmission-mode spectrum of a 1 M solution of the molecular balance in benzene-d6 in a cavity in
which the 11th Fabry-Perot mode is resonant with the C�H stretching mode at 2970 cm�1 showing the formation of two vibropolaritonic bands
(VP� and VP+). The Rabi splitting at this concentration is ca. 83 cm�1. The cavity spectrum was smoothed using the moving average method to
remove artifact interference (see Figure S7). (c) Partial 1H NMR spectra of a 1 M solution of 1 in benzene-d6 of the molecular balance in an off-
resonance (black) or on-resonance (red) cavity. The shaded peaks originate from the same 1H in the two different conformations (d) The
concentration profile of the equilibrium constant (K) of the molecular balance in benzene-d6 in cavities that are off and on resonance with the C�H
stretching vibration (black and red datapoints, respectively). The error bars correspond to the standard error at each point.
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NMR and is thus unlikely to be responsible for the observed
changes in octanol polarity under VSC. Similarly, the fine
structure coupling constant and spin-lattice relaxation time
remain unchanged under VSC (see section 7 in the SI).
These findings are very significant in that they narrow the
possible explanations as to why VSC induces changes in
chemical processes, which will be discussed further down.

To prove the potential of NMR spectroscopy as a
technique of choice for polaritonic chemistry, the NMR
compatible cavities are used to directly probe the VSC-
induced modification of London dispersion forces. For this
purpose, we set out to study the conformational equilibrium
of a molecular balance (1), an established system for
studying London dispersion forces in solution.[51] 1 consists
of a cyclooctatetraene core bearing two tert-butyl moieties
and exists in two conformations in which the tert-butyl
groups are oriented towards or away from one another
(named folded and unfolded, respectively – see Figure 4a).
As demonstrated by Schreiner et al.,[51] the folded conformer
is stabilized by London dispersion forces between the two
tert-butyl groups. In contrast, the tert-butyl groups are too
far away from each other in the unfolded conformer to
interact in an intramolecular fashion. The fact that the
balance does not have any polarized functional groups, but

is instead purely hydrocarbon-based is advantageous since it
simplifies the behavior of the system as well as data
interpretation.

To study the effect of VSC on the mentioned equili-
brium, we synthesized this molecular balance and compared
the equilibrium constant of the molecular balance in
solutions of varying concentrations in deuterated benzene.
The equilibrium constant is determined from peak areas of
1H signals corresponding to both folded and unfolded
conformers. The peak areas are obtained by either directly
integrating signals areas or line shape fitting in the
quantitatively measured 1H NMR spectrum. The peak
assignment and equilibrium constant determination is based
on the data provided in the original study by Schreiner
et al.:[51]

K à
Cfolded

Cunfolded
à

R
foldedR
unfolded (1)

where Cfolded, Cunfolded are the concentration of the folded
and unfolded conformers and

R
folded,

R
unfolded are the

peak areas of the 1H signals of both conformers respectively.
First, we studied the equilibrium at low concentration

(100 mM in benzene-d6) in a standard NMR tube insert at
23⌃1 °C. The determined value of the equilibrium constant

Figure 4. Influence of VSC on the London dispersion forces-driven equilibrium. (a) The cycloocatetraene-based molecular balance (1) exists in two
distinct conformations (unfolded and folded). The ΔGfold value is for the molecular balance in benzene-d6. (b) FT-IR spectrum of the neat molecular
balance measured by ATR (navy blue) and a transmission-mode spectrum of a 1 M solution of the molecular balance in benzene-d6 in a cavity in
which the 11th Fabry-Perot mode is resonant with the C�H stretching mode at 2970 cm�1 showing the formation of two vibropolaritonic bands
(VP� and VP+). The Rabi splitting at this concentration is ca. 83 cm�1. The cavity spectrum was smoothed using the moving average method to
remove artifact interference (see Figure S7). (c) Partial 1H NMR spectra of a 1 M solution of 1 in benzene-d6 of the molecular balance in an off-
resonance (black) or on-resonance (red) cavity. The shaded peaks originate from the same 1H in the two different conformations (d) The
concentration profile of the equilibrium constant (K) of the molecular balance in benzene-d6 in cavities that are off and on resonance with the C�H
stretching vibration (black and red datapoints, respectively). The error bars correspond to the standard error at each point.
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average very small, to the point of being undetectable by
NMR and is thus unlikely to be responsible for the observed
changes in octanol polarity under VSC. Similarly, the fine
structure coupling constant and spin-lattice relaxation time
remain unchanged under VSC (see section 7 in the SI).
These findings are very significant in that they narrow the
possible explanations as to why VSC induces changes in
chemical processes, which will be discussed further down.

To prove the potential of NMR spectroscopy as a
technique of choice for polaritonic chemistry, the NMR
compatible cavities are used to directly probe the VSC-
induced modification of London dispersion forces. For this
purpose, we set out to study the conformational equilibrium
of a molecular balance (1), an established system for
studying London dispersion forces in solution.[51] 1 consists
of a cyclooctatetraene core bearing two tert-butyl moieties
and exists in two conformations in which the tert-butyl
groups are oriented towards or away from one another
(named folded and unfolded, respectively – see Figure 4a).
As demonstrated by Schreiner et al.,[51] the folded conformer
is stabilized by London dispersion forces between the two
tert-butyl groups. In contrast, the tert-butyl groups are too
far away from each other in the unfolded conformer to
interact in an intramolecular fashion. The fact that the
balance does not have any polarized functional groups, but

is instead purely hydrocarbon-based is advantageous since it
simplifies the behavior of the system as well as data
interpretation.

To study the effect of VSC on the mentioned equili-
brium, we synthesized this molecular balance and compared
the equilibrium constant of the molecular balance in
solutions of varying concentrations in deuterated benzene.
The equilibrium constant is determined from peak areas of
1H signals corresponding to both folded and unfolded
conformers. The peak areas are obtained by either directly
integrating signals areas or line shape fitting in the
quantitatively measured 1H NMR spectrum. The peak
assignment and equilibrium constant determination is based
on the data provided in the original study by Schreiner
et al.:[51]
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Figure 4. Influence of VSC on the London dispersion forces-driven equilibrium. (a) The cycloocatetraene-based molecular balance (1) exists in two
distinct conformations (unfolded and folded). The ΔGfold value is for the molecular balance in benzene-d6. (b) FT-IR spectrum of the neat molecular
balance measured by ATR (navy blue) and a transmission-mode spectrum of a 1 M solution of the molecular balance in benzene-d6 in a cavity in
which the 11th Fabry-Perot mode is resonant with the C�H stretching mode at 2970 cm�1 showing the formation of two vibropolaritonic bands
(VP� and VP+). The Rabi splitting at this concentration is ca. 83 cm�1. The cavity spectrum was smoothed using the moving average method to
remove artifact interference (see Figure S7). (c) Partial 1H NMR spectra of a 1 M solution of 1 in benzene-d6 of the molecular balance in an off-
resonance (black) or on-resonance (red) cavity. The shaded peaks originate from the same 1H in the two different conformations (d) The
concentration profile of the equilibrium constant (K) of the molecular balance in benzene-d6 in cavities that are off and on resonance with the C�H
stretching vibration (black and red datapoints, respectively). The error bars correspond to the standard error at each point.
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a b c

Figure 4: Influence of VSC on the London dispersion-force-driven equilibrium, determined
from NMR measurements according to Ref. 27: (a) Free energy difference between folded
(1f) and unfolded (1u) conformer in benzened-d6. (b) On- (red) and off-resonance (black)
1H NMR spectra of a 1 M solution. The shaded peaks allow to distinguish the two different
conformers. The absence of a frequency shift between the two spectra indicates that on
average the electronic structure is not affected (no chemical shift). The magnitude of the
peaks can be related to the equilibrium constant between the two conformers, which indicates
VSC-induced chemical changes. (c) Varying the concentration (i.e., the collective coupling
strength) reveals a critical concentration (dotted line), where suddenly a different conforma-
tional equilibrium constant is approached, which suggests the emergence of a cavity-induced
phase transition.

3.3 Connecting polarization and spin glasses

In the previous sections we have concluded, based on numerical and experimental evidence,

that under VSC the cavity-mediated electronic structure seems to form electronic polariza-

tion patterns (ordering). Here we want to elucidate these features by comparing to the much

better understood physics of spin glasses. That we are using spin glasses as a guideline

to understand these polarization effects can be rationalized even pictorially. In Fig. 5 we

compare a sketch of a frustrated spin glass with the sketch of a polarization glass. The

interaction between the spins/polarizations leads to an frustration effect, where flipping one

spin/polarization will force also the others to adapt. We note that usually models of spin

glasses are based on (random) short-ranged interactions between spins on a crystal lattice,
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Ref spin glass geometric frustration: https://pubs.acs.org/doi/full/10.1021/jacs.2c11185

Figure 5: Pictorial comparison of a spin glass and a cavity-mediated polarization glass. Left:
Spin-frustrated triangular lattice (sketch modified from Ref. 76), whose physical proper-
ties can, for example, be modeled by the Edwards-Anderson model,73 based on (random)
short-range interactions between the nearest-neighbour spins on a lattice. Right: A dilute
molecular polarization glass formed by vibrational strong coupling in optical cavities.20 Its
polarizations can assume continuous values, which are mediated by an all-to-all dipole inter-
actions term instead.

e.g., the Edwards-Anderson model.73 However, in the polarization-glass case we have a long-

range (all-to-all) interaction. While this seems like a very different situations, the best

studied spin-glass model, the Sherrington-Kirkpatrick (SK) model,74,75 is describing almost

exactly this case. There are, however, still several distinctions between the case of polaritonic

chemistry and standard spin glass systems (models). Most noteworthy is the fact that a pri-

ori molecular polarizations are continuous. But there are several other distinctions, such as

the coupling and back-action to other physical degrees of freedom (displacement and nuclear

coordinates), which we will highlight throughout this work and which open up novel research

questions at the interface of these two fundamental and distinct research communities.

The Hamiltonian of the SK model of a spin glass is given by

HJ(σ) = −
N∑

j<i

Jijσiσj (11)

and the couplings Jij between the spins are independent random variables taken from the
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normal distribution N (J0/N, J
2/N). The presence of an additional external magnetization

field h, acting on the spins as
∑N

i hσi to generate a finite magnetization m, can be recast

into a finite mean-value J0 = h/m of the random interactions Jij.
77 To understand the

basic physical properties of the SK model at finite temperature T , we follow Refs. 75,78 and

continue with some definitions. The local (”single molecule”) magnetization at temperature

T is given by,

m(i)α = ⟨σi⟩T,α, (12)

where α denotes a possible quasi-thermal equilibrium state of the SK model, i.e., a local

minimum in the phase space for a given choice of J , at temperature T . In more detail, the

magnetizations m(i)α correspond to the α-th solution of the mean-field equation,78,79

m(i) = tanh
(∑j Jijm(j)

kBT

)
, (13)

which becomes an exact description for the SK model in the thermodynamic limit.74,78,80

The determination of the exponentially large number of solutions is a computationally very

demanding task. Eventually, the thermal equilibrium (”single molecular”) magnetization,

averaged over all α and all possible choices of J, is defined as

m = ⟨⟨m(i)α⟩α⟩J . (14)

We note that averaging over all α and J makes the result site-independent, i.e., the left-hand

side of Eq. (14) is independent of i. The numerous fundamental physical properties of the SK

model and its implications on polaritonic chemistry will be discussed extensively throughout

Secs. 3.5 and 4.
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3.4 Mapping the cavity Hartree (cH) equations on the Sherrington-

Kirkpatrick (SK) model of a spin glass

We have noticed that the continuous all-to-all dipole interaction of the cavity Hartree Eq. (7)

resembles the discrete random spin-spin interaction of the SK model in Eq. (11). In the

following we show an explicit mapping of the electronic cH equations on the SK model of

a spin glass for a specific case. For this purpose and without loss of generality, we look

at an ensemble of N hydrogen-like molecular ions in three dimensions. The single electron

free-space Hamiltonian is given in atomic units as81

Ĥm
i = −∇2

ri

2
− 1

|r1,i|
− 1

|r2,i|
+

1

Ri

, (15)

with r1,i = ri − Ri

2
and r2,i = ri +

Ri

2
. Following the common linear combination of atomic-

orbital approach of molecular physics, the single-molecule trial wave function is

Ψi(ri) =
aiψ(r2,i) + σibiψ(r1,i)√

Ni

, (16)

with hydrogen ground-state wave function ψ(r) = e
− |r|

a0 /(
√
πa

3/2
0 ) at the origin, and nor-

malization Ni =
∫
|Ψ(ri)|2dri = a2i + b2i + 2σiaibiIi. Here σi = ±1 will be used to get the

simplest possible connection to the classical spins of the SK model. The overlap integral can

be evaluated explicitly as:81

Ii = ⟨ψ(r2,i)|ψ(r1,i)⟩ = e−Ri/a0

(
1 +

Ri

a0
+
R2

i

3a20

)
> 0 (17)

and the energy of a single molecule eventually becomes,

⟨Ĥm
i ⟩ =

(
1 +

(a2i + b2i )Di + 2σiaibiEi

a2i + b2i + 2σiaibiIi
− 2a0

Ri

)
E0 (18)
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with E0 = −1/(2a0) and analytically evaluated integrals

Di = ⟨ψ(r1,i)|
a0
r2,i

|ψ(r1,i)⟩ =
a0
Ri

(
1−

(
1 +

Ri

a0

)
e
−2

Ri
a0

)
(19)

Ei = ⟨ψ(r1,i)|
a0
r1,i

|ψ(r2,i)⟩ =
(
1 +

Ri

a0

)
e
−Ri

a0 . (20)

Notice that in contrast to the standard textbook results for H+
2 , we have not fixed the

pre-factors to ai = bi = 1. This allows for the existence of hydrogen-like molecules with

permanent electronic dipole moment (e.g. HD+) that locally breaks the spatial symmetry

of the problem. For a molecular hydrogen ion the σi = 1 state correspond to a bound state

(ground-state), whereas the molecule ionizes/breaks for the state σi = −1.81

Having represented the free-space problem in terms of the chosen two-level basis in

Eq. (16), we can search the collective electronic groundstate that determines the potential-

energy surface for the classical nuclear and displacement field dynamics given in Eq. (5). For

this purpose, the cH Eqs. (7) are solved until convergence,

min⟨Ĥe⟩ =
N∑

i

[
⟨Ĥm,e

i ⟩i − qβωβ⟨x̂i⟩i +
⟨x̂2i ⟩i
2

+ 2
∑

j<i

⟨x̂j⟩j⟨x̂i⟩i
]
, (21)

with X = 0 due to the choice of the equally charged nuclear coordinate system. The local

integrals can be evaluated explicitly in our two-level basis, assuming the cavity polariza-

tion along the molecular axis, i.e., along z with λ = λez, yielding ⟨ψ(r1,i)|λri|ψ(r1,i)⟩ =

−⟨ψ(r2,i)|λri|ψ(r2,i)⟩ = λiRi/2 and ⟨ψ(r1,i)|λri|ψ(r2,i)⟩ = 0. The last overlap integral is

zero, due to the symmetry of our ground-state hydrogen basis function. Furthermore, we

have accounted for the individual orientation of the molecular axis with respect to the cavity

polarization by defining λi = λri/|ri|. Thus we find

⟨x̂i⟩i = −λi(a
2
i − b2i )Ri

Ni

σi=±1
= −λi(fi + giσi) (22)
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with

fi =
(a4i − b4i )Ri

(a2i + b2i )
2 − 4a2i b

2
i I

2
i

(23)

gi = − 2aibiIi(a
2
i − b2i )Ri

(a2i + b2i )
2 − 4a2i b

2
i I

2
i

. (24)

Notice, ⟨x̂i⟩i = 0 for perfectly symmetric wave functions (i.e. for a2i = b2i = 1). For the

chosen minimal two-level approximation, the molecule must possess a permanent electric

dipole-moment, i.e., a2i ̸= b2i , such that the all-to-all interaction can be captured. Otherwise,

our minimal model is too simplified such that it will not show any dependence on the main

term we want to investigate. Therefore, we continue by assuming a dimer molecule (e.g.

HD+) with a permanent electric dipole moment. Furthermore, we discard the purely local

term
⟨x̂2

i ⟩i
2

for simplicity, since in the large-N limit it will become negligible in our restricted

basis set. Therefore, using Eqs. (21) and (22), discarding the constant energy contributions

(which naturally excludes σ2
i = 1 as well) leaves us with the following minimization problem

min
σ

⟨Ĥe⟩ ∼ min
σ

∑

i

[
hm,i + λi(hq,i − hd,i)

]
σi + 2

∑

j<i

λiλjgjgiσiσj. (25)

Here external magnetization field-like parameters have been subsumed in a bare-matter

term hm,i, a displacement-field term hq,i = qβωβgi and eventually hd,i = 2gi
∑N

j λjfj arises

from the dipole self-energy. The resulting energy minimization problem in Eq. (25) already

resembles the SK model of Eq. (11) at zero temperature, but with an externally applied

magnetization field that is i-dependent instead of a constant. A subtle but important differ-

ence here is that for the polarization glass, the ”external magnetization field” will depend

itself on the solution of the electronic problem in a complete ab-initio molecular dynamics

setup. In other words, the electronic system is itself only a subsystem that is correlated

with the other (nuclear and displacement) subsystems. We will discuss the impact of this

important difference on the description of polaritonic chemistry in Sec. 4. Here, in order to
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connect our polaritonic energy minimization model for the instantaneous electronic many-

body wave function to established results, we additionally impose the following two physical

assumptions:

First, we assume that the molecules are randomly oriented in the molecular ensemble and

therefore hd,i ∝
∑N

j λjfj → 0. Thus in Eq. (25) the double sum
∑N

i 2giσi(
∑N

j λjfj) → 0,

while for the single sum we have
∑N

i λihq,iσi ̸= 0 in general. Second, we assume that the

temperature of the molecular ensemble is sufficiently low, such that all molecules cannot

only be considered in their electronic, but also in their vibrational ground-state and thus

Ri → R, which implies fi → f , gi → g and hm,i → hm. Later we will relax this assump-

tion, after having introduced necessary theoretical tools to capture corresponding thermal

effects. Moreover, since the system is in the vibrational and electronic ground state, it

is reasonable to impose the zero-transverse-field condition5 ⟨Ê⊥⟩ = 0. This leads in our

model to
∑

i λihq,iσi = −ω2
βq

2
β, which is a constant energy offset that can be discarded in

the energy minimization. By the static zero-field condition we have effectively removed the

dependence on the displacement-field subsystem, since it is then completely determined by

the nuclear and electronic configuration. This also removes the dynamical aspects of the

cavity, and hence the mapping can only capture the static aspects of the polaritonic problem

under VSC. Dynamical aspects such as the resonance condition will be discussed later in

Sec. 4.2.4. With these assumptions/simplifications we find

min
σ

⟨He⟩ ∼ min
σ

∑

i

hmσi + 2
∑

j<i

λiλjg
2σiσj. (26)

The energy-minimization problem in Eq. (26) corresponds exactly to the SK model at zero

temperature if we assume a normal random distribution, i.e., by setting 2λiλj = −Jij, where

the external magnetization field-like term is absorbed by the mean J0 = h/m of the randomly

distributed numbers Jij.
77 The emergence of a cavity-induced polarization structure can then

be directly deduced from the magnetization of the SK model. That is, in analogy one looks
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at the electric dipole moment operator µ̂i := Ri1 + Ri2 − r̂i = −r̂i along the symmetry axis

of a single HD+ molecule,

µ̂i = −(f + gσi), (27)

where we used Eqs. (15) and (22) with fi, gi 7→ f, g. In more detail, any deviation from the

uncoupled thermal equilibrium polarization can be interpreted as a cavity-induced molecular

polarization phenomenon

∆µT = ⟨µ̂i⟩T,α,λ=0 − ⟨µ̂i⟩T,α,J . (28)

The brackets denote thermal, α and J-averaging, where the later corresponds to the averaging

over all possibly realizations of randomly drawn Jij interactions. Similar to the magentization

of the SK model in Eq. (14), the left-hand side becomes independent of i. At zero temperature

(and thus in the electronic groundstate), a seemingly simple expression is found for the

cavity-induced polarization

∆µ0 = |g|(1−m), (29)

where the equilibrium ”magnetization” m must be determined by averaging over the highly-

degenerate molecular electronic ground state. That is, if we take the definition of Eq. (12)

but use the ”spin” quantity σi from the polaritonic model of Eq. (16), we find an average

”magnetization” of the molecules from Eq. (14). Notice, however, the total polarization of

the molecular ensemble will still be zero, since the molecules are randomly oriented within

the molecular ensemble, which averages out any local polarization effects. Its unique features

will be explored in the following, with possible implications on the mechanistic understanding

of VSC and polaritonic chemistry/materials in general. Our subsequent theoretical consid-

erations are guided by Giorgio Parisi’s works in particular his Nobel lecture.75
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3.5 The static instability of the Sherrington-Kirkpatrick model

Before we continue characterizing the different phases of the SK model, we introduce the

Edwards-Anderson order parameter or self-overlap73

qEA =

∑
im(i)αm(i)α

N
= const. ∀α, J, (30)

which can be shown to neither depend on the state α nor the specific realization of J.75,78

Based on the magnetizationm and the magnetic order parameter qEA, Sherrington and Kirk-

patrick determined an analytical phase diagram in the thermodynamic limit N → ∞. Their

computations suggested the emergence of three different phases: a ferromagnetic (qEA ̸= 0,

m ̸= 0), a spin glass (qEA ̸= 0, m = 0) and a paramagnetic one (qEA = 0, m = 0). How-

ever, Sherrington and Kirkpatrick already noticed that their solution seemed questionable

at low temperatures, since it gave rise to a negative entropy, which is nonphysical.74 Indeed,

Almeida and Thouless showed that the original solution of the SK model becomes unstable in

the thermodynamic limit at sufficiently low temperature, which leads to the corrected phase

diagram of the SK model displayed in Fig. 6.77 Almeida and Thouless could determine an

explicit stability criterion at low temperature for the SK model77

kBT >
4

3
√
2π
Je−

J2
0

2J2 . (31)

The striking feature of this result is that in the ground state (T → 0), the solution of the

SK model becomes unstable, and thus enters the spin-glass phase, even if ∞ > J0 ≫ J ,

i.e., even if the system is exposed to very strong external magnetization fields. This has

important implications on our adiabatic polaritonic ground-state minimization problem at

zero temperature given in Eq. (26). For this problem J0 corresponds to the local free-

space electronic structure problem. Therefore, we expect that for sufficiently large N in the

molecular ensemble we enter the polarization-glass phase for the dressed electronic ground
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state, even for a Hamiltonian dominated by the free-space electronic structure J0. That

is, even for an arbitrarily small (!) coupling to a cavity J ∝ λ2 > 0 there will be an

instability at sufficiently large ensembles (see Fig. 6). The SK analogy also indicates that

the (electronic) temperature may no longer be discarded when treating the dressed electronic

structure under VSC. Consequently, the adiabatic assumption of the cH molecular dynamics

can also break down (see discussions in Sec. 4.1). The origin of the Almeida and Thouless

instability can be attributed to spontaneous replica symmetry breaking, introduced by an

all-to-all interaction term.75 Notice further, that a spin glass is conceptually distinct from the

Anderson localization mechanism, which have been discussed in the context of polaritonic

transport properties.82,83 The fundamental concept of replica symmetry breaking together

with its many physical implications will be discussed later in Sec. 4.77

At this point an important remark has to be made. So far we have not mentioned any

scaling properties of the light-matter coupling parameter λ with respect to the number of

molecules N . In polaritonic chemistry it is usually argued based on the Tavis-Cummings

model that the collective coupling strength (i.e., the Rabi splitting) increases with
√
N , where

N corresponds to the number of non-overlapping two-level emitters that are collectively

coupled. Based on this considerations one would expect that the cavity-mediated dipole-

dipole interaction (polarization) between two molecules scales as λ2 ∝ Jij ∝ 1/N . However,

the analytic SK model imposes λ2 ∝ Jij ∝ 1/
√
N to allow for a spin glass instability

(phase) at finite temperatures T > 0 in the thermodynamic limit. Notice, however, at zero

temperature the instability persists in any case for λ > 0. Nevertheless, things are more

delicate for the cH equations, since the detailed scaling behavior of a macroscopic ensemble

of molecules remains largely unexplored. As is highlighted in the discussion after Eq. 2,

there is only a finite albeit very large number of molecules coherently coupled and hence

the extrapolation to N → ∞ becomes intricate. Yet, the numerical results suggest that a

non-trivial result appears provided enough molecules couple (see Fig. 3).
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Figure 6: Phase diagram of the SK model, reproduced from Ref. 77 and adjusted for the po-
laritonic interpretation. The doted line corresponds to the original (erroneous) spin / polar-
ization glass phase of Sherrington and Kirkpatrick, which did not consider that spontaneous
replica symmetry breaking can occur. Replica symmetry breaking extends the (unstable)
spin glass regime at low temperature to much larger J0/J ≫ 0 values (dark red). Notably,
in the groundstate (T → 0), the instability occurs for arbitrarily large (but finite) J0-values,
provided that J > 0 (blue regime).

4 Perspective: What can we anticipate from spin-glass

theory for polaritonic systems?

In the previous sections we have established a formal connection between the physics of spin

glasses and the electronic structure of a molecular ensemble under VSC. Thanks to the the-

oretical similarities between both problems, we are confident that the polaritonic-chemistry

community can learn from established knowledge of the spin-glass community. In particular

the understanding of how global fluctuations can lead to significant local modifications of

molecular ensembles that can influence how chemical reactions proceed locally. To use this

connection seems natural for multiple reasons: First, the SK model provides a paradigmatic

model of a spin glass, for which exact results have been determined after decades of inten-

sive research that ultimately were awarded with the Nobel prize in physics (2021).75 Second,

despite the seemingly simple nature of the SK model, it has proven to capture and predict
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different complex physical mechanisms that have been confirmed for real materials. Third,

the study of the SK model provides novel mathematical ideas to describe and understand

those unique physical mechanisms precisely and present the essentials in a compact form.

Fourth, the general features of the SK model are quite robust, since it serves as a limiting

case78 for the Bethe lattice model,84 the long-range Edwards-Anderson model and the infi-

nite dimensional Edwards-Anderson model.73 In addition, spin-glass models have proven to

predict certain features of much more complex structural glasses as well.78

4.1 Free energy and spontaneous replica symmetry breaking

In order to better understand the origin and physical consequences of the SK model defined

in Eq. (11), we have a closer look at the average free energy F , which can be defined as

follows in the thermodynamic limit N → ∞,75

F (T ) = − lim
N→∞

kBT log(ZJ(T,N))

N
(32)

ZJ(T,N) = 2−N
∑

{σ}
e−HJ (σ). (33)

The overline indicates the averaging of the partition function ZJ with respect to randomly

drawn Jij realizations. To simplify the J-averaging, the so-called replica trick was proposed,

where instead of one system with N -spins, an extended system consisting of n-times the

same system made of N -spins is considered. It simplifies taking the logarithm as follows75

Fn(T ) = − lim
N→∞

kBT (ZJ(T,N))n

nN
(34)

F (T ) = lim
n→0

Fn(T ) (35)

The replica trick works if the Fn is analytic in n and has no singularities.75 In particular,

one would expect replica symmetry to hold as a natural assumption, since it implies the re-

shuffling of the n identical replicas will not change the result. From this symmetry aspect,
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one can deduce that the free energy depends on a single order parameter q, which then can be

minimized to determine the alleged solution of the SK model.74,75 However, it turns out that

Fn is indeed not analytic for n < nc < 1 in the SK model. This indicates that the replica

symmetry is spontaneously broken and thus things become much more complex. After a

long endeavour the exact solution of the replica Ansatz was discovered by Parisi yielding the

following free energy80,85

F = max
q(x)

F [q(x)] (36)

where the corresponding partial differential equations are given explicitly in footnote a. Con-

siderably later it was also proven that the exact solution of the replica ansatz indeed de-

termines the exact free energy of the original problem.86,87 For the subsequent discussions

this solution will be of minor relevance. However, the emergence of an order function q(x),

instead of just an order parameter q, will be essential for the mechanistic understanding of

spin glasses in general.

In more detail, explicit expressions were found that relate the order parameter function

q(x) to the probability density

PJ(q) =
∑

αγ

wαwγδ(Qαγ −q), (37)

of finding two states with overlap

Qαγ =

∑
im(i)αm(i)γ

N
(38)

a

F [q(x)] = − 1

4kBT

[
1 +

∫ 1

0

dxq2(x)− 2q(1)

]
− kBTf(0, 0)

∂f(x, h)

∂x
= −1

2

[
∂2f

∂h2
+ x

(
∂f

∂h

)2]
,

with f(1, h) = ln(2 cosh(h/kBT )).
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in a given sample J . The statistical weights of solution α are indicated by wα.
78 Notice the

connection of Qαγ to the Edwards-Anderson order parameter or self-overlap Qαα = qEA. An

astonishing feature of spin glasses in general is that PJ(q) shows a dramatic dependency

on the specific choice of J even in the thermodynamic limit (see e.g., left of Fig. 7 for the

Edwards-Anderson model without external magnetization fields). A smooth curve is only

achieved by averaging over all possible realizations J (see Fig. 10a) yielding the equilibrium

overlap

P (q) = PJ(q). (39)

Eventually, the functional dependency of q(x) can be made explicit by inverting the prob-

ability density

x(q) =

∫ q

0

dq′P (q′). (40)

Notice, a signature of replica symmetry breaking75 is the deviation of P (q) from two delta

functions at q = ±qEA as illustrated in Fig. 10a.

In a next step, we apply the concept of an order parameter distribution on the numer-

ically solved cH equations, aiming to better understand the similarities between molecular

polarization and spin glasses. Looking at the probability distribution of the cavity-induced

polarization P cH
R,qβ

(∆µ0), we find a discrete pattern when solving the cH equations for two dif-

ferent parameter choices R, qβ (see Fig. 7). To interpret the similarities as well as differences

between the two distributions, we need to have a closer look at the imposed physical condi-

tions for solving the cH equations numerically. As described in Sec. 3.1, the cH equations can

only be converged for moderate collective-coupling situations. This suggests that the unique

free-space electronic ground state is modified by the cavity, but it is still non-degenerate

for a given parameter choice R, qβ and thus the adiabatic assumption still holds. Therefore,

when applying the definition of Eq. (37) for the cH setup with m(i)α0 7→ ∆µ(i)0,R,qβ , one
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finds for the cH equations at the onset (!) of the instability ,

P cH
R,qβ

(q) =
∑

αγ

wαwγδ(Qαγ −q) = δ(Qα0α0 −q) (41)

⇒ q = qEA(R, qβ) =
N∑

i

∆µ(i)20,R,qβ

N
. (42)

The unique non-zero weight wα0 = 1 applies within the adiabatic regime of a unique collective

ground state, as indicated by α0. In contrast to the Edwards-Anderson order parameter of

the SK model, we find now a clear parametric dependency on qEA(R, qβ) when applying

Eq. (42) on the two numerical distributions in Fig. 3. Hence, the cH equations introduce an

order-parameter distribution (see Fig. 3) when averaged over many realizations of qEA(R, qβ)

even if only one solution of the cH equations has non-zero weight. Thus the necessity of

having the replica symmetry broken is relaxed in contrast to the SK model.

A further important difference between the idealized SK model and the cH equations

concerns the different time-scales introduced by the other subsystems, when part of the ab-

initio molecular dynamics setup. In the SK model a chosen realization of J is considered to

persist for a very long time-scale, which allows the (thermal) exploration of different (frus-

trated) local minima α. In contrast, qEA(R, qβ) oscillate non-perturbatively on a rotational,

vibrational and displacment-field time-scale, which is not present in the static picture of the

SK mean-field Eq. (13). Notice that despite this non-perturbative local impact, electronic

frustration (correlation) effects persist for the cH equations even on those vastly different

time-scales (see the discussion in Sec. 4.2.2).

Despite these differences: What can we anticipate from the SK model that is relevant

to our understanding of polaritonic chemistry? To better understand the applicability of

the SK model, let us now further increase the collective strong coupling of the cH equations

such that their ground-state becomes degenerate. Therefore, one can no longer impose the

initial adiabatic assumption. This has two immediate consequences: First, similar to the

SK model, thermal effects must be included when solving the dressed electronic problem,
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even-though the thermal energy scale can be orders of magnitude smaller than the free-

space excitation of the electronic structure of a single molecule. This can be rationalized

by the fact that the novel collective electronic excitations can be on a much lower energy

scale similar to solid-state systems. Second, the resulting non-adiabatic quantum dynamics

of the dressed electrons may be seen as an exploration of the different energetic minima

for a fixed qEA(R, qβ) parameter choice. This implies that the Dirac-like distribution of

P cH
R,qβ

(∆µ0) will be broadened/modified and thus should approach the familiar distribution

of spin glasses (possibly re-introducing replica symmetry breaking for the cH equations).

Putting it differently, we can now interpret the SK model as the limiting case of infinitely

slow dynamics (R, qβ) (quasi-static picture) assuming a constant Edwards-Anderson order

parameter qEA(R, qβ) = qEA. Whether the latter assumption is justified in the large-N

limit of the cH equations remains an open question. Nevertheless, the quasi-static picture

of the SK model should provide physical insight when the adiabatic picture breaks down at

sufficiently strong collective couplings. In the following, we will further explore properties

of the SK model in the context of polaritonic chemistry. However, we already note at this

point that the quasi-static picture will not provide access to cavity-induced resonance effects,

which do require feedback effects on a vibrational time-scale. We will discuss this aspect

later in Sec. 4.2.4 .

4.2 Probing the existence of a polarization glass phase

From the previous discussion it seems possible that VSC in optical cavities can trigger a polar-

ization glass phase for a large number of molecules in the ensemble. While early experimental

evidence is in line with this theoretical idea (see Sec. 3.2), it is far from being a confirmation.

In the following, we propose specific experimental observables that are promising candidates

to investigate and demonstrate the existence of the proposed polarization-glass phase. For

this purpose, we re-interpret unique experimental features of spin-glass experiments in the

context of the SK model and link them to our polaritonic setup. From an experimental point
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FIG. 6: Four di↵erent examples of the PJ(q) function in three
dimensions for L = 32 corresponding to di↵erent samples in
the low temperature region [74]. The average over one thou-
sand di↵erent samples gives the smooth function P (q) of fig.
(5).

corresponding susceptibility [92] is given by:

�(q) = �

Z 1

q

dq0 x(q0) (26)

This formula reproduces the values of the two previously
defined susceptibilities (�LR and �eq) if we set q = qEA

and q = 0 respectively:

�LR = �(qEA) = �(1 � qEA) ,

�eq = �(0) = �

Z
dx(1 � q(x)) . (27)

The experimental measure of �(q) can be done in an
o↵-equilibrium setting and using generalized fluctuation-
dissipation relations [93].

I present here a very schematic version of the
Cugliando-Kurchan theory [93, 94].

Let us consider a system that has been carried to the
final temperature at time 0, we wait a time tW before
measurements start. If the waiting time tW is large but
finite, the system is slightly o↵ equilibrium. We can look
at the magnetic response at a large time t after tW .

Both times are macroscopic, much larger than the
characteristic microscopic time: in the experiments, they
could range from a few seconds to a few hours.

We define the correlation:

C(t, tW ) = Av (�i(tW )�i(tW + t)) . (28)

For large times we have the modified fluctuation-
dissipation relations [93, 94]:

d�(tW , t)

dt
= ��X(C(tW , t))

dC(tW , t)

dt
, (29)

where �(tW , t) is the response function at the time tW +t
after that an infinitesimal magnetic field has been intro-
duced at time tW .

We can eliminate the time parametrically and consider
�(tW , C). For very large waiting time tW we should have:

d�(tW , C)

dC
= ��X(C) . (30)

In other words, we find that when tW ! 1 the quantity
d�(tW , C)/dC has a well-defined limit that is equal to
X(C).

At the end of the day, one finds that this dynamically
introduced quantity X(C) must be equal to the equilib-
rium x(q), which has the meaning of a probability:

X(C) = x(q)

����
q=C

, �(C) = �(q)

����
q=C

. (31)

The interpretation of these results in terms of a modified
Onsager postulate has been done in [95].

These results are very important as they open an ex-
perimental window on the determination of the function
q(x) and give a theoretical framework to study the o↵-
equilibrium behavior.

The theory has been confirmed in a beautiful experi-
ment [96], that was done 20 years ago: the main results
for the response function versus correlation is depicted in
fig. 7. It would be extremely interesting to repeat the
experiment with modern ad accurate technologies, tak-
ing advantage of the progress that has been done in the
theory and in numerical simulations.

Similar results have been obtained in very careful nu-
merical simulations, where a direct comparison with the
theory is possible because the function P (q) is known
from equilibrium simulations (see fig. (5)). The very
large time span (12 orders of magnitude) helps to put
under control [97] systematic errors related to the infi-
nite time extrapolation.

Other impressive o↵-equilibrium phenomena in spin
glass are memory and rejuvenation [98], unfortunately,
I cannot discuss them due to a lack of space. Fortu-
nately, also these e↵ects have been partially reproduced
in accurate simulations [99, 100] where one can obtain
much more accurate information using a very wide range
of waiting times.

D. Granular Material and hard spheres

Classical granular matter [77–80, 101] is a problem of
high interest in experimental and theoretical physics. If
we neglect friction and the objects are spherical it re-
duces to the hard-sphere model which has been exten-
sively studied. It was well known that by increasing the
density (or the pressure) one enters a glassy phase, where
nothing was supposed to happen by subsequent compres-
sion. This phenomenon corresponds to the appearance of
a one-step replica symmetry breaking.
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and overlap

Q↵� =

P
i m(i)↵m(i)�

N
(41)

which obeys D2
↵� = 2(QEA � Q↵�).

However, things are much more delicate to capture all physically relavant aspects of the

SK model, in the mean-field limit and beyond (finite size e↵ects). Indeed there will be an

infinite number of order parameters required as we will see below.4 For this purpose, let us

define the probability of finding two states with overlap Q in a given sample J ,

PJ(q) =
X

↵�

w↵w��(Q↵� � q), (42)

where w↵ indicates the statistical weights of solution ↵ see Refs... for more details. Surpris-

ingly PJ(Q) show a dramatic dependency on the specific choice of J , (see Fig. ...show fig

from7 for SK model finite size vs analytics in8 but not sure how to connect ) Finally, the

averaging over all possible coupling realizations J is indicated by,

P (q) = PJ(q) (43)

which shows a much more well behaved behaviour that can be calculated analytically in

absence of a magnetic field (see Fig.) Interpretation / Tree /ultrametricity?

x(q) =

Z q

0

dq0P (q0) (44)

Exact meanfield solution for free energy4,9 (becomes exact for infinite system sizes, but

13

11

FIG. 6: Four di↵erent examples of the PJ(q) function in three
dimensions for L = 32 corresponding to di↵erent samples in
the low temperature region [74]. The average over one thou-
sand di↵erent samples gives the smooth function P (q) of fig.
(5).

corresponding susceptibility [92] is given by:

�(q) = �

Z 1

q

dq0 x(q0) (26)

This formula reproduces the values of the two previously
defined susceptibilities (�LR and �eq) if we set q = qEA

and q = 0 respectively:

�LR = �(qEA) = �(1 � qEA) ,

�eq = �(0) = �

Z
dx(1 � q(x)) . (27)

The experimental measure of �(q) can be done in an
o↵-equilibrium setting and using generalized fluctuation-
dissipation relations [93].

I present here a very schematic version of the
Cugliando-Kurchan theory [93, 94].

Let us consider a system that has been carried to the
final temperature at time 0, we wait a time tW before
measurements start. If the waiting time tW is large but
finite, the system is slightly o↵ equilibrium. We can look
at the magnetic response at a large time t after tW .

Both times are macroscopic, much larger than the
characteristic microscopic time: in the experiments, they
could range from a few seconds to a few hours.

We define the correlation:

C(t, tW ) = Av (�i(tW )�i(tW + t)) . (28)

For large times we have the modified fluctuation-
dissipation relations [93, 94]:

d�(tW , t)

dt
= ��X(C(tW , t))

dC(tW , t)

dt
, (29)

where �(tW , t) is the response function at the time tW +t
after that an infinitesimal magnetic field has been intro-
duced at time tW .

We can eliminate the time parametrically and consider
�(tW , C). For very large waiting time tW we should have:

d�(tW , C)

dC
= ��X(C) . (30)

In other words, we find that when tW ! 1 the quantity
d�(tW , C)/dC has a well-defined limit that is equal to
X(C).

At the end of the day, one finds that this dynamically
introduced quantity X(C) must be equal to the equilib-
rium x(q), which has the meaning of a probability:

X(C) = x(q)

����
q=C

, �(C) = �(q)

����
q=C

. (31)

The interpretation of these results in terms of a modified
Onsager postulate has been done in [95].

These results are very important as they open an ex-
perimental window on the determination of the function
q(x) and give a theoretical framework to study the o↵-
equilibrium behavior.

The theory has been confirmed in a beautiful experi-
ment [96], that was done 20 years ago: the main results
for the response function versus correlation is depicted in
fig. 7. It would be extremely interesting to repeat the
experiment with modern ad accurate technologies, tak-
ing advantage of the progress that has been done in the
theory and in numerical simulations.

Similar results have been obtained in very careful nu-
merical simulations, where a direct comparison with the
theory is possible because the function P (q) is known
from equilibrium simulations (see fig. (5)). The very
large time span (12 orders of magnitude) helps to put
under control [97] systematic errors related to the infi-
nite time extrapolation.

Other impressive o↵-equilibrium phenomena in spin
glass are memory and rejuvenation [98], unfortunately,
I cannot discuss them due to a lack of space. Fortu-
nately, also these e↵ects have been partially reproduced
in accurate simulations [99, 100] where one can obtain
much more accurate information using a very wide range
of waiting times.

D. Granular Material and hard spheres

Classical granular matter [77–80, 101] is a problem of
high interest in experimental and theoretical physics. If
we neglect friction and the objects are spherical it re-
duces to the hard-sphere model which has been exten-
sively studied. It was well known that by increasing the
density (or the pressure) one enters a glassy phase, where
nothing was supposed to happen by subsequent compres-
sion. This phenomenon corresponds to the appearance of
a one-step replica symmetry breaking.
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one can deduce that the free energy depends on a single order parameter q, which then can be

minimized to determine the alleged solution of the SK model.7,8 However, it turns out that

Fn is indeed not analytic for n < nc < 1 in the SK model. This indicates that the replica

symmetry is spontaneously broken and thus things become much more complex. After a

long endeavour the exact solution of the replica Ansatz was discovered by Parisi yielding the

following free energy12,14

F = max
q(x)

F [q(x)] (36)

where the corresponding partial di↵erential equations are given explicitly in footnote a. Con-

siderably later it was also proven that the exact solution of the replica ansatz indeed de-

termines the exact free energy of the original problem.15,16 For the subsequent discussions

this solution will be of minor relevance. However, the emergence of an order function q(x),

instead of just an order parameter q, will be essential for the mechanistic understanding of

spin glasses in general.

In more detail, explicit expressions were found that relate the order parameter function

q(x) to the probability density

PJ(q) =
X

↵�

w↵w��(Q↵� �q), (37)

a

F [q(x)] = � 1

4kBT


1 +

Z 1

0

dxq2(x) � 2q(1)

�
� kBTf(0, 0)

@f(x, h)

@x
= �1

2


@2f

@h2
+ x

✓
@f

@h

◆2�
,

with f(1, h) = ln(2 cosh(h/kBT )).

28

Figure 7: Comparison of the order parameter distribution of a spin glass and the polarization
distribution in a polarization glass. Left: Example of two rough probability distributions
PJ(q) of the overlap q for an Edwards-Anderson model of a spin glass without external
magneitc field (aggregated from Ref. 75 based on data from Refs. 88,89). The different real-
izations of J show large deviations even in the thermodynamic limit. Right: Likewise, two
(discretely) distinguishable polarization distribution are arising by individually converging
the cH equations for two different realizations of parameter sets (R, qβ = 0) (Shin-Metiu
setup with N = 1024 molecules).
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of view, a characterization of a spin glass is usually done by varying the temperature and

applying external magnetization field perturbations h′ as

H ′
J(σ) = h′

∑

i

σi. (43)

In our polaritonc picture, this is equivalent to changing the (dressed electronic) temperature

or applying a small external electric field perturbation.

4.2.1 Equilibrium Susceptibilities

The hallmark of replica symmetry breaking in spin glass theory can be attributed to the

emergence of two different static equilibrium susceptibilities,78 which are observed in ex-

periments90 and in the SK model.30 The two extreme cases describe the response of the

system subject to a small external field perturbation. In the so-called zero-field cooled case,

the system remains inside a given state while changing the magnetization (electric) field,

with a corresponding linear response susceptibility χLR. In contrast, the (true) thermody-

namic equilibrium susceptibility χeq describes the situation, where the spin glass is allowed

to relax to the thermodynamically most favored state in presence of a weak external field

perturbation.

χLR =
1− qEA

kBT
(44)

χeq =

∫
dx(1−q(x))

kBT
(45)

Experimentally, the static linear-response susceptibility χLR can be measured by looking at

the response to a small external field perturbation h′, after cooling the system to the desired

low temperature. In contrast, the equilibrium susceptibility χeq is approximated by the field

cooled susceptibility, which is measured by applying the small field perturbation already

while cooling the system below the spin glass transition temperature. In this case, the sys-
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tem has time to explore and select the most appropriate state while cooling in presence of

the external perturbation. Experimental results of the two different spin glass susceptibili-

ties below the critical temperature are illustrated for Cu(Mn13.5%) in Fig. 8 and compared

with theoretical predictions.78,90 In spin glass theory, e.g., the SK model, there is a clear dis-

tinction between replica symmetry breaking and hysteresis effects:78 Hysteresis is commonly

attributed to defects that are localized in space and induce a finite free energy barrier and

thus finite lifetime of meta-stable states. Thus, in hysteresis, the two susceptibilities coincide

after waiting sufficient long time. In contrast, the non-local barriers in spin glasses imply

the re-arrangements in arbitrary large regions of the system, which can even diverge in the

thermodynamic limit. Therefore, the different susceptibilities will not agree, provided that

the externally applied field perturbation is sufficiently small.

Whether such a clear distinction between hysteresis and replica symmetry breaking also

holds in a polaritonic setup is unknown and requires more experimental and theoretical

work to demonstrate that polaritonic chemistry behaves as a spin glass system.91 As we can

deduce from the previous discussions, the quasi-static spin-glass picture of the SK model

is incomplete for our polaritonic setup, since the dressed electronic structure of an ensem-

ble of molecules under VSC will be (periodically) driven by the dynamics of the nuclear

and displacement field coordinates. Therefore, it is likely that time-dependent external field

perturbations are required to probe the coexistence of different cavity-induced linear (or

higher-order) susceptibilities (see discussion in Sec. 4.2.2). In particular, we already see that

Eq. (44) should explicitly depend on time, since the Edwards-Anderson order parameter of

the cH equations directly depends on (R(t), qβ(t)) and thus qEA(t). If this also implies the

coexistence of different (possibly dynamic) susceptibilities under VSC remains a non-trivial

open question. A further hint at interesting effects is the fact that we have now a highly

degenerate ground state which makes response calculations intricate. However, investigat-

ing dynamic susceptibilities could provide a promising route to verify and characterize the

proposed polarization-glass phase in a cavity.
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9

mal perturbation [77–80].
Following an original idea of Kirkpatrick and Wolynes

[81], quite recently [82–85], as discussed in detail in the
next section, a mean field model of hard spheres has been
constructed and solved in the infinite-dimensional limit
(D ! 1, where D is the dimension of the space where
the spheres move). The model has many features similar
to the SK model: all the stigmata of marginal stability
are present here, suggesting that a similar situation also
holds for some finite-dimensional glasses.

VIII. SOME MORE EXPERIMENTAL AND
NUMERICAL CONFIRMATIONS

Although experiments are the ultimate source of con-
firmation of a theory, numerical simulations have proven
to be a remarkable tool. They are crucial for studying
quantities that are not accessible experimentally and for
quickly disproving wrong theories.

Indeed the core prediction of the replica theory is the
existence of multiple equilibrium states that have the
same macroscopic properties but they di↵er microscop-
ically. Unfortunately at the present moment, it is im-
possible to measure simultaneously the value of a large
number of spins in experiments, so this key property may
be directly observed only in simulations.

Another reason for the importance of simulations is the
possibility to explore the behavior of the system in a short
time window, that is not accessible to experiments: in
this way, simulations are complementary to experiments.

A. Spin glass susceptibilies

The magnetic susceptibility measures how the magne-
tization changes by adding a magnetic field. However, in
the low-temperature region, the magnetization depends
on the protocol we use to thermalize the system and
to add the magnetic field (a form of hysteresis): con-
sequently, we can define protocol-dependent (or history-
dependent) magnetization.

A clear prediction of the theory is the existence of two
susceptibilities in two extreme cases:

• When we add a small magnetic field and we force
the system to remain in the same state, we measure
the linear response susceptibility that is given by
�LR = �(1 � qEA).

• When we add a magnetic field and we allow the
system to jump to the thermodynamically favored
state, we measure the thermodynamic susceptibil-
ity that is given by �eq = �

R
dx(1 � q(x)).

The two susceptibilities have been measured experi-
mentally in spin glasses and depicted in figures (3) and
(4) (mean-field theory and experiments respectively).

The experimental protocols we consider are the follow-
ing:

FIG. 3: The analytic results of the mean-field approximation
for the linear response susceptibility (�LR, lower curve) and
the field cooled susceptibility (�eq, upper curve). They coin-
cide in the high-temperature region.
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FIG. 4: The linear response susceptibility (�LR, lower curve)
and the field cooled susceptibility (�eq, upper curve). The
experimental results are taken from [86]

.

• The linear response susceptiibly (�LR) is measured
by adding a very small magnetic field when the sys-
tem is already at the final low temperature. This
extra field should be small enough to neglect non-
linear e↵ects. In this situation, when we change the
magnetic field, the system remains inside a given
state and it is not forced to jump from one state
to another state: this is the ZFC (zero-field cooled)
susceptibility, which corresponds to �LR.

• The second susceptibility (�eq) can be approxi-
mately measured by cooling the system in presence
of a small magnetic field and comparing the ob-
served magnetization with the one measured with-
out this small magnetic field. In this case, the
system has the ability to choose the state that is

much. This susceptibility is related to the fluctuations of the
magnetization inside a given state.

Y The true equilibrium susceptibility, !eq, which is related to the
fluctuation of the magnetization when we consider also the
contributions that arise from the fact that the total magneti-
zation is slightly different (of a quantity proportional to !N)
in different states. This susceptibility is very near to !FC, the
field cooled susceptibility, where one cools the system in
presence of a field.

The difference of the two susceptibilities is the hallmark of
replica symmetry breaking. In Fig. 3 we have both the analytic
results for the SK model (2) and the experimental data on
metallic spin glasses (38). The similarities among the two panels
are striking.

Which are the differences of this phenomenon with a well
known effect; i.e., hysteresis?

Y Hysteresis is due to defects that are localized in space and
produce a finite barrier in free energy. The mean life of the
metastable states is finite and it is roughly exp(""F), where
"F is a number of order 1 in natural units.

Y In the mean field theory of spin glasses the system must cross
barriers that correspond to rearrangements of arbitrary large
regions of the system. The largest value of the barriers diverge
in the thermodynamic limit.

Y In hysteresis, if we wait enough time the two susceptibilities
coincide, while they remain always different in this new
framework if the applied magnetic field is small enough
(nonlinear susceptibilities are divergent).

We shall see in the next section the difference between hysteresis
and the new picture (replica symmetry breaking) becoming
clearer as we consider fluctuation dissipation relations during
aging.

Slightly Off-Equilibrium Behavior
Standard thermodynamics is very useful to understand the
dynamics at equilibrium, but serious complications are present
when the systems are not at equilibrium. However, some detailed
results can be obtained if the system is slightly off-equilibrium.
A neat theory may be formulated in the case where the time scale
related to nonequilibrium phenomena is much longer than the
microscopic time scales (e.g., seconds versus picoseconds). The
simplest way to put a system out of equilibrium is to perturb it
by changing the external parameters (temperature, magnetic
field) and producing a transient behavior. In the case of a fluid

we could also add a constant stirring force and produce a
stationary off-equilibrium system.

The most studied case is aging. The system is cooled from a
high temperature to a low temperature at time 0. In many
systems the response at a time scale that is of the order of the age
of the system is notably different from the equilibrium one.

When we cool the system below the critical temperature, the
system has the tendency to order itself, i.e., to go to one
equilibrium state. However, this process must happen locally
(there is no direct long-range exchange of information), and the
degrees of freedom must arrange themselves in some configu-
rations that locally minimize the free energy. In this process we
have the formation of domains where the free energy is well
minimized, separated by walls with high free energy. Therefore
at finite time we have the formation of a mosaic state (39–42),
characterized by a dynamical length #(t). The function #(t) is an
increasing function of time that eventually goes to infinity.

Whereas in the case of spinoidal decomposition there are only
two equilibrium states, and the mosaic has only two colors, in the
case in which there are many locally different equilibrium states,
as there should be in spin glasses, each cell of the mosaic is likely
to belong to a different ground state and the picture is much
more complex.

In the case of the spinoidal decomposition the function #(t)
increases relatively fast (e.g., as t1/3). In spin glasses, the increase
of the function #(t) is rather slow and there are indications that
also in the most favorable experimental situations #(t) arrives to
100 (in microscopic units): the domains are rather small from the

Fig. 2. The function P(q) $ PJ#q$ after average over many samples (L $
3, . . . , 10) from ref. 37.

Fig. 3. The two susceptibilities (!eq % !LR). (A) The analytic results in the mean
field approximation (2). (B) The experimental results for a metallic spin
glass (38).

7950 ! www.pnas.org"cgi"doi"10.1073"pnas.0601120103 Parisi

Figure 8: Comparison of experimental (top) and model (bottom) susceptibilities with respect
to temperature T . The linear response susceptibility (χLR, lower curve) can be measured
experimentally by applying an external field perturbation after the cooling of the material
(Cu(Mn13.5%)) below the critical spin glass temperature. In contrast, the equilibrium sus-
ceptibility (χeq, upper curve) can be approximated experimentally by applying the magnetic
field perturbation before the cooling.78,90 Above the critical temperature the material enters
the paramagnetic stable phase, with only one susceptibility, i.e., the linear response accesses
equilibrium properties.
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4.2.2 Off-equilibrium: Time-correlations and cavity-induced feedback effects

Even more interesting than the equilibrium properties of spin glasses are their associated

off-equilibrium phenomena, which are observable for different materials. In order to measure

the generalized susceptibility, it is common practice to rely on the fluctuation-dissipation

theorem, which relates the response of the system to an external perturbation (weak off-

equilibrium) to its equilibrium properties (fluctuations/correlations). The fluctuations of

glassy systems can be characterized by the time-correlations of the magnetizations (or po-

larizations respectively),

C(t, tw) =
1

N

N∑

i

⟨σi(tw)σi(tw + t)⟩ ⇒ 1

N

N∑

i

⟨∆µi(tw)∆µi(tw + t)⟩
⟨∆µi(tw)∆µi(tw)⟩

. (46)

Comparing the magnetization time-correlations of a (quasi-static) spin glass with the elec-

tronic correlations of a polarization glass reveals similarities (see Fig. 9) but again highlights

some fundamental physical differences. In a spin glass, the magnetization correlations de-

cay monotonically, but extremely slowly even on a logarithmic time-scale. In addition, the

random process of σi(t) cannot be considered a wide-sense stationary stochastic process,

which means the correlation does not only depend on the time-difference t, but also on the

waiting-time tw elapsed since entering the spin-glass phase. In other words, time-reversal

symmetry is explicitly broken in a spin glass. The explicit waiting-time dependency will

give rise to specific aging effects that are discussed in Sec. 4.2.3. In contrast, the polariza-

tion glass correlations reveal different oscillatory regimes, introduced by the time-dependent

(R(t), qβ(t))-parameters. MD simulations with N = 36 Shin-Metiu molecules reveal the

following correlation features within an adiabatic regime:

1. Long-lived periodic (dynamic) correlation patterns emerge.

2. Fast oscillations (vibrational and cavity time scales) that are symmetrically distributed

around C(t) = 0 (light-blue), i.e., the existence of anti-correlated states.
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3. The amplitude of the fast oscillations is modulated periodically on an order of mag-

nitude smaller frequency scale (blue), with even coarser intensity modulations on a

pico-second time scale.

4. The long-lived correlations are introduced by the harmonic nature of the strongly cou-

pled cavity mode qβ and their overall magnitude depends on the losses of the cavity

(a Langevin-thermostat is coupled to qβ, see Ref. 20 for implementation details). In

particular, a more Brownian-like motion of qβ effectively prevents that long-lived corre-

lations emerge. The Brownian dynamics of qβ can be interpreted as the weak coupling

to a continuum of modes or thermal bath instead.

Investigating thoroughly the long-lived correlation dynamics in a polarization glass is already

a computationally very demanding task. Particularly, the deviations of ∆µi(t) from a wide-

sense stationary stochastic process are non-trivial to detect and thus remain an open research

question. In particular, significant deviations may potentially only occur when increasing

the collective coupling strength beyond the onset of the polarization glass instability. The

breakdown of the adiabatic picture for the dressed electronic structure will increase the

computational complexity even further in this regime, which may require the development of

novel computational algorithms. However, the strongly oscillatory nature of the correlations

within the adiabatic regime may also have immediate implications for the development of

a dynamic susceptibility picture, as previously discussed. When averaging the (immediate)

linear response susceptibilities over many oscillatory cycles, little to no effect (deviation from

the mean) is expected. This suggests that higher-order response functions will likely become

relevant observables to unravel the inner workings of a polarization glass and thus VSC in

general. Overall, characterizing correlations, (non-linear) responses as well as non-adiabatic

effects will have important implications for the off-equilibrium properties of a cavity-induced

polarization glass. Particularly, non-adiabatic effects are known to essentially determine the

physics of the SK model, as we detail in the following.
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macroscopic point of view, but microscopically they may contain
a large number of magnetic atoms (e.g., 106). The precise form
of the increase of the function !(t) is not very important (some
authors have suggested t", with " of the order 0.13 in the
experimentally accessible region (43, 44). An important point is
that the excess of energy is proportional to a high negative power
of !(t) [e.g., as !(t)!4], so that during aging energy relaxation is
very small, consistent with the fact that it has never been
observed experimentally, being seen only in simulations.

In this situation the system moves microscopically much more
than at equilibrium, because when ! increases different domains
are rearranged and this produces an excess of thermal fluctua-
tions. In the same way the systems may choose among different
possibilities when the domains change and this may lead to an
additional response to external perturbations that may influence
these choices. During aging the relations between fluctuation
and response are modified. The fluctuation dissipation theorem,
which is at the basis of the thermodynamics and is a consequence
of the so-called zeroth law of the thermodynamics, is no longer
valid: a new definition of temperature is needed.

Let us show how these ideas are implemented for the aging of
spin glasses. Our aim is to define a correlation function and a
response function in a consistent way such that the new off-
equilibrium fluctuation dissipation relations can be found.

The correlation function of total magnetization is defined as

C"t, tw# ! $m" tw#m" tw # t#% . [11]

In spin glasses at zero external magnetic field it is possible to
prove that the off-diagonal terms average to zero and the only
surviving term is

C"t, tw# $
1
N "

i&1

N

$% i" tw#% i" tw # t#% $ q" tw , tw # t# , [12]

i.e., the overlap q(tw, tw ' t) between a configuration at time tw
and one at time tw ' t (for an example taken from simulations
see Fig. 4).

The relaxation function S(t, tw) is given by

S"t, tw# $ &!1 lim
'h30

'$m" t # tw#%

'h , [13]

where 'm is the variation of the magnetization when we add a
magnetic field 'h starting from time tw.

The dependence on t and tw of the previously defined functions
is rather complex and cannot be computed from general prin-
ciples. It is convenient to examine directly the relation between
S and C, by eliminating the time. At this end we plot paramet-
rically S(t, tw) versus C(t, tw) ( q(t, tw) at fixed tw, as shown in
Fig. 5.

The theory predicts that such a plot goes to a finite limit when
tw 3 ) and we can extract from it information on the phase
structure of equilibrium configurations. Using general argu-
ments (7, 9, 10), one finds that when tw 3 ),

dS
dC $ X"C# $ #

0

C

dqP"q#. [14]

The behavior of the system at equilibrium and the modifica-
tion of the fluctuation dissipation theorem off-equilibrium are
strongly related. The deep reasons that are at the origin of this
unexpected behavior have been discussed at length in the
literature. Essentially they are based on two physical steps:

Y Stochastic stability implies that the free energy distribution of
the metastable states can be reconstructed from the knowl-
edge of P(q) (10).

Y The energy distribution of the metastable states is character-
ized by one (or more) effective temperatures (47, 48). During
equilibration the extra noise comes from the jumping from
one to another equilibrium state, and this explains why the
value of the effective temperature enters in the off-equilib-
rium fluctuation dissipation relations.

In Fig. 6 we compare the static (Left) and the dynamic (Right)
behavior. On the Left we display the function P(q), and on the right,
relaxation versus correlation during aging. In all the right panels the
time decrease from right to left (at short times the correlation is
higher). At short times, i.e., at equilibrium, the function is a straight
line (with slope !1), according to the fluctuation dissipation
theorem. The interesting part is the one at left, where at large times,
in the aging regime, the curve deviates from the previous straight
line. The value of the relaxation at the point where the equilibrium
regime ends is the linear response susceptibility (LR, whereas the
value of the relaxation on the left-most point is the equilibrium
susceptibility (eq. We have essentially three different situations
summarized in Fig. 6:

Fig. 4. The correlation function for spin glasses as a function of time t at
different tw [from simulations (45)].

Fig. 5. Relaxation function versus correlation in the EA model in D $ 3, T $
0.7 $ (3%4)Tc and theoretical prediction (Ising case) (ref. 45).
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Figure 9: Comparison of time-correaltions in a spin and polarization glass: Top: Monoton-
ically decaying time correlation functions C(t, tw) of an Ising spin glass (taken from Ref. 78
based on data from Ref. 92). The dependency on the waiting time tw indicates the aging be-
haviour. Bottom: Oscillating polarization correlations of the Shin-Metiu setup under VSC
with N = 36 molecules. When calculating C(t) it was implicitly assumed that ∆µi(t) is a
wide-sense stationary stochastic process within the adiabatic cH picture. The correlations
oscillate fast (light-blue), on the time-scale of the cavity (vibrations), where the bold lines
visualize the enveloping function. The blue line corresponds to the strong coupling to one
lossy cavity mode (qβ weakly coupled to a Langevin bath). In contrast, the coupling to a
Brownian mode is shown in red, which can be interpreted as the weak coupling to many
cavity modes (thermal bath) instead.
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4.2.3 Off-equilibrium: Breakdown of the fluctuation-dissipation theorem and

aging effects

Let us next make the following assumptions: At time t0 = 0 the system is suddenly cooled

below the critical glass temperature T < Tg, which triggers the phase transition into a

spin glass. After a waiting time tw, a constant external field perturbation h′ is applied.

Eventually, the response of the system S(tw, t) is evaluated at time t+ tw ≥ tw. Under these

conditions, the fluctuation-dissipation relations connect78,93,94 the time correlation function

of the total magnetization C(t, tw), defined in Eq. (46), to the average relaxation function

per spin, which is defined by78

S(t, tw) = kBT lim
δh′→0

δ⟨m(tw + t)⟩
δh′

. (47)

Eq. (47) describes the response of the magnetization at time tw + t if the external field was

added at time tw. However, the standard fluctuation-dissipation theorem is only applicable if

the system obeys the detailed balance condition,95 which can be violated in a glassy system

on longer time-scales. To account for this aspect, modified fluctuation dissipation relations

have been proposed that hold for weak off-equilibrium.75,96,97 In more detail, two different

off-equilibrium regimes are distinguished for (spin) glasses, for which different fluctuation-

dissipation relations hold:94

In the stationary correlation regime of a spin glass, the correlations are assumed to

solely depend on t, but not on the waiting time tw, i.e, C(t, tw) = Cs(t). Typically this

approximation is reasonable only for relatively small t ≈ 0 in spin glasses, which implies high

correlations Cs(t) ≈ 1. Having correlations close to unity, the standard (thermal equilibrium)

fluctuation-dissipation relation are applicable, which yields92,98

S(t) = 1− Cs(t). (48)
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In the aging regime, where the correlations are no longer stationary, modified fluctuation-

dissipation relations of the following form were suggested75

dS(tw, t)

dt
= X(C(t, tw))

dC(t, tw)

dt
. (49)

Again the SK model provides an ideal starting point to interpret Eq. (49) analytically, since

one can show that C(t, tw) =
1
N

∑N
i ⟨σi(tw)⟩⟨σi(tw+t)⟩ = q(tw, tw+t) in absence of an external

magnetization field, i.e., for hm = J0 = 0.78 This allows to discuss off-equilibrium effects in

spin glasses analytically, in the absence of external magnetization fields. In more detail, by

eliminating the time parametrically, one can re-express S(tw, t) 7→ S(tw, C). Afterwards,

identifying X(C) = dS(tw, C)/dC in the large waiting limit tw → ∞, one can relate the

dynamic quantity X(C) to the equilibrium x(q), i.e., X(C) = s(q)|q=C .
75 This leads to a

simple physical picture in the aging regime in terms of the slope of the response with respect

to the correlations, i.e.,78,93,96,99–101

dS

dC
= X(C) =

∫ C

0

dqP (q). (50)

In other words, the deviations of the fluctuation-dissipation theorem that are caused by ag-

ing effects can be related to equilibrium properties given by P (q). An illustration of the

two different off-equilibrium regimes with their relation to equilibrium properties is given in

Fig. 10a for the SK model in comparison with standard hysteresis effects, i.e., visualizing

the difference between replica symmetry breaking and hysteresis. Notice the modifications

of the fluctuation-dissipation relations can be re-interpreted in terms of an effective temper-

ature97,100

τ = −T
(
dS

dC

)−1

≥ T (51)

which indicates a heating or excess of thermal fluctuations since 0 ≤ dS/dC ≤ 1 according
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to the probability interpretation of Eq. (50). The two different off-equilibrium regimes, i.e.,

the emergence of aging effects, seem to be a generic feature of glassy systems.75 In Fig. 10b

experimentally recorded fluctuation-dissipation relations are shown for CdCr1.7In0.3S4 with

respect to different finite waiting times.102 The extrapolation to infinite waiting times al-

lows the connection to the theoretical spin glass models (i.e., the connecting to equilibrium

properties).

Including the parametric feedback of the nuclei on the dressed electronic structure mod-

ifies the fluctuation-dissipation picture of a spin glass significantly. In particular, the emer-

gence of periodic oscillations implies that the thermal equilibrium fluctuation-dissipation

relation, given in Eq. (48), will no longer be applicable in the stationary correlation picture.

This is not so surprising since the electronic subsystem is strongly correlated with the other

subsystems (not decoupled, i.e. strongly hybridised). Therefore, Eq. (48) will remain valid

solely for very short time-scales (Cs(t) ≈ 1), or if the cavity is too lossy/too weakly coupled

to the system to induce any chemical changes on the molecular ensemble (see suppressed cor-

relations visualized by the red line in Fig. 9). Consequently, different fluctuation-dissipation

relations are expected even in the stationary correlation regime under VSC. Similarly, by

increasing the collective coupling strength further, the breakdown of the adiabatic approx-

imation suggest the emergence of a dynamic aging regime under VSC. In analogy to the

stationary case, we expect that the dynamic feedback effects require modifications of the

fluctuation-dissipation relation in Eq. (49) to be captured.

4.2.4 Polaritonic resonance picture revised

As we know from a set of different experiments addressing a variety of chemical reactions

in cavities (see e.g. Sec. 3.2), resonance effects play a major role when modifying chemical

properties under collective VSC.22,103,104 Thus it comes as no surprise that periodic feed-

back effects between the frustrated (off-equilibrium) electronic structure, the nuclear and

cavity degrees of freedom and the thermal bath re-appear in a holistic theoretical descrip-
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tion.5 While considerable theoretical efforts went into investigating resonance effects with

polaritonic reaction-rate theories67,105–110 or few-molecule ab-initio simulations,111–113 we be-

lieve that the polarization-glass concept provides a necessary link between the macroscopic

(rates) and microscopic (few-molecule) chemical pictures. It opens up the door to identify

prerequisites to observe chemical changes in a cavity from an ab-initio perspective. In more

detail, we anticipate a scale-connecting resonance mechanism under collective VSC of a form

similar to the following: Assuming that the losses of the cavity are sufficiently small (an ef-

fective cavity mode is distinguished), a dynamic instability (phase transition) of the dressed

electronic structure can emerge for sufficiently strong collective couplings. The resulting

polarization-glass phase introduces dynamic correlations between the electronic structures

of the molecules. The long-lived correlations imply modifications of the standard (thermal)

fluctuation-dissipation relations for the dressed electronic structure, which implies a differ-

ent out-of-equilibrium description. Eventually, the dynamic (memory-dependent) electronic

correlations will act back on the dynamics of the photon displacement field and the nuclei.

In that regard, the dynamically frustrated nature of the electronic structure bridges not only

length and time-scales, but it also breaks the conservative nature (in a system subspace)

of the classical forces of Eq. (5). While the magnitude of the cavity-induced polarizations

might be very small, their correlated and long-lived nature may still be sufficient to introduce

stochastic resonance phenomena5 at least for certain chemical systems and thus modifies their

respective chemical properties. Clearly, the ab-initio picture of cavity-induced resonance ef-

fects remains vague at the moment and considerable theoretical and experimental effort will

be required to unravel it and make it more quantitative and predictive. However, we believe

that the spin-glass-like nature of the dressed electronic structure provides the most realistic

and plausible theoretical framework that sets the necessary seed (instability mechanism) to

trigger the resonance effects that have been observed in polaritonic experiments. Therefore,

we consider the connection between polaritonic chemistry and the physics of a spin glass

an excellent starting point to not only better understand current experimental findings, but
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also to stimulate novel theoretical and experimental directions. This should allow us to

reach a holistic understanding of strongly-coupled light and matter systems. Moreover, our

connection provides an interesting new perspective to the applicability of the field of spin

glasses beyond condensed matter systems.

5 Summary and Conclusion

In this work we have established a novel connection between two separated and disconnected

research areas: The emergent field of polaritonic chemistry and the long and widely studied

complex field of spin glasses and rare events in statistical mechanics. The mapping of the

static electronic structure problem of a dilute ensemble under collective VSC, onto the spin-

glass model of Sherrington and Kirkpatrick suggests the emergence of a cavity-induced phase

transition. The static mapping onto a spin glass indicates the following for the dressed

electronic-structure problem:

1. Polarization ordering (polarization-glass phase transition) emerges for sufficiently strong

collective light-matter couplings to the cavity modes.

2. Thermal and non-adiabatic effects can start to play a role for the collective electronic

structure problem in a cavity, even though these effects can be usually disregarded for

an ensemble in free-space.

3. Within the (static) polarization-glass phase, extremely long correlation times and frus-

tration effects emerge, that do not only change equilibrium properties, but also give

rise to off-equilibrium aging effects mediated by the long-range cavity modes, which

can be re-interpreted as an effective heating of the system.

Overall the standard SK model of a spin glass suggests an instability of the dressed elec-

tronic subsystem altering the established temporal and spatial scales to understand chemistry

on a molecular scale. Eventually, relaxing the restrictive static two-level approximation in
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Y A: Old-fashioned hysteresis. During aging there is an excess of
noise with respect to equilibrium, as an effect of the micro-
scopic movements, but these movements do not affect the
response function. The presence of noise without a corre-
sponding response is typical of a system at infinite tempera-
ture. Indeed, the effective temperature !X(C) is infinite in the
aging region.

Y B: A new and nontrivial phenomenon, that should be present
in structural fragile glasses and in some kinds of spin glasses.
The system has two temperatures, and both are finite (47–50).
Often the higher temperature is near to the critical temper-
ature.

Y C: A more complex phenomenon that is present in the mean
field theory of some spin glasses (e.g., in the original SK
model). It corresponds to the presence of a continuous range
of temperatures in the aging region.

The presence of anomalies in the off-equilibrium regime in the
plot of the response versus correlations (i.e., cases B and C)
marks in a clear way the difference from the old picture
(hysteresis). The experimental fact that in real spin glasses "LR !
"eq excludes case A.

In the case of Ising spin glasses with two body interaction in
the mean field approximation we stay in case C. What happens
in three dimensions is not clear. Numerical simulations (5, 36, 37,
45) on Ising model indicates that we stay in case C, whereas the
experiments (51) (shown in Fig. 7) show a clear effect of
deviations from case A that may indicate more case B. From the
theoretical viewpoint there are no firm commitments: although
in infinite dimensions with a two-spin interaction we are in case
C, the corrections due to the interaction among the fluctuations
could bring the system in three dimensions in case B.

This difference between the simulations and the experiment
may have two different origins:

Y The experiment and the numerical simulations do correspond
to two different regimes: the time scales are quite different.
Moreover, if experimentally we cool a high-temperature sys-
tem, thermalized domains grow with time and the maximum
experimental reachable side is about 100. In simulations a
compact system can be thermalized up to size 20.

Y The numerical simulations are mostly done on Ising systems,
whereas the experiments have been mostly done on more
Heisenberg systems with anisotropy and a long-range tail of
interactions (other systems are more complex); there are
indications from other properties that the two systems behave
in a different manner.

More extended numerical simulations and experimental re-
sults on other systems are needed to decide which picture is
correct. One should also consider the possibility that the cor-
relation length in the equilibrium limit remains fine, but very
large (e.g., 1,000 lattice units). In such a case one should see the
effects of broken replica symmetries for times of human scale
and only for astronomical times should the anomaly disappear.
The possibility of this phenomenon is difficult to dismiss, but it
would not jeopardize the interpretation of the experimental data
using spontaneously broken replica theory.

Structural fragile glasses will be discussed later. Here we
notice that numerical simulations and strong theoretical argu-
ments point to the fact that they should belong to case B.
Unfortunately, although deviations from the equilibrium fluc-
tuation dissipation relations have been observed in structural
glasses, the situation is not so clear as for spin glasses.

Other impressive phenomena that happen mainly in spin glass
are memory and rejuvenation (52). Unfortunately I cannot
discuss them for lack of space.

Structural Fragile Glasses
Some of the physical ideas that have been developed for spin
glasses have also been developed independently by people
working in the study of structural glasses. However, in the fields
of structural glasses there were no soluble models that displayed
interesting behavior, so most of the analytic tools and of the
corresponding physical insight were first developed for spin
glasses.

Fig. 6. Three different forms (A, B, and C) of the function P(q) (Left) and the
related function S(q) (Right). Delta functions are represented as a vertical
arrow (taken from ref. 46).

Fig. 7. Experimental raw results (filled symbols) and ageing part (open
symbols) deduced from the scaling analysis. The different curves span the
waiting times studied: tw " 100 s, tw " 200 s, tw " 500 s, tw " 1000 s, tw " 2000 s
(from ref. 51).
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of finding two states with overlap

Q↵� =

P
i m(i)↵m(i)�

N
(38)

in a given sample J . The statistical weights of solution ↵ are indicated by w↵.10 Notice the

connection of Q↵� to the Edwards-Anderson order parameter or self-overlap Q↵↵ = qEA.

An astonishing feature of spin glasses in general is that PJ(q) shows a dramatic dependency

on the specific choice of J even in the thermodynamic limit (see e.g., left of Fig. 7 for the

Edwards-Anderson model without external magnetization fields). A smooth curve is only

achieved by averaging over all possible realizations J (see Fig. 10a) yielding the equilibrium

overlap

P (q) = PJ(q). (39)

Eventually, the functional dependency of q(x) can be made explicit by inverting the prob-

ability density

x(q) =

Z q

0

dq0P (q0). (40)

Notice, a signature of replica symmetry breaking8 is the deviation of P (q) from two delta

functions at q = ±qEA as illustrated in Fig. 10a.

In a next step, we apply the concept of an order parameter distribution on the numer-

ically solved cH equations, aiming to better understand the similarities between molecular

polarization and spin glasses. Looking at the probability distribution of the cavity-induced

polarization P cH
R,q�

(�µ0), we find a discrete pattern when solving the cH equations for two dif-

ferent parameter choices R, q� (see Fig. 7). To interpret the similarities as well as di↵erences

between the two distributions, we need to have a closer look at the imposed physical condi-

tions for solving the cH equations numerically. As described in Sec. 3.1, the cH equations can
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(a) Connecting equilibrium and off-equilibrium picture for a spin (black) and polarization
(light blue) glass. Left: Equilibrium order parameter distribution of a SK model (black)
taken from Ref. 114 in comparison with deviations of qEA(t) in a cavity. Right: In
spin glasses two different (weak) off-equilibrium regimes (stationary and aging) can be
distinguished for a small external field perturbation h′, applied after a waiting time tw.
The stationary regime is governed by a linear fluctuation dissipation relation, which
terminates at C = qEA given by the linear response susceptibility S(qEA) = TχLR. In
contrast, the aging regime is governed by the modified fluctuation dissipation relations
in Eq. (49). It is bounded by the full thermal equilibrium susceptibility S(0) = Tχeq at
C = 0. Notice that χeq ̸= χLR indicates replica symmetry breaking, whereas χeq = χLR

corresponds to normal hysteresis effects that do not require the complex theory of spin
glasses to describe its equilibrium properties (dashed green). The slope of the curve can
be interpreted as an effective temperature increase (see Eq. (51)) (red). The dynamic
feedback effects in a cavity suggest the breakdown of the linear fluctuation-dissipation
relations already within the stationary correlation regime (light-blue).
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FIG. 7: Experimental raw results (full symbols) and extrap-
olations to the infinite time limit (open symbols) for the re-
sponse function (defined in eq.(30)) versus the correlation (de-
fined in eq.(29)). The di↵erent curves span the waiting times
studied: tw = 100 s, tw = 200 s, tw = 500 s, tw = 1000 s, tw =
2000 s (from ([96]))

It was a real surprise when it was discovered that the
analytic solution of the hard spheres thermodynamics in
the mean field approximation [83–85] predicted the exis-
tence at high pressure of a transition (the Gardner transi-
tion) to a marginal stable phase starting from the region
where one replica symmetry was broken at one step ac-
cording to [60].

Approaching this transition by increasing the pressure
leads to a divergent correlation time and to a diver-
gent correlation length. This possibility of a transition
from one-step replica symmetry breaking to a continuous
replica symmetry breaking, with the consequent appear-
ance of a marginal stable phase was discussed firstly in
[102] in the framework of a spin glass type model, but
the transition was identified in [103], where its proper-
ties were computed. When we cool a glass, it enters
a non-equilibrium region and the possibility of a tran-
sition to continuous replica symmetry breaking in this
o↵-equilibrium region was first discussed in [104, 105].

This unexpected prediction was confirmed in detailed
numerical analyses [106, 107]. This marginal phase pre-
dicted by the replica theory of glasses, has been di-
rectly observed experimentally in a slowly densifying col-
loidal glass [108, 109] and in two dimensional hard disks
[110, 111].

A spectacular result was the computation of the mean-
field exponents for the jamming transition [83–85] that
happens in the phase where replica symmetry is sponta-
neously broken. For example in the mean field approxi-
mation at jamming the correction function g(r) of hard
spheres of diameter 1, at distance r slightly greater than

1 behaves as

g(r) / 1

(r � 1)�
, � = 0.41269 · · · , (32)

where the value of � is obtained by solving non-linear
equations.

This prediction is correct not only in high dimensions
(as it should be), but it has been verified also in three and
quite likely in two dimensions where some logarithmic
corrections may be present [112].

E. Random Laser

The theoretical interest in random lasers in connection
with replica symmetry breaking started in 2006 [113].
Fortunately, experimental evidence of replica symmetry
breaking has been provided [114–116]. In random lasers
is possible to observe directly the occupancy of di↵erent
harmonic modes and therefore one can measure directly
the PJ(q) function.

Many di↵erent kinds of lasers have since been studied:
not only the standard solid disordered lasers but also
random fiber lasers [117, 118], random laser suspensions
in very viscous liquids [119] heterogeneous random lasers
in highly porous fibers [120].

Remarkably, similar phenomena are present also in
nonlinear optical propagation through photorefractive
disordered waveguides [121].

IX. THE SPIN GLASS CORNUCOPIA

In 1988 P.W. Anderson published seven columns in
”Physics Today” discussing various issues on spin glasses.
In one of the columns he described spin glasses as an
amazing cornucopia [122]: To me, the key result here is
the beautiful revelation of the structure of the randomly
”rugged landscape” that underlies many complex opti-
mization problems (..) Physical spin glasses and the SK
model are only a jumping-o↵ point for an amazing cor-
nucopia of wide-ranging applications of the same kind of
thinking.

Anderson was right. Here I will try to sketch some of
them.

We have seen many developments in physics. I will
mention here only a few examples.

• Structural glasses: replica symmetry breaking is
relevant for the study of the glass transition.

A very important step forward was done in the
eighties using the mode coupling theories [123].
However, it was realized that the same kind of
equations can be obtained in the framework of gen-
eralized spin glass models [60, 124]. This new
approach was complemented by the discovery of
the new replica-based thermodynamical potentials
[125]. In this way, it was possible to identify the

Y A: Old-fashioned hysteresis. During aging there is an excess of
noise with respect to equilibrium, as an effect of the micro-
scopic movements, but these movements do not affect the
response function. The presence of noise without a corre-
sponding response is typical of a system at infinite tempera-
ture. Indeed, the effective temperature !X(C) is infinite in the
aging region.

Y B: A new and nontrivial phenomenon, that should be present
in structural fragile glasses and in some kinds of spin glasses.
The system has two temperatures, and both are finite (47–50).
Often the higher temperature is near to the critical temper-
ature.

Y C: A more complex phenomenon that is present in the mean
field theory of some spin glasses (e.g., in the original SK
model). It corresponds to the presence of a continuous range
of temperatures in the aging region.

The presence of anomalies in the off-equilibrium regime in the
plot of the response versus correlations (i.e., cases B and C)
marks in a clear way the difference from the old picture
(hysteresis). The experimental fact that in real spin glasses "LR !
"eq excludes case A.

In the case of Ising spin glasses with two body interaction in
the mean field approximation we stay in case C. What happens
in three dimensions is not clear. Numerical simulations (5, 36, 37,
45) on Ising model indicates that we stay in case C, whereas the
experiments (51) (shown in Fig. 7) show a clear effect of
deviations from case A that may indicate more case B. From the
theoretical viewpoint there are no firm commitments: although
in infinite dimensions with a two-spin interaction we are in case
C, the corrections due to the interaction among the fluctuations
could bring the system in three dimensions in case B.

This difference between the simulations and the experiment
may have two different origins:

Y The experiment and the numerical simulations do correspond
to two different regimes: the time scales are quite different.
Moreover, if experimentally we cool a high-temperature sys-
tem, thermalized domains grow with time and the maximum
experimental reachable side is about 100. In simulations a
compact system can be thermalized up to size 20.

Y The numerical simulations are mostly done on Ising systems,
whereas the experiments have been mostly done on more
Heisenberg systems with anisotropy and a long-range tail of
interactions (other systems are more complex); there are
indications from other properties that the two systems behave
in a different manner.

More extended numerical simulations and experimental re-
sults on other systems are needed to decide which picture is
correct. One should also consider the possibility that the cor-
relation length in the equilibrium limit remains fine, but very
large (e.g., 1,000 lattice units). In such a case one should see the
effects of broken replica symmetries for times of human scale
and only for astronomical times should the anomaly disappear.
The possibility of this phenomenon is difficult to dismiss, but it
would not jeopardize the interpretation of the experimental data
using spontaneously broken replica theory.

Structural fragile glasses will be discussed later. Here we
notice that numerical simulations and strong theoretical argu-
ments point to the fact that they should belong to case B.
Unfortunately, although deviations from the equilibrium fluc-
tuation dissipation relations have been observed in structural
glasses, the situation is not so clear as for spin glasses.

Other impressive phenomena that happen mainly in spin glass
are memory and rejuvenation (52). Unfortunately I cannot
discuss them for lack of space.

Structural Fragile Glasses
Some of the physical ideas that have been developed for spin
glasses have also been developed independently by people
working in the study of structural glasses. However, in the fields
of structural glasses there were no soluble models that displayed
interesting behavior, so most of the analytic tools and of the
corresponding physical insight were first developed for spin
glasses.

Fig. 6. Three different forms (A, B, and C) of the function P(q) (Left) and the
related function S(q) (Right). Delta functions are represented as a vertical
arrow (taken from ref. 46).

Fig. 7. Experimental raw results (filled symbols) and ageing part (open
symbols) deduced from the scaling analysis. The different curves span the
waiting times studied: tw " 100 s, tw " 200 s, tw " 500 s, tw " 1000 s, tw " 2000 s
(from ref. 51).
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identifying X(C) = kBTd�(tw, C)/dC in the large waiting limit tw ! 1, one can relate the

dynamic quantity X(C) to the equilibrium x(q), i.e., X(C) = x(q)|q=C .13 This leads to a

simple physical picture in the aging regime in terms of the slope of the response with respect

to the correlations, i.e.,1probably add refs 7,9,10 of parisi.

dS

dC
= X(C) =

Z C

0

dqP (q). (55)

In other words, the deviations of the fluctuation-dissipation theorem that are caused by

aging e↵ects can be related to equilibrium properties given by P (q). An illustration of the

two di↵erent o↵-equilibrium regimes with their relation to equilibrium properties is given in

Fig. 5a for the SK model in comparison with standard hysteresis e↵ects, i.e., visualizing the

di↵erence between replica symmetry breaking and hysteresis. Notice the modifications of

the fluctuation-dissipation relations can be re-interpreted in terms of an e↵ective tempera-

ture15,19

⌧ = �T

✓
dS

dC

◆�1

� T (56)

which indicates a heating or excess of thermal fluctuations since 0  dS/dC  1 according

to the probability interpretation of Eq. (54). The two di↵erent o↵-equilibrium regimes, i.e.,

the emergence of aging e↵ects, seem to be a generic feature of glassy systems.13 In Fig. 5b

now interpret the findings for our case, i.e. which regime? can spin glass community

learn something from VSC? potential infinite waiting time limit much faster reached?
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FIG. 7: Experimental raw results (full symbols) and extrap-
olations to the infinite time limit (open symbols) for the re-
sponse function (defined in eq.(30)) versus the correlation (de-
fined in eq.(29)). The di�erent curves span the waiting times
studied: tw = 100 s, tw = 200 s, tw = 500 s, tw = 1000 s, tw =
2000 s (from ([96]))

It was a real surprise when it was discovered that the
analytic solution of the hard spheres thermodynamics in
the mean field approximation [83–85] predicted the exis-
tence at high pressure of a transition (the Gardner transi-
tion) to a marginal stable phase starting from the region
where one replica symmetry was broken at one step ac-
cording to [60].

Approaching this transition by increasing the pressure
leads to a divergent correlation time and to a diver-
gent correlation length. This possibility of a transition
from one-step replica symmetry breaking to a continuous
replica symmetry breaking, with the consequent appear-
ance of a marginal stable phase was discussed firstly in
[102] in the framework of a spin glass type model, but
the transition was identified in [103], where its proper-
ties were computed. When we cool a glass, it enters
a non-equilibrium region and the possibility of a tran-
sition to continuous replica symmetry breaking in this
o↵-equilibrium region was first discussed in [104, 105].

This unexpected prediction was confirmed in detailed
numerical analyses [106, 107]. This marginal phase pre-
dicted by the replica theory of glasses, has been di-
rectly observed experimentally in a slowly densifying col-
loidal glass [108, 109] and in two dimensional hard disks
[110, 111].

A spectacular result was the computation of the mean-
field exponents for the jamming transition [83–85] that
happens in the phase where replica symmetry is sponta-
neously broken. For example in the mean field approxi-
mation at jamming the correction function g(r) of hard
spheres of diameter 1, at distance r slightly greater than

1 behaves as

g(r) / 1

(r � 1)�
, � = 0.41269 · · · , (32)

where the value of � is obtained by solving non-linear
equations.

This prediction is correct not only in high dimensions
(as it should be), but it has been verified also in three and
quite likely in two dimensions where some logarithmic
corrections may be present [112].

E. Random Laser

The theoretical interest in random lasers in connection
with replica symmetry breaking started in 2006 [113].
Fortunately, experimental evidence of replica symmetry
breaking has been provided [114–116]. In random lasers
is possible to observe directly the occupancy of di↵erent
harmonic modes and therefore one can measure directly
the PJ(q) function.

Many di↵erent kinds of lasers have since been studied:
not only the standard solid disordered lasers but also
random fiber lasers [117, 118], random laser suspensions
in very viscous liquids [119] heterogeneous random lasers
in highly porous fibers [120].

Remarkably, similar phenomena are present also in
nonlinear optical propagation through photorefractive
disordered waveguides [121].

IX. THE SPIN GLASS CORNUCOPIA

In 1988 P.W. Anderson published seven columns in
”Physics Today” discussing various issues on spin glasses.
In one of the columns he described spin glasses as an
amazing cornucopia [122]: To me, the key result here is
the beautiful revelation of the structure of the randomly
”rugged landscape” that underlies many complex opti-
mization problems (..) Physical spin glasses and the SK
model are only a jumping-o� point for an amazing cor-
nucopia of wide-ranging applications of the same kind of
thinking.

Anderson was right. Here I will try to sketch some of
them.

We have seen many developments in physics. I will
mention here only a few examples.

• Structural glasses: replica symmetry breaking is
relevant for the study of the glass transition.

A very important step forward was done in the
eighties using the mode coupling theories [123].
However, it was realized that the same kind of
equations can be obtained in the framework of gen-
eralized spin glass models [60, 124]. This new
approach was complemented by the discovery of
the new replica-based thermodynamical potentials
[125]. In this way, it was possible to identify the

(b) tbd: mention finite waiting time e↵ects...
tw 2 {100, ..., 2000} [s]
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(b) Experimental off-equilibrium measurement: The breakdown of fluctuation-dissipation relations
(aging) measured the after cooling CdCr1.7In0.3S4 below the critical spin glass temperature of
Tg = 16.2 K. Bold symbols indicate the measured relaxation-correlation curve for different (finite)
waiting times tw ∈ {100, 200, 500, 1000, 2000} [s]. Open symbols show the extrapolation to infinite
waiting times tw → ∞ .The illustration was modified based on Fig. 7 Ref. 75, which contains
experimental data from Ref. 102.
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the SK mapping breaks with the established picture of spin glasses. The non-perturbative

feedback effect between the dressed electronic problem and the oscillating nuclei and cav-

ity field introduces dynamically frustrated correlations, which require novel concepts and

theoretical methods. For instance, the non-monotonic behavior of the correlations in the dy-

namical situation (see Fig. 9) modifies the simple heating-picture for off-equilibrium effects

and could allow cooling as well. Such effects have recently been observed experimentally for

collective strong-coupling situations.115 The numerical results suggest the following dynam-

ical features of a polarization glass at the onset of the instability (adiabatic electronic

ground-state approximation):

1. For a fixed time-step, the polarizations are anti-aligned and narrowly distributed, which

gives rise to significant dynamical frustration/correlation effects with zero overall po-

larization (absence of chemical shifts in NMR experiments27).

2. The dynamical feedback between cavity, nuclei and electronic structure introduces a

configuration-dependent (time-dependent) Edwards-Anderson order parameter.

3. The cavity-induced polarizations oscillate and are correlated over very long time-scales,

which modifies the thermal fluctuation-dissipation relations. However, in the adiabatic

limit no waiting time dependency has been detected with our present simulation capa-

bilities and thus aging effects have not (yet) been verified under VSC.

Simulations beyond the adiabatic approximation would be required to fully enter the

polarization glass phase, which will become computationally extremely demanding (solving

the time-dependent Schrödinger equation and including temperature). However, from the

SK model, one can anticipate that spontaneous replica symmetry breaking may also start to

play a role. Therefore, one would expect the emergence of dynamical aging effects and thus a

cavity-induced time-reversal symmetry breaking. This complicates the theoretical pic-

ture even further, particularly if reaching for an analytic understanding in the large-N limit.

However, cavity-induced time-reversal symmetry breaking could also open novel pathways
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for the sub-field of chiral polaritonics.116 There the common aim is to reach cavity-induced

enantioselctivity by explicitly parity-violating cavity polarizations.112,117–123 However, from

a fundamental theoretical aspect similar effects may also be reached by spontaneous sym-

metry breaking instead.124,125 Eventually, from a theoretical chemistry perspective, the even

more pressing theoretical question is how the feedback between the electronic, nuclear and

cavity subsystems can give rise to the experimentally observed stochastic resonance phe-

nomena, as suggested in Sec. 4.2.4. We expect that the instability and thus the dynamical

frustration of the dressed electronic structure acts as as seed such that stochastic resonances

emerge, i.e., a synchronization of the nuclear/cavity dynamics builds up. However, this pic-

ture remains to be proved/disproved. Yet if validated (or supplemented) it could be used as

a guiding principle for the design of experimental VSC setups and for the development of

effective models of polaritonic chemistry.
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(35) Chang, D.; Douglas, J.; González-Tudela, A.; Hung, C.-L.; Kimble, H. Colloquium

: Quantum matter built from nanoscopic lattices of atoms and photons. Reviews of

Modern Physics 2018, 90, 031002.

(36) Skolnick, M. S.; Fisher, T. A.; Whittaker, D. M. Strong coupling phenomena in quan-

tum microcavity structures. Semiconductor Science and Technology 1998, 13, 645–

669.

(37) Flick, J.; Welakuh, D. M.; Ruggenthaler, M.; Appel, H.; Rubio, A. Light–Matter Re-

sponse in Nonrelativistic Quantum Electrodynamics. ACS Photonics 2019, 6, 2757–

2778.

(38) Svendsen, M. K.; Thygesen, K. S.; Rubio, A.; Flick, J. Ab Initio Calculations of Quan-

tum Light–Matter Interactions in General Electromagnetic Environments. Journal of

Chemical Theory and Computation 2024, 20, 926–936.

(39) Rokaj, V.; Welakuh, D. M.; Ruggenthaler, M.; Rubio, A. Light–matter interaction

in the long-wavelength limit: no ground-state without dipole self-energy. Journal of

Physics B: Atomic, Molecular and Optical Physics 2018, 51, 034005.
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